

PRATHYUSHA

ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

REGULATION 2021 – III SEMESTER

CS3391 – OBJECT ORIENTED PROGRAMMING

CS3391 OBJECT ORIENTED PROGRAMMING

COURSE OBJECTIVES:

• To understand Object Oriented Programming concepts and basics of Java programming

language

• To know the principles of packages, inheritance and interfaces

• To develop a java application with threads and generics classes

• To define exceptions and use I/O streams

• To design and build Graphical User Interface Application using JAVAFX 66

UNIT I INTRODUCTION TO OOP AND JAVA

Overview of OOP – Object oriented programming paradigms – Features of Object Oriented

Programming – Java Buzzwords – Overview of Java – Data Types, Variables and Arrays –

Operators – Control Statements – Programming Structures in Java – Defining classes in Java

– ConstructorsMethods -Access specifiers - Static members- Java Doc comments

UNIT II INHERITANCE, PACKAGES AND INTERFACES

Overloading Methods – Objects as Parameters – Returning Objects –Static, Nested and Inner

Classes. Inheritance: Basics– Types of Inheritance -Super keyword -Method Overriding –

Dynamic Method Dispatch –Abstract Classes – final with Inheritance. Packages and

Interfaces: Packages – Packages and Member Access –Importing Packages – Interfaces.

UNIT III EXCEPTION HANDLING AND MULTITHREADING

Exception Handling basics – Multiple catch Clauses – Nested try Statements – Java’s Built-in

Exceptions – User defined Exception. Multithreaded Programming: Java Thread Model–

Creating a Thread and Multiple Threads – Priorities – Synchronization – Inter Thread

Communication- Suspending –Resuming, and Stopping Threads –Multithreading. Wrappers

– Auto boxing.

UNIT IV I/O, GENERICS, STRING HANDLING

I/O Basics – Reading and Writing Console I/O – Reading and Writing Files. Generics:

Generic Programming – Generic classes – Generic Methods – Bounded Types – Restrictions

and Limitations. Strings: Basic String class, methods and String Buffer Class.

UNIT V JAVAFX EVENT HANDLING, CONTROLS AND COMPONENTS

JAVAFX Events and Controls: Event Basics – Handling Key and Mouse Events. Controls:

Checkbox, ToggleButton – RadioButtons – ListView – ComboBox – ChoiceBox – Text

Controls – ScrollPane. Layouts – FlowPane – HBox and VBox – BorderPane – StackPane –

GridPane. Menus – Basics – Menu – Menu bars – MenuItem.

COURSE OUTCOMES:

On completion of this course, the students will be able to

CO1:Apply the concepts of classes and objects to solve simple problems

CO2:Develop programs using inheritance, packages and interfaces

CO3:Make use of exception handling mechanisms and multithreaded model to solve real

world problems

CO4:Build Java applications with I/O packages, string classes, Collections and generics

concepts

CO5:Integrate the concepts of event handling and JavaFX components and controls for

developing GUI based applications

TEXT BOOKS:

1. Herbert Schildt, “Java: The Complete Reference”, 11 th Edition, McGraw Hill Education,

New Delhi, 2019

2. Herbert Schildt, “Introducing JavaFX 8 Programming”, 1 st Edition, McGraw Hill

Education, New Delhi, 2015 67

REFERENCE:

1. Cay S. Horstmann, “Core Java Fundamentals”, Volume 1, 11 th Edition, Prentice Hall, 2018.

CS3391 OBJECT ORIENTED PROGRAMMING

UNIT I INTRODUCTION TO OOP AND JAVA

Overview of OOP – Object oriented programming paradigms – Features of Object Oriented

Programming – Java Buzzwords – Overview of Java – Data Types, Variables and Arrays –

Operators – Control Statements – Programming Structures in Java – Defining classes in Java

– Constructors-Methods -Access specifiers - Static members- Java Doc comments

--

1. Explain the features of object oriented programming.

 `

Object-oriented programming organizes a program around its data that is, objects) and a set of

well-defined interfaces to that data. An object-oriented program can be characterized as data

controlling access to code.

1) ABSTRACTION:

Abstraction is a process of showing only “relevant” data and “hide” unnecessary details of

an object from the user. For example, when you login to your bank account online, you enter

your user_id and password and press login, what happens when you press login, how the

input data sent to server, how it gets verified is all abstracted away from the you.

Eg. Car, ATM machine

2) ENCAPSULATION:

• Encapsulation is the mechanism that binds together code and the data it manipulates,

and keeps both safe from outside interference and misuse.

• One way to think about encapsulation is as a protective wrapper that prevents the code

and data from being arbitrarily accessed by other code defined outside the wrapper. Access

to the code and data inside the wrapper is tightly controlled through a well-defined

interface.

Class:

A class defines the structure and behavior (data and code) that will be shared by a set

of objects. Each object of a given class contains the structure and behavior defined by

the class

Object :

Object is an instance of a class. Objects have states and behaviors.

3) INHERITANCE:

Inheritance is the process by which one object acquires the properties of another object. This

is important because it supports the concept of hierarchical classification.

4) POLYMORPHISM:

• Polymorphism refers to the ability of a variable, object or function to take on multiple

forms. The concept of polymorphism is often expressed by the phrase “one interface,

multiple methods.” This means that it is possible to design a generic interface to a

group of related activities. This helps reduce complexity by allowing the same interface

to be used to specify a general class of action.

Types of Polymorphism

1) Static Polymorphism

2) Dynamic Polymorphism

Static Polymorphism:

Polymorphism that is resolved during compiler time is known as static polymorphism. Method

overloading can be considered as static polymorphism example.

Method Overloading: This allows us to have more than one methods with same name in a

class that differs in signature.

Dynamic Polymorphism

• It is also known as Dynamic Method Dispatch. Dynamic polymorphism is a

process in which a call to an overridden method is resolved at runtime rather, thats

why it is called runtime polymorphism

2. Explain about the java buzzwords.

Java buzzwords are:

• Simple

• Secure

• Portable

• Object-oriented

• Robust

• Multithreaded

• Architecture-neutral

• Interpreted

• High performance

• Distributed

• Dynamic

https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/

1) Simple

Java was designed to be easy for the professional programmer to learn and use

effectively. Assuming that you have some programming experience, you will not find

Java hard to master. If you already understand the basic concepts of object oriented

programming, learning Java will be even easier. Best of all, if you are an experienced

C++ programmer, moving to Java will require very little effort. Because Java inherits

the C/C++ syntax and many of the object-oriented features of C++, most programmers

have little trouble learning Java.

2) Secure:

• As an Internet programming language, Java is used in a networked and distributed

environment. If you download a Java applet (a special kind of program) and run it on

your computer, it will not damage your system because Java implements several

security mechanisms to protect the system against harm caused by stray programs. The

security is based on the premise that nothing should be trusted.

3) Portable

• Because Java is architecture neutral, Java programs are portable. They can be run on

any platform without being recompiled. Moreover, there are no platform-specific

features in the Java language.

4) Object-Oriented

Java is an object-oriented programming language. Everything in Java is an object.

Object-oriented means we organize our software as a combination of different types of

objects that incorporate both data and behaviour. All code belong to some class. Classes

are in turn arranged in a hierarchy or package structure

5) Robust

Java is simple. Java is not using pointers. Java support Exception handling. The

try/catch/finally series allows for simplified error recovery. Java is Strongly typed

language – many errors caught during compilation.

https://www.javatpoint.com/java-oops-concepts

6) Multithreaded

Java was designed to meet the real-world requirement of creating interactive,

networked programs. To accomplish this, Java supports multithreaded programming,

which allows to write programs that do many things simultaneously. Java’s easy-to-use

approach to multithreading allows to think about the specific behaviour of your

program, not the multitasking subsystem.

7) Architecture-Neutral

The Java designers designed the Java Virtual Machine(JVM). The goal of JVM is

“write once; run anywhere, anytime, forever.”

8) Interpreted :

Java enables the creation of cross-platform programs by compiling into an intermediate

representation called Java bytecode. This code can be executed on any system that

implements the Java Virtual Machine.

9) High Performance:

Java is faster than other traditional interpreted programming languages because Java

bytecode is "close" to native code. The Java bytecode was carefully designed so that it

would be easy to translate directly into native machine code for very high performance

by using a just-in-time compiler. Java run-time systems that provide this feature lose

none of the benefits of the platform-independent code.

10) Distributed:

Java is designed for the distributed environment of the Internet because it handles

TCP/IP protocols. In fact, accessing a resource using a URL is not much different from

accessing a file. Java also supports Remote Method Invocation (RMI). This feature

enables a program to invoke methods across a network.

11) Dynamic:

Java programs carry with them substantial amounts of run-time type information that

is used to verify and resolve accesses to objects at run time. This makes it possible to

dynamically link code in a safe and expedient manner. This is crucial to the robustness

of the Java environment, in which small fragments of bytecode may be dynamically

updated on a running system.

3. Explain about literals in java.

Integer Literals

Any whole number value is an integer literal. Examples are 1, 2, 3, and 42. These are all

decimal values, meaning they are describing a base 10 number. Two other bases that can be

used in integer literals are octal (base eight) and hexadecimal (base 16). Octal values are

denoted in Java by a leading zero.Integer literals create an int value, which in Java is a 32-bit

integer value.

When a literal value is assigned to a byte or short variable, no error is generated if the literal

value is within the range of the target type. An integer literal can always be assigned to a long

variable. However, to specify a long literal, you will need to explicitly tell the compiler that

the literal value is of type long. You do this by appending an upper- or lowercase L to the

literal. For example, 0x7ffffffffffffffL or 9223372036854775807L is the largest long. An

integer can also be assigned to a char as long as it is within range.

Floating-Point Literals

Floating-point numbers represent decimal values with a fractional component. They can be

expressed in either standard or scientific notation. Standard notation consists of a whole

number component followed by a decimal point followed by a fractional component.

Floating-point literals in Java default to double precision. To specify a float literal, you must

append an F or f to the constant. You can also explicitly specify a double literal by appending

a D or d. Doing so is, of course, redundant. The default double type consumes 64 bits of

storage, while the smaller float type requires only 32 bits.

Boolean Literals

Boolean literals are simple. There are only two logical values that a Boolean value can have,

true and false. The values of true and false do not convert into any numerical representation.

The true literal in Java does not equal 1, nor does the false literal equal 0. In Java, the Boolean

literals can only be assigned to variables declared as boolean or used in expressions with

Boolean operators.

Character Literals

Characters in Java are indices into the Unicode character set. They are 16-bit values that can

be converted into integers and manipulated with the integer operators, such as the addition and

subtraction operators. A literal character is represented inside a pair of single quotes. All of the

visible ASCII characters can be directly entered inside the quotes, such as 'a', 'z', and '@'.

String Literals

String literals in Java are specified like they are in most other languages—by enclosing a

sequence of characters between a pair of double quotes. Examples of string literals are

"Hello World"

"two\nlines"

4. Explain operators in operators.

Java provides a rich operator environment. Most of its operators can be divided

into the following four groups:

1. Arithmetic Operators

2. Bitwise Operators

3. Relational Operators

4. Logical Operators

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are used

in algebra. The following table lists the arithmetic operators:

The Modulus Operator

The modulus operator, %, returns the remainder of a division operation. It can be applied to

floating-point types as well as integer types. The following example program demonstrates

the %:

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation with an

assignment. As you probably know, statements like the following are quite common in

programming:

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;

The Bitwise Operators

Java defines several bitwise operators that can be applied to the integer types, long, int,

short,

char, and byte. These operators act upon the individual bits of their operands. They are

summarized in the following table:

The bitwise operators manipulate the bits within an integer.

All of the integer types are represented by binary numbers of varying bit widths. For example,

the byte value for 42 in binary is 00101010, where each position represents a power

of two, starting with 20 at the rightmost bit. The next bit position to the left would be 21, or 2,

continuing toward the left with 22, or 4, then 8, 16, 32, and so on. So 42 has 1 bits set at

positions 1, 3, and 5 (counting from 0 at the right); thus, 42 is the sum of 21 + 23 + 25, which

is 2 + 8 + 32.

All of the integer types (except char) are signed integers. This means that they can represent

negative values as well as positive ones. Java uses an encoding known as two’s complement,

which means that negative numbers are represented by inverting (changing 1’s to 0’s and vice

versa) all of the bits in a value, then adding 1 to the result.

The Bitwise Logical Operators

The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of

each operation. In the discussion that follows, keep in mind that the bitwise operators are

applied to each individual bit within each operand.

Relational Operators

The relational operators determine the relationship that one operand has to the other.

Specifically, they determine equality and ordering. The relational operators are shown here:

The outcome of these operations is a boolean value. The relational operators are most

frequently used in the expressions that control the if statement and the various loop

statements.

Boolean Logical Operators

The logical Boolean operators, &, |, and ^, operate on boolean values in the same way

that they operate on the bits of an integer. The logical ! operator inverts the Boolean state:

!true == false and !false == true. The following table shows the effect of each logical

operation:

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types of if-then-

else statements. This operator is the ?. It can seem somewhat confusing at first, but the ? can

be used very effectively once mastered. The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is

true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of the ?

operation is that of the expression evaluated. Both expression2 and expression3 are required

to return the same type, which can’t be void.

Here is an example of the way that the ? is employed:

ratio = denom == 0 ? 0 : num / denom;

Operator Precedence

Table shows the order of precedence for Java operators, from highest to lowest. The first row

shows items that you may not normally think of as operators: parentheses,

square brackets, and the dot operator. Technically, these are called separators, but they act

like operators in an expression. Parentheses are used to alter the precedence of an operation.

As you know from the previous chapter, the square brackets provide array indexing. The dot

operator is used to dereference objects.

5. Explain about control statements.

Java’s program control statements can be put into the following categories:

1. Selection

2. Iteration

3. jump

 Selection statements allow your program to choose different paths of execution based upon

the outcome of an expression or the state of a variable. Iteration statements enable program

execution to repeat one or more statements (that is, iteration statements form loops). Jump

statements allow your program to execute in a nonlinear fashion.

Java’s Selection Statements

Java supports two selection statements:

if and switch.

If:

the general form of the if

statement:

if (condition) statement1;

else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly

braces (that is, a block). The condition is any expression that returns a boolean value. The

else clause is optional.

Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs are very

common in programming. When you nest ifs, the main thing to remember is that an else

statement always refers to the nearest if statement that is within the same block as the else

and that is not already associated with an else.

if(i == 10) {

if(j < 20) a = b;

if(k > 100) c = d; // this if is

else a = c; // associated with this else

}

else a = d;

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the if-else-if

ladder. It looks like this:

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

...

else

statement;

switch

The switch statement is Java’s multiway branch statement. It provides an easy way to dispatch

execution to different parts of your code based on the value of an expression. As such, it often

provides a better alternative than a large series of if-else-if statements. Here is the general form

of a switch statement:

switch (expression) {

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

...

case valueN:

// statement sequence

break;

default:

// default statement sequence

}

Iteration Statements

Java’s iteration statements are for, while, and do-while. These statements create what we

commonly call loops. As you probably know, a loop repeatedly executes the same set of

instructions until a termination condition is met. As you will see, Java has a loop to fit any

programming need.

While

The while loop is Java’s most fundamental loop statement. It repeats a statement or block while

its controlling expression is true. Here is its general form:

while(condition) {

// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long

as the conditional expression is true. When condition becomes false, control passes to the next

line of code immediately following the loop. The curly braces are unnecessary if only a single

statement is being repeated.

do-while

The do-while loop always executes its body at least once, because its conditional expression

is at the bottom of the loop. Its general form is

do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates the

conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop

terminates. As with all of Java’s loops, condition must be a Boolean expression.

Here is a reworked version of the “tick” program that demonstrates the do-while loop.

It generates the same output as before.

For:

Here is the general form of the traditional for statement:

for(initialization; condition; iteration) {

// body

}

If only one statement is being repeated, there is no need for the curly braces.

The for loop operates as follows. When the loop first starts, the initialization portion of the

loop is executed. Generally, this is an expression that sets the value of the loop control variable,

which acts as a counter that controls the loop. It is important to understand that the initialization

expression is only executed once. Next, condition is evaluated. This must be a Boolean

expression. It usually tests the loop control variable against a target value. If this expression is

true, then the body of the loop is executed. If it is false, the loop terminates.

Next, the iteration portion of the loop is executed. This is usually an expression that increments

or decrements the loop control variable. The loop then iterates, first evaluating the conditional

expression, then executing the body of the loop, and then executing the iteration expression

with each pass. This process repeats until the controlling expression is false.

Jump Statements

Java supports three jump statements: break, continue, and return. These statements transfer

control to another part of your program.

Using break

In Java, the break statement has three uses. First, as you have seen, it terminates a statement

sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used as

a “civilized” form of goto.

Using break to Exit a Loop

By using break, you can force immediate termination of a loop, bypassing the conditional

expression and any remaining code in the body of the loop. When a break statement is

encountered inside a loop, the loop is terminated and program control resumes at the next

statement following the loop

Using continue

Sometimes it is useful to force an early iteration of a loop. That is, you might want to continue

running the loop but stop processing the remainder of the code in its body for this particular

iteration. This is, in effect, a goto just past the body of the loop, to the loop’s end. The continue

statement performs such an action. In while and do-while loops, a continue statement causes

control to be transferred directly to the conditional expression that controls the loop.

return

The last control statement is return. The return statement is used to explicitly return from a

method. That is, it causes program control to transfer back to the caller of the method. As such,

it is categorized as a jump statement.

6. Explain about class, object, method and constructors in java.

(or)

Explain about constructor overloading.

Class:

A class defines the structure and behaviour (data and code) that will be shared by a set

of objects. Each object of a given class contains the structure and behaviour defined by

the class

Object:

Object is an instance of a class. Objects have states and behaviours.

Method:

A method is a block of code or collection of statements or a set of code grouped together

to perform a certain task or operation. It is used to achieve the reusability of code.

Constructors:

A constructor is a block of code. Constructor is called when an instance of the object is

created, and memory is allocated for the object.

Constructor overloading is a technique that enables a single class to have more than one

constructor that varies by the list of arguments passed.

• Constructor name must be the same as its class name

• A Constructor must have no explicit return type

• A constructor cannot be abstract, static, final, and synchronized

Type of constructor:

1. Default constructor

2. Parameterized constructor

Program:

class Box

 {

double width;

double height;

double depth;

Box()

{

width = 5;

height = 4;

depth = 3;

}

 Box(double w, double h, double d)

{

width = w;

height = h;

depth = d;

}

 double volume()

 {

return width * height * depth;

}

}

class BoxDemo

 {

public static void main(String args[])

{

 Box b1 = new Box();

Box b2 = new Box(3, 6, 9);

double vol;

 vol = b1.volume();

 System.out.println("Volume of box1 is " + vol);

vol = b2.volume();

System.out.println("Volume of box2 is " + vol);

}

}

7. Explain about access control or access specifiers.

• Encapsulation links data with the code that manipulates it. However,

encapsulation provides another important attribute: access control. Through

encapsulation, you can control what parts of a program can access the members

of a class.

• By controlling access, you can prevent misuse.

• Java supplies a rich set of access modifiers.

• Java’s access modifiers are public, private, and protected. Java also defines a

default access level.

 Private
No Modifier

(Default)
Protected Public

Same class Yes Yes Yes Yes

Same package subclass No Yes Yes Yes

Same package non-subclass No Yes Yes Yes

Different package subclass No No Yes Yes

Different package non-subclass No No No Yes

1) protected applies only when inheritance is involved.

2) When a member of a class is modified by public, then that member can be

accessed by any other code.

3) When a member of a class is specified as private, then that member can only be

accessed by other members of its class.

4) When no access modifier is used, then by default the member of a class is public

within its own package, but cannot be accessed outside of its package.

8. Explain about static members (static variable,static method,static block).

• When a member is declared static, it can be accessed before any objects of its class

are created, and without reference to any object. You can declare both methods and

variables to be static. The most common example of a static member is main().

main() is declared as static because it must be called before any objects exist.

1) Static variable:

• Instance variables declared as static are, essentially, global variables. When objects

of its class are declared, no copy of a static variable is made. Instead, all instances

of the class share the same static variable.

2) Static method:

• Methods declared as static have several restrictions:

➢ They can only directly call other static methods.

➢ They can only directly access static data.

➢ They cannot refer to this or super in any way. (The keyword super relates to

inheritance and is described in the next chapter.)

3) Static block:

• If you need to do computation in order to initialize your static variables, you can

declare a static block that gets executed exactly once, when the class is first loaded.

The following example shows a class that has a static method, some static variables,

and a static initialization block:

 Demonstrate static variables, methods, and blocks.

class student

 {

 int a;

 static int b;

 student(){

 b++;

 }

 static

 {

 System.out.println("First static block");

 }

 static

 {

 System.out.println("Second static block");

 }

 public void showData()

 {

 System.out.println("Value of a = "+a);

 System.out.println("Value of b = "+b);

 }

 static void display()

 {

 System.out.println("This is static method");

 }

}

public class studemo

{

 public static void main(String args[]){

 student s1 = new student();

 s1.showData();

 student s2 = new student();

 s2.showData();

 student.display();

 }

}

output:

First static block

Second static block

Value of a =0

Value of b =1

Value of a =0

Value of b =2

This is static method

9. Explain about javadoc comments.

Java supports three types of comments. The first two are the // and the /* */. The third type is

called a documentation comment. It begins with the character sequence /**. It ends with */.

Documentation comments allow you to embed information about your program into the

program itself. You can then use the javadoc utility program (supplied with the JDK) to extract

the information and put it into an HTML file. Documentation comments make it convenient to

document your programs. You have almost certainly seen documentation that uses such

comments because that is the way the Java API ibrary was documented. Beginning with JDK

9, javadoc includes support for modules.

The javadoc Tags

The javadoc utility recognizes several tags, including those shown here:

The General Form of a Documentation Comment

After the beginning /**, the first line or lines become the main description of your class,

interface, field, constructor, method, or module. After that, you can include one or more of the

various @ tags. Each @ tag must start at the beginning of a new line or follow one or more

asterisks (*) that are at the start of a line. Multiple tags of the same type should be grouped

together. For example, if you have three @see tags, put them one after the other. In-line tags

(those that begin with a brace) can be used within any description. Here is an example of a

documentation comment for a class:

javadoc Outputs

The javadoc program takes as input your Java program’s source file and outputs several HTML

files that contain the program’s documentation. Information about each class will be in its own

HTML file. javadoc will also output an index and a hierarchy tree. Other HTML files can be

generated. Beginning with JDK 9, a search box feature is also included.

/**

* The AddNum program implements an application that

* simply adds two given integer numbers and Prints

* the output on the screen.

* @author John

* @version 1.0

* @since 30-06-2019

*/

public class addnum {

 /**

 * This method is used to add two integers. This is

 * a the simplest form of a class method, just to

 * show the usage of various javadoc Tags.

 * @param numA This is the first paramter to addNum method

 * @param numB This is the second parameter to addNum method

 * @return int This returns sum of numA and numB.

 */

 public int addNum(int numA, int numB) {

 return numA + numB;

 }

 /**

 * This is the main method which makes use of addNum method.

 * @param args Unused.

 * @return Nothing.

 */

 public static void main(String args[])

 {

 addnum obj = new addnum();

 int sum = obj.addNum(10, 20);

 System.out.println("Sum of 10 and 20 is :" + sum);

 }

}

Compile:

Z:\>javac addnum.java

Html file creation:

Z:\>javadoc addnum.java

Html file will be created in the same directory.

12. Develop program to sort numbers in ascending order.

class GFG {

 public static void main(String[] args)
 {

 int arr[] = { 4, 3, 2, 1 };

 for (int i = 0; i < arr.length; i++) {

 for (int j = i + 1; j < arr.length; j++) {

 int temp = 0;
 if (arr[j] < arr[i]) {

 temp = arr[i];
 arr[i] = arr[j];
 arr[j] = temp;
 }
 }

 System.out.print(arr[i] + " ");
 }
 }
}

Output
1 2 3 4

CS8392 OBJECT ORIENTED PROGRAMMING

UNIT- I

Part-A

1. Differentiate between Process-oriented programming and Object-oriented

programming

 1) Process-oriented model :

Process-oriented model approach characterizes a program as a series of linear steps.

The process-oriented model can be thought of as code acting on data. Procedural

languages such as C employ this model to considerable success. Problems with this

approach appear as programs grow larger and more complex.

2) Object-oriented programming :

To manage increasing complexity object-oriented programming was conceived.

Object-oriented programming organizes a program around its data (that is, objects)

and a set of well-defined interfaces to that data. An object-oriented program can be

characterized as data controlling access to code.

2. Define abstraction:

Abstraction is a process where you show only “relevant” data and “hide”

unnecessary details of an object from the user. For example, when you login to your

Amazon account online, you enter your user_id and password and press login, what

happens when you press login, how the input data sent to amazon server, how it gets

verified is all abstracted away from the you.

3. Define encapsulation.

Encapsulation is the mechanism that binds together code and the data it manipulates,

and keeps both safe from outside interference and misuse.

4. What is classes and an objects?

A class defines the structure and behavior (data and code) that will be shared by a set

of objects. Each object of a given class contains the structure and behavior defined by

the class, as if it were stamped out by a mold in the shape of the class. For this reason,

objects are sometimes referred to as instances of a class. Thus, a class is a logical

construct; an object has physical reality.

5. Define inheritance.

Inheritance is the process by which one object acquires the properties of another object.

This is important because it supports the concept of hierarchical classification. Most

knowledge is made manageable by hierarchical (that is, top-down) classifications.

6. What is meant by polymorphism? Specify its type.

Polymorphism is the concept where an object behaves differently in different

situations. There are two types of polymorphism – compile time

polymorphism and runtime polymorphism. Polymorphism could be static and

dynamic both. Method Overloading is static polymorphism while, Method

overriding is dynamic polymorphism.

7. Differentiate between method Overloading and method Overriding

Method Overloading means more than one method having the same method name

that behaves differently based on the arguments passed while calling the method. This

called static because, which method to be invoked is decided at the time of

compilation. Method Overriding means a derived class is implementing a method of

its super class. The call to overridden method is resolved at runtime, thus called

runtime polymorphism

https://beginnersbook.com/2013/05/method-overloading/
https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/
https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/

8. List the java buzzwords. (Or) List the characteristics of java.

1) Simple

2) Secure

3) Portable

4) Object-oriented

5) Robust

6) Multithreaded

7) Architecture-neutral

8) Interpreted

9) High performance

10) Distributed

11) Dynamic

9. What is the use of constructor?

A constructor initializes an object immediately upon creation. It has the

same name as the class in which it resides and is syntactically similar to a

method. Once defined, the constructor is automatically called when the object

is created, before the new operator completes.

Constructors look a little strange because they have no return type, not

even void. This is because the implicit return type of a class’ constructor is the

class type itself.

Java’s access modifiers are public, private, and protected. Java also

defines a default access level. protected applies only when inheritance is

involved.

10. State The use of this Keyword.

Sometimes a method will need to refer to the object that invoked it. To allow this,

Java defines the this keyword. this can be used inside any method to refer to the

current object. That is, this is always a reference to the object on which the method

was invoked.

11. What is done in garbage collection?

When no references to an object exist, that object is assumed to be no longer

needed, and the memory occupied by the object can be reclaimed by the garbage

collection. Garbage collection only occurs at irregular intervals during the

execution of your program.

12. What is the use of finalize method?

Sometimes an object will need to perform some action when it is destroyed. For

example, if an object is holding some non-Java resource such as a file handle or

character font, then you might want to make sure these resources are freed before an

object is destroyed. To handle such situations, Java provides a mechanism called

finalization. By using finalization, you can definespecific actions that will occur when

an object is just about to be reclaimed by the garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run

time calls that method whenever it is about to recycle an object of that class. Inside

the finalize() method, you will specify those actions that must be performed before

an object is destroyed.

13. Specify various access control supported by java.

Encapsulation provides another important attribute: access control. Through

encapsulation, you can control what parts of a program can access the members

of a class.

By controlling access, you can prevent misuse. For example, allowing access to data

only through a well-defined set of methods, you can prevent the misuse of that data.

How a member can be accessed is determined by the access modifier attached to its

declaration.

Java’s access modifiers are public, private, and protected. Java also defines a

default access level. protected applies only when inheritance is involved.

1) Public: When a member of a class is modified by public, then that member

can be accessed by any other code.

2) Private: When a member of a class is specified as private, then that member

can only be accessed by other members of its class.

3) Protected: protected members can be accessed by the same package and its

derived classes.

4) Default: When no access modifier is used, then by default the member of a

class is public within its own package, but cannot be accessed outside of its

package.

14. State the situation where static members(static variable,static method, and static

are used.

There will be times when you will want to define a class member that will be used

independently of any object of that class. Normally, a class member must be accessed

only in conjunction with an object of its class. However, it is possible to create a

member that can be used by itself, without reference to a specific instance. To create

such a member, precede its declaration with the keyword static.

When a member is declared static, it can be accessed before any objects of its class

are created, and without reference to any object. You can declare both methods and

variables to be static. The most common example of a static member is main().

main() is declared as static because it must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects

of its class are declared, no copy of a static variable is made. Instead, all instances of

the class share the same static variable.

Methods declared as static have several restrictions:

They can only directly call other static methods.

They can only directly access static data.

They cannot refer to this or super in any way.

If you need to do computation in order to initialize your static variables,

you can declare a static block that gets executed exactly once, when the class is

first loaded.

15. State the use of final keyword.

A field can be declared as final. Doing so prevents its contents from being

modified, making it, essentially, a constant. This means that you must initialize

a final field when it is declared.

Example:

final int FILE_NEW = 1;

16. What is the use of break and continue statement?

The break statement is used to terminate the loop immediately. The continue

statement is used to skip the current iteration of the loop.

Part-B

1. Discuss various features of OOP.

2. Elaborate the about various Java buzzwords.

3. Elaborate about various categories of operators in java.

4. Explain about one dimensional and two dimensional arrays in java with example

programs.

5. Discuss the use of constructor and finalize() method in java with

programming example. Show how garbage collection is achieved here.

6. Explain about class, method and constructor overloading in java.

7. Explain about selection statements in java.

8. Explain about various literals in java. (or) Explain about various datatypes

in java.

9. Explain about the control statements in java with example programs.

10. Illustrate method overloading with example program.

11. Explain static field and static method with example.

12. Discuss about javaDoc. Explain the comments for classes, methods, fields.

13. Create a class to print the area of a square and a rectangle. The class has two methods

with the same name but different number of parameters. The method for printing area

of rectangle has two parameters which are length and breadth respectively while the

other method for printing area of square has one parameter which is side of square.

14. Develop a program by creating an 'Employee' class having the following methods

and print the final salary.

'getInfo()' which takes the salary, number of hours of work per day of

employee as parameter.

'AddSal()' which adds Rs.100 to salary of the employee if it is less than Rs.5000.

'AddWork()' which adds Rs.50 to salary of employee if the number of hours of work

per day is more than 6 hours.

12. Suppose you have a Piggie Bank with an initial amount of Rs.500 and you have to add

some more amount to it. Create a class 'AddAmount' with a data member named

'amount' with an initial value of Rs.500. Now make two constructors of this class as

follows: 1 - without any parameter - no amount will be added to the Piggie Bank 2 -

having a parameter which is the amount that will be added to Piggie Bank Create object

of the 'AddAmount' class and display the final amount in Piggie Bank.

13. Develop a java program to find smallest number in an array.

14. Develop a program to print the area of a triangle by creating a class named 'Area' taking

the values of its Breadth and Height as parameters of its constructor and having a

method named 'returnArea' which returns the area of the triangle. Breadth and Height

of triangle are entered through keyboard.

15. Develop a java program that take 20 integer inputs from user and print the

following: number of positive numbers

number of negative

numbers number of odd

numbers number of even

numbers number of 0.

16. Create a class named 'Programming'. While creating an object of the class, if nothing

is passed to it, then the message "I like programming languages" should be printed. If

some String is passed to it, then in place of "programming languages" the name of

that String variable should be printed. For example, while creating object if we pass

"Java", then "I like Java" should be printed.

17. Write a java program to find whether the number is odd or even numbers in an array.

18. Write a java program to perform the following functions using classes, objects,

constructors and destructors where essential.

i)Get as input the marks of 5 students in 5 subjects

ii) Calculate the total and average

iii)Print the formatted results on the screen

19. Develop a mini project for Mark sheet Preparation system using Java concepts.

20. Write a Java program that prompts the user for an integer and then prints out all prime

numbers up to that Integer.

21. Write a Java Program that reads a line of integers, and then displays each integer, and

the sum of all the integers

CS3391 OBJECT ORIENTED PROGRAMMING

UNIT II INHERITANCE, PACKAGES AND INTERFACES

Overloading Methods – Objects as Parameters – Returning Objects –Static, Nested and Inner

Classes. Inheritance: Basics– Types of Inheritance -Super keyword -Method Overriding –

Dynamic Method Dispatch –Abstract Classes – final with Inheritance. Packages and Interfaces:

Packages – Packages and Member Access –Importing Packages – Interfaces.

1. Explain about overloading methods.

Method Overloading is a feature that allows a class to have multiple methods with the same

name but with different number of parameter and different type of parameters.

Method overloading is one of the ways that Java supports polymorphism.

When an overloaded method is invoked, Java uses the type and/or number of arguments as its

guide to determine which version of the overloaded method to actually call. Thus, overloaded

methods must differ in the type and/or number of their parameters. While overloaded methods

may have different return types, the return type alone is insufficient to distinguish two versions

of a method. When Java encounters a call to an overloaded method, it simply executes the

version of the method whose parameters match the arguments used in the call.

Example:

class OverloadDemo

 {

void test()

 {

System.out.println("No parameters");

}

void test(int a)

{

System.out.println("a= " + a);

}

void test(int a, int b)

{

System.out.println("a and b: " + a + " " + b);

}

double test(double a)

 {

System.out.println("double a: " + a);

return a*a;

}

}

class Overload

{

public static void main(String args[])

{

OverloadDemo ob = new OverloadDemo();

double result;

ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}

}

This program generates the following output:

No parameters

a: 10

a and b: 10 20

double a: 123.25

Result of ob.test(123.25): 15190.5625

2. Explain about overloading constructors or constructor overloading.

Class:

A class defines the structure and behaviour (data and code) that will be shared by a set

of objects. Each object of a given class contains the structure and behaviour defined by

the class

Object:

Object is an instance of a class. Objects have states and behaviours.

Method:

A method is a block of code or collection of statements or a set of code grouped together

to perform a certain task or operation. It is used to achieve the reusability of code.

Constructors:

A constructor is a block of code. Constructor is called when an instance of the object is

created, and memory is allocated for the object.

Constructor overloading is a technique that enables a single class to have more than one

constructor that varies by the list of arguments passed.

• Constructor name must be the same as its class name

• A Constructor must have no explicit return type

• A constructor cannot be abstract, static, final, and synchronized

Type of constructor:

3. Default constructor

4. Parameterized constructor

class Box

{

double width;

double height;

double depth;

Box(double w, double h, double d)

{

width = w;

height = h;

depth = d;

}

Box()

{

width = -1;

height = -1;

depth = -1;

}

// constructor used when cube is created

Box(double len)

{

width = height = depth = len;

}

double volume()

 {

return width * height * depth;

}

}

class OverloadCons

 {

public static void main(String args[])

{

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

}

}

Output:

Volume of mybox1 is 3000.0

Volume of mybox2 is -1.0

Volume of mycube is 343.0

5. Explain about using objects as parameters.

Objects can be passed as parameter to methods and constructors..

For example, the following version of Box allows one object to initialize another:

class Box

{

double width;

double height;

double depth;

Box(Box ob)

{

width = ob.width;

height = ob.height;

depth = ob.depth;

}

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

Box() {

width = -1;

height = -1;

depth = -1;

}

Box(double len) {

width = height = depth = len;

}

double volume()

 {

return width * height * depth;

}

}

class OverloadCons2

 {

public static void main(String args[])

{

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

Box myclone = new Box(mybox1); // create copy of mybox1

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

vol = mycube.volume();

System.out.println("Volume of cube is " + vol);

vol = myclone.volume();

System.out.println("Volume of clone is " + vol);

}

}

6. Explain about returning objects.

A method can return any type of data, including class types that you create. For example, in

the following program, the increment() method returns an object in which the value of a is

ten greater than it is in the invoking object.

class Test

{

int a;

Test(int i)

 {

a = i; }

Test increment()

{

Test temp = new Test(a+10);

return temp;

}

}

class testdemo

 {

public static void main(String args[])

{

Test ob1 = new Test(2);

Test ob2;

ob2 = ob1.increment();

System.out.println("ob1.a: " + ob1.a);

System.out.println("ob2.a: " + ob2.a);

ob2 = ob2.increment();

System.out.println("ob2.a after second increase: "+ ob2.a);

}

}

Output:

ob1.a: 2

ob2.a: 12

ob2.a after second increase: 22

7. Explain about Nested and Inner Classes.

Defining a class within another class is known as nested classes.

The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is

defined within class A, then B does not exist independently of A. A nested class has access to

the members, including private members, of the class in which it is nested. However, the

enclosing class does not have access to the members of the nested class. A nested class that is

declared directly within its enclosing class scope is a member of its enclosing class. It is also

possible to declare a nested class that is local to a block.

There are two types of nested classes:

1) static

2) non-static.

STATIC NESTED CLASSES:

A static nested class is one that has the static modifier applied. Because it is static, it must

access the members of its enclosing class through an object. That is, it cannot refer to members

of its enclosing class directly. Because of this restriction, static nested classes are rarely used.

NON-STATIC NESTED CLASSES:

 An inner class is a non-static nested class. It has access to all of the variables and methods of

its outer class and may refer to them directly in the same way that other non-static members of

the outer class do.

The following program illustrates how to define and use an inner class. The class named

Outer has one instance variable named outer_x, one instance method named test(), and

defines one inner class called Inner.

class Outer {

int x = 100;

void test() {

Inner in= new Inner();

in.display();

}

// this is an inner class

class Inner {

void display() {

System.out.println("display: outer_x = " + x);

}

}

}

class InnerClassDemo {

public static void main(String args[]) {

Outer out = new Outer();

out.test();

}

}

Output from this application is shown here:

display: outer_x = 100

In the program, an inner class named Inner is defined within the scope of class Outer.

Therefore, any code in class Inner can directly access the variable outer_x. An instance

method named display() is defined inside Inner. This method displays outer_x on the

standard output stream. The main() method of InnerClassDemo creates an instance of

class Outer and invokes its test() method. That method creates an instance of class Inner

and the display() method is called.

It is important to realize that an instance of Inner can be created only within the scope

of class Outer. The Java compiler generates an error message if any code outside of class

Outer attempts to instantiate class Inner. (In general, an inner class instance must be

created by an enclosing scope.) You can, however, create an instance of Inner outside of

Outer by qualifying its name with Outer, as in Outer.Inner.

8. Explain types of inheritance in java.

• Inheritance is the mechanism in java by which one class is allow to inherit the

features(fields and methods) of another class.

• Inheritance allows the creation of hierarchical classifications.

• Using inheritance, you can create a general class that defines behavior common to a set

of related items. This class can then be inherited by other, more specific classes, each

adding those things that are unique to it.

Superclass: A class that is inherited is called a superclass.

Subclass: The class that does the inheriting is called a subclass. Therefore, a subclass is a

specialized version of a superclass. It inherits all of the members defined by the superclass and

adds its own, unique elements.

Inheritance Basics:

• To inherit a class, you simply incorporate the definition of one class into another by

using the extends keyword.

• Being a superclass for a subclass does not mean that the superclass cannot be used by

itself. Further, a subclass can be a superclass for another subclass.

The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name

 {

// body of class

}

You can only specify one superclass for any subclass that you create. Java does not support the

inheritance of multiple superclasses into a single subclass. You can create a hierarchy of

inheritance in which a subclass becomes a superclass of another subclass. However, no class

can be a superclass of itself.

A reference variable of a superclass can be assigned a reference to any subclass derived from

that superclass.

TYPES OF INHERITANCE IN JAVA:

1) Single Inheritance: refers to a sub and super class relationship where a class extends the

another class.

2) Multilevel inheritance: refers to a sub and super class relationship where a class extends

the subclass. For example class C extends class B and class B extends class A.

https://beginnersbook.com/2013/12/multilevel-inheritance-in-java-with-example/

3) Hierarchical inheritance: refers to a sub and super class relationship where more than

one classes extends the same class. For example, classes B, C & D extends the same class A.

4) Multiple Inheritance: refers to the concept of one class extending more than one classes,

which means a sub class has two super classes. For example class C extends both classes A

and B. Java doesn’t support multiple inheritance.

MEMBER ACCESS AND INHERITANCE:

Although a subclass includes all of the members of its superclass, it cannot access

those members of the superclass that have been declared as private.

Protected Member:

The private members of a class cannot be directly accessed outside the class. Only methods of

that class can access the private members directly. Sometimes it may be necessary for a

subclass to access a private member of a superclass. If you make a private member public, then

anyone can access that member. So, if a member of a superclass needs to be accessed in a

subclass and yet still prevent its direct access outside the class, you must declare that

member protected.

Following table describes the difference

Modifier Class Subclass World

Public Y Y Y

Protected Y Y N

Private Y N N

Following program illustrates how the methods of a subclass can directly access a protected

member of the superclass.

1) Single inheritance:
When a class inherits another class, it is known as a single inheritance.

Example: A class Shapes is superclass and derive the class : Rectangle

https://beginnersbook.com/2013/10/hierarchical-inheritance-java-program/

class shape

{

 protected double length;

 protected double breadth;

 shape (double l, double b)

 {

 length = l;

 breadth = b;

 }

}

class rectangle extends shape

{

rectangle(double l,double b)

{

super(l,b);

}

double area()

{

return length*breadth;

}

}

class shapedemo1

{

public static void main(String args[])

{

rectangle r=new rectangle(5,6);

 System.out.println("Area of rectangle : " +r.area());

}

}

Output:

Area of rectangle : 30.0

2) Hierarchical inheritance:

When more than one classes inherit a same class then this is called hierarchical inheritance.

 Shape

Rectangle
Triangle

Example: A class Shapes is superclass and derive the two classes : Rectangle and Triangle

class shape

{

 protected double length;

 protected double breadth;

 shape (double l, double b)

 {

 length = l;

 breadth = b;

 }

}

class rectangle extends shape

{

rectangle(double l,double b)

{

super(l,b);

}

double area()

{

return length*breadth;

}

}

class triangle extends shape

{

triangle(double l,double b)

{

super(l,b);

}

double area()

{

return 0.5*length*breadth;

}

}

class shapedemo1

{

public static void main(String args[])

{

triangle t=new triangle(3,4);

rectangle r=new rectangle(5,6);

 System.out.println("Area of triangle : " + t.area());

 System.out.println("Area of rectangle : " +r.area());

}

}

Output:

Area of triangle : 6.0

Area of rectangle : 30.0

3) MULTILEVEL INHERITANCE:

When there is a chain of inheritance, it is known as multilevel inheritance.

Consider the following program. In it, the subclass BoxWeight is used as a superclass to create

the subclass called Shipment. Shipment inherits all of the traits of BoxWeight and Box, and

adds a field called cost, which holds the cost of shipping such a parcel.

class Box

{

private double width;

private double height;

private double depth;

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

double volume() {

return width * height * depth;

}

}

class BoxWeight extends Box {

double weight;

BoxWeight(double w, double h, double d, double m) {

 super(w, h, d);

 weight = m;

}

}

class Shipment extends BoxWeight {

 double cost;

Shipment(double w, double h, double d,double m, double c) {

super(w, h, d, m);

 cost = c;

}

}

class shipmentdemo {

public static void main(String args[]) {

Shipment shipment1 =new Shipment(10, 20, 15, 10, 3.41);

double vol;

vol = shipment1.volume();

System.out.println("Volume of shipment1 is " + vol);

System.out.println("Weight of shipment1 is "+shipment1.weight);

System.out.println("Shipping cost: $" + shipment1.cost);

System.out.println();

}

}

Output:

Volume of shipment1 is 3000.0

Weight of shipment1 is 10.0

Shipping cost: $3.41

Because of inheritance, Shipment can make use of the previously defined classes of Box and

BoxWeight, adding only the extra information it needs for its own, specific application. This

is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the constructor in

the closest superclass. The super() in Shipment calls the constructor in BoxWeight. The

super() in BoxWeight calls the constructor in Box. In a class hierarchy, if a superclass

constructor requires parameters, then all subclasses must pass those parameters “up the line.”

This is true whether or not a subclass needs parameters of its own.

4) MULTIPLE INHERITANCE

Java does not support Multiple inheritances

9. Explain the uses of super keyword.

Whenever a subclass needs to refer to its immediate superclass, it can do so by use of the

keyword super.

super has two general forms.

1) The first calls the superclass’ constructor.

2) The second is used to access a member of the superclass that has been hidden by a

member of a subclass.

1) USING SUPER TO CALL SUPERCLASS CONSTRUCTORS:

A subclass can call a constructor defined by its superclass by use of the following

form of super:

super(arg-list);

Here, arg-list specifies any arguments needed by the constructor in the superclass. super()

must always be the first statement executed inside a subclass’ constructor.

Example:

 class Box

 {

double width;

 double height;

double depth;

 Box(double w, double h, double d)

 {

width = w;

 height = h;

depth = d;

}

double volume()

 {

return width * height * depth;

}

}

 class BoxWeight extends Box

{

double weight;

BoxWeight(double w, double h, double d, double m)

{

 super(w,h,d);

weight = m;

}

}

class DemoBoxWeight

{

public static void main(String args[])

 {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3); double

vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

}

}

Output:

Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

2) A SECOND USE FOR SUPER:

The second form of super acts somewhat like this, except that it always refers to the

superclass of the subclass in which it is used. This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.

This second form of super is most applicable to situations in which member names of a

subclass hide members by the same name in the superclass. Consider this simple class

hierarchy:

Using super to overcome name hiding.

 class A

{

int i;

}

class B extends A

{

int i; // this i hides the i in A

B(int a, int b)

 {

super.i = a; // i in A

i = b; // i in B

}

void show() {

System.out.println("i in superclass: " + super.i);

System.out.println("i in subclass: " + i);

}

}

class UseSuper {

public static void main(String args[]) {

B subOb = new B(1, 2);

subOb.show();

}

}

This program displays the following:

i in superclass: 1

i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i defined

in the superclass. As you will see, super can also be used to call methods that are hidden by

a subclass.

10. Explain about types of polymorphism.

• Polymorphism is the concept where an object behaves differently in different

situations.

• There are two types of polymorphism – compile time polymorphism and runtime

polymorphism. Polymorphism could be static and dynamic.

• Method Overloading is static polymorphism while, Method overriding is dynamic

polymorphism.
Polymorphism refers to the ability of a variable, object or function to take on multiple forms.

Types of Polymorphism

1) Static Polymorphism: (or) compile time polymorphism

Polymorphism that is resolved during compiler time is known as static polymorphism. Method

overloading can be considered as static polymorphism example.

Method Overloading: This allows us to have more than one methods with same name in a class that

differs in signature.

Example program:

class addition

{

void add(int a,int b)

{

https://beginnersbook.com/2013/05/method-overloading/
https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/
https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/

System.out.println("Sum = "+ (a+b));

}

void add(int a,int b,int c)

{

System.out.println("Sum = "+(a+b+c));

}

}

class demo

{

public static void main(String args[])

{

addition a1=new addition();

 addition a2=new addition();

a1.add(4,7);

a3.add(50,30,60);

}

}

2) DYNAMIC POLYMORPHISM :

METHOD OVERRIDING:

In a class hierarchy, when a method in a subclass has the same name and type

signature as a method in its superclass, then the method in the subclass is said to

override the method in the superclass. When an overridden method is called from

within its subclass, it will always refer to the version of that method defined by the

subclass. The version of the method defined by the superclass will be hidden.

• A superclass reference variable can refer to a subclass object.

DYNAMIC METHOD DISPATCH:

Dynamic method dispatch is the mechanism by which a call to an overridden method is

resolved at run time, rather than compile time. Dynamic method dispatch is important

because this is how Java implements run-time polymorphism.

Overridden methods are another way that Java implements the “one interface,

multiple methods” aspect of polymorphism.

 class shape

 {

double dim1length;

 double breadth;

shape(double a, double b) {

length = a;

breadth = b;

}

double area() {

System.out.println("Area for shape is undefined.");

 return 0;

}

}

class Rectangle extends shape {

Rectangle(double a, double b) {

super(a, b);

}

double area() {

return (length * breadth);

}

}

class Triangle extends shape

{

Triangle(double a, double b)

 {

super(a, b);

}

 double area() {

return (length * breadth / 2);

}

}

class shapedemo {

public static void main(String args[]) {

shape s1 = new shape(10, 10);

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Shape s2;

s2 = s1;

System.out.println("Area is " + s2.area());

s2 = t;

System.out.println("Area of triangle is " + s2.area());

s2 = r;

System.out.println("Area of rectangle is " + s2.area());

}

}

output:

Area for shape is undefined.

Area is 0

Area of triangle is 45

Area of rectangle is 40

11. Explain about abstract classes and abstract methods.

An abstract class is a class that is declared abstract—it may or may not include abstract methods.

Abstract classes cannot be instantiated, but they can be subclassed.

Example:

abstract class shape

{

….

}

An abstract method is a method that is declared without an implementation (without braces, and

followed by a semicolon), like this:

abstract void area(double x, double y);

program:

abstract class shape {

double length; double

breadth;

shape(double a, double b) {

length = a;

breadth = b;

}

 abstract double area();

}

class Rectangle extends shape

 {

Rectangle(double a, double b)

{

super(a, b);

}

double area()

{

System.out.println("Inside Area for Rectangle.");

 return length * breadth;

}

}

class Triangle extends shape {

Triangle(double a, double b) {

super(a, b);

}

 double area() {

System.out.println("Inside Area for Triangle.");

 return length * breadth / 2;

}

}

class shapedemo

 {

public static void main(String args[])

{

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

shape s2;

s2 = r;

System.out.println("Area is " + s2.area());

s2 = t;

System.out.println("Area is " + s2.area());

}

}

10. Explain the uses of final keyword in inheritance.

The keyword final has three uses.

 1) final keyword can be used to create the equivalent of a named constant.

 Example: final double PI=3.14;

 2) final keyword can be used to prevent overriding

 3) final keyword can be used to prevent inheritance

1) final can be used to create the equivalent of a named constant.

 Example:

 final double PI=3.14;

2) using final to prevent overriding:

While method overriding is one of Java’s most powerful features, there will be times when

you will want to prevent it from occurring. To disallow a method from being overridden,

specify final as a modifier at the start of its declaration. Methods declared as final cannot be

overridden. The following fragment illustrates final:

class A {

final void meth() {

System.out.println("This is a final method.");

}

}

class B extends A {

void meth() { // ERROR! Can't override.

System.out.println("Illegal!");

}

}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do so, a

compile-time error will result.

Methods declared as final can sometimes provide a performance enhancement: The compiler

is free to inline calls to them because it “knows” they will not be overridden by a subclass.

When a small final method is called, often the Java compiler can copy the bytecode for the

subroutine directly inline with the compiled code of the calling method, thus eliminating the

costly overhead associated with a method call. Inlining is an option only with final methods.

Normally, Java resolves calls to methods dynamically, at run time. This is called late binding.

However, since final methods cannot be overridden, a call to one can be resolved at compile

time. This is called early binding.

3) using final to prevent inheritance:

Sometimes you will want to prevent a class from being inherited. To do this, precede the class

declaration with final. Declaring a class as final implicitly declares all of its methods as final,

too. As you might expect, it is illegal to declare a class as both abstract and final since an

abstract class is incomplete by itself and relies upon its subclasses to provide complete

implementations.

Here is an example of a final class:

final class A {

//...

}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A

//...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

12. Explain about packages in java.

A java package is a group of similar types of classes, interfaces and sub-packages. Package in java can

be categorized in two form, built-in package and user-defined package. There are many built-in

packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Advantage of Java Package:

1) Java package is used to categorize the classes and interfaces so that they can be easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

You can define classes inside a package that are not accessible by code outside that package. You can

also define class members that are exposed only to other members of the same package. This allows

your classes to have intimate knowledge of each other, but not expose that knowledge to the rest of the

world.

Defining a Package:

To create a package is quite easy: simply include a package command as the first statement in a Java

source file. Any classes declared within that file will belong to the specified package. The package

statement defines a name space in which classes are stored. If you omit the package statement, the

class names are put into the default package, which has no name. While the default package is fine for

short, sample programs, it is inadequate for real applications. Most of the time, you will define a

package for your code.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a package

called MyPackage:

package MyPackage;

More than one file can include the same package statement. The package statement simply specifies

to which package the classes defined in a file belong. It does not exclude other classes in other files

from being part of that same package. Most real-world packages are spread across many files.

Example:

package pack;

public class dis

{

public void display()

{

System.out.println("This is a simple package");

}

}

File name: dis.java

Compile: Z:\>javac –d . dis.java

IMPORTING PACKAGES:

In a Java source file, import statements occur immediately following the package

statement (if it exists) and before any class definitions. This is the general form of the import

statement:

import pkg1:

import pack.dis;

class demo

{

public static void main(String args[])

{

dis d=new dis();

d.display();

}

}

File name: demo.java

Compile:

Z:\>javac demo.java

Run:

Z:\>java demo

Output:

This is a simple package

13. What is meant by interface? How it is declared and implemented in java. Give example.

• An interfaces can have methods and variables but the methods declared in interface contain

only method signature, not body.

• An interface in java is a blueprint of a class. It has static constants and abstract methods.

 The interface in java is a mechanism to achieve abstraction.

➢ You cannot instantiate an interface.

➢ An interface does not contain any constructors.

➢ All of the methods in an interface are abstract.

➢ An interface cannot contain instance fields. The only fields that can appear in an interface

must be declared both static and final.

➢ An interface is not extended by a class; it is implemented by a class.

➢ An interface can extend multiple interfaces.

One interface can extend another.

interface A

 {

void method1();

void method2();

}

 interface B extends A

 {

void method3();

}

class inter implements B

{

public void method1() {

System.out.println("Implement method1().");

}

public void method2() {

System.out.println("Implement method2().");

}

public void method3() {

System.out.println("Implement method3().");

}

}

class interdemo{

public static void main(String arg[]) {

inter ob = new inter();

ob.method1();

ob.method2();

ob.method3();

}

}

Implement multiple interfaces :

Multiple inheritance (extends) is not allowed. Interfaces are not classes, however, and a class can

implement more than one interface.

interface Inter1

{

 public void test(int i);

}

interface Inter2

{

 public void test(String s);

}

public class MultInterfaces implements Inter1, Inter2

 {

 public void test(int i)

{

 System.out.println("In MultInterfaces.I1.test");

 }

 public void test(String s)

{

 System.out.println("In MultInterfaces.I2.test");

 }

}

class multidemo

{

 public static void main(String args[])

{

 MultInterfaces t = new MultInterfaces();

 t.test(42);

 t.test("Hello");

 }

}

CS3391 / OBJECT ORIENTED PROGRAMMING

Unit-2

PART-A

1. What is meant by inheritance?

Inheritance is the process by which one object acquires the properties of another object.

Inheritance allows the creation of hierarchical classifications. Using inheritance, you can

create a general class that defines behavior common to a set of related items. This class can

then be inherited by other, more specific classes, each adding those things that are unique

to it.

Superclass: A class that is inherited is called a superclass.

Subclass: The class that does the inheriting is called a subclass.

2. What is meant by polymorphism? Specify its type.

Polymorphism is the concept where an object behaves differently in different situations.

There are two types of polymorphism – compile time polymorphism and runtime

polymorphism.

Polymorphism could be static and dynamic both. Method Overloading is static polymorphism

while, Method overriding is dynamic polymorphism.

3. Differentiate between method Overloading and method Overriding.

• Method Overloading means more than one method having the same method name that

behaves differently based on the arguments passed while calling the method. This called

static because, which method to be invoked is decided at the time of compilation

• Method Overriding means a sub class is implementing a method of its super class. The call

to overridden method is resolved at runtime, thus called runtime polymorphism

4. Define Dynamic method dispatch. (run time polymorphism or dynamic polymorphism)

Dynamic method dispatch is the mechanism by which a call to an overridden method is

resolved at run time, rather than compile time. Dynamic method dispatch is important

because this is how Java implements run-time polymorphism.

5. Define method overriding.

In a class hierarchy, when a method in a subclass has the same name and type signature

as a method in its superclass, then the method in the subclass is said to override the

method in the superclass. When an overridden method is called from within its

subclass, it will always refer to the version of that method defined by the subclass.

The version of the method defined by the superclass will be hidden.

 4. What are the uses of the final keyword?

 1) final keyword can be used to create the equivalent of a named constant.

 Example:

 final double PI=3.14;

 2) final keyword can be used to prevent overriding

 3) final keyword can be used to prevent inheritance

 5. What is an object class?

https://beginnersbook.com/2013/05/method-overloading/
https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/

 Object is a superclass of all other classes. This means that a reference variable of type

Object can refer to an object of any other class. Also, since arrays are implemented

as classes, a variable of type Object can also refer to any array.

6. What is an abstract class?

 An abstract class is a class that is declared abstract—it may or may not include abstract

methods. Abstract classes cannot be instantiated, but they can be subclassed.

 An abstract method is a method that is declared without an implementation (without braces,

and followed by a semicolon), like this:

 abstract void area(double x, double y);

 7. Define interface and write syntax of interface.

 An interface in java is a blueprint of a class. It has static constants and abstract methods.

 The interface in java is a mechanism to achieve abstraction. There can be only abstract

methods in the java interface not method body. It is used to achieve abstraction and

multiple inheritance in Java.

 In other words, you can say that interfaces can have methods and variables but the methods

declared in interface contain only method signature, not body.

Syntax:

access interface name {

return-type method-name1(parameter-list);

return-type method-name2(parameter-list);

type final-varname1 = value;

type final-varname2 = value;

//...

return-type method-nameN(parameter-list);

type final-varnameN = value;

}

8. Compare classes and interfaces.

BASIS FOR

COMPARISON
CLASS INTERFACE

Basic A class is instantiated to create

objects.

An interface can never be instantiated as

the methods are unable to perform any

action on invoking.

Keyword Class Interface

Access specifier The members of a class can be

private, public or protected.

The members of an interface are always

public.

Methods The methods of a class are

defined to perform a specific

action.

The methods in an interface are purely

abstract.

BASIS FOR

COMPARISON
CLASS INTERFACE

Implement/Extend A class can implement any

number of interface and can

extend only one class.

An interface can extend multiple

interfaces but can not implement any

interface.

Constructor A class can have constructors to

initialize the variables.

An interface can never have a constructor

as there is hardly any variable to

initialize.

9. What is an inner class?

Inner class is a class within another class. such classes are known as nested classes.

The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is

defined within class A, then B does not exist independently of A. A nested class has access

to the members, including private members, of the class in which it is nested. However, the

enclosing class does not have access to the members of the nested class. A nested class that

is declared directly within its enclosing class scope is a member of its enclosing class. It is

also possible to declare a nested class that is local to a block.

10. How do you implement multiple inheritance in java?
Java does not allow multiple inheritance:

To reduce the complexity and simplify the language To avoid the

ambiguity caused by multiple inheritance

It can be implemented using Interfaces.

11. Define super class and subclass.

The process of deriving a new class from an existing class is inheritance. A class that is inherited

is called a superclass and the class that does the inheriting is called a subclass.

12. State the use of keyword super.
It can be used to refer immediate parent class instance variable when both parent and child class

have member with same name

It can be used to invoke immediate parent class method when child class has overridden that

method.

super() can be used to invoke immediate parent class constructor.

13. Define abstract class?

Abstract classes are classes from which instances are usually not created. It is basically used to

contain common characteristics of its derived classes. Abstract classes generally act as super

classes. Methods can also be declared as abstract. This implies that non-abstract classes must

implement these methods.

14. When to use abstract Methods & abstract class?
Abstract methods are usually declared where two or more subclasses are expected to do a similar

thing in different ways through different implementations. These subclasses extend the same

Abstract class and provide different implementations for the abstract methods.

 Abstract classes are used to define generic types of behaviors at the top of an object-oriented

programming class hierarchy, and use its subclasses to provide implementation details of the

abstract class.

15. What’s the difference between an interface and an abstract class?
 An abstract class may contain code in method bodies, which is not allowed in an interface.

With abstract classes, we have to inherit our class from it and Java does not allow multiple

inheritance. On the other hand, we can implement multiple interfaces in your class.

16. State the situation where static members(static variable,static method, and static

are used.

There will be times when you will want to define a class member that will be used

independently of any object of that class. Normally, a class member must be accessed only

in conjunction with an object of its class. However, it is possible to create a member that

can be used by itself, without reference to a specific instance. To create such a member,

precede its declaration with the keyword static.

When a member is declared static, it can be accessed before any objects of its class are

created, and without reference to any object. You can declare both methods and variables

to be static. The most common example of a static member is main(). main() is declared

as static because it must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects of its

class are declared, no copy of a static variable is made. Instead, all instances of the class

share the same static variable.

Methods declared as static have several restrictions:

They can only directly call other static methods.

They can only directly access static data.

They cannot refer to this or super in any way.

If you need to do computation in order to initialize your static variables, you can

declare a static block that gets executed exactly once, when the class is first loaded.

17. What are the uses of package?

A java package is a group of similar types of classes, interfaces and sub-packages. Package

in java can be categorized in two form, built-in package and user-defined package.There

are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Advantage of Java Package:

1) Java package is used to categorize the classes and interfaces so that they can be easily

maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

18. What are the difference between static variable and instance variable?

 Instance variables Static (class) variables

Instance variables are declared in a class, but

outside a method, constructor or any block.

Class variables also known as static variables are

declared with the static keyword in a class, but

outside a method, constructor or a block.

Instance variables are created when an object is

created with the use of the keyword 'new' and

destroyed when the object is destroyed.

Static variables are created when the program starts

and destroyed when the program stops.

Instance variables can be accessed directly by

calling the variable name inside the class.

However, within static methods (when instance

Static variables can be accessed by calling with the

class nameClassName.VariableName.

variables are given accessibility), they should

be called using the fully qualified

name. ObjectReference.VariableName.

Instance variables hold values that must be

referenced by more than one method,

constructor or block, or essential parts of an

object's state that must be present throughout

the class.

There would only be one copy of each class

variable per class, regardless of how many

objects are created from it.

19. What’s the difference between constructors and other methods?

Constructors are used to initialize the object’s state. Like methods, a constructor also contains collection

of statements(i.e. instructions) that are executed at time of Object creation. Each time an object is

created using new() keyword at least one constructor (it could be default constructor) is invoked to

assign initial values to the data members of the same class.

A method is a collection of statements that perform some specific task and return the result to the caller.

A method can perform some specific task without returning anything. Methods allow us to reuse the

code without retyping the code. In Java, every method must be part of some class.

Part- B

1. What is inheritance? Write a program for inheriting a class.

2. Explain multilevel inheritance with example program.

3. Can java support multiple inheritances? Illustrate your answer with example java

program.

4. What does it mean that a class or method is abstract? Can we make an instance of

abstract class? Explain it with example.

5. Explain in detail about constructor overloading with an example program.

6. Explain method overloading with an example program.

7. Discuss about object as parameter with an example program.

8. Discuss about object as return type with an example program.

9. Explain dynamic binding and final keyword with example.

10. What is polymorphism in java? Explain how polymorphism supported in java.

11. Define polymorphism. Show how compile time polymorphism is achieved in

java program with example program.

12. Explain dynamic dispatch method Or method overriding.

13. Explain about types of packages with an example program.

14. Explain about abstract class and abstract method.

15. Write a program to create an interface for customer. In this keep the method called

information(), show() and also maintain the tax rate. Implement the interface in employee

class and calculate the tax of an employee based on their income.

 Tax

Income percentage

<=Rs 2,50,000 Nil

Rs 2,50,000 – Rs 5,00,000 5%

Rs 5,00,000 – 10,00,000 20%

> Rs 10,00,000 30%

https://www.geeksforgeeks.org/methods-in-java/

16. Define inner classes. How to access object state using inner classes. Give an example.

17. Explain nested interface with example program.

18. What is an interface? Show that how interface can be extended.

19. What is meant by interface? How it is declared and implemented in java. Give

example.

20. Write a Java Program to create an abstract class named Shape that contains two integers

and an empty method named printArea() and Circumference(). Provide three classes named

Rectangle, Triangle and Circle such that each one of the classes extends the class Shape.

Each one of the classes contains the method to printArea () and Circumference (). That prints

the area and circumference of the given shape.

21. Create a java class shape with constructor to initialize the one parameter

 “dimension”. Now create three subclasses of shape with the following methods.

i) “Circle” with method to calculate the area and circumference of the circle with dimension

as radius.

ii) “Square” with method to calculate the area and length of diagonal of square.

iii) “Sphere” with method to calculate the volume and surface area.

CS3391 OBJECT ORIENTED PROGRAMMING

UNIT III EXCEPTION HANDLING AND MULTITHREADING

Exception Handling basics – Multiple catch Clauses – Nested try Statements – Java’s Built-in Exceptions – User

defined Exception. Multithreaded Programming: Java Thread Model–Creating a Thread and Multiple Threads –

Priorities – Synchronization – Inter Thread Communication- Suspending –Resuming, and Stopping Threads –

Multithreading. Wrappers – Auto boxing.

1. Explain about exception hierarchy.

An exception is a problem that arises during the execution of a program. When an Exception occurs

the normal flow of the program is disrupted and the program/Application terminates abnormally, which

is not recommended, therefore, these exceptions are to be handled.

An exception can occur for many different reasons. Following are some scenarios where an exception

occurs.

• A user has entered an invalid data.
• A file that needs to be opened cannot be found.
• A network connection has been lost in the middle of communications or the JVM has run out

of memory.
• A Java exception is an object that describes an exceptional (that is, error) condition that has

occurred in a piece of code. When an exceptional condition arises, an object representing that
exception is created and thrown in the method that caused the error. That method may choose
to handle the exception itself, or pass it on. Either way, at some point, the exception is caught and
processed.

• Exceptions can be generated by the Java run-time system, or they can be manually generated by
your code. Exceptions thrown by Java relate to fundamental errors that violate the rules of the
Java language or the constraints of the Java execution environment. Manually generated
exceptions are typically used to report some error condition to the caller of a method.
• Java exception handling is managed via five keywords:

try,

 catch,

 throw,

 throws,

finally.

• Program statements that you want to monitor for exceptions are contained within a try block. If an
exception occurs within the try block, it is thrown. Your code can catch this exception (using catch)
and handle it in some rational manner. System-generated exceptions are automatically thrown by
the Java run-time system.

• To manually throw an exception, use the keyword throw. Any exception that is thrown out of a
method must be specified as such by a throws clause. Any code that absolutely must be executed
after a try block completes is put in a finally block.

EXCEPTION HIERARCHY :

• All exception types are subclasses of the built-in class Throwable. Thus,

Throwable is at the top of the exception class hierarchy.

• Immediately below Throwable are two subclasses that partition exceptions into two distinct
branches.

• One branch is headed by Exception. This class is used for exceptional conditions that user programs
should catch. This is also the class that you will subclass to create your own custom exception types.
There is an important subclass of Exception, called RuntimeException. Exceptions of this type are
automatically defined for the programs that you write and include things such as division by zero
and invalid array indexing.

• The other branch is topped by Error, which defines exceptions that are not expected to be caught
under normal circumstances by your program. Exceptions of type Error are used by the Java run-
time system to indicate errors having to do with the run-time environment, itself. Stack overflow
is an example of such an error.

USING TRY AND CATCH:

Although the default exception handler provided by the Java run-time system is useful for debugging,

you will usually want to handle an exception yourself.

Exception handler provides two benefits.
1) It allows you to fix the error.
2) It prevents the program from automatically terminating.

Program:

class Exc2

{

public static void main(String args[])

{

int d, a;

try

{

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

}

catch (ArithmeticException e)

{

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}

This program generates the following output: Division

by zero.

After catch statement.

2. Explain about multiple catch clauses.
In some cases, more than one exception could be raised by a single piece of code. To handle this type of

situation, you can specify two or more catch clauses, each catching a different type of exception. When

an exception is thrown, each catch statement is inspected in order, and the first one whose type matches

that of the exception is executed. After one catch statement executes, the others are bypassed, and

execution continues after the try / catch block. The following example traps two different exception

types:Demonstrate multiple catch statements.

class MultipleCatches

{

public static void main(String args[])

{

try

{ int a = 0;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

}

catch(ArithmeticException e)

{

System.out.println("Divide by 0: " + e);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

Output:

a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks.

3. Explain about nested try statements.

The try statement can be nested. That is, a try statement can be inside the block of another try. Each

time a try statement is entered, the context of that exception is pushed on the stack. If an inner try

statement does not have a catch handler for a particular exception, the stack is unwound and the next try

statement’s catch handlers are inspected for a match. This continues until one of the catch statements

succeeds, or until all of the nested try statements are exhausted. If no catch statement matches, then the

Java run-time system will handle the exception. Here is an example that uses nested try statements:

An example of nested try statements. class

NestTry

{

public static void main(String args[])

{

try {

int a = 0;

 int b = 42 / a;

System.out.println("a = " + a);

try

{

if(a==1)

a = a/(a-a);

 if(a==2)

{

int c[] = { 1 };

c[42] = 99;

}

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Array index out-of-bounds: " + e);

}

}

catch(ArithmeticException e)

{

System.out.println("Divide by 0: " + e);}}}

This program nests one try block within another. The program works as follows. When you execute the

program with no command-line arguments, a divide-by-zero exception is generated by the outer try

block. Execution of the program with one command-line argument generates a divide-by-zero exception

from within the nested try block. Since the inner block does not catch this exception, it is passed on to

the outer try block, where it is handled. If you execute the program with two command-line arguments,

an array boundary exception is generated from within the inner try block.

Output:

Divide by 0: java.lang.ArithmeticException: / by zero

Output when a=1:

a = 1

Divide by 0: java.lang.ArithmeticException: / by zero C:\>java

NestTry One Two

Output when a=2:

Array index out-of-bounds:

java.lang.ArrayIndexOutOfBoundsException:42

finally:
When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path that alters the

normal flow through the method. Depending upon how the method is coded, it is even possible for an

exception to cause the method to return prematurely. This could be a problem in some methods. For

example, if a method opens a file upon entry and closes it upon exit, then you will not want the code that

closes the file to be bypassed by the exception-handling mechanism. The finally keyword is designed to

address this contingency.

Finally creates a block of code that will be executed after a try /catch block has completed and before

the code following the try/catch block. The finally block will execute whether or not an exception is

thrown. If an exception is thrown, the finally block will execute even if no catch statement matches the

exception.

4. Explain in detail about various types of exception.

An exception is a problem that arises during the execution of a program. When an Exception

occurs the normal flow of the program is disrupted and the program/Application terminates

abnormally, which is not recommended, therefore, these exceptions are to be handled.

Two types of exceptions are

• Built in exception

• User defined exception

1) BUILT-IN EXCEPTIONS:
Inside the standard package java.lang, Java defines several exception classes. The most general of

exceptions are the subclasses of the standard type RuntimeException. These exceptions

need not be included in any method's throws list.

i) Checked Exception
Checked exceptions are checked at compile-time. The classes which directly inherit Throwable class

except RuntimeException and Error are known as checked exceptions.

e.g. IOException, SQLException etc. Checked exceptions are checked at compile- time.

ii) Unchecked Exception
Unchecked exceptions are not checked at compile-time, but they are checked at runtime. The classes

which inherit RuntimeException are known as unchecked exceptions. These exceptions need not be

included in any method's throws list.

ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc.

Program:

class MultipleCatches

{

public static void main(String args[])

{

try

{

int a = 0;

 System.out.println("a = " + a); int b =

42 / a;

int c[] = { 1 };

c[42] = 99;

}

catch(ArithmeticException e)

{

System.out.println("Divide by 0: " + e);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

finally

{

System.out.println(" Finally block");

}

}

Output:

C:\>java MultipleCatches a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks.

Finally block

2) USER DEFINED EXCEPTION:

User can create their own exception types to handle situations specific to user applications. This is quite

easy to do: just define a subclass of Exception .

The Exception class does not define any methods of its own. It inherits the methods provided by

Throwable. Thus, all exceptions, including those that you create, have the methods defined by Throwable

available to them.

Exception defines four constructors. Two support chained exceptions. The other two are shown here:

Exception()

Exception(String msg)

The first form creates an exception that has no description. The second form lets you specify a description

of the exception.

Program:

class MyException extends Exception

{

int detail; MyException(int

a)

{

detail = a;

}

public String toString()

{

return "MyException:" + detail ;

}

}

class ExceptionDemo

{

static void compute(int a) throws MyException

{

System.out.println("Called compute”);

 if(a > 10)

throw new MyException(a);

System.out.println("Normal exit");

}

public static void main(String args[])

{

try

{

compute(1);

compute(20);

}

catch (MyException e)

{

System.out.println("Caught " + e);

}

}

}

Output:

Called compute(1) Normal exit

Called compute(20)

Caught

MyException[20]

5. Discuss the life cycle of threads with neat diagram.
Answer:

• Thread is the smallest unit of dispatchable code. This means that a single program can perform
two or more tasks simultaneously. For instance, a text editor can format text at the same time
that it is printing, as long as these two actions are being performed by two separate threads.

• Threads are lighter weight. They share the same address space and cooperatively share the
same heavyweight process. Interthread communication is inexpensive, and context switching
from one thread to the next is lower in cost.

• Multithreading enables to write efficient programs that make maximum use of the
processing power available in the system. Multithreading keep the idle time to a minimum.

Threads exist in several states.

1) A thread can be running. It can be ready to run as soon as it gets CPU time.
2) A running thread can be suspended, which temporarily halts its activity.
3) A suspended thread can then be resumed, allowing it to pick up where it left off.
4) A thread can be blocked when waiting for a resource.
5) At any time, a thread can be terminated, which halts its execution immediately. Once

terminated, a thread cannot be resumed.

Obtaining A Thread’s State

A thread can exist in a number of different states. You can obtain the current state of a thread
by calling the getState() method defined by Thread. It is shown here:

Thread.State getState()

It returns a value of type Thread.State that indicates the state of the thread at the time at
which the call was made. State is an enumeration defined by Thread. Here are the values
that can be returned by getState():

Value State

BLOCKED
A thread that has suspended execution because it is waiting
to acquire a lock.

NEW A thread that has not begun execution.

RUNNABLE
A thread that either is currently executing or will execute
when it gains access to the CPU.

TERMINATED A thread that has completed execution.

TIMED_WAITING

A thread that has suspended execution for a specified period
of time, such as when it has called sleep(). This state is also
entered when a timeout version of wait() or join() is called.

WAITING

A thread that has suspended execution because it is waiting
for some action to occur. For example, it is waiting because of
a call to a non-timeout version of wait() or join().

Given a Thread instance, you can use getState() to obtain the state of a thread. For
example, the following sequence determines if a thread called thrd is in the RUNNABLE state at the
time getState() is called:

Thread.State ts = thrd.getState();

if(ts == Thread.State.RUNNABLE) // ...

It is important to understand that a thread’s state may change after the call to getState(). Thus,
depending on the circumstances, the state obtained by calling getState() may not reflect the actual
state of the thread only a moment later. For this (and other) reasons, getState() is not intended to
provide a means of synchronizing threads. It’s primarily used for debugging or for profiling a thread’s
run-time characteristics.

6. Develop a program for creating threads by using Thread class and Runnable interface.
(or) Why do we need both start() and run() method both? can we achieve it with only run()
method?

Answer:

We can call run() method if we want but then it would behave just like a normal method and we
would not be able to take the advantage of multithreading. When the run method gets called though
start() method then a new separate thread is being allocated to the execution of run method, so if more
than one thread calls start() method that means their run method is being executed by separate threads
(these threads run simultaneously).

 Java defines two ways in which this can be accomplished:
 1) By extending the Thread class.
 2) By implement the Runnable interface.

1. Creating thread by using Thread class:
Create a new class that extends Thread, and then create an instance of that class. The extending class
must override the run() method, which is the entry point for the new thread. It must also call start()
to begin execution of the new thread.

class multithreading extends Thread

https://beginnersbook.com/2013/03/multithreading-in-java/

{

 public void run()

 {

 try

 {

 System.out.println ("Thread " + Thread.currentThread().getId() + " is

 running");

 }

 catch (Exception e)

 {

 System.out.println ("Exception is caught");

 }

 }

}

 public class multithreadingdemo

{

 public static void main(String[] args)

 {

 multithreading m1=new multithreading();

 multithreading m2=new multithreading();

 m1.start();

 m2.start();

}

}

Output:

Thread 21 is running

Thread 22 is running

2. Creating thread by using Runnable interface:

The easiest way to create a thread is to create a class that implements the Runnable interface.
To implement Runnable, a class need only implement a single method called run(), which is
declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to
understand that run() can call other methods, use other classes, and declare variables, just like the
main thread can. The only difference is that run() establishes the entry point for another,
concurrent thread of execution within your program. This thread will end when run() returns.

After you create a class that implements Runnable, you will instantiate an object of type Thread
from within that class. Thread defines several constructors. The one that we will use is shown here:

Thread(Runnable threadOb)

Thread(Runnable threadOb, String threadName)

Thread(String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable
interface. This defines where execution of the thread will begin. The name of the new thread
is specified by threadName.

After the new thread is created, it will not start running until you call its start() method, which
is declared within Thread. In essence, start() executes a call to run(). The start() method is shown
here:

void start()

Here is an example that creates a new thread and starts it running:

class multithreading implements Runnable

{

 public void run()

 {

 try

 {

 System.out.println ("Thread " + Thread.currentThread().getId() + " is

 running");

 }

 catch (Exception e)

 {

 System.out.println ("Exception is caught");

 }

 }

}

 public class multithreadingdemo

{

 public static void main(String[] args)

 {

multithreading m1=new multithreading();

 Thread t1 = new Thread(m1);

multithreading m2=new multithreading();

 Thread t2 = new Thread(m2);

t1.start();

t2.start();

}

}

Output:

Thread 21 is running
Thread 22 is running

3. Develop a java program that provide synchronization for two threads deposit and withdraw
in a bank application.
(or) What is thread synchronization? Discuss with an example.
Answer:

When two or more threads need access to a shared resource, they need some way to ensure that the
resource will be used by only one thread at a time. The process by which this is achieved is called
synchronization. Java provides unique, language-level support for it.

The synchronization is mainly used to

• To prevent thread interference.
• To prevent consistency problem.

Synchronization can be done in two ways:

1) Using Synchronized Methods
2) Using synchronized Statement or synchronized block

1)Using Synchronized Methods:

Synchronization is easy in Java, because all objects have their own implicit monitor associated with
them. To enter an object’s monitor, just call a method that has been modified with the synchronized
keyword. While a thread is inside a synchronized method, all other threads that try to call it (or any
other synchronized method) on the same instance have to wait. To exit the monitor and

relinquish control of the object to the next waiting thread, the owner of the monitor simply returns
from the synchronized method.

Program:

class bank{

 int amount=5000;

synchronized void transaction(int n,char c){

 try

 {

 if (c=='d')

{

System.out.println("Before deposit Balance ="+amount);

 amount =amount+n;

System.out.println("After deposit Balance ="+amount);

}

 else if(c=='w') {

 System.out.println("Before withdraw Balance ="+amount);

 amount = amount-n;

 System.out.println("After withdraw Balance ="+amount);

}

Thread.sleep(400);

 }

 catch(Exception e)

{

System.out.println(e);}

 }

}

 class deposit extends Thread

{

bank t;

deposit(bank x){

t=x;

}

public void run(){

t.transaction(4000,'d');

}

}

class withdraw extends Thread{

bank t;

withdraw(bank x){

t=x;

}

public void run(){

t.transaction(2000,'w');

}

}

public class testsync{

public static void main(String args[]){

bank obj = new bank();

deposit t1=new deposit(obj);

withdraw t2=new withdraw(obj);

t1.start();

t2.start();

}

}

Output:

Before deposit Balance =5000
After deposit Balance =9000
Before withdraw Balance =9000
After withdraw Balance =7000

2)The synchronized Statement: (synchronized block)

While creating synchronized methods within classes that you create is an easy and effective means
of achieving synchronization, it will not work in all cases. To understand why, consider the following.
Imagine that you want to synchronize access to objects of a class that was not designed for
multithreaded access. That is, the class does not use synchronized methods.

Further, this class was not created by you, but by a third party, and you do not have access to the
source code. Thus, you can’t add synchronized to the appropriate methods within the class. How
can access to an object of this class be synchronized? Fortunately, the solution to this problem is
quite easy: You simply put calls to the methods defined by this class inside a synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {

// statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block ensures that a
call to a method that is a member of object occurs only after the current thread has successfully
entered object’s monitor.

Program:

class bank{

 int amount=5000;

void transaction(int n,char c){

 try

 {

 if (c=='d')

{

System.out.println("Before deposit Balance ="+amount);

 amount =amount+n;

System.out.println("After deposit Balance ="+amount);

}

 else if(c=='w') {

 System.out.println("Before withdraw Balance ="+amount);

 amount = amount-n;

 System.out.println("After withdraw Balance ="+amount);

}

Thread.sleep(400);

 }

 catch(Exception e){System.out.println(e);}

 }

}

class deposit extends Thread{

bank t;

deposit(bank x){

t=x;

}

public void run(){

synchronized(t)

{

t.transaction(4000,'d');

}

}

}

class withdraw extends Thread{

bank t;

withdraw(bank x){

t=x;

}

public void run(){

synchronized(t){

t.transaction(2000,'w');

}

}

}

public class testsync{

public static void main(String args[]){

bank obj = new bank();

deposit t1=new deposit(obj);

withdraw t2=new withdraw(obj);

t1.start();

t2.start();

}

}

Output:

Before deposit Balance =5000
After deposit Balance =9000
Before withdraw Balance =9000
After withdraw Balance =7000

4. Write a java program for inventory problem to illustrate the usage of thread synchronized
keyword and interthread communication process. They have three classes called consumer,
producer and stock.
(Or) Explain about interthread communication with example program.

• Java includes an elegant interprocess communication mechanism via the wait(), notify(), and
notifyAll() methods. Inter-thread communication is all about allowing synchronized threads
to communicate with each other. These methods are implemented as final methods in Object,
so all classes have them. All three methods can be called only from within a synchronized context.

wait() tells the calling thread to give up the monitor and go to sleep until some other thread
enters the same monitor and calls notify().
notify() wakes up a thread that called wait() on the same object.
notifyAll() wakes up all the threads that called wait() on the same object. One of the threads will
be granted access.

Consider the following sample program that implements a simple form of the producer/ consumer
problem. It consists of four classes: Queue, the queue that you’re trying to synchronize; Producer, the
threaded object that is producing queue entries; Consumer, the threaded object that is consuming
queue entries; and PC, the tiny class that creates the single Q, Producer, and Consumer.

class Queue

{

int n;

boolean valueSet = false;

synchronized int get()

{

while(!valueSet)

try {

wait();

}

catch(InterruptedException e)

{

System.out.println("InterruptedException caught");

}

System.out.println("Got: " + n);

valueSet = false;

notify();

return n;

}

synchronized void put(int x)

 {

while(valueSet)

try {

wait();

}

catch(InterruptedException e)

{

System.out.println("InterruptedException caught");

}

n = x;

valueSet = true;

System.out.println("Put: " + n);

notify();

}

}

class Producer extends Thread {

 Queue q;

Producer(Queue q1) {

q = q1;

}

public void run() {

int i = 0;

while(true) {

q.put(i++);

}

}

}

class Consumer extends Thread{

 Queue q;

Consumer(Queue q1) {

q = q1;

}

public void run() {

while(true) {

q.get();

}

}

}

public class PCFixed

{

public static void main(String args[])

{

Queue q = new Queue();

Producer p=new Producer(q);

Consumer c= new Consumer(q);

p.start();

c.start();

System.out.println("Press Control-C to stop.");

}

}

Output:

Put: 1

Got: 1

Put: 2

Got: 2

Put: 3

Got: 3

Put: 4

Got: 4

Put: 5

Got: 5

10. Explain about creating multiple threads and thread priorities.

The program can create as many threads as it needs.

class multithreading extends Thread

{

 public void run()

 {

 try

 {

 System.out.println ("Thread " + Thread.currentThread().getId() + " is

 running");

 }

 catch (Exception e)

 {

 System.out.println ("Exception is caught");

 }

 }

}

 public class multithreadingdemo

{

 public static void main(String[] args)

 {

 multithreading m1=new multithreading();

 multithreading m2=new multithreading();

m1.start();

m2.start();

}

}

Output:

Thread 21 is running

Thread 22 is running

Using isAlive() and join()

 Often you will want the main thread to finish last. This can be accomplished by calling sleep() within main(
), with a long enough delay to ensure that all child threads terminate prior to the main thread. However, this
is hardly a satisfactory solution, and it also raises a larger question: How can one thread know when another
thread has ended? Fortunately, Thread provides a means by which you can answer this question.

Two ways exist to determine whether a thread has finished.

1) First, you can call isAlive() on the thread. This method is defined by Thread, and its general form is shown
here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It returns false
otherwise. isAlive() is occasionally useful.

2) Most commonly used method to wait for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes from the concept of the
calling thread waiting until the specified thread joins it. Additional forms of join() allow you to specify a
maximum amount of time that you want to wait for the specified thread to terminate.

class jointhread extends Thread{

 public void run() {

 try {

 System.out.println(Thread.currentThread().getName());

 Thread.sleep(100);

 }

 catch (InterruptedException e) {

 System.out.println("Thread interrupted");

 }

 }

}

public class JoinExample {

 public static void main(String[] args) {

 jointhread t1 = new jointhread();

 jointhread t2 = new jointhread();

 t1.start();

 t2.start();

 System.out.println("t1 Alive - " + t1.isAlive());

 System.out.println("t2 Alive - " + t2.isAlive());

try {

 t1.join();

 t2.join();

 }

 catch (InterruptedException e) {

 System.out.println("Thread interrupted");

 }

 System.out.println("t1 Alive - " + t1.isAlive());

 System.out.println("t2 Alive - " + t2.isAlive());

 System.out.println("Processing finished");

 }

}

Output:

Thread-0

Thread-1

t1 Alive - true

t2 Alive - true

t1 Alive - false

t2 Alive - false

Processing finished

THREAD PRIORITIES:

• Thread priorities are used by the thread scheduler to decide when each thread should be allowed to
run. In theory, higher-priority threads get more CPU time than lower-priority threads. In practice, the
amount of CPU time that a thread gets often depends on several factors besides its priority. (For
example, how an operating system implements multitasking can affect the relative availability of CPU
time.)

• A higher-priority thread can also preempt a lower-priority one. For instance, when a lower-priority
thread is running and a higher-priority thread resumes (from sleeping or waiting on I/O, for example),
it will preempt the lower-priority thread.

To set a thread’s priority, use the setPriority() method, which is a member of Thread.

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level must be within the range
MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and 10, respectively. To return a thread to
default priority, specify NORM_PRIORITY, which is currently 5. These priorities are defined as static final
variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of Thread, shown here:

final int getPriority()

12. Explain about deadlock .

• Deadlock occurs when two threads have a circular dependency on a pair of synchronized objects.
• For example, suppose one thread enters the monitor on object X and another thread enters the monitor

on object Y.
• If the thread in X tries to call any synchronized method on Y, it will block as expected. However, if the

thread in Y, in turn, tries to call any synchronized method on X, the thread waits forever, because to
access X, it would have to release its own lock on Y so that the first thread could complete. Deadlock is
a difficult error to debug for two reasons:

1) In general, it occurs only rarely, when the two threads time-slice in just the right way.
2) It may involve more than two threads and two synchronized objects.

// Online Java Compiler

// Use this editor to write, compile and run your Java code online

public class TestThread

{

 static String r1 = "java";

 static String r2 = "program";

 public static void main(String args[]) {

 ThreadDemo1 T1 = new ThreadDemo1();

 ThreadDemo2 T2 = new ThreadDemo2();

 T1.start();

 T2.start();

 }

static class ThreadDemo1 extends Thread

{

 public void run()

 {

 synchronized (r1)

 {

 System.out.println("Thread 1: Holding lock 1...");

 System.out.println("Thread 1: Waiting for lock 2...");

 synchronized (r2)

 {

 System.out.println("Thread 1: Holding lock 1 & 2...");

 }

 }

 }

 }

 static class ThreadDemo2 extends Thread

 {

 public void run()

 {

 synchronized (r2)

 {

 System.out.println("Thread 2: Holding lock 2...");

 System.out.println("Thread 2: Waiting for lock 1...");

 synchronized (r1)

 {

 System.out.println("Thread 2: Holding lock 1 & 2...");

 }

 }

 }

 } }

Output

Thread 1: Holding lock 1...

Thread 2: Holding lock 2...

Thread 1: Waiting for lock 2...

Thread 2: Waiting for lock 1...

 As this example illustrates, if your multithreaded program locks up occasionally, deadlock is one of the first
conditions that you should check for.

13. Explain about suspending, resuming, and stopping threads.

✓ stop() method in Thread – This method terminates the thread execution.
✓ suspend() method in Thread – If you want to stop the thread execution and start it again when a

certain event occurs. ...
✓ resume() method in Thread – resume() method works with suspend() method.

• The mechanisms to suspend, stop, and resume threads differ between early versions of Java, such as
Java 1.0, and more modern versions, beginning with Java 2. Prior to Java 2, a program used suspend(),
resume(), and stop(), which are methods defined by Thread, to pause, restart, and stop the execution
of a thread. Although these methods seem to be a perfectly reasonable and convenient approach to
managing the execution of threads, they must not be used for new Java programs.

• Here’s why. The suspend() method of the Thread class was deprecated by Java 2 several years ago.
This was done because suspend() can sometimes cause serious system failures. Assume that a thread
as obtained locks on critical data structures. If that thread is suspended at that point, those locks are
not relinquished. Other threads that may be waiting for those resources can be deadlocked.

• The resume() method is also deprecated. It does not cause problems, but cannot be used without the
suspend() method as its counterpart. The stop() method of the Thread class, too, was deprecated by
Java 2. This was done because this method can sometimes cause serious system failures.

• Assume that a thread is writing to a critically important data structure and has completed only part of
its changes. If that thread is stopped at that point, that data structure might be left in a corrupted state.
The trouble is that stop() causes any lock the calling thread holds to be released. Thus, the corrupted
data might be used by another thread that is waiting on the same lock.

• Because you can’t now use the suspend(), resume(), or stop() methods to control a thread, you might
be thinking that no way exists to pause, restart, or terminate a thread.

• But, fortunately, this is not true. Instead, a thread must be designed so that the run() method
periodically checks to determine whether that thread should suspend, resume, or stop its own
execution. This is accomplished by establishing a flag variable that indicates the execution state of the
thread. As long as this flag is set to “running,” the run() method must continue to let the thread
execute. If this variable is set to “suspend,” the thread must pause. If it is set to “stop,” the thread must
terminate. Of course, a variety of ways exist in which to write such code, but the central theme will be
the same for all programs.

• The following example illustrates how the wait() and notify() methods that are inherited from Object
can be used to control the execution of a thread. Let us consider its operation. The NewThread class
contains a boolean instance variable named suspendFlag, which is used to control the execution of the
thread. It is initialized to false by the constructor. The run() method contains a synchronized statement
block that checks suspendFlag. If that variable is true, the wait() method is invoked to suspend the
execution of the thread. The mysuspend() method sets suspendFlag to true. The myresume() method
sets suspendFlag to false and invokes notify() to wake up the thread. Finally, the main() method has
been modified to invoke the mysuspend() and myresume() methods.

class NewThread implements Runnable

{

String name;

Thread t;

boolean suspendFlag;

NewThread(String threadname)

 {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

suspendFlag = false;

t.start();

}

public void run()

{

try

 {

for(int i = 3; i > 0; i--)

{

System.out.println(name + ": " + i);

Thread.sleep(200);

synchronized(this)

 {

while(suspendFlag)

{

wait();

}

}

}

}

 catch (InterruptedException e)

{

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

void mysuspend()

{

suspendFlag = true;

}

synchronized void myresume()

{

suspendFlag = false;

notify();

}

}

class SuspendResume

 {

public static void main(String args[])

{

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

try

 {

Thread.sleep(1000);

ob1.mysuspend();

System.out.println("Suspending thread One");

Thread.sleep(1000);

ob1.myresume();

System.out.println("Resuming thread One");

ob2.mysuspend();

System.out.println("Suspending thread Two");

Thread.sleep(1000);

ob2.myresume();

System.out.println("Resuming thread Two");

}

catch (InterruptedException e)

 {

System.out.println("Main thread Interrupted");

}

// wait for threads to finish

try

{

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

}

 catch (InterruptedException e)

 {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

Output:

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

One: 3

Two: 3

One: 2

Two: 2

One: 1Two: 1

One exiting.

Two exiting.

Suspending thread One

Resuming thread One

Suspending thread Two

Resuming thread Two

Waiting for threads to finish.

Main thread exiting.

14. Explain about type wrappers in java.

Java uses primitive types (also called simple types), such as int or double, to hold the basic data types supported
by the language. Primitive types, rather than objects, are used for these quantities for the sake of performance.
Using objects for these values would add an unacceptable overhead to even the simplest of calculations. Thus,
the primitive types are not part of the object hierarchy, and they do not inherit Object.

Despite the performance benefit offered by the primitive types, there are times when you will need an object
representation. For example, you can’t pass a primitive type by reference to a method. Also, many of the
standard data structures implemented by Java operate on objects, which means that you can’t use these data
structures to store primitive types. To handle these situations, Java provides type wrappers, which are classes
that encapsulate a primitive type within an object.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and Boolean. These classes offer a
wide array of methods that allow you to fully integrate the primitive types into Java’s object hierarchy.

Character:

Character is a wrapper around a char. The constructor for Character is Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object being created.

To obtain the char value contained in a Character object, call charValue(), shown here:

char charValue()

It returns the encapsulated character.

Boolean

Boolean is a wrapper around boolean values. It defines these constructors:

Boolean(boolean boolValue)

Boolean(String boolString)

In the first version, boolValue must be either true or false. In the second version, if boolString contains the string
“true” (in uppercase or lowercase), then the new Boolean object will be true. Otherwise, it will be false.

To obtain a boolean value from a Boolean object, use booleanValue(), shown here:

boolean booleanValue()

It returns the boolean equivalent of the invoking object.

The Numeric Type Wrappers

By far, the most commonly used type wrappers are those that represent numeric values. These are Byte, Short,
Integer, Long, Float, and Double. All of the numeric type wrappers inherit the abstract class Number. Number
declares methods that return the value of an object in each of the different number formats. These methods are
shown here:

byte byteValue()

double doubleValue()

float floatValue()

int intValue()

long longValue()

short shortValue()

For example, doubleValue() returns the value of an object as a double, floatValue() returns the value as a float,
and so on. These methods are implemented by each of the numeric type wrappers.

All of the numeric type wrappers define constructors that allow an object to be constructed from a given value,
or a string representation of that value. For example, here are the constructors defined for Integer:

Integer(int num)

Integer(String str)

If str does not contain a valid numeric value, then a NumberFormatException is thrown. All of the type wrappers
override toString(). It returns the human-readable form of the value contained within the wrapper. This allows
you to output the value by passing a type wrapper object to println(), for example, without having to convert it
into its primitive type.The following program demonstrates how to use a numeric type wrapper to encapsulate
a value and then extract that value.

// Demonstrate a type wrapper.

class Wrap {

public static void main(String args[]) {

Integer iOb = new Integer(100);

int i = iOb.intValue();

System.out.println(i + " " + iOb); // displays 100 100

}

}

This program wraps the integer value 100 inside an Integer object called iOb. The program then obtains this
value by calling intValue() and stores the result in i.

The process of encapsulating a value within an object is called boxing. Thus, in the program,

this line boxes the value 100 into an Integer:

Integer iOb = new Integer(100);

The process of extracting a value from a type wrapper is called unboxing. For example, the

program unboxes the value in iOb with this statement:

int i = iOb.intValue();

The same general procedure used by the preceding program to box and unbox values has been employed since
the original version of Java. However, with the release of JDK 5, Java

fundamentally improved on this through the addition of autoboxing, described next.

15. Explain about autoboxing and unboxing.

Beginning with JDK 5, Java added two important features:

 autoboxing and auto-unboxing.

 Autoboxing is the process by which a primitive type is automatically encapsulated (boxed) into its equivalent
type wrapper whenever an object of that type is needed. There is no need to explicitly construct an object.

Auto-unboxing is the process by which the value of a boxed object is automatically extracted (unboxed) from a
type wrapper when its value is needed. There is no need to call a method such as intValue() or doubleValue().

The addition of autoboxing and auto-unboxing greatly streamlines the coding of several algorithms, removing
the tedium of manually boxing and unboxing values. It also helps prevent errors. Moreover, it is very important
to generics, which operates only on objects. Finally, autoboxing makes working with the Collections Framework
much easier.

With autoboxing it is no longer necessary to manually construct an object in order to wrap a primitive type. You
need only assign that value to a type-wrapper reference. Java automatically constructs the object for you. For
example, here is the modern way to construct an Integer object that has the value 100:

Integer iOb = 100; // autobox an int

Notice that no object is explicitly created through the use of new. Java handles this for you, automatically.

To unbox an object, simply assign that object reference to a primitive-type variable. For example, to unbox iOb,
you can use this line:

int i = iOb; // auto-unbox

Java handles the details for you.

Here is the preceding program rewritten to use autoboxing/unboxing:

// Demonstrate autoboxing/unboxing.

class AutoBox

 {

public static void main(String args[])

{

Integer iOb = 100; // autobox an int

int i = iOb; // auto-unbox

System.out.println(i + " " + iOb); // displays 100 100

}

}

Autoboxing/Unboxing Boolean and Character Values

Java also supplies wrappers for boolean and char. These are Boolean and Character. Autoboxing/unboxing
applies to these wrappers, too. For example, consider the following program:

// Autoboxing/unboxing a Boolean and Character.

class AutoBox5

{

public static void main(String args[])

{

Boolean b = true;

if(b)

 System.out.println("b is true");

Character ch = 'x'; // box a char

char ch2 = ch; // unbox a char

System.out.println("ch2 is " + ch2);

}

}

The output is shown here:

b is true

ch2 is x

CS3391/OBJECT ORIENTED PROGRAMMING

Unit-III

Part-A

1. What is an exception?
Exception is an abnormal condition which occurs during the execution of a program and disrupts normal flow of
the program. This exception must be handled properly. If it is not handled, program will be terminated abruptly.

2. How the exceptions are handled in java? OR Explain exception handling mechanism in java?
Exceptions in java are handled using try, catch and finally blocks.

try block : The code or set of statements which are to be monitored for exception are kept in this block.

catch block : This block catches the exceptions occurred in the try block.

finally block : This block is always executed whether exception is occurred in the try block or not and occurred
exception is caught in the catch block or not.

3. What is the difference between error and exception in java?
Errors are mainly caused by the environment in which an application is running. For example,
OutOfMemoryError happens when JVM runs out of memory. Where as exceptions are mainly caused by the
application itself. For example, NullPointerException occurs when an application tries to access null object.

4. Can we write only try block without catch and finally blocks?
No, It shows compilation error. The try block must be followed by either catch or finally block.

You can remove either catch block or finally block but not both.

5. What is unreachable catch block error?

When you are keeping multiple catch blocks, the order of catch blocks must be from most specific to most
general ones. i.e sub classes of Exception must come first and super classes later. If you keep super classes first
and sub classes later, compiler will show unreachable catch block error.

6. Describe the hierarchy of exceptions in java?
All exception types are subclasses of the built-in class Throwable. Thus, Throwable is at the top of the
exception class hierarchy.

Immediately below Throwable are two subclasses that partition exceptions into two distinct branches.

One branch is headed by Exception. This class is used for exceptional conditions that user programs should catch.
This is also the class that you will subclass to create your own custom exception types. There is an important
subclass of Exception, called RuntimeException. Exceptions of this type are automatically defined for the
programs that you write and include things such as division by zero and invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected to be caught under normal
circumstances by your program. Exceptions of type Error are used by the Java run-time system to indicate errors
having to do with the run-time environment, itself. Stack overflow is an example of such an error.

7. What are run time exceptions in java. Give example?
The exceptions which occur at run time are called as run time exceptions. These exceptions are unknown to
compiler. All sub classes of java.lang.RunTimeException and java.lang.Error are run time exceptions. These
exceptions are unchecked type of exceptions. For example, NumberFormatException, NullPointerException,
ClassCastException,

8. What are checked and unchecked exceptions in java?
Checked exceptions are the exceptions which are known to compiler. These exceptions are checked at compile
time only. Hence the name checked exceptions. These exceptions are also called compile time exceptions.
Because, these exceptions will be known during compile time.

Unchecked exceptions are those exceptions which are not at all known to compiler. These exceptions occur only
at run time. These exceptions are also called as run time exceptions. All sub classes of
java.lang.RunTimeException and java.lang.Error are unchecked exceptions.

9. What is Re-throwing an exception in java?
Exceptions raised in the try block are handled in the catch block. If it is unable to handle that exception, it can
re-throw that exception using throw keyword. It is called re-throwing an exception.

10. What is the use of throws keyword in java?
If a method is capable of causing an exception that it does not handle, it must specify this behavior so that
callers of the method can guard themselves against that exception. You do this by including a throws clause in
the method’s declaration. A throws clause lists the types of exceptions that a method might throw. This is
necessary for all exceptions, except those of type Error or RuntimeException, or any of their subclasses. All other
exceptions that a method can throw must be declared in the throws clause. If they are not, a compile-time error
will result.

11. What is the difference between final, finally and finalize in java?
final keyword :

final is a keyword which is used to make a variable or a method or a class as “unchangeable“.

finally Block :

finally is a block which is used for exception handling along with try and catch blocks. finally block is always
executed whether exception is raised or not and raised exception is handled or not. Most of time, this block is
used to close the resources like database connection, I/O resources etc.

finalize() Method :

finalize() method is a protected method of java.lang.Object class. It is inherited to every class you create in java.
This method is called by garbage collector thread before an object is removed from the memory. finalize()
method is used to perform some clean up operations on an object before it is removed from the memory.

12. How do you create customized exceptions in java?

In java, we can define our own exception classes as per our requirements. These exceptions are called user
defined exceptions in java OR Customized exceptions. User defined exceptions must extend any one of the
classes in the hierarchy of exceptions.

13. What is the difference between throw, throws and throwable in java?
throw In Java :

throw is a keyword in java which is used to throw an exception manually. Using throw keyword, you can throw
an exception from any method or block. But, that exception must be of type java.lang.Throwable class or it’s sub
classes. Below example shows how to throw an exception using throw keyword.

throws In Java :

throws is also a keyword in java which is used in the method signature to indicate that this method may throw
mentioned exceptions. The caller to such methods must handle the mentioned exceptions either using try-catch
blocks or using throws keyword. Below is the syntax for using throws keyword.

Throwable In Java :

Throwable is a super class for all types of errors and exceptions in java. This class is a member of
java.langpackage. Only instances of this class or it’s sub classes are thrown by the java virtual machine or by the
throw statement. The only argument of catch block must be of this type or it’s sub classes. If you want to create
your own customized exceptions, then your class must extend this class. Click here to see the hierarchy of
exception classes in java.

15. Which class is the super class for all types of errors and exceptions in java?
java.lang.Throwable is the super class for all types of errors and exceptions in java.

16. Define Process-based multitasking: (Multiprocessing)
A process is a program that is executing. Thus, process-based multitasking is the feature that allows your
computer to run two or more programs concurrently. For example, process-based multitasking enables you to
run the Java compiler at the same time that you are using a text editor or visiting a web site. In process-based
multitasking, a program is the smallest unit of code that can be dispatched by the scheduler.

17. Define Thread-based multitasking: (Multithreading)
In a thread-based multitasking environment, the thread is the smallest unit of dispatchable code. This means
that a single program can perform two or more tasks simultaneously. For instance, a text editor can format text
at the same time that it is printing, as long as these two actions are being performed by two separate threads.
Thus, process-based multitasking deals with the “big picture,” and thread-based multitasking handles the
details.

18. Differentiate between multitasking and multithreading.

Sl.n
o.

Multitasking Multithreading

1 It is a process of executing many processes
running simultaneously.

It is a process of executing multiple threads(sub-
process).

2 Process is program in execution. They are
Heavy weight.

Thread is basically a lightweight sub-process. It is a
smallest unit of processing.

https://javaconceptoftheday.com/hierarchy-exceptions-java/

3 In multi tasking separate memory is
allocated to each process.

Threads(sub-process) are sharing common
memory.

4 Interprocess communication is expensive Inter thread communication is inexpensive .

5 Context switching from one process to
another is costly.

Context switching from one thread to another is
inexpensive.

19. Define Multithreading.
Multithreading enables to write efficient programs that make maximum use of the processing power available
in the system. One important way multithreading achieves this is by keeping idle time to a minimum.

20. List are the States of thread.
• A thread can be running. It can be ready to run as soon as it gets CPU time.
• A running thread can be suspended, which temporarily halts its activity.
• A suspended thread can then be resumed, allowing it to pick up where it left off.
• A thread can be blocked when waiting for a resource.
• At any time, a thread can be terminated, which halts its execution immediately. Once terminated,

a thread cannot be resumed.
21. How can you create thread in Java?
Java defines two ways for creating thread.
1) By extending the Thread class.
2) By implement the Runnable interface.

22. What do you mean by synchronization?
When two or more threads need access to a shared resource, they need some way to ensure that the resource
will be used by only one thread at a time. The process by which this is achieved is called synchronization. Java
provides unique, language-level support for it.

Synchronization can be done in two ways:

1) Using Synchronized Methods
2) Using synchronized Statement or synchronized block

23. What is the need for synchronization?
The synchronization is mainly used to

• To prevent thread interference.
• To prevent consistency problem.

24. What is meant by monitor?
A monitor is an object that is used as a mutually exclusive lock. Only one thread can own a monitor at a given
time. When a thread acquires a lock, it is said to have entered the monitor. All other threads attempting to
enter the locked monitor will be suspended until the first thread exits the monitor. These other threads are
said to be waiting for the monitor. A thread that owns a monitor can reenter the same monitor if it so desires.

25. How will you set the priority of the thread?
Thread priorities are used by the thread scheduler to decide when each thread should be allowed to
run. In theory, higher-priority threads get more CPU time than lower-priority threads.

To set a thread’s priority, use the setPriority() method.

final void setPriority(int level)

The value of level must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these
values are 1 and 10, respectively. To return a thread to default priority, specify NORM_PRIORITY,
which is currently 5.

Part-B

1. Develop a java program for handling divide by zero exception with multiple catches.
2. Develop a java program for handling ArrayIndexOutOfBoundsException exception
 with finally block.

3. Develop a java program for exception handling with throw and throws keyword.
4. Explain nested try/catch with example program.
5. Develop a java program with multiple catch clauses.
6. Develop a java program with multicatch that can handle both ArithmeticException
 and IndexOutOfBoundsException.

7. Discuss about exception handling in nested try/catch.
8. Explain about types of exception with an example.
9. Develop a Java program to implement user defined exception handling.
10. Discuss the life cycle of threads with neat diagram.
11. Develop a program for creating threads by using Thread class and Runnable interface.
12. Why do we need both start() and run() method both? can we achieve it with only run() method?
13. Write a java program that synchronize three threads of the same program and display the content

the text supplied through these threads.
14. Develop a java program that provide synchronization for two threads deposit and withdraw in a bank

application.
15. Define thread. Explain the state of threads. State reason for synchronization in thread.
 Write simple concurrent programming to create, sleep and delete thread.
16. What is thread synchronization? Discuss with an example.
17. Write a java program for inventory problem to illustrate the usage of thread synchronized keyword

and interthread communication process. They have three classes called consumer, producer and
stock.

18. Write a java program that implements a multi-threaded application that has three threads. First
thread generates a random integer every 1 second and if the value is even, second thread computes
the square of the number and prints. If the value is odd, the third thread will print the value of cube of
the number.

19. Develop a java application program for generating four threads to perform the following operation.
i) Getting N numbers as input
ii) Printing even numbers
iii) Printing odd numbers.
iv) Computing the average

20. Explain about wrapper classes.
21. Elaborate in detail about autoboxing.
22. Discuss about Suspending, Resuming, and Stopping Threads.

CS3391 OBJECT ORIENTED PROGRAMMING

UNIT III EXCEPTION HANDLING AND MULTITHREADING

Exception Handling basics – Multiple catch Clauses – Nested try Statements – Java’s Built-in Exceptions – User

defined Exception. Multithreaded Programming: Java Thread Model–Creating a Thread and Multiple Threads –

Priorities – Synchronization – Inter Thread Communication- Suspending –Resuming, and Stopping Threads –

Multithreading. Wrappers – Auto boxing.

7. Explain about exception hierarchy.

An exception is a problem that arises during the execution of a program. When an Exception occurs

the normal flow of the program is disrupted and the program/Application terminates abnormally, which

is not recommended, therefore, these exceptions are to be handled.

An exception can occur for many different reasons. Following are some scenarios where an exception

occurs.

• A user has entered an invalid data.
• A file that needs to be opened cannot be found.
• A network connection has been lost in the middle of communications or the JVM has run out

of memory.
• A Java exception is an object that describes an exceptional (that is, error) condition that has

occurred in a piece of code. When an exceptional condition arises, an object representing that
exception is created and thrown in the method that caused the error. That method may choose
to handle the exception itself, or pass it on. Either way, at some point, the exception is caught and
processed.

• Exceptions can be generated by the Java run-time system, or they can be manually generated by
your code. Exceptions thrown by Java relate to fundamental errors that violate the rules of the
Java language or the constraints of the Java execution environment. Manually generated
exceptions are typically used to report some error condition to the caller of a method.
• Java exception handling is managed via five keywords:

try,

 catch,

 throw,

 throws,

finally.

• Program statements that you want to monitor for exceptions are contained within a try block. If an
exception occurs within the try block, it is thrown. Your code can catch this exception (using catch)
and handle it in some rational manner. System-generated exceptions are automatically thrown by
the Java run-time system.

• To manually throw an exception, use the keyword throw. Any exception that is thrown out of a
method must be specified as such by a throws clause. Any code that absolutely must be executed
after a try block completes is put in a finally block.

EXCEPTION HIERARCHY :

• All exception types are subclasses of the built-in class Throwable. Thus,

Throwable is at the top of the exception class hierarchy.

• Immediately below Throwable are two subclasses that partition exceptions into two distinct
branches.

• One branch is headed by Exception. This class is used for exceptional conditions that user programs
should catch. This is also the class that you will subclass to create your own custom exception types.
There is an important subclass of Exception, called RuntimeException. Exceptions of this type are
automatically defined for the programs that you write and include things such as division by zero
and invalid array indexing.

• The other branch is topped by Error, which defines exceptions that are not expected to be caught
under normal circumstances by your program. Exceptions of type Error are used by the Java run-
time system to indicate errors having to do with the run-time environment, itself. Stack overflow
is an example of such an error.

USING TRY AND CATCH:

Although the default exception handler provided by the Java run-time system is useful for debugging,

you will usually want to handle an exception yourself.

Exception handler provides two benefits.
3) It allows you to fix the error.
4) It prevents the program from automatically terminating.

Program:

class Exc2

{

public static void main(String args[])

{

int d, a;

try

{

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

}

catch (ArithmeticException e)

{

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}

This program generates the following output: Division

by zero.

After catch statement.

8. Explain about multiple catch clauses.
In some cases, more than one exception could be raised by a single piece of code. To handle this type of

situation, you can specify two or more catch clauses, each catching a different type of exception. When

an exception is thrown, each catch statement is inspected in order, and the first one whose type matches

that of the exception is executed. After one catch statement executes, the others are bypassed, and

execution continues after the try / catch block. The following example traps two different exception

types:Demonstrate multiple catch statements.

class MultipleCatches

{

public static void main(String args[])

{

try

{ int a = 0;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

}

catch(ArithmeticException e)

{

System.out.println("Divide by 0: " + e);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

Output:

a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks.

9. Explain about nested try statements.

The try statement can be nested. That is, a try statement can be inside the block of another try. Each

time a try statement is entered, the context of that exception is pushed on the stack. If an inner try

statement does not have a catch handler for a particular exception, the stack is unwound and the next try

statement’s catch handlers are inspected for a match. This continues until one of the catch statements

succeeds, or until all of the nested try statements are exhausted. If no catch statement matches, then the

Java run-time system will handle the exception. Here is an example that uses nested try statements:

An example of nested try statements. class

NestTry

{

public static void main(String args[])

{

try {

int a = 0;

 int b = 42 / a;

System.out.println("a = " + a);

try

{

if(a==1)

a = a/(a-a);

 if(a==2)

{

int c[] = { 1 };

c[42] = 99;

}

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Array index out-of-bounds: " + e);

}

}

catch(ArithmeticException e)

{

System.out.println("Divide by 0: " + e);}}}

This program nests one try block within another. The program works as follows. When you execute the

program with no command-line arguments, a divide-by-zero exception is generated by the outer try

block. Execution of the program with one command-line argument generates a divide-by-zero exception

from within the nested try block. Since the inner block does not catch this exception, it is passed on to

the outer try block, where it is handled. If you execute the program with two command-line arguments,

an array boundary exception is generated from within the inner try block.

Output:

Divide by 0: java.lang.ArithmeticException: / by zero

Output when a=1:

a = 1

Divide by 0: java.lang.ArithmeticException: / by zero C:\>java

NestTry One Two

Output when a=2:

Array index out-of-bounds:

java.lang.ArrayIndexOutOfBoundsException:42

finally:
When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path that alters the

normal flow through the method. Depending upon how the method is coded, it is even possible for an

exception to cause the method to return prematurely. This could be a problem in some methods. For

example, if a method opens a file upon entry and closes it upon exit, then you will not want the code that

closes the file to be bypassed by the exception-handling mechanism. The finally keyword is designed to

address this contingency.

Finally creates a block of code that will be executed after a try /catch block has completed and before

the code following the try/catch block. The finally block will execute whether or not an exception is

thrown. If an exception is thrown, the finally block will execute even if no catch statement matches the

exception.

10. Explain in detail about various types of exception.

An exception is a problem that arises during the execution of a program. When an Exception

occurs the normal flow of the program is disrupted and the program/Application terminates

abnormally, which is not recommended, therefore, these exceptions are to be handled.

Two types of exceptions are

• Built in exception

• User defined exception

3) BUILT-IN EXCEPTIONS:
Inside the standard package java.lang, Java defines several exception classes. The most general of

exceptions are the subclasses of the standard type RuntimeException. These exceptions

need not be included in any method's throws list.

iii) Checked Exception
Checked exceptions are checked at compile-time. The classes which directly inherit Throwable class

except RuntimeException and Error are known as checked exceptions.

e.g. IOException, SQLException etc. Checked exceptions are checked at compile- time.

iv) Unchecked Exception
Unchecked exceptions are not checked at compile-time, but they are checked at runtime. The classes

which inherit RuntimeException are known as unchecked exceptions. These exceptions need not be

included in any method's throws list.

ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc.

Program:

class MultipleCatches

{

public static void main(String args[])

{

try

{

int a = 0;

 System.out.println("a = " + a); int b =

42 / a;

int c[] = { 1 };

c[42] = 99;

}

catch(ArithmeticException e)

{

System.out.println("Divide by 0: " + e);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

finally

{

System.out.println(" Finally block");

}

}

Output:

C:\>java MultipleCatches a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks.

Finally block

4) USER DEFINED EXCEPTION:

User can create their own exception types to handle situations specific to user applications. This is quite

easy to do: just define a subclass of Exception .

The Exception class does not define any methods of its own. It inherits the methods provided by

Throwable. Thus, all exceptions, including those that you create, have the methods defined by Throwable

available to them.

Exception defines four constructors. Two support chained exceptions. The other two are shown here:

Exception()

Exception(String msg)

The first form creates an exception that has no description. The second form lets you specify a description

of the exception.

Program:

class MyException extends Exception

{

int detail; MyException(int

a)

{

detail = a;

}

public String toString()

{

return "MyException:" + detail ;

}

}

class ExceptionDemo

{

static void compute(int a) throws MyException

{

System.out.println("Called compute”);

 if(a > 10)

throw new MyException(a);

System.out.println("Normal exit");

}

public static void main(String args[])

{

try

{

compute(1);

compute(20);

}

catch (MyException e)

{

System.out.println("Caught " + e);

}

}

}

Output:

Called compute(1) Normal exit

Called compute(20)

Caught

MyException[20]

11. Discuss the life cycle of threads with neat diagram.
Answer:

• Thread is the smallest unit of dispatchable code. This means that a single program can perform
two or more tasks simultaneously. For instance, a text editor can format text at the same time
that it is printing, as long as these two actions are being performed by two separate threads.

• Threads are lighter weight. They share the same address space and cooperatively share the
same heavyweight process. Interthread communication is inexpensive, and context switching
from one thread to the next is lower in cost.

• Multithreading enables to write efficient programs that make maximum use of the
processing power available in the system. Multithreading keep the idle time to a minimum.

Threads exist in several states.

6) A thread can be running. It can be ready to run as soon as it gets CPU time.
7) A running thread can be suspended, which temporarily halts its activity.
8) A suspended thread can then be resumed, allowing it to pick up where it left off.
9) A thread can be blocked when waiting for a resource.
10) At any time, a thread can be terminated, which halts its execution immediately. Once

terminated, a thread cannot be resumed.

Obtaining A Thread’s State

A thread can exist in a number of different states. You can obtain the current state of a thread
by calling the getState() method defined by Thread. It is shown here:

Thread.State getState()

It returns a value of type Thread.State that indicates the state of the thread at the time at
which the call was made. State is an enumeration defined by Thread. Here are the values
that can be returned by getState():

Value State

BLOCKED
A thread that has suspended execution because it is waiting
to acquire a lock.

NEW A thread that has not begun execution.

RUNNABLE
A thread that either is currently executing or will execute
when it gains access to the CPU.

TERMINATED A thread that has completed execution.

TIMED_WAITING

A thread that has suspended execution for a specified period
of time, such as when it has called sleep(). This state is also
entered when a timeout version of wait() or join() is called.

WAITING

A thread that has suspended execution because it is waiting
for some action to occur. For example, it is waiting because of
a call to a non-timeout version of wait() or join().

Given a Thread instance, you can use getState() to obtain the state of a thread. For
example, the following sequence determines if a thread called thrd is in the RUNNABLE state at the
time getState() is called:

Thread.State ts = thrd.getState();

if(ts == Thread.State.RUNNABLE) // ...

It is important to understand that a thread’s state may change after the call to getState(). Thus,
depending on the circumstances, the state obtained by calling getState() may not reflect the actual
state of the thread only a moment later. For this (and other) reasons, getState() is not intended to
provide a means of synchronizing threads. It’s primarily used for debugging or for profiling a thread’s
run-time characteristics.

12. Develop a program for creating threads by using Thread class and Runnable interface.
(or) Why do we need both start() and run() method both? can we achieve it with only run()
method?

Answer:

We can call run() method if we want but then it would behave just like a normal method and we
would not be able to take the advantage of multithreading. When the run method gets called though
start() method then a new separate thread is being allocated to the execution of run method, so if more
than one thread calls start() method that means their run method is being executed by separate threads
(these threads run simultaneously).

 Java defines two ways in which this can be accomplished:
 1) By extending the Thread class.
 2) By implement the Runnable interface.

2. Creating thread by using Thread class:
Create a new class that extends Thread, and then create an instance of that class. The extending class
must override the run() method, which is the entry point for the new thread. It must also call start()
to begin execution of the new thread.

class multithreading extends Thread

{

https://beginnersbook.com/2013/03/multithreading-in-java/

 public void run()

 {

 try

 {

 System.out.println ("Thread " + Thread.currentThread().getId() + " is

 running");

 }

 catch (Exception e)

 {

 System.out.println ("Exception is caught");

 }

 }

}

 public class multithreadingdemo

{

 public static void main(String[] args)

 {

 multithreading m1=new multithreading();

 multithreading m2=new multithreading();

 m1.start();

 m2.start();

}

}

Output:

Thread 21 is running

Thread 22 is running

5. Creating thread by using Runnable interface:

The easiest way to create a thread is to create a class that implements the Runnable interface.
To implement Runnable, a class need only implement a single method called run(), which is
declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to
understand that run() can call other methods, use other classes, and declare variables, just like the
main thread can. The only difference is that run() establishes the entry point for another,
concurrent thread of execution within your program. This thread will end when run() returns.

After you create a class that implements Runnable, you will instantiate an object of type Thread
from within that class. Thread defines several constructors. The one that we will use is shown here:

Thread(Runnable threadOb)

Thread(Runnable threadOb, String threadName)

Thread(String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable
interface. This defines where execution of the thread will begin. The name of the new thread
is specified by threadName.

After the new thread is created, it will not start running until you call its start() method, which
is declared within Thread. In essence, start() executes a call to run(). The start() method is shown
here:

void start()

Here is an example that creates a new thread and starts it running:

class multithreading implements Runnable

{

 public void run()

 {

 try

 {

 System.out.println ("Thread " + Thread.currentThread().getId() + " is

 running");

 }

 catch (Exception e)

 {

 System.out.println ("Exception is caught");

 }

 }

}

 public class multithreadingdemo

{

 public static void main(String[] args)

 {

multithreading m1=new multithreading();

 Thread t1 = new Thread(m1);

multithreading m2=new multithreading();

 Thread t2 = new Thread(m2);

t1.start();

t2.start();

}

}

Output:

Thread 21 is running
Thread 22 is running

6. Develop a java program that provide synchronization for two threads deposit and withdraw
in a bank application.
(or) What is thread synchronization? Discuss with an example.
Answer:

When two or more threads need access to a shared resource, they need some way to ensure that the
resource will be used by only one thread at a time. The process by which this is achieved is called
synchronization. Java provides unique, language-level support for it.

The synchronization is mainly used to

• To prevent thread interference.
• To prevent consistency problem.

Synchronization can be done in two ways:

3) Using Synchronized Methods

4) Using synchronized Statement or synchronized block

1)Using Synchronized Methods:

Synchronization is easy in Java, because all objects have their own implicit monitor associated with
them. To enter an object’s monitor, just call a method that has been modified with the synchronized
keyword. While a thread is inside a synchronized method, all other threads that try to call it (or any
other synchronized method) on the same instance have to wait. To exit the monitor and

relinquish control of the object to the next waiting thread, the owner of the monitor simply returns
from the synchronized method.

Program:

class bank{

 int amount=5000;

synchronized void transaction(int n,char c){

 try

 {

 if (c=='d')

{

System.out.println("Before deposit Balance ="+amount);

 amount =amount+n;

System.out.println("After deposit Balance ="+amount);

}

 else if(c=='w') {

 System.out.println("Before withdraw Balance ="+amount);

 amount = amount-n;

 System.out.println("After withdraw Balance ="+amount);

}

Thread.sleep(400);

 }

 catch(Exception e)

{

System.out.println(e);}

 }

}

 class deposit extends Thread

{

bank t;

deposit(bank x){

t=x;

}

public void run(){

t.transaction(4000,'d');

}

}

class withdraw extends Thread{

bank t;

withdraw(bank x){

t=x;

}

public void run(){

t.transaction(2000,'w');

}

}

public class testsync{

public static void main(String args[]){

bank obj = new bank();

deposit t1=new deposit(obj);

withdraw t2=new withdraw(obj);

t1.start();

t2.start();

}

}

Output:

Before deposit Balance =5000
After deposit Balance =9000
Before withdraw Balance =9000
After withdraw Balance =7000

2)The synchronized Statement: (synchronized block)

While creating synchronized methods within classes that you create is an easy and effective means
of achieving synchronization, it will not work in all cases. To understand why, consider the following.
Imagine that you want to synchronize access to objects of a class that was not designed for
multithreaded access. That is, the class does not use synchronized methods.

Further, this class was not created by you, but by a third party, and you do not have access to the
source code. Thus, you can’t add synchronized to the appropriate methods within the class. How
can access to an object of this class be synchronized? Fortunately, the solution to this problem is
quite easy: You simply put calls to the methods defined by this class inside a synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {

// statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block ensures that a
call to a method that is a member of object occurs only after the current thread has successfully
entered object’s monitor.

Program:

class bank{

 int amount=5000;

void transaction(int n,char c){

 try

 {

 if (c=='d')

{

System.out.println("Before deposit Balance ="+amount);

 amount =amount+n;

System.out.println("After deposit Balance ="+amount);

}

 else if(c=='w') {

 System.out.println("Before withdraw Balance ="+amount);

 amount = amount-n;

 System.out.println("After withdraw Balance ="+amount);

}

Thread.sleep(400);

 }

 catch(Exception e){System.out.println(e);}

 }

}

class deposit extends Thread{

bank t;

deposit(bank x){

t=x;

}

public void run(){

synchronized(t)

{

t.transaction(4000,'d');

}

}

}

class withdraw extends Thread{

bank t;

withdraw(bank x){

t=x;

}

public void run(){

synchronized(t){

t.transaction(2000,'w');

}

}

}

public class testsync{

public static void main(String args[]){

bank obj = new bank();

deposit t1=new deposit(obj);

withdraw t2=new withdraw(obj);

t1.start();

t2.start();

}

}

Output:

Before deposit Balance =5000
After deposit Balance =9000
Before withdraw Balance =9000
After withdraw Balance =7000

7. Write a java program for inventory problem to illustrate the usage of thread synchronized
keyword and interthread communication process. They have three classes called consumer,
producer and stock.
(Or) Explain about interthread communication with example program.

• Java includes an elegant interprocess communication mechanism via the wait(), notify(), and
notifyAll() methods. Inter-thread communication is all about allowing synchronized threads
to communicate with each other. These methods are implemented as final methods in Object,
so all classes have them. All three methods can be called only from within a synchronized context.

wait() tells the calling thread to give up the monitor and go to sleep until some other thread
enters the same monitor and calls notify().
notify() wakes up a thread that called wait() on the same object.
notifyAll() wakes up all the threads that called wait() on the same object. One of the threads will
be granted access.

Consider the following sample program that implements a simple form of the producer/ consumer
problem. It consists of four classes: Queue, the queue that you’re trying to synchronize; Producer, the
threaded object that is producing queue entries; Consumer, the threaded object that is consuming
queue entries; and PC, the tiny class that creates the single Q, Producer, and Consumer.

class Queue

{

int n;

boolean valueSet = false;

synchronized int get()

{

while(!valueSet)

try {

wait();

}

catch(InterruptedException e)

{

System.out.println("InterruptedException caught");

}

System.out.println("Got: " + n);

valueSet = false;

notify();

return n;

}

synchronized void put(int x)

 {

while(valueSet)

try {

wait();

}

catch(InterruptedException e)

{

System.out.println("InterruptedException caught");

}

n = x;

valueSet = true;

System.out.println("Put: " + n);

notify();

}

}

class Producer extends Thread {

 Queue q;

Producer(Queue q1) {

q = q1;

}

public void run() {

int i = 0;

while(true) {

q.put(i++);

}

}

}

class Consumer extends Thread{

 Queue q;

Consumer(Queue q1) {

q = q1;

}

public void run() {

while(true) {

q.get();

}

}

}

public class PCFixed

{

public static void main(String args[])

{

Queue q = new Queue();

Producer p=new Producer(q);

Consumer c= new Consumer(q);

p.start();

c.start();

System.out.println("Press Control-C to stop.");

}

}

Output:

Put: 1

Got: 1

Put: 2

Got: 2

Put: 3

Got: 3

Put: 4

Got: 4

Put: 5

Got: 5

10. Explain about creating multiple threads and thread priorities.

The program can create as many threads as it needs.

class multithreading extends Thread

{

 public void run()

 {

 try

 {

 System.out.println ("Thread " + Thread.currentThread().getId() + " is

 running");

 }

 catch (Exception e)

 {

 System.out.println ("Exception is caught");

 }

 }

}

 public class multithreadingdemo

{

 public static void main(String[] args)

 {

 multithreading m1=new multithreading();

 multithreading m2=new multithreading();

m1.start();

m2.start();

}

}

Output:

Thread 21 is running

Thread 22 is running

Using isAlive() and join()

 Often you will want the main thread to finish last. This can be accomplished by calling sleep() within main(
), with a long enough delay to ensure that all child threads terminate prior to the main thread. However, this
is hardly a satisfactory solution, and it also raises a larger question: How can one thread know when another
thread has ended? Fortunately, Thread provides a means by which you can answer this question.

Two ways exist to determine whether a thread has finished.

3) First, you can call isAlive() on the thread. This method is defined by Thread, and its general form is shown
here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It returns false
otherwise. isAlive() is occasionally useful.

4) Most commonly used method to wait for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes from the concept of the
calling thread waiting until the specified thread joins it. Additional forms of join() allow you to specify a
maximum amount of time that you want to wait for the specified thread to terminate.

class jointhread extends Thread{

 public void run() {

 try {

 System.out.println(Thread.currentThread().getName());

 Thread.sleep(100);

 }

 catch (InterruptedException e) {

 System.out.println("Thread interrupted");

 }

 }

}

public class JoinExample {

 public static void main(String[] args) {

 jointhread t1 = new jointhread();

 jointhread t2 = new jointhread();

 t1.start();

 t2.start();

 System.out.println("t1 Alive - " + t1.isAlive());

 System.out.println("t2 Alive - " + t2.isAlive());

try {

 t1.join();

 t2.join();

 }

 catch (InterruptedException e) {

 System.out.println("Thread interrupted");

 }

 System.out.println("t1 Alive - " + t1.isAlive());

 System.out.println("t2 Alive - " + t2.isAlive());

 System.out.println("Processing finished");

 }

}

Output:

Thread-0

Thread-1

t1 Alive - true

t2 Alive - true

t1 Alive - false

t2 Alive - false

Processing finished

THREAD PRIORITIES:

• Thread priorities are used by the thread scheduler to decide when each thread should be allowed to
run. In theory, higher-priority threads get more CPU time than lower-priority threads. In practice, the
amount of CPU time that a thread gets often depends on several factors besides its priority. (For
example, how an operating system implements multitasking can affect the relative availability of CPU
time.)

• A higher-priority thread can also preempt a lower-priority one. For instance, when a lower-priority
thread is running and a higher-priority thread resumes (from sleeping or waiting on I/O, for example),
it will preempt the lower-priority thread.

To set a thread’s priority, use the setPriority() method, which is a member of Thread.

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level must be within the range
MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and 10, respectively. To return a thread to
default priority, specify NORM_PRIORITY, which is currently 5. These priorities are defined as static final
variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of Thread, shown here:

final int getPriority()

12. Explain about deadlock .

• Deadlock occurs when two threads have a circular dependency on a pair of synchronized objects.
• For example, suppose one thread enters the monitor on object X and another thread enters the monitor

on object Y.
• If the thread in X tries to call any synchronized method on Y, it will block as expected. However, if the

thread in Y, in turn, tries to call any synchronized method on X, the thread waits forever, because to
access X, it would have to release its own lock on Y so that the first thread could complete. Deadlock is
a difficult error to debug for two reasons:

3) In general, it occurs only rarely, when the two threads time-slice in just the right way.
4) It may involve more than two threads and two synchronized objects.

// Online Java Compiler

// Use this editor to write, compile and run your Java code online

public class TestThread

{

 static String r1 = "java";

 static String r2 = "program";

 public static void main(String args[]) {

 ThreadDemo1 T1 = new ThreadDemo1();

 ThreadDemo2 T2 = new ThreadDemo2();

 T1.start();

 T2.start();

 }

static class ThreadDemo1 extends Thread

{

 public void run()

 {

 synchronized (r1)

 {

 System.out.println("Thread 1: Holding lock 1...");

 System.out.println("Thread 1: Waiting for lock 2...");

 synchronized (r2)

 {

 System.out.println("Thread 1: Holding lock 1 & 2...");

 }

 }

 }

 }

 static class ThreadDemo2 extends Thread

 {

 public void run()

 {

 synchronized (r2)

 {

 System.out.println("Thread 2: Holding lock 2...");

 System.out.println("Thread 2: Waiting for lock 1...");

 synchronized (r1)

 {

 System.out.println("Thread 2: Holding lock 1 & 2...");

 }

 }

 }

 } }

Output

Thread 1: Holding lock 1...

Thread 2: Holding lock 2...

Thread 1: Waiting for lock 2...

Thread 2: Waiting for lock 1...

 As this example illustrates, if your multithreaded program locks up occasionally, deadlock is one of the first
conditions that you should check for.

13. Explain about suspending, resuming, and stopping threads.

✓ stop() method in Thread – This method terminates the thread execution.
✓ suspend() method in Thread – If you want to stop the thread execution and start it again when a

certain event occurs. ...
✓ resume() method in Thread – resume() method works with suspend() method.

• The mechanisms to suspend, stop, and resume threads differ between early versions of Java, such as
Java 1.0, and more modern versions, beginning with Java 2. Prior to Java 2, a program used suspend(),
resume(), and stop(), which are methods defined by Thread, to pause, restart, and stop the execution
of a thread. Although these methods seem to be a perfectly reasonable and convenient approach to
managing the execution of threads, they must not be used for new Java programs.

• Here’s why. The suspend() method of the Thread class was deprecated by Java 2 several years ago.
This was done because suspend() can sometimes cause serious system failures. Assume that a thread
as obtained locks on critical data structures. If that thread is suspended at that point, those locks are
not relinquished. Other threads that may be waiting for those resources can be deadlocked.

• The resume() method is also deprecated. It does not cause problems, but cannot be used without the
suspend() method as its counterpart. The stop() method of the Thread class, too, was deprecated by
Java 2. This was done because this method can sometimes cause serious system failures.

• Assume that a thread is writing to a critically important data structure and has completed only part of
its changes. If that thread is stopped at that point, that data structure might be left in a corrupted state.
The trouble is that stop() causes any lock the calling thread holds to be released. Thus, the corrupted
data might be used by another thread that is waiting on the same lock.

• Because you can’t now use the suspend(), resume(), or stop() methods to control a thread, you might
be thinking that no way exists to pause, restart, or terminate a thread.

• But, fortunately, this is not true. Instead, a thread must be designed so that the run() method
periodically checks to determine whether that thread should suspend, resume, or stop its own
execution. This is accomplished by establishing a flag variable that indicates the execution state of the
thread. As long as this flag is set to “running,” the run() method must continue to let the thread
execute. If this variable is set to “suspend,” the thread must pause. If it is set to “stop,” the thread must
terminate. Of course, a variety of ways exist in which to write such code, but the central theme will be
the same for all programs.

• The following example illustrates how the wait() and notify() methods that are inherited from Object
can be used to control the execution of a thread. Let us consider its operation. The NewThread class
contains a boolean instance variable named suspendFlag, which is used to control the execution of the
thread. It is initialized to false by the constructor. The run() method contains a synchronized statement
block that checks suspendFlag. If that variable is true, the wait() method is invoked to suspend the
execution of the thread. The mysuspend() method sets suspendFlag to true. The myresume() method
sets suspendFlag to false and invokes notify() to wake up the thread. Finally, the main() method has
been modified to invoke the mysuspend() and myresume() methods.

class NewThread implements Runnable

{

String name;

Thread t;

boolean suspendFlag;

NewThread(String threadname)

 {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

suspendFlag = false;

t.start();

}

public void run()

{

try

 {

for(int i = 3; i > 0; i--)

{

System.out.println(name + ": " + i);

Thread.sleep(200);

synchronized(this)

 {

while(suspendFlag)

{

wait();

}

}

}

}

 catch (InterruptedException e)

{

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

void mysuspend()

{

suspendFlag = true;

}

synchronized void myresume()

{

suspendFlag = false;

notify();

}

}

class SuspendResume

 {

public static void main(String args[])

{

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

try

 {

Thread.sleep(1000);

ob1.mysuspend();

System.out.println("Suspending thread One");

Thread.sleep(1000);

ob1.myresume();

System.out.println("Resuming thread One");

ob2.mysuspend();

System.out.println("Suspending thread Two");

Thread.sleep(1000);

ob2.myresume();

System.out.println("Resuming thread Two");

}

catch (InterruptedException e)

 {

System.out.println("Main thread Interrupted");

}

// wait for threads to finish

try

{

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

}

 catch (InterruptedException e)

 {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

Output:

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

One: 3

Two: 3

One: 2

Two: 2

One: 1Two: 1

One exiting.

Two exiting.

Suspending thread One

Resuming thread One

Suspending thread Two

Resuming thread Two

Waiting for threads to finish.

Main thread exiting.

14. Explain about type wrappers in java.

Java uses primitive types (also called simple types), such as int or double, to hold the basic data types supported
by the language. Primitive types, rather than objects, are used for these quantities for the sake of performance.
Using objects for these values would add an unacceptable overhead to even the simplest of calculations. Thus,
the primitive types are not part of the object hierarchy, and they do not inherit Object.

Despite the performance benefit offered by the primitive types, there are times when you will need an object
representation. For example, you can’t pass a primitive type by reference to a method. Also, many of the
standard data structures implemented by Java operate on objects, which means that you can’t use these data
structures to store primitive types. To handle these situations, Java provides type wrappers, which are classes
that encapsulate a primitive type within an object.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and Boolean. These classes offer a
wide array of methods that allow you to fully integrate the primitive types into Java’s object hierarchy.

Character:

Character is a wrapper around a char. The constructor for Character is Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object being created.

To obtain the char value contained in a Character object, call charValue(), shown here:

char charValue()

It returns the encapsulated character.

Boolean

Boolean is a wrapper around boolean values. It defines these constructors:

Boolean(boolean boolValue)

Boolean(String boolString)

In the first version, boolValue must be either true or false. In the second version, if boolString contains the string
“true” (in uppercase or lowercase), then the new Boolean object will be true. Otherwise, it will be false.

To obtain a boolean value from a Boolean object, use booleanValue(), shown here:

boolean booleanValue()

It returns the boolean equivalent of the invoking object.

The Numeric Type Wrappers

By far, the most commonly used type wrappers are those that represent numeric values. These are Byte, Short,
Integer, Long, Float, and Double. All of the numeric type wrappers inherit the abstract class Number. Number
declares methods that return the value of an object in each of the different number formats. These methods are
shown here:

byte byteValue()

double doubleValue()

float floatValue()

int intValue()

long longValue()

short shortValue()

For example, doubleValue() returns the value of an object as a double, floatValue() returns the value as a float,
and so on. These methods are implemented by each of the numeric type wrappers.

All of the numeric type wrappers define constructors that allow an object to be constructed from a given value,
or a string representation of that value. For example, here are the constructors defined for Integer:

Integer(int num)

Integer(String str)

If str does not contain a valid numeric value, then a NumberFormatException is thrown. All of the type wrappers
override toString(). It returns the human-readable form of the value contained within the wrapper. This allows
you to output the value by passing a type wrapper object to println(), for example, without having to convert it
into its primitive type.The following program demonstrates how to use a numeric type wrapper to encapsulate
a value and then extract that value.

// Demonstrate a type wrapper.

class Wrap {

public static void main(String args[]) {

Integer iOb = new Integer(100);

int i = iOb.intValue();

System.out.println(i + " " + iOb); // displays 100 100

}

}

This program wraps the integer value 100 inside an Integer object called iOb. The program then obtains this
value by calling intValue() and stores the result in i.

The process of encapsulating a value within an object is called boxing. Thus, in the program,

this line boxes the value 100 into an Integer:

Integer iOb = new Integer(100);

The process of extracting a value from a type wrapper is called unboxing. For example, the

program unboxes the value in iOb with this statement:

int i = iOb.intValue();

The same general procedure used by the preceding program to box and unbox values has been employed since
the original version of Java. However, with the release of JDK 5, Java

fundamentally improved on this through the addition of autoboxing, described next.

15. Explain about autoboxing and unboxing.

Beginning with JDK 5, Java added two important features:

 autoboxing and auto-unboxing.

 Autoboxing is the process by which a primitive type is automatically encapsulated (boxed) into its equivalent
type wrapper whenever an object of that type is needed. There is no need to explicitly construct an object.

Auto-unboxing is the process by which the value of a boxed object is automatically extracted (unboxed) from a
type wrapper when its value is needed. There is no need to call a method such as intValue() or doubleValue().

The addition of autoboxing and auto-unboxing greatly streamlines the coding of several algorithms, removing
the tedium of manually boxing and unboxing values. It also helps prevent errors. Moreover, it is very important
to generics, which operates only on objects. Finally, autoboxing makes working with the Collections Framework
much easier.

With autoboxing it is no longer necessary to manually construct an object in order to wrap a primitive type. You
need only assign that value to a type-wrapper reference. Java automatically constructs the object for you. For
example, here is the modern way to construct an Integer object that has the value 100:

Integer iOb = 100; // autobox an int

Notice that no object is explicitly created through the use of new. Java handles this for you, automatically.

To unbox an object, simply assign that object reference to a primitive-type variable. For example, to unbox iOb,
you can use this line:

int i = iOb; // auto-unbox

Java handles the details for you.

Here is the preceding program rewritten to use autoboxing/unboxing:

// Demonstrate autoboxing/unboxing.

class AutoBox

 {

public static void main(String args[])

{

Integer iOb = 100; // autobox an int

int i = iOb; // auto-unbox

System.out.println(i + " " + iOb); // displays 100 100

}

}

Autoboxing/Unboxing Boolean and Character Values

Java also supplies wrappers for boolean and char. These are Boolean and Character. Autoboxing/unboxing
applies to these wrappers, too. For example, consider the following program:

// Autoboxing/unboxing a Boolean and Character.

class AutoBox5

{

public static void main(String args[])

{

Boolean b = true;

if(b)

 System.out.println("b is true");

Character ch = 'x'; // box a char

char ch2 = ch; // unbox a char

System.out.println("ch2 is " + ch2);

}

}

The output is shown here:

b is true

ch2 is x

CS3391/OBJECT ORIENTED PROGRAMMING

Unit-III

Part-A

2. What is an exception?
Exception is an abnormal condition which occurs during the execution of a program and disrupts normal flow of
the program. This exception must be handled properly. If it is not handled, program will be terminated abruptly.

3. How the exceptions are handled in java? OR Explain exception handling mechanism in java?
Exceptions in java are handled using try, catch and finally blocks.

try block : The code or set of statements which are to be monitored for exception are kept in this block.

catch block : This block catches the exceptions occurred in the try block.

finally block : This block is always executed whether exception is occurred in the try block or not and occurred
exception is caught in the catch block or not.

4. What is the difference between error and exception in java?
Errors are mainly caused by the environment in which an application is running. For example,
OutOfMemoryError happens when JVM runs out of memory. Where as exceptions are mainly caused by the
application itself. For example, NullPointerException occurs when an application tries to access null object.

5. Can we write only try block without catch and finally blocks?
No, It shows compilation error. The try block must be followed by either catch or finally block.

You can remove either catch block or finally block but not both.

5. What is unreachable catch block error?

When you are keeping multiple catch blocks, the order of catch blocks must be from most specific to most
general ones. i.e sub classes of Exception must come first and super classes later. If you keep super classes first
and sub classes later, compiler will show unreachable catch block error.

7. Describe the hierarchy of exceptions in java?
All exception types are subclasses of the built-in class Throwable. Thus, Throwable is at the top of the
exception class hierarchy.

Immediately below Throwable are two subclasses that partition exceptions into two distinct branches.

One branch is headed by Exception. This class is used for exceptional conditions that user programs should catch.
This is also the class that you will subclass to create your own custom exception types. There is an important
subclass of Exception, called RuntimeException. Exceptions of this type are automatically defined for the
programs that you write and include things such as division by zero and invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected to be caught under normal
circumstances by your program. Exceptions of type Error are used by the Java run-time system to indicate errors
having to do with the run-time environment, itself. Stack overflow is an example of such an error.

8. What are run time exceptions in java. Give example?
The exceptions which occur at run time are called as run time exceptions. These exceptions are unknown to
compiler. All sub classes of java.lang.RunTimeException and java.lang.Error are run time exceptions. These
exceptions are unchecked type of exceptions. For example, NumberFormatException, NullPointerException,
ClassCastException,

9. What are checked and unchecked exceptions in java?
Checked exceptions are the exceptions which are known to compiler. These exceptions are checked at compile
time only. Hence the name checked exceptions. These exceptions are also called compile time exceptions.
Because, these exceptions will be known during compile time.

Unchecked exceptions are those exceptions which are not at all known to compiler. These exceptions occur only
at run time. These exceptions are also called as run time exceptions. All sub classes of
java.lang.RunTimeException and java.lang.Error are unchecked exceptions.

10. What is Re-throwing an exception in java?
Exceptions raised in the try block are handled in the catch block. If it is unable to handle that exception, it can
re-throw that exception using throw keyword. It is called re-throwing an exception.

11. What is the use of throws keyword in java?
If a method is capable of causing an exception that it does not handle, it must specify this behavior so that
callers of the method can guard themselves against that exception. You do this by including a throws clause in
the method’s declaration. A throws clause lists the types of exceptions that a method might throw. This is
necessary for all exceptions, except those of type Error or RuntimeException, or any of their subclasses. All other
exceptions that a method can throw must be declared in the throws clause. If they are not, a compile-time error
will result.

12. What is the difference between final, finally and finalize in java?
final keyword :

final is a keyword which is used to make a variable or a method or a class as “unchangeable“.

finally Block :

finally is a block which is used for exception handling along with try and catch blocks. finally block is always
executed whether exception is raised or not and raised exception is handled or not. Most of time, this block is
used to close the resources like database connection, I/O resources etc.

finalize() Method :

finalize() method is a protected method of java.lang.Object class. It is inherited to every class you create in java.
This method is called by garbage collector thread before an object is removed from the memory. finalize()
method is used to perform some clean up operations on an object before it is removed from the memory.

13. How do you create customized exceptions in java?

In java, we can define our own exception classes as per our requirements. These exceptions are called user
defined exceptions in java OR Customized exceptions. User defined exceptions must extend any one of the
classes in the hierarchy of exceptions.

14. What is the difference between throw, throws and throwable in java?
throw In Java :

throw is a keyword in java which is used to throw an exception manually. Using throw keyword, you can throw
an exception from any method or block. But, that exception must be of type java.lang.Throwable class or it’s sub
classes. Below example shows how to throw an exception using throw keyword.

throws In Java :

throws is also a keyword in java which is used in the method signature to indicate that this method may throw
mentioned exceptions. The caller to such methods must handle the mentioned exceptions either using try-catch
blocks or using throws keyword. Below is the syntax for using throws keyword.

Throwable In Java :

Throwable is a super class for all types of errors and exceptions in java. This class is a member of
java.langpackage. Only instances of this class or it’s sub classes are thrown by the java virtual machine or by the
throw statement. The only argument of catch block must be of this type or it’s sub classes. If you want to create
your own customized exceptions, then your class must extend this class. Click here to see the hierarchy of
exception classes in java.

26. Which class is the super class for all types of errors and exceptions in java?
java.lang.Throwable is the super class for all types of errors and exceptions in java.

27. Define Process-based multitasking: (Multiprocessing)
A process is a program that is executing. Thus, process-based multitasking is the feature that allows your
computer to run two or more programs concurrently. For example, process-based multitasking enables you to
run the Java compiler at the same time that you are using a text editor or visiting a web site. In process-based
multitasking, a program is the smallest unit of code that can be dispatched by the scheduler.

28. Define Thread-based multitasking: (Multithreading)
In a thread-based multitasking environment, the thread is the smallest unit of dispatchable code. This means
that a single program can perform two or more tasks simultaneously. For instance, a text editor can format text
at the same time that it is printing, as long as these two actions are being performed by two separate threads.
Thus, process-based multitasking deals with the “big picture,” and thread-based multitasking handles the
details.

29. Differentiate between multitasking and multithreading.

Sl.n
o.

Multitasking Multithreading

1 It is a process of executing many processes
running simultaneously.

It is a process of executing multiple threads(sub-
process).

2 Process is program in execution. They are
Heavy weight.

Thread is basically a lightweight sub-process. It is a
smallest unit of processing.

https://javaconceptoftheday.com/hierarchy-exceptions-java/

3 In multi tasking separate memory is
allocated to each process.

Threads(sub-process) are sharing common
memory.

4 Interprocess communication is expensive Inter thread communication is inexpensive .

5 Context switching from one process to
another is costly.

Context switching from one thread to another is
inexpensive.

30. Define Multithreading.
Multithreading enables to write efficient programs that make maximum use of the processing power available
in the system. One important way multithreading achieves this is by keeping idle time to a minimum.

31. List are the States of thread.
• A thread can be running. It can be ready to run as soon as it gets CPU time.
• A running thread can be suspended, which temporarily halts its activity.
• A suspended thread can then be resumed, allowing it to pick up where it left off.
• A thread can be blocked when waiting for a resource.
• At any time, a thread can be terminated, which halts its execution immediately. Once terminated,

a thread cannot be resumed.
32. How can you create thread in Java?
Java defines two ways for creating thread.
1) By extending the Thread class.
2) By implement the Runnable interface.

33. What do you mean by synchronization?
When two or more threads need access to a shared resource, they need some way to ensure that the resource
will be used by only one thread at a time. The process by which this is achieved is called synchronization. Java
provides unique, language-level support for it.

Synchronization can be done in two ways:

3) Using Synchronized Methods
4) Using synchronized Statement or synchronized block

34. What is the need for synchronization?
The synchronization is mainly used to

• To prevent thread interference.
• To prevent consistency problem.

35. What is meant by monitor?
A monitor is an object that is used as a mutually exclusive lock. Only one thread can own a monitor at a given
time. When a thread acquires a lock, it is said to have entered the monitor. All other threads attempting to
enter the locked monitor will be suspended until the first thread exits the monitor. These other threads are
said to be waiting for the monitor. A thread that owns a monitor can reenter the same monitor if it so desires.

36. How will you set the priority of the thread?
Thread priorities are used by the thread scheduler to decide when each thread should be allowed to
run. In theory, higher-priority threads get more CPU time than lower-priority threads.

To set a thread’s priority, use the setPriority() method.

final void setPriority(int level)

The value of level must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these
values are 1 and 10, respectively. To return a thread to default priority, specify NORM_PRIORITY,
which is currently 5.

Part-B

23. Develop a java program for handling divide by zero exception with multiple catches.
24. Develop a java program for handling ArrayIndexOutOfBoundsException exception
 with finally block.

25. Develop a java program for exception handling with throw and throws keyword.
26. Explain nested try/catch with example program.
27. Develop a java program with multiple catch clauses.
28. Develop a java program with multicatch that can handle both ArithmeticException
 and IndexOutOfBoundsException.

29. Discuss about exception handling in nested try/catch.
30. Explain about types of exception with an example.
31. Develop a Java program to implement user defined exception handling.
32. Discuss the life cycle of threads with neat diagram.
33. Develop a program for creating threads by using Thread class and Runnable interface.
34. Why do we need both start() and run() method both? can we achieve it with only run() method?
35. Write a java program that synchronize three threads of the same program and display the content

the text supplied through these threads.
36. Develop a java program that provide synchronization for two threads deposit and withdraw in a bank

application.
37. Define thread. Explain the state of threads. State reason for synchronization in thread.
 Write simple concurrent programming to create, sleep and delete thread.
38. What is thread synchronization? Discuss with an example.
39. Write a java program for inventory problem to illustrate the usage of thread synchronized keyword

and interthread communication process. They have three classes called consumer, producer and
stock.

40. Write a java program that implements a multi-threaded application that has three threads. First
thread generates a random integer every 1 second and if the value is even, second thread computes
the square of the number and prints. If the value is odd, the third thread will print the value of cube of
the number.

41. Develop a java application program for generating four threads to perform the following operation.
v) Getting N numbers as input
vi) Printing even numbers
vii) Printing odd numbers.
viii) Computing the average

42. Explain about wrapper classes.
43. Elaborate in detail about autoboxing.
44. Discuss about Suspending, Resuming, and Stopping Threads.

