ESTD. 2001

PRATHYUSHA ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE A%&GINEERING
v

"
LAB MANUAL
N
f
CS3481-DATABASE MANA(@“ZNT SYSTEMS LABORATORY
(Regulat@ 021, IV Semester)
R
?w
A EMIC YEAR: 2022 - 2023
w3,\\./
&Q\ (Even Semester)
\g
QQ*
PREPARED BY

B.Gunasundari,

Assistant Professor / CSE

PRATHYUSHA ENGINEERING COLLEGE

VISION

To emerge as a premier technical, engineering and management institution in the country by
imparting quality education and thus facilitate our students to blossom in to dynamic
professional so that they play a vital role for the progress of the nation and for a peaceful co-
existence of our fellow human being.

MISSION
o

Prathyusha Engineering College will strive to emerge as a prem@r{stitution in the country by

e To provide state of art infrastructure facilities N/
e Imparting quality education and training through @g}led, experienced and committed

e Developing centers of excellence in fropaéssrareas of Engineering, Technology and
Management

e Networking with Industry, Corpo d Research Organizations

e Promoting Institute-Industry pazffietship for the peace and prosperity of the nation

members of the faculty
Empowering the youth by providing profess?igg leadership

DEPARTMENT OF COD@TER SCIENCE AND ENGINEERING

VISION {b\%\%

Our Vision is to wa strong teaching & research environment in the field of computer science
and enginecri;% or developing a team of young dynamic computer science engineers,
researchers, fgmre entrepreneurs who are adaptive to respond to the challenges of 21* century.
Our co@ent lies in producing disciplined human individuals, capable of contributing

solutions to solve problems faced by our society.

MISSION

e To provide a quality undergraduate and graduate education in both the theoretical and applied
foundations of computer science and engineering.

e To train the students to effectively apply this education to solve real-world problems, thus
amplifying their potential for lifelong high-quality careers and gives them a competitive
advantage in the ever-changing and challenging global work environment of the 21st century.

o To initiate collaborative real-world industrial projects with industries and academic institutions
to inculcate facilities in the arena of Research & Development

e To prepare them with an understanding of their professional and ethical responsibilities

PROGRAMME EDUCATIONAL OBJECTIVES

PEO-1: To train the graduates to be excellent in computing profession by updating technical

skill-sets and applying new ideas as the technology evolves.

PEO-2: To enable the graduates to excel in professional career and /or higher education by

acquiring knowledge in mathematical, computing and engineering principles.

PEO-3: To enable the graduates, to be competent to grasp, analyze, design, and create new

products and solutions for the real time problems that are technically advanced
economically feasible and socially acceptable

PEO- 4: To enable the graduates to pursue a productive career as a member of multi-disciplinary

1

2.

3.

8.
9.
10.

11.
12,

and cross-functional teams, with an appreciation for the value of ethic and cultural
diversity and an ability to relate engineering issues to broader social context.

An ability to apply knowledge of computing, mathematicg;a8€¢ience and engineering

fundamentals appropriate to the discipline. Q/

An ability to analyze a problem, and identify and formulate”the computing requirements

appropriate to its solution.

An ability to design, implement, and evaluate a complitercbased system, process, component,

or program to meet desired needs with appropriate*gonsideration for public health and safety,
gwel

PROGRAMME OUTCOMES AND PROGRAMME SPE%?C OUTCOMES

cultural, societal and environmental considerations:

An ability to design and conduct experime | as to analyze and interpret data.

An ability to use current techniques, & and modern tools necessary for computing
practice.

An ability to analyze the local and g{é@a impact of computing on individuals, organizations,
and society.

Knowledge of contemporary jssues.

An understanding of professional, ethical, legal, security and social issues and
responsibilities.
An ability to funci
multidisciplinary, omplish a common goal.

An ability to com icate effectively with a range of audiences.

Recognition e need for and an ability to engage in continuing professional development.
An under%\dmg of engineering and management principles and apply these to one’s own
work, ¢ ember and leader in a team, to manage projects.

effectively individually and on teams, including diverse and

PROGRAMME SPECIFIC OBJECTIVES (PSO’s)
A graduate of the Computer Science and Engineering Program will able,
PSO1: To Analyze, Design and Develop computer programs / Applications in the areas related

to Web-Technologies, Networking, Algorithms, Cloud Computing, Data analytics,
Computer Vision, Cyber-Security and Intelligent Systems for efficient design of
Computer-based and Mobile-based systems of varying complexity.

PSO2: To use modern software tools (like NS2, MATLAB, OpenCV, etc.) for designing,

simulating, analyzing and generating experimental results for real-time problems and
case studies

PSO3: To Apply Software Engineering practices and strategies for developing Projects related to

emerging technologies.

PRATHYUSHA ENGINEERING COLLEGE

INDEX

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

S.NO

NAME OF EXPERIMENT

PAGE NO

DDL AND DML

REFERENTIAL INTEGRITY ,

‘WHERE’ CLAUSE AND AGGREGATE FUNCTIONS (‘ ,§}</

4

11

SUB QUERIES AND SIMPLE JOIN OPERATIONS \<</

15

h | B | W | b

JOINS {MO

18

FUNCTIONS AND STORED PROCEDURES {”,)\'}

22

DCL AND TCL COMMANDS AN

24

X
TRIGGERS L&

26

o | oo | 3| D

VIEW AND INDEX \Y\\S/

27

\)
XML DATABASE 0§>

28

11

NOSQL DATABASE TOOQ/\

31

12

EMPLOYEE MANA@&@NT SYSTEM

37

13

BANK MANAGWT SYSTEM

42

X

/& ADDITIONAL EXPERIMENTS
R n

A Y™

14

PUS%&P&OCEDURE TO DISPLAY FIBONACCI SERIES

43

15

PL/SQL PROCEDURE TO DISPLAY STUDENT INFORMATION
USING ARRAY

44

Exp. No.1
DDL and DML commands.
Aim :

To Create a database table, add constraints (primary key, unique, check,
Not null), insert rows,update and delete rows using SQL DDL and DML commands.

Procedure:
1. Create database, show databases and use database command:
syntax:
CREATE DATABASE databasename;
Eg.
CREATE DATABASE testDB;
Show databases;
Use testDB; Q/
The Create Table Command: - it defines each column of the table untig?Each column
has minimum of three attributes, a name , data type and size. N/

Syntax: O\/

<datatype><size>)); Ex:create table emp(empno INT(4) ry key, ename

char(10)); Q/Q}

2. Modifying the structure of

tables. a) Add new columns &
N
O

Create table <table name> (<coll> <datatype>(<si ze>),§$§0

Syntax: ?
Alter table <tablename> add(<new co@ atatype(size),<new col>datatype(size));
Ex:alter table emp add(sal]NT(’?\)%\-?"

3. Dropping a column frorr\a?b%c.

Syntax: ﬂi\
Alter table <tablena%>§?‘op column <col>;

Ex:alter table emp c@p olumn sal;

4. Modifying ertmg columns.

Syntax:

Alter table <tablename>modify <col><newdatatype>(<newsize>);
Ex:alter table emp modify ename varchar(15);

5. Renaming the tables

Syntax:

Rename <oldtable> to <new table>;
Ex:rename emp to empl;

6. truncating the tables.
Syntax:

Truncate table <tablename>;
Ex:trunc table empl;

7. Destroying tables.
Syntax:

Drop table <tablename>;
Ex:drop table emp;

CREATION OF TABLE:
SYNTAX:
create table<tablename>(column] datatype,column2 datatype...);

EXAMPLE:

create table std(sno INT(5),sname varchar(20),age INT(5),sdob date,sm1 INT(4,2),sm2
INT(4,2),sm3 INT(4.4));

Table created.

insert into std values(101,”’AAA’,16,’03-jul-88°,80,90,98);

1 row created. COQ/
insert into std values(102,"BBB’,18,’04-aug-89",88,98,90); Q/

1 row created. N/
OUTPUT: {:)\/

Select * from std;

SNO SNAME AGE SDOB SM1 SM2 SM3 \é

101 AAA 16 03-jul-88 80 é/

102 BBB 18 04-aug-89 88 @ 90

<S>

ALTER TABLE WITH ADD: i?»

create table student(id INT(S\)&P@ varchar(10),game varchar(20));
Table created.

insert into student v@g&\s{? mercy’, cricket’);
I row created. Q_’

SYNTAX:
alter table<tablename>add(coll datatype,col2 datatype..);
EXAMPLE:

alter table student add(age INT(4));
insert into student values(2,’sharmi’,’tennis’,19);

OUTPUT:

ALTER: select * from student;
ID NAME GAME

1 Mercy Cricket

ADD: select * from student;
ID NAME GAME AGE

1 Mercy cricket

2 Sharmi Tennis 19

ALTER TABLE WITH MODIFY:
SYNTAX:

Alter table<tablename>modify coll datatype;
EXAMPLE:

alter table student modify id INT(6);
desc command:
desc student;

NAME NULL? TYPE Q/CO
Id INT(6) N/
Name Varchar(20) O\/
Game Varchar(25) (:)

Age INT(®4)

DROP: Q"
SYNTAX: drop table<tablename>; Qg/
EXAMPLE:

N3

drop table student;

O
Table dropped.
S

TRUNCATE TABLE \a
SYNTAX: TRUNCATE TAB%&\FABLE NAME>;
Example: Truncate table stqu

DESC &‘2:1\

Example: desc em .g?\
Name Null? Ty

A
EmpNo NOT NULL INT(5)
EName VarChar(15)
Job NOT NULL Char(10)
DeptNo NOT NULL INT(3)
PHONE_NO INT (10)

CONSTRAINTS:
Create table tablename (column_namel data_ type constraints, column_name?2 data_
type constraints ...)

Example:
Create table Emp (EmpNo INT(5), EName VarChar(15), Job Char(10) constraint un
unique, DeptNo INT(3) CONSTRAINT FKey2 REFERENCES DEPT(DeptNo));

3

Create table stud (sname varchar(20) not null, rollno INT(10) not null,dob date not null);
DOMAIN INTEGRITY

Example: Create table cust(custid INT(6) not null, name char(10));
Alter table cust modify (name not null);

CHECK CONSTRAINT
Example: Create table student (regno INT (6), mark INT (3) constraint b check (mark >=0
and mark <=100)); Alter table student add constraint b2 check (length(regno<=4));

ENTITY INTEGRITY

a) Unique key constraint

Example: Create table cust(custid INT(6) constraint unique, name char(10)); Alter table
cust add(constraint ¢ unique(custid)); @

b) Primary Key Constraint %ﬁ
Example: Create table stud(regno INT(6) constraint primary key, name, ar(20));

Queries: C)O

Q1. Create a table called EMP with the following structure{:?

Name Type é
&

EMPNO INT(6) Q/
ENAME VARCHAR(20)

JOB VARCHAR(10) \QQ/
O

DEPTNO INT(3)

SAL INT(7,2)

Allow NULL for all columns except e%me and job.

Ans:

create table emp(empno INT(me varchar(20)not null,job varchar(10) not null, deptno
INT(3),sal INT(7,2)); \>

Table created.

Q2: Add a column ience to the emp table.
experience num ull allowed.
Ans:

alter table emp add(experience INT(2)); Table altered.

Q3: Modify the column width of the job field of emp table.
Ans: alter table emp modify(job varchar(12)); Table
altered.

Iter table emp modify(job varchar(13));

Table altered.

Q4: Create dept table with the following structure.
Name Type

DEPTNO INT(2)
DNAME VARCHAR(10)

LOC VARCHAR(10)
Deptno as the primarykey

Ans:

create table dept(deptno INT(2) primary key,dname varchar(10),loc
varchar(10));

Table created.

QS5: create the empl table with ename and empno, add constraints to check the empno value
while entering (i.e) empno > 100.
Ans:
create table empl(ename varchar(10),empno INT(6) constraint
check(empno>100));
Table created.

Ans:
alter table emp drop column experience; Table altered. O

O
Ans: é(:?
truncate table emp; Table truncated. Q}

<

Q6: drop a column experience to the emp table. Q/CO
v/
N
Q7: Truncate the emp table and drop the dept table

DML COMMANDS (</

DML commands are the most fre y uqed mysql commands and is used to
query and manipulate the existing data é@bjccte Some of the commands are Insert,
Select, Update, Delete.

by commas and the data ty ar and date are enclosed in apostrophes. The values must be

Insert Command : This is use \%3:.1 one or more rows to a table. The values are separated
entered in the same ordsé\ t ey are defined.

Select Commands :
to as querying t
column from the'ta

15 used to retrieve information from the table. It is generally referred
le. We can either display all columns in a table or only specify
le.

Update Command :It is used to alter the column values in a table. A single column may
be updated or more than one column could be updated.

Delete command :After inserting row in a table we can also delete them if required. The
delete command consists of a from clause followed by an optional where clause.

QI: Insert a single record into dept table.
Ans:

insert into dept values (1,TT","Tholudur’);
1 row created.

Q2: Insert more than a record into emp table using a single insert command.

Ans: insert into emp values(&empno,' &ename','&job’,&deptno,&sal);

Enter value for empno: 1

Enter value for ename: Mathi

Enter value for job: AP

Enter value for deptno: 1

Enter value for sal: 10000

old I: insert into emp values(&empno,'&ename','&job',&deptno,&sal)

new 1: insert into emp values(1,'Mathi','AP',1,10000)

1 row created.

/

Enter value for empno: 2

Enter value for ename: Arjun

Enter value for job: ASP

Enter value for deptno: 2 @Q/

Enter value for sal: 12000 Q/
)

old I: insert into emp values(&empno,'&ename','&job',&deptno,&s

new 1: insert into emp values(2,'Arjun’,’ASP',2,12000) O\/
I row created. (:)

/

Enter value for empno: 3 @6

Enter value for ename: Gugan A\

Enter value for job: ASP Q/Q'

Enter value for deptno: 1 Q/

Enter value for sal: 12000

old 1: insert into emp values(&empno, &e g '&Job' &deptno,&sal)
new 1: insert into emp values(3, Guga ,1,12000)

1 row created.

Q3: Update the emp table to s@%\salary of all employees to Rs15000/- who are working as
ASP

Ans: select * from emp; «i\

EMPNO ENAME J &DEPTNO SAL

1 Mathi AP 1 @)‘30

2 Arjun ASP 2 12000
3 Gugan ASP 1 12000

update emp set sal=15000 where job="ASP"; 2 rows updated.

select * from emp;
EMPNO ENAME JOB DEPTNO SAL

1 Mathi AP 1 10000
2 Arjun ASP 2 15000
3 Gugan ASP 1 15000
Q4: Create a pseudo table employee with the same structure as the table emp and insert
rows into the table using select clauses.
Ans: create table employee as select * from emp;
6

Table created.
SHOW COLUMNS FROM “employee’;
Name Null? Type

EMPNO INT(6)

ENAME NOT NULL VARCHAR(20)
JOB NOT NULL VARCHAR(13)
DEPTNO INT(3)

SAL INT(7,2)

Q5: select employee name, job from the emp table

Ans: select ename, job from emp;
ENAME JOB

Mathi AP Q/
Arjun ASP Q/Q
Gugan ASP N/
Karthik Prof O\/

Akalya AP (:)
suresh lect

6 rows selected. @Q

Ans: select * from emp; Q/
EMPNO ENAME JOB DEPTNO SAL \%

1 Mathi AP 1 10000
S

2 Arjun ASP 2 15000

3 Gugan ASP 1 15000 \a
>3

4 Karthik Prof 2 30000

5 Akalya AP 1 10000 \>

6 suresh lect 1 8000 “i\

6 rows selected. &

delete from emp wlvc job='lect';

1 row deleted.

select * from ewip;

EMPNO ENAME JOB DEPTNO SAL

1 Mathi AP 1 10000

2 Arjun ASP 2 15000
3 Gugan ASP 1 15000
4 Karthik Prof 2 30000
5 Akalya AP 1 10000

Q7: List the records in the emp table orderby salary in ascending order.
Ans: select * from emp order by sal;
EMPNO ENAME JOB DEPTNO SAL

1 Mathi AP 1 10000

5 Akalya AP 1 10000
2 Arjun ASP 2 15000
3 Gugan ASP 1 15000
4 Karthik Prof 2 30000

Q8: List the records in the emp table orderby salary in descending order.
Ans: select * from emp order by sal desc;
EMPNO ENAME JOB DEPTNO SAL

4 Karthik Prof 2 30000
2 Arjun ASP 2 15000
3 Gugan ASP 1 15000
1 Mathi AP 1 10000

5 Akalya AP 1 10000

Q9: Display only those employees whose deptno is 30. \g/
Solution: Use SELECT FROM WHERE syntax. {:}\/
Ans: select * from emp where deptno=1; (:)
EMPNO ENAME JOB DEPTNO SAL 0
Ny

1 Mathi AP 1 10000
3 Gugan ASP 1 15000 Q?'
5 Akalya AP 1 10000 (</

Q10: Display deptno from the table emplo@voidin g the duplicated values.

Solution:
1. Use SELECT FROM syntax. (</
2.Select should include distinct cl Yi%“for the deptno.

Ans: select distinct deptno from 8mp;
DEPTNO “i\

! NS

> A

\g
Result: QQ.’

Thus the table created and constraints (primary key, unique, check, Not null) are
added. Rows are inserted,updated and deleted using SQL DDL and DML commands.

Exp. no. 2
REFERENTIAL INTEGRITY
Aim:

To create a set of tables, add foreign key constraints and incorporate
referential integrity.

Procedure:

Constraints are the business Rules which are enforced on the data being storedin a table are
called Constraints

TYPES OF CONSTRAINTS:

1. Notnull

2. Unique @Q/
3. Check Q/

4. Primary key N/

5 Foreign key/references O\/

@O
1. NOT NULL:
Ny

a) Not null constraint at column level. Q"

Syntax: Q/
A\

<col><datatype>(size)not null

SQL > create table emp(e_id varch NOT NULL,e_name varchar(10), e_design
varchar(10),dept varchar(10),mgr varc),salary number(10));

2. UNIQUE : \23%

Unique constraint at colum@.

Syntax: <col><datatypeé\@1ge unique

Ex:-

SQL > create tab?/}epositor(customer_name varchar(10),acc_no number(15) UNIQUE,
brach_name

varchar(10)); Q

Unique constraint at table level:

Syntax:

Create table tablename(col=format,col=format,unique(<coll>,<c0l2>));

Ex:-

SQL > create table depositorl(customer_name varchar(10),acc_no number(15), brach_name
varchar(10),UNIQUE(acc_no));

3. PRIMARY KEY:

Primary key constraint at column level
Syntax:

<col><datatype>(size)primary key;
Ex:-

SQL> create table customer(customer_id number (5) PRIMARY KEY, customer_name
varchar(10),customer_street varchar(10),brach_name varchar(10));

Primary key constraint at table level.

Syntax:

Create table tablename(col=format,col=format primary key(coll>,<col2>);

Ex:-

SQL > create table customerl(customer_id number (5),customer_name
varchar(10),customer_street varchar(10),brach_name varchar(10),PRIMARY
KEY(customer_id));

4. CHECK:

Check constraint constraint at column level.

Syntax: <col><datatype>(size) check(<logical expression>)

Ex:- Q/

create table loan(loan_no varchar(10),customer_name varchar(10), ba@%umber (10)
CHECK(balance>1000)); N/

Check constraint constraint at table level. O\/

Syntax: check(<logical expression>) (:)

Ex:-

create table loanl(loan_no varchar(lO),customer_nam&har(10), balance number (10),
CHECK(balance>1000)); Q}

5. FOREIGN KEY: (</(</

Foreign key constraint at column level. (:9\

Syntax:

Column_name Datatype(size) REFER%I ES parent_table_name (parent_column_name)
Ex:-

CREATE TABLE books (bo \33 NUMBER(3), book_title VARCHAR?2(30), book_price
NUMBER(3), book_author.i BER(3) REFERENCES author(author_id));

Foreign key constraint zi?\ﬂhle level

Syntax: ?:
CONSTRAINT aint_name FOREIGN KEY (child_table_column) REFERENCES
Parent_table_n&arent_table_column)

Ex:-

CREATE TABLE books (book_id NUMBER(3) CONSTRAINT bok_bi_pk PRIMARY
KEY, book_title VARCHAR2(30), book_price NUMBER(3), book_author_id
NUMBER(3), CONSTRAINT bok_ai_fk FOREIGN KEY (book_author_id) REFERENCES
author(author_id));

Result:
Thus the table is created and foreign key constraints and incorporate referential
integrity are added.

10

Exp. No.3:
‘WHERE’ CLAUSE AND AGGREGATE FUNCTIONS
Aim:

To Query the database tables using different “where’ clause conditions and also implement
aggregate functions.

Procedure:

Where clause:

The SQL WHERE clause is used to specify a condition while fetching the data from a single
table or by joining with multiple tables. If the given condition is satisfied, then only it returns
a specific value from the table. You should use the WHERE clause to filter the records and
fetching only the necessary records.

The WHERE clause is not only used in the SELECT statement, but i so used in the

UPDATE, DELETE statement, etc., which we would examine in the s ent chapters.
Syntax N/

The basic syntax of the SELECT statement with the WHERE cl i$ as shown below.

SELECT columnl, column?2, columnN (:)

FROM table_name

WHERE [condition] C?

You can specify a condition using the comparison ical operators like >, <, =, LIKE,

NOT, etc. The following examples would make thi§,Concept clear.
Example

Consider the CUSTOMERS table having the\quawing records —

-t et - - 3

|ID | NAME | AGE | ADDRESS | RY |

-t et I

| 1|Ramesh | 32| Ahmedabad | 0.00 |

| 2 |Khilan | 25| Delhi | .00 |

3	kaushik	23	Kota 0.00	
4	Chaitali	25	Mum “a}\	6500.00
5	Hardik	27	qu'	8500.00
6	Komal	22 w	4500.00	
7	Muffy	dore	10000.00	
+--t Pt - +

The following code is an example which would fetch the ID, Name and Salary fields from the
CUSTOMERS table, where the salary is greater than 2000 —

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE SALARY > 2000;

This would produce the following result —
+et + -

|ID |[NAME |SALARY |

TE— - +

| 4| Chaitali | 6500.00 |

| 5|Hardik | 8500.00 |

| 6| Komal | 4500.00 |

11

| 7| Muffy | 10000.00 |

-t + +

The following query is an example, which would fetch the ID, Name and Salary fields from
the CUSTOMERS table for a customer with the name Hardik.

Here, it is important to note that all the strings should be given inside single quotes (").
Whereas, numeric values should be given without any quote as in the above example.

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE NAME = 'Hardik';

This would produce the following result —

" o +
|ID [NAME |SALARY |

— + +

| 5| Hardik | 8500.00 |

" - + Q/

The SQL AND & OR operators are used to combine multiple conditic@)o narrow data in an
SQL statement. These two operators are called as the conjunctive apérators.
These operators provide a means to make multiple compaﬁsor&ﬁh different operators in
the same SQL statement.

The AND Operator C?
The AND operator allows the existence of multipl@nditions in an SQL statement's
WHERE clause. Q..

Syntax
The basic syntax of the AND operator with a @E clause is as follows —
SELECT columnl, column?2, columnN

FROM table name (:?\
WHERE [conditionl] AND [conditio@ND [conditionN];
You can combine N number of conditiohs using the AND operator. For an action to be taken
by the SQL statement, whether & transaction or a query, all conditions separated by the
AND must be TRUE.
Example
Consider the CUSTO “gtable having the following records —
e +emmee +/\ ------- e +
|ID |[NAME | ADDRESS |SALARY |

Ao mpmmmm - — - +
1 | Ramesh g2 | Ahmedabad | 2000.00 |

2 | Khilan | 25 |Delhi | 1500.00 |

3 | kaushik | 23 [Kota | 2000.00 |

4 | Chaitali | 25 | Mumbai | 6500.00 |

5| Hardik | 27 [Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |

| 7| Muffy | 24 |Indore | 10000.00 |

-+ +---—t - -

Following is an example, which would fetch the ID, Name and Salary fields from the

CUSTOMERS table, where the salary is greater than 2000 and the age is less than 25 years —

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE SALARY > 2000 AND age < 25;

12

This would produce the following result —

ot - -
|ID | NAME | SALARY |
et + -

| 6| Komal | 4500.00 |
| 7 | Muffy | 10000.00 |
-t + +
The OR Operator
The OR operator is used to combine multiple conditions in an SQL statement's WHERE
clause.
Syntax
The basic syntax of the OR operator with a WHERE clause is as follows —
SELECT columnl, column?2, columnN
FROM table name
WHERE [condition1] OR [condition2]...OR [conditionN] Q/
You can combine N number of conditions using the OR operator. F(:;%%on to be taken by

the SQL statement, whether it be a transaction or query, the only a E of the conditions
separated by the OR must be TRUE. {:>\/

Example (:)
Consider the CUSTOMERS table having the following recerds™

e . + + \.k
|ID |NAME | AGE | ADDRESS ISALARY | Q_}
ot ot -

| 1|Ramesh | 32| Ahmedabad | 2000. 00| Q/

| 2| Khilan | 25|Delhi | 1500.00 | \5

| 3| kaushik | 23 |Kota | 2000.00 |

| 4| Chaitali | 25 | Mumbai | 6500

| 5|Hardik | 27 | Bhopal | 850

| 6| Komal | 22|MP | 4

| 7| Muffy | 24 | Indore u%& 00|

et

The following code blo “‘hasa query, which would fetch the ID, Name and Salary fields
from the CUSTOM able, where the salary is greater than 2000 OR the age is less than
25 years.

SQL> SELEC X“NAME SALARY
FROM CUSTOMERS
WHERE SALARY > 2000 OR age < 25;

This would produce the following result —

" o +
|ID [NAME |SALARY |
" + +

3	kaushik	2000.00
4	Chaitali	6500.00
5	Hardik	8500.00
6	Komal	4500.00
7	Muffy	10000.00
" + +

13

Aggregative functions:

In addition to simply retrieving data, we often want to perform some computation or
summarization. SQL allows the use of arithmetic expressions. We now consider a powerful
class of constructs for computing aggregate values such as MIN and SUM.

1. Count: COUNT following by a column name returns the count of tuple in that column. If
DISTINCT keyword is used then it will return only the count of unique tuple in the column.
Otherwise, it will return count of all the tuples (including duplicates) count (*) indicates all
the tuples of the column.

Syntax: COUNT (Column name)

Example: SELECT COUNT (Sal) FROM emp;

2. SUM: SUM followed by a column name returns the sum of all the values in that column.
Syntax: SUM (Column name)

Example: SELECT SUM (Sal) From emp; ;Q/;

3. AVG: AVG followed by a column name returns the average value column values.

Syntax: AVG (nl, n2...) N/
Example: Select AVG (10, 15, 30) FROM DUAL; A\
4. MAX: MAX followed by a column name returns the maxin{é:}alue of that column.

Syntax: MAX (Column name) (:9
Example: SELECT MAX (Sal) FROM emp; é
SQL> select deptno, max(sal) from emp group by de@lq,

DEPTNO MAX (SAL)

SQL> select deptno, max (sal) from emp group @/pmo having max(sal)<3000;
DEPTNO MAX(SAL)

30 2850 (:9\

5. MIN: MIN followed by column na@;ms the minimum value of that column.
Syntax: MIN (Column name)

Example: SELECT MIN (Sal) FR ?I"emp;

SQL>select deptno,min(sal) fr@%np group by deptno having min(sal)>1000;
DEPTNO MIN (SAL) \>

10 1300 \2\
Result: &
Thus the databs: les are queried using different “where’ clause conditions and also

implementaggregate functions.

Exp. No.4

14

SUB QUERIES AND SIMPLE JOIN OPERATIONS
Aim:
To Query the database tables and explore sub queries and simple join operations.

Procedure:

sub queries:
Table 1:

Create table department (deptname varchar(20), building varchar (15),
budget INT(12,2), primary key(deptname));

Table created.
Insert into department values('ECE','block1',70000);
Insert into department values('CSE','block2',70000); (:OQ/
Insert into department values('EEE','block3',70000); Q/
v/

Table 2: \W,
create table course (courseid varchar(8) primary key, title vagg;ﬁ 0), deptname
varchar(20), credits INT(2), foreign key (deptname) refe@c S department) ;

Table created. &

Insert into course values('cs101",'python’,'CSE' AE&/Q/
Insert into course values('cslO2','java','CSE',4$
Insert into course values('ec102','Electroni¢sircuits’,'ECE',3);
Insert into course values('ec202','Micr ssor','ECE',3);
Table 3:

create table instructor (ID var , name varchar(20) not null,
deptname varchar(20), sala (8,2), primary key (ID), foreign key
(deptname) references d ment);

nsert into instructof?/éiucs ('1002', 'Sumanth', 'ECE', 66000);
insert into instr values ('1001", 'Sumitha', 'CSE', 56000);
insert into instmdctor values ('1007', 'Malar', 'CSE', 96000);
insert into instructor values ('1004', 'Mani', 'ECE', 36000);

Table 4:

Create table section (courseid varchar(8), secid varchar(8), semester varchar(6), year INT(4),
building varchar(15) , roomnumner varchar(7), timeslot varchar(4), primary key (courseid,
secid, semester, year), foreign key (courseid) references course);

Insert into section values('cs101','A",'odd",2017,'block2','111",'11");

Insert into section values('cs101','A'",'even',2018,'block?2','222'",'5");

Insert into section values('cs102','A'",'even’,2016,'block2',"77",'8");

Insert into section values('ec202','A','even’,2016,'block1','47','8");

Insert into section values('ec202','B','odd',2017,'block1','47",'8");
15

Insert into section values('ec202','C','even',2018,'block1','47",'8");

Table 5:

create table teaches (ID varchar(5), courseid varchar(8), secid varchar(8),
semester varchar(6), year INT(4), primary key (ID, courseid, secid, semester, year), foreign
key (ID) references instructor, foreign key (courseid, secid, semester, year) references section

)

Insert into teaches values('1001", 'cs101','A",'odd’,2017);
Insert into teaches values('1007', 'cs102','A",'even’,2016);
Insert into teaches values('1002', 'ec202','A','even',2016);

Questions: Q/

¢ Find the names of all departments with instructor, and remove Q(gzates
select distinct dept_name from instructor; N/
e To find all instructors in CSE with salary > 80000 NV
select name from instructor where dept name (‘@mp. Sci." and salary >
80000; (:?
e Find the Cartesian product instructor X teaches %
select *from instructor, teaches;
e Find the course ID, semester, year and titl ch course offered by the Comp.
Sci. department

select section.courseid, semes@ar, title from section, course where
X

section.courseid = course.cq% and deptname = ‘CSE";
e List the names of instructo ng with the course ID of the courses that they

taught.
3P

select name, cou ”%d from instructor, teaches where instructor.ID =
teaches.ID;
select name, courﬁﬁ?ﬁ-om instructor natural join teaches;

e Find the'names of all instructors who have a higher salary than some
instructor in ‘Comp. Sci’.
select distinct T. name from instructor as T, instructor as S where T.salary >
S.salary and S.deptname = ‘CSE’
o Find the names of all instructors whose name includes the substring
“dar”.

select name from instructor where name like '%dar%";

e List in alphabetic order the names of all instructors
select distinct name from instructor order by name;

e Find the names of all instructors with salary between
$90,000 and $100,000 (that is, [7 $90,000 and 1 $100,000)
select name from instructor where salary between 90000 and 100000;

16

nested quries:

QI: Display all employee names and salary whose salary is greater than minimum salary
of the company and job title starts with _M"*.

Solution:

1. Use select from clause.

2. Use like operator to match job and in select clause to get the result.

Ans: select ename,sal from emp where sal>(select min(sal) from emp where job like
‘A%");

ENAME SAL

Arjun 12000

Gugan 20000

Karthik 15000

Q2: Issue a query to find all the employees who work in the same job as @af
Ans: select * from emp; Q/
EMPNO ENAME JOB DEPTNO SAL \>/

1 Mathi AP 1 10000 OO
2 Arjun ASP 2 12000 0
3 Gugan ASP 2 20000 ‘é
4 Karthik AP 1 15000 Q}

select ename from emp where job=(select job fx@ mp where ename="Arjun’);
ENAME

______________ N
Arjun %O

Gugan Q/

SIMPLE JOIN: %\2\?"

Join operations — Example \>
® Relation courge,

[course_id| title
BIO-301 | Genetics
C5-190 |Game D
(CS-315 |Robotic

|'Comp. Sci. 4
Comp.5¢i.| 3

® Relation prereq
course_id | prereq_id

BIO-301 | BIO-101
CS-190 | C5-101
C5-347 | C5-101
SQL> SELECT * FROM course join prereq on course.course_id=prereq.course_id;

Result:
Thus the database tables is queried with sub queries and simple join operations.

Exp. No.5
JOINS

17

Aim:
To Query the database tables and explore natural, equi and outer joins.

Procedure:

Join is a combination of a Cartesian product followed by a selection process. A Join
operation pairs two tuples from different relations, if and only if a given join condition is
satisfied.

We will briefly describe various join types in the following sections.

Join
Theta join combines tuples from different relations provided they satisfy the theta condition.
The join condition is denoted by the symbol 0.

Notation
R1 xp R2
R1 and R2 are relations having attributes (Al, A2, .., An) and (B1, B2,.. ,Bn) such that the
attributes don’t have anything in common, that is R1 N R2 = ®. @
Theta join can use all kinds of comparison operators. Q/
Student {:)Q/
SID Name Std (:.)

O
101 Alex 10 \é

102 Maria 11

Subjects

O
Class Subject Q/%

10 Math ,33\23%

10 English »3\\>

11 Music %?/gz\
Q-

11 SportsQ

Student Detail —
STUDENT M sudent.Std = Subject.Class SUBJ ECT

Student_detail
SID Name Std Class Subject
101 Alex 10 10 Math
101 Alex 10 10 English

102 Maria 11 11 Music

18

102 | Maria 11 |11 Sports

Equijoin
When Theta join uses only equality comparison operator, it is said to be equijoin. The above
example corresponds to equijoin.

Natural Join ()
Natural join does not use any comparison operator. It does not concatenate the way a
Cartesian product does. We can perform a Natural Join only if there is at least one common
attribute that exists between two relations. In addition, the attributes must have the same
name and domain.
Natural join acts on those matching attributes where the values of attributes in both the
relations are same.

Courses

CID Course Dept

CSO1 | Database | CS {:}\}/
MEOl Mechanics ME (}()
EEO1 Electronics EE \é

HoD

&
Dept Head (':9\e
CS Alex ((5\

i?»
ME Maya \2\
EE Mira ..,S\\g::}

Courses 4 HoD

Dept CID Course Head
CS CS01 Database Alex
ME MEO1 Mechanics Maya
EE EEO1 Electronics Mira

Outer Joins
Theta Join, Equijoin, and Natural Join are called inner joins. An inner join includes only
those tuples with matching attributes and the rest are discarded in the resulting relation.
Therefore, we need to use outer joins to include all the tuples from the participating relations
in the resulting relation. There are three kinds of outer joins — left outer join, right outer join,
and full outer join.

19

Left Outer Join(R X S)
All the tuples from the Left relation, R, are included in the resulting relation. If there are
tuples in R without any matching tuple in the Right relation S, then the S-attributes of the
resulting relation are made NULL.

Left
A B

100 Database

101 Mechanics
102 Electronics

g (O
A B
Y

100 Alex (:.)
5(?
102 Maya N\

104 Q/{{/
Courses X HoD O\\k

A B C D Q/Y\

100 Database 100 Ale \Z\?“

101 Mechanics = --- \2.:1\0

102 Electronics Maya
RightOuter Join: (R XL s)

All the tuples from the Right relation, S, are included in the resulting relation. If there are
tuples in S without any matching tuple in R, then the R-attributes of resulting relation are
made NULL.

Courses M} HoD

A B C D
100 Database 100 Alex
102 Electronics 102 Maya

104 Mira

20

Full Outer Join: (R X S)
All the tuples from both participating relations are included in the resulting relation. If there

are no matching tuples for both relations, their respective unmatched attributes are made
NULL.

Courses < HoD

A B C D

100 Database 100 Alex

101 Mechanics
102 Electronics 102 Maya Q/
104 Mira QSZ)
\v/
o)

Result:
Thus the database tables queried and explore naturft?egu& and outer joins.

Exp. No:6
FUNCTIONS AND STORED PROCEDURES
21

Aim:
To Write user defined functions and stored procedures in SQL.

Procedure:

At the schema level, subprogram is a standalone subprogram. It is created with the
CREATE PROCEDURE or the CREATE FUNCTION statement. It is stored in the database
and can be deleted with the DROP PROCEDURE or DROP FUNCTION statement.
A subprogram created inside a package is a packaged subprogram. It is stored in the
database and can be deleted only when the package is deleted with the DROP PACKAGE
statement. We will discuss packages in the chapter '"PL/SQL - Packages'.
PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of
parameters. PL/SQL provides two kinds of subprograms —

o Functions — These subprograms return a single value; mainly used t&;ompute and

return a value.
e Procedures — These subprograms do not return a value directhggnly used to
perform an action. N/

N
Function: C)O

CREATE OR REPLACE FUNCTION totalemployee r@]\! T as
total INT; A\
begin Q?'
SELECT count(*) into total from emp22;

Return total; Q/
end; §

,, >
Function created. Q/
declare g?“

a INT:=0; C:}\e\

begin \>

a:=totalemployee(); »3\
dbms_output.put_liK al employees are '|[a);

end;
| X
Total employetQare 2
PL/SQL procedure successfully completed.

Procedure example:

Program 1:
set serveroutput on;

create or replace procedure pl as
begin
dbms_output.put_line('welcome’);
end;
/

Procedure created.

22

execute pl;
welcome
PL/SQL procedure successfully completed.

Program 2:
create PROCEDURE findMin(x IN INT, y IN INT, z OUT INT) IS

BEGIN
IF x <y THEN
Zi=x
ELSE
Z=N:
END IF;
END;
/
Procedure created.

((/@@
declare

v/
aINT; \/

b INT; O

¢ INT;

begin C?
a::g23; @
b:=4; Q/Q'

findMin(a,b,c); (</
dbms_output.put_line('Minimum value is:'lic\%
end; O

,, >
Minimum value is:4 Q/
PL/SQL procedure successfully Eg@tetcd.

Program 3: C?
set serveroutput on;

create table emp22(id ‘F}Qame varchar(20),designation varchar(20),salary INT);
Table created.
insert into emp22 V@SG john','manager’,100000);

I row created. Q
insert into emp22 values(3,"jagan’,'hr',400000);
1 row created.

Result:
Thus the user defined functions and stored procedures in SQL are created and output is
verified.

Exp. No.7
DCL AND TCL COMMANDS
23

Aim:
To execute complex transactions and realize DCL and TCL commands.

Procedure:

DCL COMMANDS

The DCL language is used for controlling the access to the table and hence securing the
database. DCL is used to provide certain privileges to a particular user. Privileges are rights
to be allocated.The privilege commands are namely, Grant and Revoke.The various
privileges that can be granted or revoked are, Select Insert Delete Update References
Execute AlL

GRANT COMMAND: It is used to create users and grant access to the database. It requires
database administrator (DBA) privilege, except that a user can change their %a/ssword. A user

can grant access to their database objects to other users. @

REVOKE COMMAND: Using this command , the DBA can revoke‘&ranted database
privileges from the user. {:}\/

TCL COMMAND (:)

COMMIT: command is used to save the Records. \é
ROLL BACK: command is used to undo the Reco Q‘
SAVE POINT command is used to undo the Re in a particular transaction.

Queries: A\

Tables Used: Consider the following tq@namely “DEPARTMENTS”

and “EMPLOYEES”

Their schemas are as follows , Dsggments (dept _no, dept_ name , dept_location);
Employees (emp_id , emp_na‘vvx%‘ﬁ> emp_salary);

Q1: Develop a query to t all privileges of employees table into departments table
Ans: Grantallone es to departments;
Grant succeeded. g?..

Q2: Develop a@ery to grant some privileges of employees table into departments table
Ans: Grant select, update , insert on departments to departments with grant option;
Grant succeeded.

Q3: Develop a query to revoke all privileges of employees table from departments table
Ans: Revoke all on employees from departments; Revoke succeeded.

Q4: Develop a query to revoke some privileges of employees table from departments table
Ans: Revoke select, update , insert on departments from departments;
Revoke succeeded.

Q5: Write a query to implement the save point
Ans: SAVEPOINT S1;
Savepoint created.

24

select * from emp;
EMPNO ENAME JOB DEPTNO SAL

1 Mathi AP 1 10000

2 Arjun ASP 2 15000

3 Gugan ASP 1 15000

4 Karthik Prof 2 30000

INSERT INTO EMP VALUES(5,'Akalya’,’AP',1,10000); 1 row created.
select * from emp;

EMPNO ENAME JOB DEPTNO SAL

1 Mathi AP 1 10000
2 Arjun ASP 2 15000
3 Gugan ASP 1 15000

4 Karthik Prof 2 30000 COQ/
5 Akalya AP 1 10000 Q/

Q6: Write a query to implement the rollback <>\>/

Ans: rollback sl; select * from emp; (:)

EMPNO ENAME JOB DEPTNO SAL

2 Arjun ASP 2 15000

-\A@
1 Mathi AP 1 10000 "\
&

3 Gugan ASP 1 15000 (</
4 Karthik Prof 2 30000

O
Q6: Write a query to implement the co
Ans: COMMIT;

Commit complete. ?"
NS
©
NS

Thus the DC CL commands are executed.

\g
&

Result:

Exp. No:8
25

TRIGGERS
Aim:
To Write SQL Triggers for insert, delete, and update operations in a database table.
Procedure:
Trigger :
Triggers are stored programs, which are automatically executed or fired when some events
occur. Triggers are, in fact, written to be executed in response to any of the following events
e A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)
« A database definition (DDL) statement (CREATE, ALTER, or DROP).
¢ A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or
SHUTDOWN).
Triggers can be defined on the table, view, schema, or database with which the event is

associated. Q/

Table creation:
Create table employee22(empid INT,empname varchar(20),empdepm@?‘(ﬁar(m),salary INT);

Example: C)O

CREATE OR REPLACE TRIGGER display_salary é(\?
BEFORE DELETE OR UPDATE ON employee22 Q}

FOR EACH ROW &

DECLARE (</
sal_diff INT; &

BEGIN A

sal_diff := :NEW.salary - :OLD.salﬁ
dbms_output.put_line('Old salary: ' D.salary);
dbms_output.put_line('New ;%‘2&\” :NEW salary);
dbms_output.put_line('Salar ference: ' || sal_diff);
END;
Trigger to ensure that mployee of age less than 25 can be inserted in the
database.
CREATE TRIGGE@heck_age BEFORE INSERT ON employee
FOR EACH R(
BEGIN %
IF NEW.age < 25 THEN
SIGNAL SQLSTATE '45000'
SET MESSAGE_TEXT = 'ERROR:
AGE MUST BE ATLEAST 25 YEARS!";
END IF;
END;
/
Result:
Thus the SQL Triggers for insert, delete, and update operations in a database table is created
and executed successfully.

Exp. No: 9
VIEW AND INDEX
26

Aim:

To Create View and index for database tables with a large number of records.
Procedure:
View:

Database views are created using the CREATE VIEW statement. Views can be created
from a single table, multiple tables, or another view. To create a view, a user must have the
appropriate system privilege according to the specific implementation.

CREATE TABLE EMPLOYEE (EMPLOYEE_NAME VARCHAR(10), EMPLOYEE_NO
INT(8), DEPT_NAME VARCHAR(10), DEPT_NO INT (5),DATE_OF_JOIN
DATE);

Table created.
CREATE VIEW
SYNTAX FOR CREATION OF VIEW
CREATE [OR REPLACE] [FORCE] VIEW viewname [(column-name, column-name)] AS Query
[with check option];
Include all not null attribute. Q/
CREATION OF VIEW _
CREATE VIEW EMPVIEW AS SELECT EMPLOYEE_NAME, EMPLO@E_N 0,
DEPT_NAME, DEPT_NO, DATE_OF_JOIN FROM EMPLOYEE; v/

View Created. {:}\/
DISPLAY VIEW: (:)

SELECT * FROM EMPVIEW: ®
EMPLOYEE_N EMPLOYEE_NO DEPT DEPT NO

RAVI 124 89
VIJAY 345 21
RAJ 98 22
GIRI 100 % CSE 67
INSERT INTO EMPVIEW VALUES:SRT', 120,'CSE', 67);

1 ROW CREATED.
DROP VIEW EMPVIEW;

view dropped
CREATE OR REPLACE VIEW EMP_TOTSAL AS SELECT EMPNO "EID", ENAME "NAME",
SALARY "SAL" FRO L:
JOIN VIEW:
EXAMPLE-5: Qy’
CREATE OR l@DLACE VIEW DEPT_EMP_VIEW AS SELECT A.EMPNO,
A.ENAME A .DEPTNO, B.DNAME, B.LOC FROM EMPL A, DEPMT B WHERE
A.DEPTNO=B.DEPTNO:;
CREATE INDEX

CREATE INDEX idx_lastname ON Persons (LastName);
ALTER INDEX

ALTER INDEX <index name> ON <table name> (<column(s)>);

DROP INDEX

DROP INDEX index_name:;

Result:
Thus the View and index for database tables with are created.

Exp. No:10

27

XML DATABASE
Aim:
To Create an XML database and validate it using XML schema
Procedure:
XML database is a data persistence software system used for storing the huge amount of
information in XML format. It provides a secure place to store XML documents.
You can query your stored data by using XQuery, export and serialize into desired format.
XML databases are usually associated with document-oriented databases.

Types of XML databases
There are two types of XML databases.
1. XML-enabled database
2. Native XML database (NXD)

XMI -enable Database Q/
XML-enable database works just like a relational database. It is like/ tension provided
for the conversion of XML documents. In this database, data is stored i 'table, in the form of

rows and columns. {:}\/

Native XML Database (:)
Native XML database is used to store large amount of / Instead of table format, Native
XML database is based on container format. You ca é% data by XPath expressions.
Native XML database is preferred over XML-enaQ?r?Etabase because it is highly capable to
store, maintain and query XML documents. Q/
Let's take an example of XML database:

<?xml version="1.0"7> {:ﬁ\
<contact-info> %
<contactl> Q/
<name>Vimal Jaiswal</na

<company>SSSIT.org</eompany>
<phone>(0120) 4256 hone>
</contactl>
<contact2>
<name>Mahe arma </name>
<compan IT.org</company>
<phone>09990449935</phone>
</contact2>

</contact-info>
In the above example, a table named contacts is created and holds the contacts (contact]l and
contact2). Each one contains 3 entities name, company and phone.
XML Validation
A well formed XML document can be validated against DTD or Schema.
A well-formed XML document is an XML document with correct syntax. It is very necessary
to know about valid XML document before knowing XML validation.

Valid XML document

It must be well formed (satisfy all the basic syntax condition)

It should be behave according to predefined DTD or XML schema
XML DTD

28

(==

W

A DTD defines the legal elements of an XML document

In simple words we can say that a DTD defines the document structure with a list of legal
elements and attributes.

XML schema is a XML based alternative to DTD.

Actually DTD and XML schema both are used to form a well formed XML document.

We should avoid errors in XML documents because they will stop the XML programs.

XML schema
It is defined as an XML language
Uses namespaces to allow for reuses of existing definitions
It supports a large number of built in data types and definition of derived data types
Checking Validation
An XML document is called "well-formed" if it contains the correct syntax. A well-formed
and valid XML document is one which have been validated against Schema
Visit http://www.xmlvalidation.com to validate the XML file against sc@z or DTD.

XML Schema Example Q/
Let's create a schema file. N/
employee.xsd O\/
<?xml version="1.0"?>

<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema

targetNamespace="http://www.javatpoint.com" @
xmlns="http://www.javatpoint.com" A\
elementFormDefault="qualified"> Q/Q'
<xs:element name="employee"> \%Q/
<xs:complexType> O
<xs:sequence>

<xs:element name="firstname" tyg,z 'xs:string"/>
<xs:element name="lastnamex %pe:"xs:string"b

<xs:element name:"emai%:"xs:string"r‘>
</xs:sequence>

</xs:complexType> w}\
</xs:element \2\

</xs:sck
Let's see the xmd file using XML schema or XSD file.

employee.xml

<?xml version="1.0"?>

<employee

xmlns="http://www.javatpoint.com"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="http://www javatpoint.com employee.xsd">

<firstname>vimal</firstname>

<lastname>jaiswal</lastname>

<email>vimal @javatpoint.com</email>
</employee>

Description of XML Schema

29

<xs:element name=""employee''> : It defines the element name employee.
<xs:complexType> : It defines that the element 'employee’ is complex type.

<xs:sequence> : It defines that the complex type is a sequence of elements.

<xs:element name=""firstname" type=""xs:string"''/> : It defines that the element 'firstname'
is of string/text type.

<xs:element name=""1lastname' type=""'xs:string"'/> : It defines that the element 'lastname’
is of string/text type.

<xs:element name=""email" type="xs:string'/> : It defines that the element 'email’ is of
string/text type.

XML Schema Data types
There are two types of data types in XML schema.
1. simpleType

2. complexType
simpleType Q/
The simpleType allows you to have text-based elements. It contai% S attributes, child
elements, and cannot be left empty. N/
complexType \W,
The complexType allows you to hold multiple attributes @@elemems. It can contain

additional sub elements and can be left empty.

O
Result: \é

Thus an XML database and validating using XM ema is completed.

Exp. No.:11
NOSQL DATABASE TOOLS
30

Aim:
To Create Document, column and graph based data using NOSQL database tools.

Procedure:

MongoDB is a cross-platform, document oriented database that provides, high performance,
high availability, and easy scalability. MongoDB works on concept of collection and
document.

Database
Database is a physical container for collections. Each database gets its own set of files on the
file system. A single MongoDB server typically has multiple databases.

Collection
Collection is a group of MongoDB documents. It is the equivalent of an RDBMS table. A
collection exists within a single database. Collections do not enforce a schema. Documents
within a collection can have different fields. Typically, all documents iéﬂﬂection are of
similar or related purpose. Q/

Document N/
A document is a set of key-value pairs. Documents have dynamie.sphema. Dynamic schema
means that documents in the same collection do not need tcé)% the same set of fields or
structure, and common fields in a collection's documents d different types of data.
The following table shows the relationship of RDBMS é@ﬁology with MongoDB.

RDBMS Q/Q} MongoDB
Database Q/ Database
N
Table %O Collection

Tuple/Row Document

\237“
column (,':} Field

Tabltiég}g\> Embedded Documents

Pr@y Key Primary Key (Default key _id provided by
Q MongoDB itself)
Database Server and Client
mysqld/Oracle mongod
mysql/sqlplus mongo

Sample Document
Following example shows the document structure of a blog site, which is simply a comma

separated key value pair.

{
_id: Objectld(7df78ad8902c)

title: 'MongoDB Overview',
description: 'MongoDB is no sql database’,

31

by: 'tutorials point',
url: ‘http://www.tutorialspoint.com’,
tags: ['mongodb’, 'database’, 'NoSQL'],
likes: 100,
comments: [
{
user:'userl’,
message: 'My first comment',
dateCreated: new Date(2011,1,20,2,15),
like: O
1,
{

user:'user2’,
message: 'My second comments', Q/
dateCreated: new Date(2011,1,25,7,45), (2)
like: 5 Q/

} \}'
: O

} O

_id is a 12 bytes hexadecimal number which assures the eness of every document. You
can provide _id while inserting the document. If you d rowde then MongoDB provides a
unique id for every document. These 12 bytes first es for the current timestamp, next 3
bytes for machine id, next 2 bytes for process 1 ongoDB server and remaining 3 bytes
are simple incremental VALUE.

The use Command
MongoDB use DATABASE_NAME is to create database. The command will create a
new database if it doesn't exist, other will return the existing database.

Syntax
Basic syntax of use DATABASE%&Emem is as follows —
use DATABASE_NAME
Example
If you want to use a da@féﬁ with name <mydb>, then use DATABASE statement would be
as follows —

>use mydb ?\

switched to d b

To check your currently selected database, use the command db

>db

mydb

If you want to check your databases list, use the command show dbs.
>show dbs

local 0.78125GB

test 0.23012GB

Your created database (mydb) is not present in list. To display database, you need to insert at
least one document into it.

>db.movie.insert({ "name":
>show dbs

local 0.78125GB
mydb 0.23012GB

tutorials point"})

32

test 0.23012GB

In MongoDB default database is test. If you didn't create any database, then collections will
be stored in test database.
The dropDatabase() Method
MongoDB db.dropDatabase() command is used to drop a existing database.
Syntax
Basic syntax of dropDatabase() command is as follows —
db.dropDatabase()
This will delete the selected database. If you have not selected any database, then it will
delete default 'test' database.
Example
First, check the list of available databases by using the command, show dbs.

>show dbs

local 0.78125GB
Q{o

mydb 0.23012GB
test 0.23012GB Q/

- A\/

If you want to delete new database <mydb>, then dropDat () command would be as
follows — P

>use mydb é’?
switched to db mydb \\
>db.dropDatabase() %Q"

>

>{ "dropped" : "mydb", "ok" : 1 } &

Now check list of databases.

>show dbs %@
local 0.78125GB
test 0.23012GB %\2\%

> N

The 1nsen() Mgﬂn“éﬁ
To insert ~ into MongoDB collection, you need to use
MongoDB's mse@ r save() method.

Synt
The basic syntax of insert() command is as follows —
>db.COLLECTION_NAME.insert(document)

Example

> db.users.insert({
._id : Objectld("507f191e810c19729de860ea"),
... title: "MongoDB Overview",
... description: "MongoDB is no sql database",
... by: "tutorials point",
... url: "http://www.tutorialspoint.com",
... tags: ['mongodb’, 'database’, NoSQL'],
... likes: 100

- 1)
erteResult({ "nInserted" : 1 })

33

>

Here mycol is our collection name, as created in the previous chapter. If the collection doesn't
exist in the database, then MongoDB will create this collection and then insert a document
into it.

In the inserted document, if we don't specify the _id parameter, then MongoDB assigns a
unique Objectld for this document.

_id is 12 bytes hexadecimal number unique for every document in a collection. 12 bytes are
divided as follows —

_id: Objectld(4 bytes timestamp, 3 bytes machine id, 2 bytes process id, 3 bytes incrementer)
You can also pass an array of documents into the insert() method as shown below:.

> db.createCollection("post")

> db.post.insert([
{
title: "MongoDB Overview", Q/
description: "MongoDB is no SQL database", (2)
by: "tutorials point", Q/

url: "http://www.tutorialspoint.com", \}’
tags: ["mongodb”, "database", "NoSQL"], O
likes: 100 C)

) @

{_ Ne

title: "NoSQL Database",

description: "NoSQL database doesn't %@tables",

by: "tutorials point",

url: "http://www.tutorialspoint.co ’&
tags: ["mongodb”, "database",&)L"],
likes: 20,

comments: [?..,

("N
\|§§ userl”,
“3\ ssage: "My first comment",

\2\ dateCreated: new Date(2013,11,10,2,35),

g?.. like: O
L&

} <

D

BulkWriteResult({
"writeErrors" : [],
"writeConcernErrors" : [],

"nlnserted" : 2,
"nUpserted" : 0,
"nMatched" : 0,
"nModified" : 0,
"nRemoved" : 0,
"upserted" : []

D

>

34

To insert the document you can use db.post.save(document) also. If you don't specify _id in
the document then save() method will work same as insert() method. If you specify _id then
it will replace whole data of document containing _id as specified in save() method.

The insertOne() method
If you need to insert only one document into a collection you can use this method.

Syntax
The basic syntax of insert() command is as follows —

>db.COLLECTION_NAME.insertOne(document)

Example
Following example creates a new collection named empDetails and inserts a document using
the insertOne() method.

> db.createCollection("empDetails")
{"ok":1}
> db.empDetails.insertOne(

{

Last Name: "Sharma",

Date_Of_Birth: "1995-09-26",

e_mail: "radhika_sharma.123 @gmail .com‘(:)
phone: "9848022338"

b N2

(<
"acknowledged" : true, %
"insertedId" : Objectld("5dd62b40?®ﬁec3963bea")

N
s O

%
First Name: "Radhika", Q/(Z)
Vg
O

The insertManvy() method N
You can insert multiple documen g?sing the insertMany() method. To this method you need
to pass an array of documents. C:’,\;\

Example ;
Following example inserts.thrée different documents into the empDetails collection using the
insertMany() method. ,

> db.empDetails.in@[ﬁny(
L&
First Name: "Radhika",
Last Name: "Sharma",
Date_Of Birth: "1995-09-26",

e_mail: "radhika_sharma.123@gmail.com",
phone: "9000012345"

5
{
First_Name: "Rachel",
Last_Name: "Christopher”,
Date_Of Birth: "1990-02-16",
e_mail: "Rachel_Christopher.123@gmail.com",
phone: "9000054321"
|

35

First Name: "Fathima",

Last_Name: "Sheik",

Date_Of Birth: "1990-02-16",

e_mail: "Fathima_Sheik.123@gmail.com",
phone: "9000054321"

}
]
)
{
"acknowledged" : true,
"insertedIds" : [
Objectld("5dd631f270fb13eec3963bed"),
Objectld("5dd6311270fb13eec3963bee"), Q/
Objectld("5dd631£270fb13eec3963bef") (3)
]
} \/Q/
> AV

O‘W
Result:

Thus the Document, column and graph based data us@s OSQL database tools is created
successfully.

Exp. No: 12
EMPLOYEE MANAGEMENT SYSTEM

36

Aim :
To implement the project for Employee management system.

Procedure:

Employee Management System is used to maintain the detail of employees of an
organization. HR can view the details department wise. HR can delete the employees.HR can
update the employees details. HR can add new employees.

Tables :
o Employee(empno INT primary key , empname varchar(20) , department
varchar(20) , salary INT)
select *from employee;

EMPID EMPNAME EMPDEPT SALARY COQ/
1 rekha cse 30000 \g/
2 renu cse 70000 {::}\/
3 elamathi ece 90000 (:)
4 rahul ece 79990

O
Net beans: @é
<

Add jar file. (</

Right click on package---select properties -- %ct libraries- add jar file(ojdbc7).
Right click on package --- select new----se e\J rame forms.

Design forms:

Q)epanment

salary

LEJ | Search | | Delete |

Update [

L k-4 1 Wl L

Procedure:

1. Code for components in GUI will come automatically.
a7

2. Do oracle connectivity. (click on services----right click on database—select new
connection—
Select oracle thin driver----give service id as orcl.---give username and password.--
-click test connection.

3. Import javax.swing and java.sql
4. Double click on button in forms and type the coding

Coding:

private void deleteActionPerformed(java.awt.event.ActionEvent evt) {

try{
Class.forName("oracle.jdbc.driver.OracleDriver");

Connection con=DriverManager.getConnection(

"o

"jdbc:oracle:thin: @localhost:1521:0rcl","system","manager"); COQ/
v/

Statement stmt=con.createStatement();

\%
String a=JOptionPane.showInputDialog(null,"Enter Employee({%;?
int temp=0;
ResultSet rs=stmt.executeQuery("select * from employee's

while(rs.next()) "\
{ &

if (rs.getString(1).equals(a)) Q/
| Ny
temp=1; %O
) <

) \g
e
if (temp==1) “1\069

{

String query="deletefom employee where empid="+a;
stmt.execute(quety)s
JOptionPa; wMessageDialog (null,"employee record deleted");

}

else

JOptionPane.showMessageDialog (null,"employee record not found");

con.close();

}

catch(SQLException ex)

{
38

JOptionPane.showMessageDialog (null,ex);

} catch (ClassNotFoundException ex) {

}
}

private void salaryActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:

}

private void nameActionPerformed(java.awt.event. ActionEvent evt) {
// TODO add your handling code here:

} Q/
private void addbuttonActionPcrformed(iava.awt.event.ActionEvenQ/. {
try \/
‘ o)
Class.forName("oracle.jdbc.driver.OracleDriver"); (:?O

Connection con=DriverManager.getConnection(
"jdbc:oracle:thin: @localhost: 1521 :orcl","system","n@ r'');

Statement stmt=con.createStatement(); Q/
String query="insert into employee values('»'\
+id.getText()+", ""+name. getText()Jr'@ +department.getText()+"" ,"

+salary.getText()+")"; Q/

//String query ="insert into emplo &Values(34,'mala','cse',234324)";
stmt.execute(query); o‘\}%\

JOptionPane.s&?/bMessageDialog (null,"employee added");

id.setTextQu);
name.setText(null);
department.setText(null);
salary.setText(null);

//con.close();

}

catch(SQLException ex)

{
JOptionPane.showMessageDialog (null,ex);

} catch (ClassNotFoundException ex) {
39

}
}

private void addbuttonMouseClicked(java.awt.event. MouseEvent evt) {

}

private void searchActionPerformed(java.awt.event. ActionEvent evt) {
try{

Class.forName("oracle.jdbc.driver.OracleDriver");
Connection con=DriverManager.getConnection(

"on

"jdbc:oracle:thin: @localhost:1521:orcl","system","manager");

Statement stmt=con.createStatement();
String a=JOptionPane.showInputDialog(null,"Enter Employee i1d"); COQ/

while(rs.next())

{
if (rs.getString(1).equals(a)) (:)
{

ResultSet rs=stmt.executeQuery("select * from employee"); \g/
Qv

name.setText(rs.getString(2));
department.setText(rs.getString(3));
salary.setText(rs.getString(4)); \QQ/

) ?55@
} 63\2*

catch(SQLException ex) \>
{

RS
id.setText(rs.getString(1)); @
&

J OptionPanc.sl;Q&essa geDialog (null,ex);

} catch (Clé@g:ﬂ)undException ex) {

}
}

private void updateActionPerformed(java.awt.event.ActionEvent evt) {
try
{
Class.forName("oracle.jdbc.driver.OracleDriver");
Connection con=DriverManager.getConnection(
"jdbc:oracle:thin: @localhost:1521:orcl","system","manager");
Statement stmt=con.createStatement();
String query="update employee set empid=" + id.getText()+",empname=""
+name.getText()+"' , empdept=""+department.getText()+"" ,salary="
+salary.getText()+"where empid= " + id.getText();

" "

40

//String query ="insert into employee values(34,'mala’,'cse',234324)";
stmt.executeQuery(query);
JOptionPane.showMessageDialog (null,"employee details updated");
id.setText(null);
name.setText(null);
department.setText(null);
salary.setText(null);
con.close();

}
catch(SQLException ex)

{

JOptionPane.showMessageDialog (null,ex);

} catch (ClassNotFoundException ex) {
}

) &
Result: 0\5/
Thus the Employee project is completed. (:?
>
&
™ CASE STUDY
Bfé%&\’lANAGEMENT SYSTEM

Aim:
To create bank managc&cﬁ(system using oracle.

Procedure: &
1. Draw Eé ram

Exp. No.13:

41

ER Diagram of a Bank

éﬁ’@
N/
O\/

Create database tables C)

Design forms (:?
Ny

Complete the connectivity.

5. Runth j
i un the project @%Q‘

Thus the bank management system using @ is created and executed successfully.

5

ADDITIONAL EXPERIMENTS
EXP. NO.14
PL/SQL PROCEDURE TO DISPLAY FIBONACCI SERIES

AIM:
To write a PL/SQL procedure for displaying Fibonacci series.

ALGORITHM:
1. Start
2. Initialize variables first= 0, second=1.

42

3. Display the first and second variables values.
4. Fori=lto5

temp:=first+second;

first := second;

second := temp;

display temp
5. stop

PROGRAM:

first number := 0;
second number = 1;
temp number;

n number := 5;

1 number;

dbms_output.put_line(first);
dbms_output.put_line(second); {:3\/

foriin 2..n (:)

loop (‘9
temp:=first+second; é
"\

first := second;
second := temp; Q/Q'
dbms_output.put_line(temp);

end loop; \%Q/

begin (:OQ/
dbms_output.put_line('Series:"); Q/
v/

end; @
OUTPUT: Q/%
011235 \2\‘?‘
RESULT: C:}

Thus the PL/S Qprocedure for displaying Fibonacci series is executed
successfully. &

\g
K

EXP. NO.15

PL/SQL PROCEDURE TO DISPLAY STUDENT INFORMATION USING ARRAY

AIM:
To write a PL/SQL procedure for displaying student information using array.
ALGORITHM:
1. Start
2. Declare an array
43

3. Store student information in arrary.

4. Display student information using for loop.
5. End.

PROGRAM:

DECLARE
type namesarray IS VARRAY(5) OF VARCHAR?2(10);
type grades IS VARRAY(5) OF INTEGER;
names namesarray;
marks grades;
total integer;

BEGIN
names := namesarray('Kavita', 'Pritam', 'Ayan’, 'Rishav', 'Aziz');
marks:= grades(98, 97, 78, 87, 92); OQ/
total := names.count; Q/
dbms_output.put_line('Total '[| total || ' Students'); N/
FOR i in I .. total LOOP O\/
dbms_output.put_line('Student: ' || names(i) || ' (:)

Marks: ' || marks(i));

END LOOP; Y\Q)
END:; N
, &

OUTPUT: (</
Total 5 Students %
Student: Kavita Marks: 98 (:?\
Student: Pritam Marks: 97 %
Student: Ayan Marks: 78 Q/
Student: Rishav Marks: 87 \23%

&

Student: Aziz Marks: 92
RESULT: »i\\>

Thus the Pl;@f procedure for displaying student information using array is
executed successful

K

44

