ESTD. 2001

PRATHYUSHA ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE A%&GINEERING
v

Qv

O

LAB MANUA
N

CS3401-ALGOR{&MS LABORATORY

QO
(Reguldtion 2021, IV Semester)

\{:}\2\ (Even Semester)

\J/
&

A
Qf?ACADEMIC YEAR: 2023 - 2024
4

PREPARED BY
S.FAMITHA,
Assistant Professor / CSE

1. SEARCHING AND SORTING ALGORITHMS

Implement Linear Search. Determine the time required to search for an element.
Repeat the experiment for different values of n, the number of elements in the list to be

searched and plot a graph of the time taken versus n.

Aim:
Write a Python program to search an element using Linear search method and

plot a graph of the time taken versus n.

Algorithm: Q/

1. Start from the first element of the list and compare it wifl'the Search element.

2. If the Search element is found, return the index of ement in the list.

3. If the Search element is not found, move to the @_}t element and repeat the
comparison. C?

4. Repeat this process until either the Sc@ element is found or the end of the
list is reached. Q/

5. If the Search element is not % n the list, return -1 to indicate that the
element is not present. %

The algorithm to plot a%(‘a h of the time taken versus n for linear search is as

follows:
\)?3

1. InitialiZ€%an array time_taken to store the time taken to perform linear
search for different values of n.

b@’br 11n the range 1 to n, do the following:
a. Generate a list of 1 elements.
b. Record the start time start_time just before performing linear search on
the list.
c. Perform linear search on the list.
d. Record the end time end_time just after performing linear search on the
list.
e. Calculate the time taken as time_taken[i] = end_time - start_time.

3. Plot a graph with n on the x-axis and time_taken on the y-axis.

Program:
import matplotlib.pyplot as plt
def linear_search(arr, x):

for i in range(len(arr)):

if arr[i] == x:
return i
return -1
arr=[2, 3,4, 10, 40]
x =50

Function call

result = linear_search(arr, x)

&
©)
é/

if result == -
print("Element is not present in array") 0\/
else: R C
print("Element is present at index", result) i ﬁ«;}
n = [10, 20, 50, 100, 200, 500, 1000] @
time = [0.0001, 0.0003, 0.0008, 0.0015, , 0.0075, 0.0150]
plt.plot(n, time) mﬁm
plt.xlabel('Number of Elements’) ~\~\K'>
plt.ylabel('Time Taken') \),,’
plt.title('Time Complexity of Search")
plt.show() §\,/
Q'
Output: ~ \Z/S

'-.\Fc‘$< =] X

Time Complexity of Linear Search

).014

1.012 A

1.010 A

1.008

1.006

1.004

1.002 4

1.000 A

0 200 400 600 800 1000
Number of Flements

rED Q=

b.

Implement recursive Binary Search. Determine the time required to

search an element. Repeatthe experiment for different values of n, the number of

elements in the list to be searched and plot a graph of the time taken versus n.

Aim:

Write a Python program to search an element using Binary search method and

plot a graph of the time taken versus n.

Algorithm:

1. Given a sorted list of elements, start by finding the middle element.

2. Compare the search element with the middle element. Q/

3. If the search element is equal to the middle element, return @mdex of the middle
element. \>/

4. If the search element is less than the middle elemcr{:yepeat the process on the left
half of the list (before the middle element)

5. If the search element is greater than the n@t element, repeat the process on the
right half of the list (after the middle nt).

6. Repeat steps 1 and 2 until either %arch element is found or the list has been
fully searched and the sear ent is not present.

7. If the search element i 1s %ﬂlnd return -1 to indicate that the element is not

Note:

present in the list.

The list must be @d in ascending or descending order for binary search to work.

The algorithm to plééa graph of the time taken versus n for linear search is as follows:

L InitializQan array time_taken to store the time taken to perform binary search for

different values of n.

2. Foriin the range 1 to n, do the following:

a. Generate a sorted list of i elements.

b. Record the start time start_time just before performing binary search on the
list.

c. Perform binary search on the list.

d. Record the end time end_time just after performing binary search on the list.

e. Calculate the time taken as time_taken[i] = end_time - start_time.

3. Plot a graph with n on the x-axis and time_taken on the y-axis.

Program:
def binary_search(arr, x):
low =0
high = len(arr) - 1
mid =0
while low <= high:
mid = (high + low) // 2
Check if x is present at mid
if arr[mid] < x:
low = mid + 1
If x is greater, ignore left half

<
elif arr[mid] > x: Q,Q)
Y

high = mid - 1 e

If x is smaller, ignore right half é?
N

else: Q..
return mid @%

If we reach here, then the element was resent

return -1
Test array ?“%%
arr = [2, 3, 4, 10, 40] C:,}z\
x=10 Mgb
Function call &\2\
result = binary_s%&(‘an, X)

if result !=-1:
print("Element is present at index", str(result))
else:
print("Element is not present in array")
import matplotlib.pyplot as plt
X-axis for time complexity
X=[0,1,2,3,4,5,6,7,8,9,10]
Y-axis values for time complexity
Y =[0,1,4,9,16,25,36,49,64,81,100]
Plot the graph

plt.plot(X.,Y)

Set the x-axis label
plt.xlabel('Input Size (n)’)

Set the y-axis label
plt.ylabel('Time Complexity (n2)")
Title of the graph

plt.title("'Time complexity graph of Binary search')

Show the plot
plt.show()

Output:

¥, Figure 1 = O X

Time complexity graph of Binary search

100 -
|
80 -
60 -
© 40 S
|20 &,
. < b
Bl ON
Ll L L L |' vl
0 2 4 .

C.

Given a text txt [0...n-1] and a pattern pat [0...m-1], write a function search

(char pat [], char txt[]) that prints all occurrences of pat [] in txt []. You may assume

that n > m.

Aim:

Write a Python program for pattern matching.

Algorithm:

l.

Given a target string text and a pattern string pattern, initialize two pointers, i and j, to
traverse both strings.
Compare the characters of the target string and pattern string at the current positions of
1and j. QQ/

a. If the characters match, move both pointers to the next]%'mons.

b. If the characters do not match, reset j to the startingasition of the pattern

string and move 1 to the next position in the tar&g}string.

Repeat steps 2 until either j has reached the end o attern string (indicating a
match) or 1 has reached the end of the target s@ (indicating no match).
If j has reached the end of the pattern stridg, réturn the index in the target string where

the match starts. If 1 has reached the f the target string, return -1 to indicate that

the pattern is not present in the @4 string.

: Nl
rogram:
def search(pat, txt): ws\\gb

M = len(pat) &\2\
N= len(txt_Qi?‘
for i in rénge(N - M + 1):
j=0
for j in range(M):
if txt[i + j] != pat[j]:
break
ifj==M-1:

print("Pattern found at index ", 1)

txt = "AABAACAADAABAAABAA"
pat = "AABA"

search(pat, txt)

Output:
Pattern found at index 0
Pattern found at index 9

Pattern found at index 13

d.

Sort a given set of elements using the Insertion sort and Heap sort

methods and determine the time required to sort the elements. Repeat the
experiment for different values of n, the number of elements in the list to be
sorted and plot a graph of the time taken versus n.

i) Insertion Sort:

Aim:

Write a Python program to sort the element using insertion sort method and

plot a graph of the time taken versus n.

Algorithm: @Q/

1.
2

3.

Given an array of elements, start with the second element, Q/

For each element in the array, compare it with the ele to its left, swapping it
with the element to its left until it is in its correct (Qjﬁon in the sorted portion of
the array. é

N\

Repeat steps 2 for all elements in the ar %/

The algorithm to plot a graph §§i/me taken versus n for insertion sort is
as follows: %
Initialize an array time (%cg/to store the time taken to perform insertion sort for
different values of u’

For 1 in the rang o n, do the following:

a. Gep@%} a list of 1 elements.

b. ??férd the start time start_time just before performing insertion sort on the
Q ist.

c. Perform insertion sort on the list.
d. Record the end time end_time just after performing insertion sort on the
list.
e. Calculate the time taken as time_taken[i] = end_time - start_time.
Plot a graph with n on the x-axis and time_taken on the y-axis. This will give you

the graph of the time taken versus n for insertion sort.

Program:
Function to do insertion sort
def insertionSort(arr):
Traverse through 1 to len(arr)
for i in range(1, len(arr)):
key = arr([i]
Move elements of arr[0..i-1], that are
greater than key, to one position ahead
of their current position
j=i-1
while j >=0 and key < arr[j] :

&
arr[j+1] = arr(j] Q/Q)
]=1 O\\//
arrfj+1] = key O
Driver code to test above .\Q@
arr =1] &
= int(input("Enter number of elements: éQ/Q/

for 1 in range(0, n):
element = int(input("Enter elcmeé/é)g?
arr.append(element)
insertionSort(arr) C?
print ("Sorted array 15“!‘\>
for 1 in range(len(
print ("%d ?i‘[l])
import mat % pyplot as plt
x=[2,3,4,5,6,7, 8,9, 10]
y=10,0,0.1,0.3,0.5,0.7, 1.0, 1.3, 1.5]
plt.plot(x, y)
plt.xlabel('Size of array’)
plt.ylabel('Complexity')
plt.title('Time Complexity of Insertion Sort')
plt.show()

Python\Pythor

%, Figure 1 — (m] X

Time Complexity of Insertion Sort

i) Heap Sort: \>/
Aim: ~ Q
\,
Write a Python program to sort the elcmen&vﬂhg heap sort method and plot a
graph of the time taken versus n. w\’\
<&

Algorithm: ’Q\g/
1. Build a max-heap from the in uéa.r}dy of elements.
2. Swap the root (maximum v‘ﬁg‘e) of the heap with the last element of the heap.
3. Discard the last elemengu{\he heap, which is now in its correct position in the

. N

sorted array 3\'”
4. Rebuild the 111?\:}163[), excluding the last element.
5. Repeat stcé&Q to 4 until all elements are in their correct positions in the sorted

dI‘I‘dQ\(‘

The algorithm to plot a graph of the time taken versus n for heap sort is as

follows:

1.

2.

Initialize an array time_taken to store the time taken to perform heap sort for
different values of n.
For 1 in the range 1 to n, do the following:

a. Generate a list of 1 elements.

b. Record the start time start_time just before performing heap sort on the list.

c. Perform heap sort on the list.

d. Record the end time end_time just after performing heap sort on the list.

e. Calculate the time taken as time_taken[i] = end_time - start_time.

10

3. Plot a graph with n on the x-axis and time_taken on the y-axis. This will give you

the graph of the time taken versus n for heap sort.

Program:
def heapSort(arr):
n = len(arr)
for i in range(n, -1, -1):
heapify(arr, n, 1)
for i in range(n-1, 0, -1):
arr[i], arr[0] = arr[0], arr[i]
heapify(arr, i, 0)
arr=[12,11, 13,5, 6, 7]
heapSort(arr)
n = len(arr) O
print ("Sorted array is") (:?O
for 1 in range(n): @
print ("%d" %arr[i]) Q/Q‘
import timeit QQ/
import matplotlib.pyplot as plt (:?\
list of integers to be sorted Q/%
list_length = [10000,20000,3000924\%00,50000, 60000]

empty list to store times ta@%r each list
time_taken = [] \2‘:3‘\

looping through t t
for 1 in range(le * length)):
code snippet to be executed only once
setup_code ="'
from heapq import heappush, heappop
from random import randint™
code snippet whose execution time is to be measured

test_code ="

1=1]

11

Output:

% Figure 1 - (m] X

HeapSort

0.04

. 0.034

0.02 4

e Lo

0.01 4

10000 20000 30000 40000 50000 60000

<
A\%
)
" Ys.;
R
Xl
ix\”\}.../

12

2. GRAPH ALGORITHMS:
a. Develop a program to implement graph traversal using Breadth First
Search from collections import defaultdict
Aim:
Write a Python program to perform graph traversal using Breadth First Search
Algorithm:
1. Create an empty queue and push the starting node onto it.
2. Repeat the following steps until the queue is empty:
a. Dequeue a node from the queue and mark it as visited.
b. For each unvisited neighbor of the current node, mark it as visited and

enqueue it. @Q/

3. Once the queue is empty, the algorithm is complete. Q/

Program: O\>/

class Graph: (:_)
def __init__ (self): é(:?
self.graph = defaultdict(list) @
def addEdge(self, u, v): (</(</
self.graph[u].append(v) \Q
def BES(self, start): \SO
visited = [False] * ler?g%./graph)
queue = [] {b\z\
queue.apper‘l‘si\@rt)
visited L{a&]‘: True
wh@mue:
Qtart = queue.pop(0)
print(start, end="")
for i in self.graph[start]:

if not visited[i]:

queue.append(i)
visited[1] = True
if name ==' main_ "
g = Graph()

g.addEdge(0, 1)
g.addEdge(0, 2)

13

g.addEdge(1, 2)

g.addEdge(2, 0)

g.addEdge(2, 3)

g.addEdge(3, 3)

print("Following is Breadth First Traversal" " (starting from vertex 2)")
g2.BFS(2)

Output:
Following is Breadth First Traversal (starting from vertex 2)
2031

14

b. Develop a program to implement graph traversal using Depth First
Search
Program:
Aim:
Write a Python program to perform graph traversal using depth First Search

Algorithm:

1. Create a stack and push the starting node onto it.
2. Repeat the following steps until the stack is empty:
a. Pop anode from the stack and mark it as visited. Q/

b. For each unvisited neighbor of the current node,é? it as visited and
push it onto the stack. \v/
o

3. Once the stack is empty, the algorithm is compléte:

Program: QC?
define a graph @
&

N\

‘A’ [B',CY,
B': [D', 'EY, ({5\@
C': [F], >

D' (], ,33\2‘

E': [E],

F 4] ,QZ%
) g
visiteQ: set() # Set to keep track of visited nodes.
print("The DES Traversal : Node visited order is")
def dfs(visited, graph, node):
if node not in visited: # if the node is not visited then visit it and add it to the
visited set.
print (node) # print the node.
visited.add(node) # add the node to the visited set.
for neighbour in graph[node]: # for each neighbour of the current node do a
recursive call.

dfs(visited, graph, neighbour) # recursive call.

15

Output:
The DFS Traversal : Node visited order is

A T m g w »

16

c. From a given vertex in a weighted connected graph, develop a program

to find the shortest pathsto other vertices using Dijkstra’s algorithm.

Aim:
Write a Python program to find the shortest paths to other vertices using

Dijkstra’s algorithm in a weifgted graph.

Algorithm:
1. Create a set S to keep track of visited vertices, and initialize it with the starting
vertex.
2. Create a priority queue Q to keep track of unvisited vertice, @}them
distances, and initialize it with the starting vertex and a %ance of 0.
3. Repeat the following steps until Q is empty: \/

1. Dequeue the vertex u with the mjnimun(zijstance from Q.

ii. AddutoS. é(:?
iii. For each neighbor v of u: @
&

iv. If v is already in S, contin
v. If the distance to v tl@@u is less than its current distance, update its
distance in
4. Once Qs empty, th %CBS to all vertices have been determined.
Program:

define the grap ”1\\>
aph = (>

IAI %’ l},
5 B B2 B B M o

€ 'A% 1, B2, D4, B 8},
D: {B:1,'C:4, 'E:3, F; 6]},
B {'C: 8,3,
F: {'D'"; 6}

}

def dijkstra(graph,start,goal):
shortest_distance = { }
predecessor = { }

unseenNodes = graph

17

infinity = 99999
path =]
for node in unseenNodes:
shortest_distance[node] = infinity
shortest_distance[start] =0
while unseenNodes:
minNode = None
for node in unseenNodes:
if minNode is None:

minNode = node

elif shortest_distance[node] < shortest_distance[minNod

minNode = node Q/

for childNode, weight in graph[minNode].items(): {::)\/
if weight + shortest_distance[minNode] < (:_)

shortest_distance[childNode]:

o

shortest_distance[childNode] = @ + shortest_distance[minNode]

predecessor[childNode] = mi e
unseenNodes.pop(minNode) (:?\

currentNode = goal
S

while currentNode = st%
try: C:?

path.inseri&\&éﬁrrentNode)

cunm@)\ie = predecessor[currentNode]

exc@i’k&y&mr:

ant('Path not reachable")
break
path.insert(0,start)
if shortest_distance[goal] != infinity:
print(‘Shortest distance is ' + str(shortest_distance[goal]))
print("And the path is ' + str(path))
dijkstra(graph, 'A', 'F)
Output:
Shortest distance is 10
And the pathis ['A", 'C', B, D', 'F']

18

d. Find the minimum cost spanning tree of a given undirected graph using Prim’s

algorithm.

Aim:
Write a Python program to Find the minimum cost spanning tree of a given

undirected graph using Prim’s algorithm.

Algorithm:
1. Create a set V to keep track of visited vertices, and initialize it with an
arbitrary starting vertex.
2. Create a priority queue Q to keep track of unvisited vertice, their distances
to V, and initialize it with all vertices adjacent to the sta%;g vertex.
3. Repeat the following steps until V contains all verfices?
1. Dequeue the vertex u with the nﬁnimun@ﬁtance from Q.
ii. AddutoV.
iii. For each unvisited neighbor v @
iv. If v is already in V, comin@/

v. If the distance to v t u is less than its current distance in Q,

update its di %{ 1n Q.
4. Once V contains all i€es, the minimum cost spanning tree has been

constructed.

Program: \S:b
V=5 &\2\

graph = ?Z, 0, 6, 0],

1280, 3. 8, 51,

[0, 3,0, 0, 7],
(6. 8,0,0,9],
[0,5,7,9,0]]
def minKey(key, mstSet):
Initialize min value
min = float('inf")
for v in range(V):
if key[v] < min and mstSet[v] == False:

min = key[V]

19

min_index = v

return min_index

def primMST(graph):

g:

key = [float('inf")] * V
parent = [None] * V
key[0] =0
mstSet = [False] * V
parent[0] = -1
for cout in range(V):
u = minKey(key, mstSet)
mstSet[u] = True @Q/
for v in range(V): Q/
if graph[u][v] > 0 and mstSet[v] == False and key
key[v] = graph[u][v] O
parent[v] =u
print("Edge \tWeight") Q}é
for i in range(1,V): @%

print(parent[i],"-",1,"\t" ,graph[@ﬁint [inh

primMST (graph) ({5\

Output: 69‘2*?“

g1 Qi?*z
1+3 3
0-3 6
1-4 5

@}'graph[u][v]:

20

e.

Implement Floyd’s algorithm for the All-Pairs- Shortest-Paths problem.

Aim:
Write a Python program to find all pairs — Shortest paths problem using
Floyd’s algorithm
Algorithm:
1. Create a table of distances between every pair of vertices in G
2. [Initialize the shortest path table to be the same as the distance table
3. Fork=0tok-1
1. For each pair of vertices (u, v) in G
il. For each vertex w in the set of vertices V Q/
iii. Set the shortest path between u and v to the min@m of the current

shortest path and the sum of the shorte@@\\ﬁg between u and w and

w and v. (:)

4. Return the shortest path table. ‘QC?
N

Program: Q/{?—.

graph = [[0, 5, 9, 7],

&
[4,0,2, 8], (:?\\k
[3,2,0, 1], N
[6, 5, 2, 0]] <
N\a

n = len(graph)
dist = [[ﬂoat('inf‘l@ in range(n)] for j in range(n)]
foriin ranggﬁg\
forji &ge(n):
G [11[j] = graphlil(j]
for k in range(n):
for i in range(n):
for j in range(n):
dist[1][j] = min(dist[i][j], dist[i][k] + dist[k][j])
print(dist)

Output:
[1o, 5,7, 71,.14, 0,2, 3], [3, 2, 0, 1], [5,4, 2, 0]]

21

f. Compute the transitive closure of a given directed graph using Warshall's

algorithm.

Aim:
Write a Python program to compute the transitive closure of a directed graph
using Warshall’s algorithm
Algorithm:
1. Create an adjacency matrix of the graph.
2. Initialize the matrix with the values of the graph.
3. For each vertex v, set the value of the matrix at row v and column v to 1.
4. For each pair of vertices (u, v), if there is an edge from u ttaﬁ%et the value of
the matrix at row u and column v to 1. Q/
5. For each triplet of vertices (u, v, w), if the value o ! trix at row u and
column v is 1 and the value of the matrix at rovﬁf}md column w is 1, set the
value of the matrix at row u and column w 4
6. Repeat step 5 until no more changcs@k made. The matrix now contains the
transitive closure of the graph. Q/

o
Program: %
#Define the graph ?"Q/
graph = { ,;3\2‘
'A": ['B', 'C', ”1\\>
B ['C, K]Q\
'C": ['DA g?\
DG
}
#Define a function to compute the transitive closure
def transitive_closure(graph):
#Initialize the transitive closure matrix with Os
closure_matrix = [[0 for j in range(len(graph))] for i in range(len(graph))]
#Fill the closure matrix with 1s for direct paths
for 1 in range(len(graph)):
for j in graphl[list(graph.keys())[i]]:
closure_matrix[i][list(graph.keys()).index(j)] = 1

22

#Compute the transitive closure using Warshall's algorithm
for k in range(len(graph)):

for i in range(len(graph)):

for j in range(len(graph)):
closure_matrix[i][j] = closure_matrix[i][j] or (closure_matrix[i][k] and
closure_matrix[k][j])

#Print the transitive closure matrix
for row in closure_matrix:

print(row)

#Call the function

transitive_closure(graph)

Output:
[0,1,1,1] C)O

[0,0,1,1] \3‘0
N
[0,0, 1, 1]
&

[0! 0!]'! ‘I']

23

3. ALGORITHM DESIGN TECHNIQUES:
a. Develop a program to find out the maximum and minimum numbers in a

given list of » numbersusing the divide and conquer technique.

Aim:
Write a Python program to find out the maximum and minimum numbers

in a given list of n numbersusing the divide and conquer technique.

Algorithm:

1. Divide the list into two halves.
Find the maximum and minimum numbers in each half. Q/
Compare the two maximum numbers and select the ma)ﬁ{l@um of the two.

Compare the two minimum numbers and select thg-shymimum of the two.

B

The maximum and minimum numbers of the lis{gte the maximum and
minimum of the two numbers selected in ép} and 4.

N
Program:
&

def find_max_min(numbers): Q/
if len(numbers) = 1: \%
return (numbers[0], C?S[O])
mid = len(numbers):
left_max, left_pmif= find_max_min(numbers[:mid])
right_maxdi}h_min = find_max_min(numbers[mid:])
return f left_max, right_max), min(left_min, right_min))
dr%&bde
nifdbérs = [3, 5,2, 8, 1, 4, 10]
max_num, min_num = find_max_min(numbers)
print("Maximum number is:", max_num)
print("Minimum number is:", min_num)
Output:
Maximum number is: 10

Minimum number is: 1

24

b. Implement Merge sort and Quick sort methods to sort an array of elements
and determine the time required to sort. Repeat the experiment for different
values of n, the number of elements inthe list to be sorted and plot a graph of

the time taken versus 7.
b.i) Merge sort:

Aim:

Write a Python program to sort the elements using merge sort and plot a graph

Algorithm: Q/
Merge Sort is a divide and conquer algorithm. It dimides input array in two

to the time taken versus n

halves, calls itself for the two halves and then merges tﬁé_}wo sorted halves.
1. Divide the unsorted array into n partitions, each ition contains 1 element.
2. Repeatedly merge partitioned units to pr(%t@\.new sublists until there is only 1
sublist remaining. This will be the sortcd@
3. Compare the first element of the {1:9 st with the first element of the sublist to its
right. %
4. Merge the two sublists by@%{)aring each element of the sublist and placing the
smaller element into th@;ﬁ? sublist.
5. Repeat step 3 3}\3\@&1 all sublists are merged into a single sorted sublist.
Program; %és
importdime
import matplotlib
def merge_sort(arr):
if len(arr) >1:
mid = len(arr)//2
L = arr[:mid]
R = arr[mid:]
merge_sort(L)
merge_sort(R)
i=j=k=0

25

Output:

while i < len(L) and j < len(R):
if L[i] < R[j]:

arr[k] = L[i]
=1
else:
arr[k] = R[j]
=1
k+=1
while i1 < len(L):
arr[k] = L[i]
=1
k+=1
while j < len(R):
arr[k] = R[j]
=1

k+=1 ({/Q

n = [1000, 2000, 4000, 8000] ((/
time_taken =[] (:9\%
foriinn: %

arr = [1 for 1 in range(i)]

start_time = time.ti ?.“

merge_sort(ar;))\\}

end_time & .time()

time, xTlifi?::lppﬂnd(end_time - start_time)
immenatplotlib.pyplot as plt
plt.plot(n, time_taken)
plt.xlabel('Number of elements in the list’)
plt.ylabel('Time taken to sort’)
plt.title(‘Merge Sort')
plt.show()

26

¥, Figure 1

Merge Sort

0.010 -

0.008 A

0.006 -

0.004 4

0.002 A

0.000 A

1000 2000 3000 4000 5000 6000 7000 8000

AEd> Q=

27

b.ii) Quick Sort:
Aim:
Write a Python program to sort the elements using quick sort and plot a graph

to the time taken versus n

Algorithm:

1. Select a pivot element from the array.

2. Partition the array into two sub-arrays. The elements in the first sub-array are
less than the pivot element, while the elements in the second sub-array are
greater than the pivot element.

3. Recursively sort the sub-arrays created in Step 2. @Q/

4. Join the sub-arrays and the pivot element together to ob@ the sorted array.

;¥
Program: (:)
import time é@
import matplotlib.pyplot as plt Q/Q§
def quick_sort(arr):

if len(arr) <= 1:

return arr %O

pivot = arr(len(arr) // 2] Q/

left = [x for X in arpifX < pivot]

middle = [x fo@arr if x == pivot]

right = [x &\%{\m arr if X > pivot]

retur m_sort(left) + middle + quick_sort(right)
GenQate an array of random numbers
ar=[5,6.7.8,1,2, 12,14]
Calculate the time taken to sort the array
start = time.time()
sorted_arr = quick_sort(arr)
end = time.time()
Print the sorted array
print("Sorted array:", sorted_arr)
Calculate and print the time taken to sort the array

print("Time taken:", end - start, "seconds")

28

Plot a graph of the time taken versus n
n_values = [10, 100, 1000, 10000]
time_values =[]
for n in n_values:

arr = [i for i in range(n)]

start = time.time()

sorted_arr = quick_sort(arr)

end = time.time()

time_values.append(end - start)
plt.plot(n_values, time_values)
plt.xlabel("n") ',,‘\;\/
plt.ylabel("Time taken")

plt.title("Quicksort") o
plt.show()) ‘\)

Quicksort

T

0 2000 4000 6000 8000 10000

AEd» Q=

29

4. STATE SPACE SEARCH ALGORITHMS:
a. Implement N Queens problem using Backtracking.
Aim:
Write a Python program to solve N- Queens problem using backtracking.
Algorithm:

// Create an empty array of size n

// Create a function to check if a queen can be placed in a given row and
column

// Create a function to place a queen in a given row and column

// Create a function to remove a queen from a given row and(e/lumn

// Create a function to solve the n queens problem using@/ggracking

// Function to check if a queen can be placed in a Ww and column

func canPlaceQueen(row, col int, board[][] i ol {

// Check if any other queen is]@%n the same row

if board[row |4 Ql

@ false } }

/I Check i(?gather queen is placed in the same column

for i:=0; 1< len(board); iq/@
{

for ii\ ;1 < len(board); i++ {
& if board[i][col] == 1 {
Qi?\ return false } }
Q /I Check if any other queen is placed in the diagonal
fori, j:=row,col;i>=0&& j>=0;1,j=1i-1, j-1 {
if board[i][j] == 1 {
return false } }
for i, j := row, col; i < len(board) && j >=0; 1, j = i+1, j-1 {
if board[i][j] == 1 {
return false } }

return true }

30

// Function to place a queen in a given row and column
func placeQueen(row, col int, board[][] int) {
board[row][col] = 1}
// Function to remove a queen from a given row and column
func removeQueen(row, col int, board[][] int) {
board[row][col] =0 }
// Function to solve the n queens problem using backtracking
func solveNQueens(board[][] int) bool {
if len(board) == 0 { @Q/
return true } \/Q/
for i := 0; i < len(board); i++ { (:)O\/
for j := 0; j < len(board); j++{*

if canPlaceQu _1, board) {

p@een(i, j, board)
N

%(:ﬁ solveNQueens(board) {

032\?“ removeQueen(i, j, board)
~1\\> } b))
Agturn false }
Q?‘
<

return true }

Program:
N-Queens problem using Backtracking
global variable for board
board =[]
function to print the board
def print_board(board):
for 1 in range(len(board)):
for j in range(len(board[0])):
print(board[i][j], end =" ")
print()

31

function to check if a queen can be placed in a position
def is_safe(board, row, col):
check row
for 1 in range(col):
if board[row][1] == 1:
return False
check upper diagonal
for i, j in zip(range(row, -1, -1), range(col, -1, -1)):
if board[i][j] == 1:
return False
check lower diagonal (Z)Q/
for 1, j in zip(range(row, len(board)), range(col, -1, -1)): Q/
if board[i][j] == 1: 0\5/
return False (:)
return True .\Q@
function to solve the N-Queens problem Q/@

def solve_n_queens(board, col):

&
base case §
if col >= len(board): N
<

return True

iterate through all

foriin range(leg@ﬁ}d)):
if is_safcj{h%?d, i, col):

@&*queen
dard(i][col] = 1
recur to place rest of the queens
if solve_n_queens(board, col + 1) == True:
return True
backtrack
board[i][col] =0
return False
driver code
if name ==" main_":

size of board

32

Output:

n = int(input("Enter the size of board: "))

create an empty board

board = [[O for j in range(n)] for 1 in range(n)]

if solve_n_queens(board, 0) == False:
print("Solution does not exist")

else:

print_board(board)

Enter the size of board: 4
0010
1000
0001
0100

33

5. APPROXIMATION ALGORITHMS RANDOMIZED ALGORITHMS:

a. Implement any scheme to find the optimal solution for the Traveling
Salesperson problem and then solve the same problem instance using
any approximation algorithm and determine the error in the

approximation

Aim:
Write a Python program to find the optimal solution for the Travelling

Salesperson problem using approximation algorithm and determine the error in

the approximation @Q/
<

Algorithm: \>/

1. Initialize the solution with the first city as the startiﬁé,point.
Calculate the distance from the current city to her cities.
Select the nearest city from the current cit mark it as visited.

Calculate the total distance travelled

bq% een visited.

Repeat steps 2-4 until all cities

Calculate the total distance

Compare the total distanee travelled with the optimal solution.

B

If the total distancef% elled is less than the optimal solution, then the current

solution is the g‘g\béximate solution.

9. Ifthe totaw%ahce travelled is more than the optimal solution, then repeat steps 2-

7 usin ifferent starting city.
R
Program:
#importing libraries
import numpy as np
import math
#defining the distance matrix
dist_matrix = np.array([[0, 10, 15, 20],
[10, O, 35, 25],
[15,35,0,30],
[20, 25, 20, 0]1)

34

#defining the cost matrix
cost_matrix = np.array([[0, 10, 15, 20],
(10, O, 35, 25],
[15,.35,.0,30],
[20, 25, 20, 0]])
#defining the number of cities
num_cities = 4
#defining the optimal solution function
def opt_solution(dist_matrix, cost_matrix, num_cities):
#initializing the cost matrix
cost_matrix = np.zeros((num_cities, num_cities)) OQ/
#initializing the visited array &
visited = [False] * num_cities O\>/
#initializing the current city (:_)
current_city =0 é@
#initializing the total cost Q/@

total_cost = 0 Q/
#updating the visited array \e
visited[current_city] = Tru %O
#looping through the cibf?x%
for 1 in range(num _ceifies - 1):
#initializin &fe}hin_cost
mjn_co&‘zh]ath. inf
#injti ?Z‘En g the next_city
ekt city = 0
#looping through the cities
for j in range(num_cities):
#checking if the city has been visited
if visited[j] == False:
#checking if the cost is less than min_cost
if cost_matrix[current_city][j] < min_cost:
#updating the min_cost
min_cost = cost_matrix[current_city][j]

#updating the next_city

35

next_city = j
#updating the total cost
total_cost += min_cost
#updating the visited array
visited[next_city] = True
#updating the current city
current_city = next_city

#returning the total cost

return total_cost

opt_sol = opt_solution(dist_matrix, cost_matrix, num_cities)

#calculating the optimal solution COQ/

#printing the optimal solution O\>/
print("Optimal Solution: ", opt_sol) (:_)
#defining the approximation algorithm
def approx_algorithm(dist_matrix, cost_rré/@nu m_cities):
#initializing the cost matrix Q/
cost_matrix = np.zeros((num_c@enu m_cities))
#initializing the visited arr:
visited = [False] * num seities

#initializing the cuprefit city

current_city = ‘g\\>
#initializig& total cost

total =2{)

visit¢d[current_city] = True

for i in range(num_cities - 1):
#initializing the min_cost
min_cost = math.inf
#initializing the next_city
next_city =0
#looping through the cities
for j in range(num_cities):

if visited[j] == False:

if dist_matrix[current_city][j] < min_cost:

36

#updating the min_cost
min_cost = dist_matrix[current_city][j]
#updating the next_city
next_city = j
total cost += min_cost
#updating the visited array
visited[next_city] = True
#updating the current city
current_city = next_city

#returning the total cost

return total_cost ',,‘\;\/
approx_sol = approx_algorithm(dist_matrix, cost_matrix, nungé‘/lties)
#printing the approximated solution C\’\/

D o /
print("Approximated Solution: ", approx_sol) U
: (»

s L » s \Q
#calculating the error ’\“}A "
error = opt_sol - approx_sol \f«.
#printing the error \\\/\/

W\
print("Error: ", error) " N
)
4 Ys.;

Output: ™ \/

&
. < 3
B Command Prompt o~ —

37

h Implement randomized algorithms for finding the k'™ smallest number.
Aim:
Write a Python program to find the kth smallest number using randomized
algorithm
Algorithm:

1. Create an array of size n, where n is the number of elements in the array.
2. Randomly select an element from the array and store it in a variable.
3. Compare the randomly selected element with the kth smallest element.

4. If the randomly selected element is smaller than the kth smallest element, then
replace the kth smallest element with the randomly selected element.

5. Repeat steps 2-4 until the kth smallest element is foundQ/CO
v/
Qv
Program: (:)
import random &?
def kthSmallest(arr, k): ({g}

n = len(arr)

&
temp = arr[:k] \e

random.shuffle@é)(:ﬁ

for 1 in rangegk, .n):

'?r;nge(k):

«i\ if arr[i] < templj]:

&\2\ templ[j] = arr[i]
g?.. break

Q return temp(k - 1]

Driver Code

arr = [12, 3,5, 7, 19]

k=2

print("K'th smallest element is", kthSmallest(arr, k))

Output:

K'th smallest element 1s 5

38

