ESTD. 2001

PRATHYUSHA ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE A%&GINEERING
v

A
O
LAB MANUAL

CCS349-IMAGE AND VH\@YANALYSIS LABORATORY

QO
(Regulation 2021, V Semester)

%@?w(oad Semester)
J\\>
\2\

A
Qf?‘ ACADEMIC YEAR: 2023 - 2024
4

PREPARED BY
B.Gunasundari,

Assistant Professor / CSE

CCS349 IMAGE AND VIDEO ANALYTICS LAB

I =

Exp.no. 1
T-pyramid of an image
Aim:
To Write a program that computes the T-pyramid of an image.

Algorithm:
Import the required libraries, OpenCV (cv2) and matplotlib.

Load an image "imgl.jpg" from the specified file path.

Initialize a variable layer as a copy of the loaded image. This copy will be repeatedly
downsampled to create the pyramid levels. 6&/

Iterate through a loop four times (from 1 = 0 to 3). Q/

Inside the loop:

¢ Create a subplot in a 2x2 grid (total of 4 subplots \Y
¢ Downsample the layer using cv2.pyrDown(). Q} peration reduces the
image size by half, creating a new level of the pyramid.
+ Display the downsampled image using plt.i ow() within the current
subplot.
After displaying all four levels of the ima
each level individually using cv2.imsh ith a window title based on the current
loop index i. However, there is a mis n the code where the window title is not
updated correctly, and it always di s "str(i)" as the title.
Finally, the code calls cv2.wai 0) to keep the OpenCV windows open until a key
is pressed, and then it closes.all'@penCV windows with cv2.destroyAllWindows().

Program: \g{:}\e\
K\
NS

import cv2
import rr&ﬁb?i).pyplot as plt

img = cv2.imread("E:\Backup 14.4.23\image\img1.jpg")

amid, the code attempts to display

layer = img.copy()

for 1 in range(4):
plt.subplot(2,2,1+ 1)
layer = cv2.pyrDown(layer)
plt.imshow(layer)
cv2.amshow("str(1)", layer)
cv2.waitKey(0)

cv2.destroyAllWindows()

Result: ?’S\z\

Thus the proan hat computes the T-pyramid of an image is executed successfully.

Exp. No.2
QUAD TREE

Aim:
To Write a program that derives the quad tree representation of an image using the
homogeneity criterion of equal intensity

Algorithm:
1. Define a Quadtree Node structure to represent each node in the quadtree. Each node
should contain the following information:
e Position (X, y): The top-left corner of the node within the image.

e Size: The width and height of the node.

e Color: The dominant color of the node.

e Children: An array or a dictionary to store child nodes.

e Termination Condition: A condition that determines when to stop subdividing.

2. Initialize the quadtree by creating the root node, which represents the entire image.

3. Define the termination condition, which could be based on a threshold for color
similarity, a maximum depth, or any other criterion. If the termination condition is met,
mark the current node as a leaf node.

4. If the termination condition is not met, subdivide the current node into four quadrants,
each representing a subregion of the image:

o Divide the current node's size by 2.
e Create four child nodes, one for each quadrant.

e Determine the dominant color for each quadrant. Q/
e Recursively apply the quadtree algorithm to each child no@
5. Repeat the subdivision process for each child node until the tépination condition is

met for each leaf node.

Program:
&

import numpy as np
import cv2 &
N

from PIL import Image, ImageDraw O
MAX DEPTH =8

DETAIL THRESHOLD = 13 \ZS"”
SIZE MULT = 1 %)

def average colour(i

convert image
image arr =n

get average of whole image
avg color per row = np.average(image arr, axis=0)
avg color = np.average(avg color per row, axis=0)

return (int(avg_color[0]), int(avg_color[1]), int(avg color[2]))
def weighted average(hist):
total = sum(hist)

error = value =0

if total > 0:
value = sum(1 * X for 1, X in enumerate(hist)) / total

error = sum(x * (value - 1) ** 2 for 1, X in enumerate(hist)) / total
error = error ** (.5

return error

def get detail(hist):
red detail = weighted average(hist[:256])
green_detail = weighted average(hist[256:512])
blue detail = weighted average(hist[512:768])

detail intensity = red_detail * 0.2989 + green_detail * 0.5870 + blue_detail * 0.1140

return detail intensity Q/

class Quadrant(): Q/
def init (self, image, bbox, depth): \>/
self.bbox = bbox (:)O

self.depth = depth

ol O
self.children = None @

self.leaf = False Q/Q.
crop image to quadrant size Q/
p image to q \\k

image = image.crop(bbox) O
hist = image.histogram() Q/%
self.detail = get detail(hist

self.colour = average % mage)

def split quadrant(age)
left, top, width t = self.bbox

get the rg:ldle coords of bbox
middle x = left + (width - left) / 2
middle y = top + (height - top) / 2

split root quadrant into 4 new quadrants

upper_left = Quadrant(image, (left, top, middle x, middle y), self.depth+1)
upper_right = Quadrant(image, (middle x, top, width, middle y), self.depth+1)
bottom_left = Quadrant(image, (left, middle y, middle x, height), self.depth+1)
bottom right = Quadrant(image, (middle x, middle y, width, height), self.depth+1)

add new quadrants to root children
self.children = [upper left, upper right, bottom left, bottom right]

class QuadTree():
def init (self, image):
self.width, self.height = image.size

keep track of max depth achieved by recursion
self.max depth =0

start compression
self.start(image)

def start(self, image):
create initial root
self.root = Quadrant(image, image.getbbox(), 0)

build quadtree
self.build(self.root, image)

&
&
NS

\Y
O

def build(self, root, image):
if root.depth >= MAX DEPTH or root.detail <= D%&ﬁ‘_THRESHOLD:

if root.depth > self.max_depth: Q/Q.

self.max_depth = root.depth Q/

assign quadrant to leaf and stop I ing
root.leaf = True

return Q/

split quadrant if there much detail
root.split quadrant(i‘qg

for children in &chlldren
self.bui&@'?dgren, image)

def create image(self, custom depth, show lines=False):
create blank image canvas
image = Image.new('RGB), (self.width, self.height))
draw = ImageDraw.Draw(image)
draw.rectangle((0, 0, self.width, self-height), (0, 0, 0))

leaf quadrants = self.get leaf quadrants(custom depth)
draw rectangle size of quadrant for each leaf quadrant

for quadrant in leaf quadrants:
if show lines:

draw.rectangle(quadrant.bbox, quadrant.colour, outline=(0, 0, 0))

else:
draw.rectangle(quadrant.bbox, quadrant.colour)

return image

def get leaf quadrants(self, depth):
if depth > self.max_depth:
raise ValueError('A depth larger than the trees depth was given')

quandrants = []

search recursively down the quadtree
selfrecursive search(self, self.root, depth, quandrants.append) Q/

return quandrants

&
Y
def recursive search(self, tree, quadrant, max depth, appent_@):
append if quadrant is a leaf
if quadrant.leaf == True or quadrant.depth == max@%:
append leaf(quadrant) Q/Q.
&

otherwise keep recursing %
elif quadrant.children != None: (:?\

for child in quadrant.children:
self.recursive search(tree c%d, max_depth, append leaf)

def create gif(self, ﬁle_n:@}rationloo{), loop=0, show_lines=False):

gif =[]
end _product_img% self.create image(self.max depth, show lines=show lines)

foriin ran f.max_depth):
image =$elf.create image(i, show lines=show lines)

gif.append(image)

add extra images at end
for in range(4):

gif.append(end product image)

gif[0].save(
file name,
save all=True,
append images=gif[1:],
duration=duration, loop=loop)

.

if name ==' main
#image path = "./images/eye.jpg"
image path = "E:\Backup 14.4.23\image\img1 jpg"

load image
image = Image.open(image path)
image = image.resize((image.size[0] * SIZE MULT, image.size[1] * SIZE MULT))

create quadtree
quadtree = QuadTree(image)

create image with custom depth Q/
depth =7 O
image = quadtree.create image(depth, show lines=False) @

quadtree.create gif("mountain_quadtree.gif", show_lincs=Tru€:)>\/

show image O

image.show() @QQ

image.save("E:\Backup 14.4.23\image\img1 1%@3‘

Output:

Result:
Thus the program that derives the quad tree representation of an image using the homogeneity
criterion of equal intensity is executed successfully.

Exp. No.3
GEOMETRIC TRANSFORMATION OF IMAGE

Aim:
To develop programs for the following geometric transforms: (a) Rotation (b) Change
of scale (c) Skewing (d) Affine transform calculated from three pairs of corresponding
points

Algorithm:
(a) Rotation

%
1. Import the Pillow library: Q/(:O
e The code starts by importing the Image module flé\,ig@’té Pillow library.
2. Open the original image:
e It opens an image from the file path "E:\Ba@pc‘f’4.4.23\image\img1.jpg" and
assigns it to the Original_Image variable
3. Rotate the image by 180 degrees: N
o The rotate method is used to rota %original image by 180 degrees, and the
result is stored in rotated_ima

o The transpose method 1 with the argument Image. ROTATE_90 to rotate
the original image by{90 degrees counter-clockwise (also known as a
counterclockwise %ﬁ rotation). The result is stored in rotated_image2.
5. Rotate the image by 60{&65:
o The rotate ntethod is used to rotate the original image by 60 degrees, and the
result is stored in rotated_image3.

6. Display the /ézted images:
. Tl@ﬁ(:w method is called on each of the rotated images to display them.

(b) Change of scale

1. Import the OpenCV library:
o The code starts by importing the OpenCV library.
2. Read the original image:

e It reads an image from the file path "E:\Backup 14.4.23\image\img1.jpg" using
cv2.imread with the flag cv2.IMREAD UNCHANGED. This flag loads the
image as-is, including the alpha channel if it exists.

3. Print the original image dimensions:

(c) Skewing

I,

e The code prints the original image's dimensions (height, width, and number of

channels) using img.shape.
Calculate the new dimensions for resizing:

o The code calculates the new dimensions for resizing based on a specified scale

percentage. In this case, the image is resized to 40% of its original size.
Resize the image:

e The cv2.resize function is used to resize the image to the new dimensions (dim)
using the specified interpolation method (cv2.INTER AREA). The
interpolation method is often used for downscaling to ensure better quality.

Print the resized image dimensions:

e The code prints the dimensions of the resized image using resized.shape.
Display the resized image:

o The resized image is displayed using cv2.imshow. Q/
Wait for a key press and close the window:

e The code waits for a key press with cv2.waitKey(). Q/

o It then closes all OpenCV windows using cv2.des Windows().

@0
num f i . @

o skimage for image processing
e deskew to perform the ske ction and correction.

Read an image: @
e Itreads an image from ile path "E:\imageoutput.jpg" using io.imread from
scikit-image.

Import the necessary libraries:

Convert the image to ale:
e The code ¢ s the color image to grayscale using rgbh2gray from scikit-
image.
Determine t /%kew angle:
e« T etermine_skew function from the deskew library is used to

tomatically determine the skew angle in the grayscale image.
Rotate the image to correct the skew:
o The code rotates the original image by the determined angle using rotate from
scikit-image. This corrects the skew in the image.
e The result is multiplied by 255 to ensure that pixel values remain in the range
[0, 255].
Save the corrected image:
e The corrected image is saved to "E:\imageoutputl.jpg" using io.imsave. It's
cast to the np.uint8 data type to ensure the correct data type for image saving.
(d) Affine transform calculated from three pairs of corresponding points

. Import necessary libraries:

e The code imports OpenCV (cv2) for image processing, NumPy (np) for
numerical operations, and Matplotlib (plt) for displaying images.
2. Read and convert the image:
o The code reads an image from the file path "E:/img.jpg" using cv2.imread. It
is then converted to the RGB color space using ev2.cvtColor.
3. Define source and target points:
e ptl contains the coordinates of the three vertices of a triangular region in the
source image.
e pt2 contains the corresponding coordinates for the three vertices in the output
image, defining how the triangular region should be transformed.
4. Create a transformation matrix:
e The cv2.getAffineTransform function is used to calculate the affine
transformation matrix (Mat) based on the source (ptl) and t@et (pt2) points.
5. Apply the affine transformation:
e cv2.warpAffine is used to apply the affine transformati(gjo the original image
(img) using the transformation matrix (Mat). The wutput is stored in the dst
variable.

6. Display the original and transformed images: (:‘)
e The code uses Matplotlib to display th@nal image and the transformed

image side by side. "\
&

7. Show the images:
e The images are displayed usin ow().

N
RS
?»
(a) Rotati l{b\z\
from PIL impoz @e

Original I@X‘Z Image.open("E:\Backup 14.4.23\image\img]1.jpg")

Program:

Rotate Image By 180 Degree

rotated imagel = Original Image.rotate(180)

rotated image2 = Original Image.transpose(Image.ROTATE 90)
rotated_image3 = Original Image.rotate(60)

rotated imagel.show()

rotated image2.show()
rotated_image3.show()

(b) Change of scale

import cv2

img = cv2.imread("E:\Backup 14.4.23\image\img1.jpg", cv2.IMREAD UNCHANGED)
print('Original Dimensions : ',img.shape)

scale percent =40 # percent of original size
width = int(img.shape[1] * scale percent / 100)
height = int(img.shape[0] * scale_percent / 100)
dim = (width, height)

resized = cv2.resize(img, dim, interpolation = cv2.INTER AREA)

resize image Q/OQ/
D%

N%
print('Resized Dimensions : ',resized.shape) (:j:)

cv2.imshow("Resized image", resized) 0
NS

cv2.waitKey(0) Q/Q.

cv2.destroyAllWindows()

(c) Skewing Q/%O

import numpy as np ?"
from skimage import 1

from skimage.color impért rgb2gray
from skimage.tr; rm import rotate

from dewoﬂ determine skew

image = i0.imread('E:\imageoutput.jpg')

grayscale = rgb2gray(image)

angle = determine skew(grayscale)

rotated = rotate(image, angle, resize=True) * 255
10.imsave('E:\imageoutputl jpg', rotated.astype(np.uint8))

(d) Affine transform calculated from three pairs of corresponding points

Importing OpenCV

import cv2

Importing numpy

import numpy as np

Importing matplotlib.pyplot

import matplotlib.pyplot as plt

Reading the image

img = cv2.imread(r"E:/img.jpg")

img = cv2.cvtColor(img, cv2.COLOR BGR2RGB)
rows, cols, ch = img.shape

Coordinates of triangular vertices in the source image
ptl = np.float32([[50, 50], Q/
[200, 507, @)
[50, 200]) &
Coordinates of the corresponding triangular vertices in the outggng}{
pt2 = np.float32([[10, 100],
[200, 501,
[100, 250]]) \.AQ’
Creating a transformation matrix Q}
Mat = cv2.getAffineTransform(pt1, pt2) Q/
dst = cv2.warpAffine(img, Mat, (cols, rows)) %Q/
plt.figure(figsize=(10,10)) \

Plotting the input image Q/%

plt.subplot(121)

plt.imshow(img) \2\?"
plt.title('Input') C:}

Plotting the output 1mag§i\\>
plt.subplot(122)

plt.imshow(dst) ?\;S

plt.title('Outpu%@
plt.show()

output:

Result:
Thus the programs for the geometric transform @ Rotation (b) Change of scale (c)
Skewing (d) Affine transform calculated fro Q‘Ee pairs of corresponding points

&
Q;\

Exp. No.4 \2:?“
\}Cf)Object Detection and Recognition

is executed successfully.

To deve o?§program to implement Object Detection and Recognition
Algorithm:

1. Import necessary libraries:

e ¢v2 for OpenCV functions.

« google.colab.patches for displaying images in a Colab notebook.
2. Load and resize an input image:

e Read an image from a file named 'image.jpg'.

e Resize the image to a size of 640x480 pixels.
3. Define the paths to the model and class label files:

o weights contains the path to the frozen inference graph file (the pre-trained

model).
o model contains the path to the model configuration file.
e coco_names.txt contains the class labels for the COCO dataset.

4. Load the MobileNet SSD model:

e Use cv2.dnn.readNetFromTensorflow to load the model using the provided

weights and model files.
5. Load class labels:

e Read class labels from the 'coco names.txt' file and store them in the

class_names list.

6. Create a blob from the input image:

e Prepare the image for inference using cv2.dnn.blobFromImage.
7. Pass the blob through the network:

o Set the blob as input to the network.

e Use net.forward() to obtain the output predictions.
8. Process the detection results:

o Loop over the detected objects in the output. Q/

e For each detection, check the confidence score (prOb&bIllt@

o If'the confidence is below 50%, continue to the next del%aon
9. Draw bounding boxes and labels:

o Extract the (X, y) coordinates of the bounding b@

S

e Draw a green rectangle around the detected
o Extract the class ID to identify the objec

e Draw the object's name and the pro as text above the bounding box.
10. Display the resulting image:
e Use cv2_imshow to display th@@e with bounding boxes and labels.
. cv2.waitKey() waits for a

%
Program: \2\?“

from google.colab patches ?ﬂ}brt cv2 imshow

import cv2
/\Q\

image = cv2.im image.jpg')
image = cv2.r‘:§e(image, (640, 480))
h = image.shape[0]

w = image.shape[1]

path to the weights and model files

weights = "frozen inference graph.pb"

model = "ssd_mobilenet v3 large coco 2020 01 14.pbtxt"

load the MobileNet SSD model trained on the COCO dataset
net = cv2.dnn.readNetFromTensorflow(weights, model)

load the class labels the model was trained on
class names = []
with open("coco names.txt", "r") as f:

class names = f.read().strip().split("\n")

create a blob from the image
blob = cv2.dnn.blobFromImage(
image, 1.0/127.5, (320, 320), [127.5, 127.5, 127.5])
pass the blog through our network and get the output predictions
net.setInput(blob)
output = net.forward() # shape: (1, 1, 100, 7)

loop over the number of detected objects

for detection in output[0, 0, :, :]: # output[0, 0, :, :] has a shape of: (100, 7)
the confidence of the model regarding the detected object
probability = detection[2]

we do nothing (continue looping)

if probability < 0.5: (:.)O
continue 0
Ny

perform element-wise multiplication to get Q..
the (x, y) coordinates of the bounding box Q/

box = [int(a * b) fora, b in zip(detection[?;:@ h, w, h])]
box = tuple(box) N

draw the bounding box of the object:
cv2.rectangle(image, box[:2], bo%. 0, 255, 0), thickness=2)

if the confidence of the model 1s lower than 50%, Q/
V¢

extract the ID of the det;@\ﬁ ject to get its name
class id= int(detcctionl}\
draw the name of the’predicted object along with the probability
label = " {class s[class id - 1].upper()} {probability * 100:.2f}%"
cv2.putText(i , label, (box[0], box[1] + 15),

cv2.FONT HERSHEY SIMPLEX, 0.5, (0, 255, 0), 2)

cv2 imshow(image)
cv2.waitKey()

Output:

Result: (:9\

Thus the program to impl t Object Detection and Recognition is executed
successfully and output i§yerified.

&
Exp. No. 5 “’3\

| L8
Aim: QS?‘

To develop a program for motion analysis using moving edges.
Algorithm:

1. Import necessary libraries:
e ¢v2 for OpenCV functions.
e numpy for numerical operations.
e google.colab.patches for displaying images in a Colab notebook.
2. Open a video file for reading:
e cv2.VideoCapture is used to open a video file named "yolodetection.mp4" for
reading.
3. Get video properties:

10.

11

12

Iy

14.

13:

16.

17

18.

19.

20.

o Retrieve the frame width and frame height of the video.
Define the codec for the output video:
e cv2.VideoWriter_fourcc is used to specify the codec for the output video. In
this case, it's set to 'XVID'.
Create a VideoWriter object for the output video:
e A VideoWriter object is created to write the processed video to "output.mp4"
with a frame rate of 5.0 frames per second and a frame size of 1280x720.
Read the first two frames of the video:
e cap.read() is used to read the first two frames of the video.
Start processing the video in a loop:
o The code enters a loop that processes each frame of the video.
Calculate the difference between consecutive frames:
¢ Calculate the absolute difference between framel and frameQ/o identify areas
of motion. @
Convert the difference frame to grayscale: Q/
e Convert the difference frame to grayscale using mé@éolor.
Apply Gaussian blur:
e Apply Gaussian blur to the grayscale frame @'gi{lce noise.

. Apply thresholding:

e Apply a threshold to the blurred framQ}creatc a binary image where motion

areas are white.
Dilate the thresholded image: é/
e Dilate the thresholded imag@ ake the white areas more prominent.

Find contours of motion:
e Find contours in the di image.

Iterate through the detec@%&ﬁtoum:
e For each cor:gg heck its area. If the area is less than 900, it's likely not
signiﬁcantig 16on and is skipped.

o If the area’s significant, draw a green bounding box around the moving object
and 'Movement" status text.
Resize th e

o Qesuze the frame to a fixed size of 1280x720.
Write the frame to the output video:

o Write the processed frame to the output video using out.write().
Display the frame with bounding boxes:

o Display the frame with bounding boxes using c¢v2_imshow.
Update the frames for the next iteration:

e Set framel to the previous frame2.

o Read the next frame into frame2.
Check for the 'Esc' key (27) to exit the loop:

e Check if the 'Esc' key is pressed to exit the loop.
Release resources:

e Release OpenCV windows and the video capture and writer objects

Program:

from google.colab.patches import cv2 imshow
import cv2

import numpy as np

cap = cv2.VideoCapture('/content/yolodetection.mp4')
frame width = int(cap.get(cv2.CAP PROP FRAME WIDTH))

frame height =int(cap.get(cv2.CAP PROP FRAME HEIGHT))
fource = cv2.VideoWriter fource('X",'V','T,'D")

out = cv2.VideoWriter("output.mp4", fourcc, 5.0, (1280,720))

OO

ret, framel = cap.read() 0
ret, frame2 = cap.read() é
print(framel.shape) @
while cap.isOpened(): Q/Q/

diff = cv2.absdiff(framel, frame2)
gray = cv2.cvtColor(diff, cv2.COLOR GRAY)
blur = cv2.GaussianBlur(gray, (5,5)

_, thresh = cv2.threshold(blur, 20, 255, cv2. THRESH BINARY)
dilated = cv2.dilate(thresh, NO\I%,~ terations=3)

contours, P C:} cv2.findContours(dilated,
cv2 .CHAIN_APPROX_S@E)

for contour in co ﬁrs:
(x,y, w, h) Q\b .boundingRect(contour)

if cv2.contourArea(contour) < 900:
continue
cv2.rectangle(framel, (x, y), (x+w, y+h), (0, 255, 0), 2)

é’%
N

cv2.RETR TREE,

cv2.putText(framel, "Status: {}".format('Movement'), (10,

cv2.FONT HERSHEY SIMPLEX,
1, (0, 0, 255), 3)
#cv2.drawContours(framel, contours, -1, (0, 255, 0), 2)

image = cv2.resize(framel, (1280,720))
out.write(image)

cv2 imshow(framel)

framel = frame2

20),

ret, frame2 = cap.read()

if cv2.waitKey(40) == 27:
break

cv2.destroyAllWindows()
cap.release()

out.release()

Output:

Result:
Thus the program for @hn analysis using moving edges is executes successfully and output

1s verified.
&

Exp. No.6

FACIAL DETECTION AND RECOGNITION
Aim:

To develop a program for Facial Detection and Recognition
Algorithm:

1. Install the required libraries:

10.

11.

o The code begins by installing the face_recognition library and the dlib library.
These libraries are used for face recognition and deep learning-based image
processing.

Import necessary libraries:

o face_recognition for facial recognition functionality.

e ¢v2 for OpenCV functions.

e numpy for numerical operations.

e os for file and directory operations.

Define the path to the directory containing known face images:

o The path variable points to a directory named "train" which contains known
face images.

Initialize lists for known names and their encodings:

e Two lists, known_names and known_name_encodings, a@reated to store
the names of known individuals and their face encodings. @

Load known face images and compute face encodings:
o Loop through the images in the specified directory, \>/
e Load each image using fr.load_image file. 90

e Compute the face encoding for each image using“fr.face_encodings.
e Add the name and encoding to the respeqégﬁ;ts.
Load and process the test image: @
o Load the test image using cv2.im @/
o Use fr.face_locations and fr.f %ﬁcodings to locate and encode the faces in
the test image. N

Compare face encodings to kno ces:
e For each detected face%/the test image, compare its encoding to the known

face encodings usit gq‘l‘{compare_faces.
o Find the best ﬁﬁsing np.argmin on the computed face distances.
Label and draw bo@g boxes around recognized faces:
o Ifa matehis found, label the recognized face with the corresponding name.
e Dra /<1s0unding box around the recognized face and display the name.
Display t ocessed image with recognized faces:
« Misplay the image with bounding boxes and recognized names using
cv2_imshow.
Save the output image:
Save the processed image with recognized faces to the specified output path using
cv2.imwrite.
Wait for a key press and close OpenCV windows:
Wait for a key press (0) to keep the window open.
Release OpenCV resources and close the window using cv2.waitKey and
cv2.destroyAllWindows.

Program:

Ipip install face recognition
from google.colab.patches import cv2 imshow

'pip install dlib

import face recognition as fr
import cv2

import numpy as np

import o0s

path = "/content/drive/MyDrive/facer/train/"

known names =[]

known name_encodings =[] O

images = os.listdir(path) 0
for in images: @
image = fr.load image file(path +) Q/Q'
image path = path + Q/
encoding = fr.face encodings(image)[0] (:?\e

known name encodings.append(e ﬁg)
known_names.append(os.path.splitext(os.path.basename(image path))[0].capitalize())

print(known names) CD
W

test image = "fconten‘@gbeﬂ\/{yDriveﬁfacerﬁtestftest.jpg"
image = cv2.imre ﬁ%ﬁ_image)
image = cv2.£yt€olor(image, cv2.COLOR BGR2RGB)

face locations = fr.face locations(image)
face encodings = fr.face encodings(image, face locations)

for (top, right, bottom, left), face encoding in zip(face locations, face encodings):
matches = fr.compare faces(known name encodings, face encoding)

—un

name

face distances = fr.face distance(known name encodings, face encoding)
best match = np.argmin(face distances)

if matches[best match]:

name = known names[best match]

cv2.rectangle(image, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(image, (left, bottom - 15), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT HERSHEY DUPLEX

cv2.putText(image, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)

cv2 imshow(image)
cv2.imwrite("/content/drive/MyDrive/facer/output.jpg", image)
cv2.waitKey(0)

cv2.destroyAllWindows()

Output:

Result:
Thus the program for Facial Detection and Recognition is executed successfully and

output is verified.

Exp. no:7
HAND GESTURE RECOGNITION

Aim:
To develop a program to recognize hand gesture.

Algorithm:

1. Import necessary libraries: Q/
e ¢v2 for OpenCV functions. (:9

o mediapipe for hand tracking and landmarks detectiorK/Q/
2. Open a video capture source: N/

e Capture video from the default camera (webca:ﬁ@ng cv2.VideoCapture(0).
3. Initialize MediaPipe Hand tracking:

e Create instances of mpHands.Hands(@; and tracking and mpDraw for

drawing landmarks. Q..
4. Define finger and thumb coordinates: Q/
o fingerCoordinates is a list of t@hat define the landmarks for the fingertips.
1

Each tuple contains two lan ndices: the tip and the base of each finger.
o thumbCoordinate is %@e that defines the landmarks for the thumb tip and
base.
5. Start an infinite loop for yidgo processing:
e Continuously e frames from the camera.
6. Read and process @ptm‘ed frame:

e Reada ¢ from the camera using cap.read().
e Con he frame from BGR to RGB color space, as MediaPipe requires RGB

m;ﬁ?t.
7. ProcessMand landmarks:

e Use hands.process(imgRGB) to process the RGB image and detect hand
landmarks.
o Extract the landmarks from the results if hands are detected.
8. Draw hand landmarks and connections:
e If hands are detected, draw the hand landmarks and connections on the frame
using mpDraw.draw_landmarks.
9. Extract and visualize hand points:
o Extract the (X, y) coordinates of hand landmarks and store them in handPoints.
e Draw circles at the detected hand points on the frame.
10. Count the number of raised fingers:
e Check the relative positions of specific finger tip and base landmarks to
determine if a finger is raised. Increment upCount for each raised finger.

e Additionally, check the thumb position to see if it is raised.
11. Display the finger count:
e Draw the finger count on the frame using cv2.putText.
12. Display the processed frame:
o Show the processed frame with hand landmarks and finger count using
cv2.imshow.
13. Wait for a key press and update the frame:
o Wait for 1 millisecond using cv2.waitKey(1) to allow the frame to be displayed
and updated in the loop.
14. Close the OpenCV window:
e The loop continues until you press a key to exit the program. When a key is

o

Vg
OO
import cv2 C?
import mediapipe as mp \@

cap = cv2.VideoCapture(0) Q/Q‘
mpHands = mp.solutions.hands QQ/
hands = mpHands.Hands() \
mpDraw = mp.solutions.drawin

fingerCoordinates = [(8, 6), (?\), (16 14), (20, 18)]
thumbCoordinate = (4, 2)

pressed, the program closes the OpenCV window.

Program:

while True:
success, img = ca}&zéd()
imgRGB = cv2.evtColor(img, cv2.COLOR BGR2RGB)

results =h process(imgRGB)
multiLagdMarks = results.multi hand landmarks

if multiLandMarks:
handPoints =[]
for handLms in multiLandMarks:
mpDraw.draw landmarks(img, handLms, mpHands. HAND CONNECTIONS)

for idx, Im in enumerate(handLms.landmark):
print(idx,Im)
h, w, ¢ = img.shape
cx, cy = int(Im.x * w), int(Im.y * h)
handPoints.append((cx, cy))

for point in handPoints:

cv2.circle(img, point, 10, (0, 0, 255), cv2.FILLED)

upCount =0
for coordinate in fingerCoordinates:
if handPoints[coordinate[0]][1] < handPoints[coordinate[1]][1]:
upCount += 1
if handPoints[thumbCoordinate[0]][0] > handPoints[thumbCoordinate[1]][0]:
upCount += 1

cv2.putText(img, str(upCount), (150,150), cv2.FONT HERSHEY PLAIN, 12,
(255,0,0), 12)

cv2.imshow("Finger Counter", img) Q/
cv2.waitKey(1) €

Output: (:)

@ iR P search - d — ?' o0 . _?F:‘E L] '! re T PED g ©

Result:

Thus the program to recognize hand gesture is executed successfully and output is
verified.

ADDITIONAL EXPERIMENTS

Exp. No.:8

Aim:
To develop a program for detecting an edges of an image.

Algorithm:

. Import the OpenCV library:

e The code starts by importing the OpenCV library.

. Load an image:

e It loads an image named "penguin.jpg" using cv2.imread a.Q/assigns it to the

image variable. O
. Apply Canny edge detection: Q/
e The Canny edge detection algorithm is applied t e\ﬁ)aded image using the
cv2.Canny function. The parameters 200 and %ﬁgﬁ:ﬁsed as the low and high

thresholds, respectively, for edge detection. C?
. Save the resulting image:
o The edge-detected image is saved with tie name 'edges Penguins.jpg' using

cv2.imwrite.
. Display the edge-detected image: Q/
e The code uses cv2.imshow @\ play the edge-detected image.

Program: ?“Q/%
import cv2 63\2\

image = cv2.imreac‘l£@guin.jpg")
cv2.imwritc('ec/l{@_\l’enguins.jpg',ch.Canny(image,200,300))

cv2.imsho@es', cv2.imread('edges Penguins.jpg'))

Output:

Result:

Thus the program for detecting an edges of an image is executed succgs/fully and output
is verified.

Exp. No.9 ‘\’\

SMOOTHIN@& BLURRING

Yw&
Aim: </

?\’)m.
To develop a program t().&gﬁ:ﬂy smoothing and blurring to an image.
%"
\«
\J
L q

Algorithm: \2\

1. Import Opﬂ\ﬁ?\/ and NumPy:
“ Qx\’ﬁ:‘ode starts by importing the OpenCV library as ¢v2 and the NumPy library
as np.
2. Read an image:
e It reads an image from the file path "E:\Backup 14.4.23\image\lab\pen.jpg"
using cv2.imread and stores it in the image variable.
3. Create a kernel for averaging (blur):
e The code defines a 5x5 kernel of ones (all values set to 1) using NumPy.
e The division by 25 is to normalize the kernel so that the sum of the values is 1,
making it an average filter.
4. Apply the filter to the image:
o The ev2.filter2D function is used to apply the filter to the input image. It takes
the source image (image), the depth (ddepth), and the kernel (kernel2) as

parameters. The ddepth of -1 indicates that the output image should have the
same depth as the input image.
5. Display the original and filtered images:
o The code displays both the original image and the filtered (blurred) image using
cv2.imshow.
6. Wait for a key press and close the windows:
e The code waits for a key press with cv2.waitKey().
o It then closes all OpenCV windows using cv2.destroyAllWindows().

Program:

import cv2 Q/
import numpy as np O
Reading the image Q/
image = cv2.imread("E:\Backup 14.4.23\image\lab\pen.jpg" Vv
Creating the kernel with numpy 0
kernel2 = np.ones((5, 5), np.float32)/25 O
Applying the filter
img = cv2.filter2D(src=image, ddepth=-1, k =kernel2)
showing the image
cv2.imshow('Original’, image) %Q/
cv2.imshow('Kernel Blur', img) (:?\
cv2.waitKey()
cv2.destroyAllWindows() Q/

Output: \2\
tput: R \)fb

|m ! Original « — O X 1 Kernel Blur = O A

Result:
Thus the program to apply smoothing and blurring to an image is executed successfully
and output is verified.

