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CS3301 DATA STRUCTURES LTPC 3003
OBJECTIVES:
e To understand the concepts of ADTs

To Learn linear data structures — lists, stacks, and queues

To understand non-linear data structures — trees and graphs.

To understand sorting, searching and hashing algorithms

To apply Tree and Graph structures

UNIT I LISTS 9
Abstract Data Types (ADTs) — List ADT — Array-based implementation — Linked list
implementation — Singly linked lists — Circularly linked lists — Doubly-linked lists —
Applications of lists — Polynomial ADT — Radix Sort — Multilists.

UNIT 11 STACKS AND QUEUES 9
Stack ADT — Operations — Applications — Balancing Symbols — Evaluating arithmetic
expressions- Infix to Postfix conversion — Function Calls — Queue ADT — Operations —

Circular Queue — DeQueue — Applications of Queues.

UNIT 11 TREES 9
Tree ADT — Tree Traversals - Binary Tree ADT — Expression trees — Binary Search Tree
ADT — AVL Trees — Priority Queue (Heaps) — Binary Heap.

UNIT IV MULTIWAY SEARCH TREES AND GRAPHS 9
B-Tree — B+ Tree — Graph Definition — Representation of Graphs — Types of Graph -
Breadth-first traversal — Depth-first traversal — Bi-connectivity — Euler circuits —
Topological Sort — Dijkstra's algorithm — Minimum Spanning Tree — Prim's algorithm —

Kruskal's algorithm

UNIT V SEARCHING, SORTING AND HASHING TECHNIQUES 9
Searching — Linear Search — Binary Search. Sorting — Bubble sort — Selection sort — Insertion
sort — Shell sort —. Merge Sort — Hashing — Hash Functions — Separate Chaining — Open
Addressing — Rehashing — Extendible Hashing.
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TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
« Define linear and non-linear data structures.
o Implement linear and non-linear data structure operations.
e Use appropriate linear/non—linear data structure operations for solving a given
problem.
o Apply appropriate graph algorithms for graph applications.
e Analyze the various searching and sorting algorithms.
TEXT BOOKS:
1. Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, 2nd Edition,
Pearson Education,1997.
2. Kamthane, Introduction to Data Structures in C, 1st Edition, Pearson Education, 2007

REFERENCES:
1. Langsam, Augenstein and Tanenbaum, Data Structures Using C and C++, 2nd Edition,

Pearson Education, 2015.

2. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein,
“Introduction to Algorithms”, Second Edition, Mcgraw Hill, 2002.

3. Alfred V. Aho, Jeffrey D. Ullman,John E. Hopcroft ,Data Structures and Algorithms,
1st edition, Pearson, 2002.

4. Kruse, Data Structures and Program Design in C, 2nd Edition, Pearson Education,

2006.
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UNIT I LISTS 9
Abstract Data Types (ADTs) — List ADT — Array-based implementation — Linked list
implementation — Singly linked lists — Circularly linked lists — Doubly-linked lists —
Applications of lists — Polynomial ADT — Radix Sort — Multilists.

Abstract Data Types

An abstract data type (ADT) is a set of operations. Abstract data types are
mathematical abstractions; ADT's defines how the set of operations is implemented.
This can be viewed as an extension of modular design.

Objects such as lists, sets, and graphs, along with their operations, can be
viewed as abstract data types, just as integers, reals, and booleans are data types.
Use of ADT

Reusability of the code, that the implementation of these operations is written
once in the program, and any other part of the program that needs to perform an
operation on the ADT can do so by calling the appropriate function.
The List ADT

A general list of the form al, a2, a3, . . ., an. We say that the size of this list is
n. We will call the special list of size 0 a null list. For any list except the null list, we
say that ai+ follows (or succeeds) ai (i < n) and that ai-1 precedes ai (i > 1).

The first element of the list is a;, and the last element is an. there is no
predecessor of al or the successor of a,. The position of element ai in a list is I.
Some operations in list are,

1. Find, which returns the position of the first occurrence of a key;

2. Insert and delete, which generally insert and delete some key from some
position in the list;

3. Find_kth, which returns the element in some position (specified as an
argument).

Example:

1. Ifthe listis 34, 12, 52, 16, 12, then find(52) might return 3;
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2. Insert(x,3) might make the list into 34, 12, 52, x, 16, 12 (if we insert
after the position given);
3. Delete (3) might turn that list into 34, 12, x, 16, 12.
IMPLEMENTATION OF THE LIST
1. Array implementation

2. Linked list implementation
Simple Array Implementation of Lists
Normally array is static allocation which causes more wastage of memory.
Even if the array is dynamically allocated, an estimate of the maximum size of
the list is required. Usually this requires a high over-estimate, which wastes
considerable space. This could be a serious limitation, especially if there are many

lists of unknown size.

LIST ADT

List is an ordered set of elements,

The general form of the list is
A ALA,, ... A,
A, -First element of the list
A, - Last element of the list
N - Size of the list
If the element at position i is A, then its successor is A, and its predecessor is A_.

various operations performed on List
1. Insert (X, 5) - Insert the element X afier the position 5.
.Delete (X) - The element X is deleted

(-]

.Find (X) - Returns the position of X.

R SN OS]

. Next (1) - Returns the position of its successor element i+1.
. Previous (i) - Returns the position of its predecessor i-1.

.Print list - Contents of the list is displayed.

. Makeempty - Makes the list empty.

~J N wn
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ARRAY BASED IMPLEMENTATION OF LIST

Array is a collection of specific number of data stored in a consecutive memory locations.

20| 10| 30| 40| 50 [ 60

A[0] A[1] A[2] A[3] A[4] A[5]
Ea

( 2
)pﬂ'atlons on Array

. Insertion
= Deletion

- Merge

= Traversal
- Find
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)

32 s gl \
//—::ﬂ’ ; . ; .

pnonA nt into the existing array. |4 can § \

ion Operatio . an cleme€
sertl ding

ln 8d . it > e cd
. is the process of the end is easy a8 lt.ls done by adding o, hosi on, v
Insertion . an element at he array Size. o,
sition. '"si:nl:::t‘ if it does not exceeds ",
right of last €
Example : a5 |:10: [30° | 42
Af0] Alll Al2] Afm Al4] AB]

N

-
Insert (70, A) ol B

A[0] All] Al2] ABI A;4] A[S]

N
i i iti en it will requi
If an element is to be inserted at the spec:fl.ed position, th quire all the Subgqm:
elements to be shifted one position to the right.

Example :

5 10 15
Al0] Afl] A[f2] A[3] A[4]

N
Insert (18, 1, A) // Insert an element 18 at the position 1

First shift last element (15) one P
position right (location 2 to 3) S [0 _“‘fg‘v':" .

Al0] Al AZ] ADG] Al

Shift (10) one position right et
(from location 1 to 2)rl rien S FE 10] 15
A[0] A[l1] A[2] A[3] A[4]
!

Now insert (18) at position 1
and update the array index : il o

N 4
asN- | Al0] AN} A[2) A[3) Al4]
Fig. 3.2 Insertion in List
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= e s 2nErNON I List

outine to Insert an Elenlent m the Ar
ra

—ﬂfffﬁﬁﬂ
// X is an element, P is a positio™

. A
{ . //number of elements in the array

void insert (int X, int P, ing Al int N}-

Soarned with CamScanner

printf (“Array Overf ow')

else

{ -

for (int | =N-I;i>=p; i
Ali+ 1] = Afi;

A[P] =X

N=N-+1;

}
.ﬂ{}dion Open,ﬁon on Array

peletion is the process of removing an clemen
i clement from the end is easy since afier removin

=)

t fr
om the array at any position. Deleting an

an :
£an elemeny, array size alone gets d W

| by one:
;lmmp]e:
| 5 8 10 15
| AIO] A[1] AL2] A[3] A[4)
jmrmﬁng Last element 15 : L
5 8 10
A[0] A[1] A[2] A[3] A[4]
t
N

N

fuckement is to be deleted from any particular position other than end, then it will require all the
icquent element from that position is shifted one position towards left.

5 8 |10 |15
A[0] A[1] A[2] A[3] A[4]

Yeean clement from the position 1 :

RemOVC .a[.l element (8) 5 - .‘_ 10 15
position 1

A[0] A[1] A2] A[3] Al

Shift the element (10) 5 10 ;- 15
M location 2 to 1 e

Am]An]&n A[3] A[4]
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v u)),'r"""nm

1 i

ol the clement (15) 15
: 9
from location 3 102 v il N2 ADT AT
Fig, 3.3 Deletion in List
Finally update the Array ndex N as N-1
Merpe .

Merginig 15 the process of combining w0 sorted array into single ey

A ' 1y,

2 1 0O ' J §
AO) AT AL2) AT AL BIOT B{1) Bl "

plalala]o]®
0] Q1) 2] CBI i CIs) clo €1 ci cpo
Fig. 3.3 Merging of two sorted list

Routine o delete an element from an array

it deletion (it . int A[ . int N)
{
if(P==N-1)
temp = A[P];  //temp is the element to be deleted
else |
!
temp = A[P]:
for (i=P; i<N-1; 1 +4)
Ali] = Ali + 1], // movement towards left.
)
N=N-I;
return temp;
’ -
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Routine to Merge two sorted array

r void merge (int a[ |; int N, int bl ], intm)
[
intc[ntm;

inti=j=k=0,

Scarned with CamScanner

while (i 0 && j = )

f
i

if (ali] < b(j))

/
'

clk) “ali

B
k4,
|
clse
{
c[k] = bij),
k4,
!
}
while (1 < n)
{
c[k] = a[i];
++;
k++:
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e e —————————————

}
LT (,ptrllifm

array. If the element is found, 1t
‘. '

g ;. " o

S the . . . -
the process of searching an element 1 the given

ULL.

|
“lurng the posit; therwise N
position of the search ¢lement 0

Scarred with CamScanner

\\n‘ \

4 (intx. 2y

int fir
=0
int flag=" i)
for(inti=0; i<N;
| irx==2l)
{
flag= s
pos =
break ;
}
}
| ﬂ - l) it ”
o print (“Element found at position pos”)
else

printf (“element not found”);

return pos;

e

Other limitations are,

e Printing the list element and find to be carried out in linear time, which
is as good as can be expected, and the find_kth operation takes constant
time.

e Insertion and deletion are expensive. Because the running time for

insertions and deletions is so slow and the list size must be known in

advance.
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Linked Lists Implementation

In order to avoid the linear cost of insertion and deletion, we need to ensure
that the list is not stored contiguously, since otherwise entire parts of the list will need
to be moved.

Definition:

The linked list consists of a series of structures, which are not necessarily
adjacent in memory. Each structure contains the element and a pointer to a
structure containing its successor. We call this the next pointer. The last cell's
next pointer is always NULL.

Structure of linked list

| ——- e iy = i ) | ——= s o

P is declared to be a pointer to a structure, then the value stored in p is
interpreted as the location, in main memory, where a structure can be found.

A field of that structure can be accessed by p->field_name, where field_name
is the name of the field.

Consider the list contains five structures, which happen to reside in memory
locations 1000, 800, 712, 992, and 692 respectively. The next pointer in the first
structure has the value 800, which provides the indication of where the second
structure is located.

Actual representation of linked list with value and pointer

a, ism‘ | |m‘ ‘ ay |02 | a, 692 ‘ a5 u‘
]
1000 %00 T3 503 £97

Deletion from a linked list

EREE NG EaE ENES N

Insertion into a linked list
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F‘“l —I—"ﬂ: | R ‘i a ~‘—-ﬂ4 —’—-ﬂs T

e The delete command can be executed in one pointer change. Above
diagram shows the result of deleting the third element in the original list.
e The insert command requires obtaining a new cell from the system by

using an malloc call function and then changing two pointer.

Programming Details

o First,It is difficult to insert at the front of the list from the list given.

e Second, deleting from the front of the list is a special case, because it changes
the start of the list;

e A third problem concerns deletion in general. Although the pointer moves
above are simple, the deletion algorithm requires us to keep track of the cell
before the one that we want to delete.

In order to solve all three problems, we will keep a sentinel node, which is called as a
header or dummy node. (a header node contains the address of the first node in
the linked list)

Linked list with a header

|header |—-| i F—-— iy dy | == iy —I'—" as “'ﬁ_
/
L

The above figure shows a linked list with a header representing the list al, a2, . . ., a5.
To avoid the problems associated with deletions, we need to write a routine

find_previous, which will return the position of the predecessor of the cell we wish to

delete.

If we use a header, then if we wish to delete the first element in the list, find_previous

will return the position of the header.
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Type declarations for linked lists

typedef struct node *node_ptr;
struct node
{
element_type element;
node_ptr next; H
typedef node_ptr LIST,;
typedef node_ptr position;
Empty list with header

hfﬂiifr _"j_

L

Function to test whether a linked list is empty
intis_empty( LIST L)
{
return( L->next == NULL ); }
Function to test whether current position is the last in a linked list
int is_last( position p, LIST L)

{
return( p->next == NULL );

}
Function to find the element in the list
[* Return position of x in L; NULL if not found */
Position find ( element_type x, LIST L)
{
position p;
p = L->next;
while( (p '= NULL) && (p->element I=x) )
p = p->next;

return p; }
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Function to delete an element in the list

This routine will delete some element x in list L. We need to decide what to do
If x occurs more than once or not at all. Our routine deletes the first occurrence of x
and does nothing if x is not in the list. First we find p, which is the cell prior to the one
containing X, via a call to find_previous.
/* Delete from a list. Cell pointed to by p->next is wiped out. */
/* Assume that the position is legal. Assume use of a header node. */

Void delete( element_type x, LIST L)

{ position p, tmp_cell;

p = find_previous( x, L );

If( p->next 'I= NULL ) /* Implicit assumption of header use */

{ /* xis found: delete it */

tmp_cell = p->next;

p->next = tmp_cell->next; /* bypass the cell to be deleted */

free(tmp_cell ); } }
Function to find previous position of an element in the list

The find_previous routine is similar to find.
/* Uses a header. If element is not found, then next field of returned value is NULL */

Position find_previous( element_type x, LIST L)

{

position p;

p=L;

while( (p->next 1= NULL) && (p->next->element = x) )
p = p->next;

return p;

}

Function to insert an element in the list
Insertion routine will insert an element after the position implied by p. It is
quite possible to insert the new element into position p which means before the

element currently in position p.
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I* Insert (after legal position p). Header implementation assumed. */
Void insert ( element_type x, LIST L, position p )
{
position tmp_cell;
tmp_cell = (position) malloc( sizeof (struct node) );
If( tmp_cell == NULL )
fatal_error(Out of space!!!");
else
{
tmp_cell->element = X;
tmp_cell->next = p->next;
p->next = tmp_cell,
}}
Function to delete the list
/* Incorrect way to delete a list*/
delete_list( LIST L)
{
position p;
p = L->next; /* header assumed */
L->next = NULL;
while( p '= NULL)

{

free(p);

p = p->next;
} }

Function to delete the list

/* correct way to delete a list*/
Void delete list( LIST L)
{
position p, tmp;

p = L->next; /* header assumed */
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L->next = NULL;
while(p '=NULL)
{
tmp = p->next;
free(p);
p =tmp;
¥l
Doubly Linked Lists
A linked list is called as doubly when it has two pointers namely forward and

backward pointers. It is convenient to traverse lists both forward and backwards.
An extra field in the data structure, containing a pointer to the previous cell;
The cost of this is an extra link, which adds to the space requirement and also doubles
the cost of insertions and deletions because there are more pointers to fix.
Node

' DATA :
BLINK| ELEMENT | FLINK

A doubly linked list

riesder | <]
o el e T [T

Structure declaration

struct node

{

int Element;

struct node *FLINK;
struct node *BLINK;

}
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Insertion

void Insert (int X, List I, Position P)
{

struct node * Nevwnode;
Newnode — malloc (sizeof (struct node)):
- if (NNevwnode ' = INUL.L)

< ;
Newnode —> Element = X3
Nevwnode — Flink=P — Flink;.
P — Flink — Blink = Newnode;
P — Flink = Newnode ;
Newnode —> Blink = P3

3

Insert(15,L,P)

L] e N
T // // [T

.

Cpopp

Nownode

Deletion:
Nartal DOl ot ey it N b oaxt L )
R
| RS TS T R TR W
| 3 Finevcd (X . L))

AT ¢ sl _aaxst (B L))
2
Leanag> < &%
| 5 > ERxlismak > R limank

NUL R
troec  Yomagpy ),

wlisas

o~

Aoanys — ¥
I —>» EliaaN > P linnk = B —>» ¥ 1zaak:
P - Flimak —>» BRlimaA <= ¥ > Edlamadc

oo CLVomapyy

w

w
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Circularly Linked Lists

A linked list is called as circular when its last pointer point to the first cell in
the linked list forms a circular fashion. It can be singly circular and doubly circular
with header or without header.

Singly Circular linked list:

4 singly linked circular list is 2 linked list in which the lzst node of the jist points to e

fovat vicsde
st nooe.

Hezder

L

Hezder 4
”

"’; s 10 —t—> 20 30

Structure declaration:

struct node

{

int Element;

struct node *Next; }

Insert at beginning:
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void Insert_beg(int X, List L)

¢ node - Noewnode:
oc (sizeof’ (struct nod<es))s

struact

if‘(Newnc»de-’ — NuUL.L)>

{ _ =
Newnode — Element — 23X

= I _. —e INe>xTt :

Newnode — INeXxt

I —e INext — Nevwvwnode:

>

r

[[reeae [ <]

S T = I 201

Insert in middle:
void insert_mid(int X, List L, Position P)

{
struct node *Newnode:
Newnode = malloc(sizeof (struct node));
if (Newnode ! = NULL) )
1
Newnode — Element = x;
Newnode — Next =P — Next;
P — Next = Newnode;
H
H
[ Header {l
L -
10 q—-{ 20 ' >~ I I 30 I
. P -
rt (25, L. P)
Header AJ
i -
10 - 20 = 30 ol
) .
P -7 s
- - - \‘
s ~\
S~ 25 ]2

Newnode
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Insert at Last
[ void Insert_last (int X, List L)
{

struct node * Newnode;
Newnode = malloc(sizeof (struct node));
if Newnode ! =NULL)
{

P=L;

while (P — Next ! =L)

P=P— Next,;
Newnode — Element = X;

P — Next = Newnode;

Newnode = Next =L;

CS3301 - DATASTRUCTURES

}
}
' r Header ’
: L
20
t(40, L)
Header

L

Tl 20 [ 0 |~
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Deletion at first node:

“void dele_First (Last L)

e
1
position Temp:
Temp = L — Next;

L — Next = Temp — Next:
free (Temp):

R

Header \

< 20 q—— 30 ]

Header \

Deletion at middle

void dele_ _mid (nt X, L.ist L)
< -

Position P, Temp:
P — FindPreviocous (X.L.):
if (! Islast (FP.LL))

<

Temp — P — Next:

P — ™Next — Temp —— Next;
free (Temp):

Temp

Delete (30. L)

[ v |

10

20 I - l - '{ 40 I
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Deletion at last:

void dele last (List L)
i
Position Temp. P.-
P=L:
while (P — Next — Next ! = L)
P =P — Next:
Temp = P — Next :
P — Next = L.:
free (Temp):
H

Doubly Linked list
A doubly circular linked list is a doubly linked list in which forward link of the

last node points to the first node and backward link of first node points to the last

node of the list.

> Header

| &

Header

P - - ™)
| 10 20 |* | 30 |
Blink Flink

Structure Declaration:
struct node

{

int Element;

struct node *FLINK;
struct node *BLINK;

}
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Insert at beqginning:

void Insert_beg (int X, List L)
{
Position Newnode:
Newnode = malloc (sizeof (struct node)):

if Newnode ! = NULL)

{

{
Newnode — Element = X3
Newnode — Flink =L — Flink:
L — Flink — Blink = Newnode;
L — Flink = Newnode;
Newnode — Blink =L;

H

h
}
‘—I {
/ g I Header ,
L

Insert (10,L)

=,
| &ﬂ o L]

20 30 40

Newnode

Insert at Middle:

i void Insert_mmid (1t X, L.ist x_. Position B ==

)
{

Position Nevwnode:

Nevwnode — malloc (sizeof (struct node))
< s

if (Nevwnode ' = NUL.L.)

4
Nevwnode — Element — s
Nevwnode — Flink — P o Flink ;
P — Flink — Blink — Newnode;,

Nevwnode — Blink — P-

P — Flink — Nevwnode;
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Header

L

Insert (25, L, P)

CS3301 - DATASTRUCTURES

10

N

) Header L

Insert at Last:

woitadd Tniscout

.
T

T

laast Cinnt NX. 1

it 1.)

Position Noeswnodoeo 172

Noewnode ==

it (Nevwnode ! = ™NUL.LYD

malloc (sizcot (struct node))d:

{
P = 1.z
swhile (PP — Flink = 1.)

P = l’»—» Flinks
Newnode — Element = X3
P — Flink — WNewnodes:
Newnode — Flink = L.z
Newnode — Blink = P32
I — Blink — Newnode
>
L
5
/ ~
Header o )
]
L
| 10 20
Insert (30, L) -
i Headelj e
L
[ —] = |

4\ 2(:)\

newnode
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Deletion

Deleting First node
void dele_first(List L)

s
i
FPosition Temp:
if (- — Flink ! — NULYL)
£ Temp — 1. —a Flink:
I — Flimk — Temp — Flink-
Temp — Flink — . Blink — [ _-
free Cfemp): )
3
3

Deletion at middle:

void dele_mid (int X, List L)
{ Position P, Temp;

P=FindPrevious(X);

if (! Islast (P,L.))

{
Temp = P — Flink;
P — Flink = Temp — Flin'k:
temp — Flink — Blink = })’;
free (Temp):
3

3

Delete (20, | 9y}
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Deletion at Last node:

void dele_last (L.ist L)
4
Position Temp:;
P =Y.z
while (P — Flink ! = L)
P=P — Flink:
Temp — P3
P — Blink — Flink = 1 _:
E. —— ki — P ——— EESaenis
fre=— € E<===m§g> 3 -

Wy

Header -

e 1 . 3 {
Header 10 |*7] N | > |

Application of linked list

Three applications that uses linked lists are,
1. The Polynomial ADT
2. Radix sort
3. Multilist
1) Polynomial ADT:

» To overcome the disadvantage of array implementation an alternative way is to
use a singly linked list.
» Each term in the polynomial is contained in one cell, and the cells are sorted in

decreasing order of exponents.
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Coeff Exponent Next

A first example where linked lists are used is called The Polynomial ADT.

Example:
P1:4X1045X5+3
P2:10X5-5X2+2X

Strucuture declarations for Linked List Implementation of the polynomial ADT:

struct link
{
int coeff;
int pow;

struct link *next;
};struct link *poly1=NULL,*poly2=NULL,*poly=NULL;

Procedure to add two polynomials
void polyadd(struct link *poly1,struct link *poly2,struct link *poly)

{
while(polyl->next != NULL && poly2->next 1= NULL)

{
if(polyl->pow > poly2->pow)
{
poly->pow=polyl->pow;
poly->coeff=polyl->coeff;
polyl=polyl->next; }
else if(polyl->pow < poly2->pow)
{
poly->pow=poly2->pow;
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poly->coeff=poly2->coeff;
poly2=poly2->next;

}
else

{
poly->pow=poly1->pow;
poly->coeff=polyl->coeff+poly2->coeff;
polyl=polyl->next;
poly2=poly2->next;

}

poly->next=(struct link *)malloc(sizeof(struct link));
poly=poly->next;
poly->next=NULL,;
b
if(polyl->next '= NULL)
{
poly->coeff = poly1->coeff;
poly->pow = polyl->pow;
poly->next=(struct link *)malloc(sizeof(struct link));
poly=poly->next;
poly->next=NULL,;

else

poly->coeff = poly2->coeff;

poly->pow = poly2->pow;

poly->next=(struct link *)malloc(sizeof(struct link));
poly=poly->next;

poly->next=NULL;
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Finally we get the polynomial C as

a =3x"" +2x% +1

— 3 14 2 s -1 1 0 | null
hb=8x"—3x"" +10x°
b
— 8 14 1T -3 |10 —1 | 10| 6 |null
1114 T 7[-3 10 2 18
2 |8 7110| 6
SUBTRACTION OF TWO POLYNOMIAL
. 0|1
void sub ()
{
poly *ptrl, *ptr2, *newnode;
ptrl = listl ;
ptr2 = list 2;
while (ptrl! = NULL && ptr2! = NULL)
{

newnode = malloc (sizeof (Struct poly));

if (ptrl power = =ptr2 power)

{

newnode—coeff = (ptrl coeff) - (ptr2 coeff);
newnode—power = ptrl power,
newnode—next = NULL;

list3 = create (list 3, newnode);

ptrl = ptrl —next;
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ptr2 = ptr2—next; }

else

{

if (ptrl —>power > ptr2—power)

{

newnode—coeff = ptrl —coeff;
newnode—power = ptrl —power;
newnode—next = NULL;

list 3 = create (list 3, newnode);
ptrl = ptrl—next; }

else

{

newnode—coeff = - (ptr2—coeff);
newnode—power = ptr2—power;
newnode—next = NULL;

list 3 = create (list 3, newnode);
ptr2 = ptr2 next; } } }

POLYNOMIAL DIFFERENTIATION
void diff ()

{

poly *ptrl, *newnode;

ptrl = list 1,

while (ptrl ! = NULL)

{

newnode = malloc (sizeof (Struct poly));
newnode coeff = ptrl coeff *ptrl power;
newnode power = ptrl power - 1;
newnode next=NULL;

list 3 = create (list 3, newnode);

ptrl = ptrl —next; } }

CS3301

- DATASTRUCTURES
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Radix Sort

A second example where linked lists are used is called radix sort. Radix sort is
also known as card sort. Because it was used, until the advent of modern computers, to
sort old-style punch cards.

If we have n integers in the range 1 to m (or 0 to m - 1) 9, we can use this
information to obtain a fast sort known as bucket sort. We keep an array called count,
of size m, which is initialized to zero. Thus, count has m cells (or buckets), which are
initially empty.

When ai is read, increment (by one) counts [ai]. After all the input is read, scan
the count array, printing out a representation of the sorted list. This algorithm takes
O(m + n); If m = (n), then bucket sort takes O(n) times.

The following example shows the action of radix sort on 10 numbers. The input
is 64, 8, 216, 512, 27, 729, 0, 1, 343, and 125. The first step (Pass 1) bucket sorts by
the least significant digit.. The buckets are as shown in below figure, so the list, sorted
by least significant digit, is 0, 1, 512, 343, 64, 125, 216, 27, 8, 729. These are now
sorted by the next least significant digit (the tens digit here)

Pass 2 gives output 0, 1, 8, 512, 216, 125, 27, 729, 343, 64. This list is now
sorted with respect to the two least significant digits. The final pass, shown in Figure
3.26, bucket-sorts by most significant digit.

The final list is 0, 1, 8, 27, 64, 125, 216, 343, 512, and 729.

The running time is O(p(n + b)) where p is the number of passes, n is the
number of elements to sort, and b is the number of buckets. In our case, b = n.

Buckets after first step of radix sort

0 1 512 343 64 125 216 27 8 729

o
=

2 3 4 5 6 7 8 9

Buckets after the second pass of radix sort

8 216 729 343 64

1 512 27

0 125

0 1 2 3 4 5 6 7 8 9
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Buckets after the last pass of radix sort

64 125 216 343 512 729

27

8

1

0

0 1 2 3 4 5 6 7 8 9
Multilists

A university with 40,000 students and 2,500 courses needs to be able to

generate two types of reports. The first report lists the class registration for each class,

and the second report lists, by student, the classes that each student is registered for.

If we use a two-dimensional array, such an array would have 100 million entries. The

average student registers for about three courses, so only 120,000 of these entries, or

roughly 0.1 percent, would actually have meaningful data.

To avoid the wastage of memory, a linked list can be used. We can use two link list

one contains the students in the class. Another linked list contains the classes the

student is registered for.

All lists use a header and are circular. To list all of the students in class C3, we

start at C3 and traverse its list . The first cell belongs to student S1.

Multilist implementation for registration problem

—
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Linked List Implementation of Multilists:
e Multilists can be used to represent the above scenario.
o One list to represent each class containing the students in the class.
o One list to represent each student containing the classes the student is
registered for.
e All lists use a header and are circular.
e To list all the students is class C3:
o Start the traversal at C3 and traverse its list (by going right).
o The first cell belongs to student S1.
o The next cell belongs to student S3. By continuing this it is found that
student S4 and student S5 also belongs to the class C3.
e In a similar manner, for any student, all of the classes in which the student is
registered can be determined.
e Advantage of Using Linked List:
o Saves memory space.
e Disadvantage of Using Linked List:

o Saves memory space only at the expense of time.
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UNIT 11 STACKS AND QUEUES 9
Stack ADT - Operations — Applications — Balancing Symbols — Evaluating arithmetic
expressions- Infix to Postfix conversion — Function Calls — Queue ADT — Operations —

Circular Queue — DeQueue — Applications of Queues.

The Stack ADT
Stack Model

A stack is a list with the restriction that inserts and deletes can be performed in

only one position, namely the end of the list called the top. Stacks are sometimes
known as LIFO (last in, first out) lists.
The fundamental operations on a stack are
1. Push, which is equivalent to an insert,
2. Pop, deletes the most recently inserted element.
3. Top, display the topmost element in the stack.
Error conditions
Push onto the Full Stack and Pop or Top on an empty stack is generally
considered an error in the stack ADT.

Stack model: input to a stack is by Push, output is by Pop

i
[ !
e STACK § I  prushi(x, 5
top (5}

The model depicted in above figure signifies that pushes are input operations
and pops and tops are output.

Stack model: only the top element is accessible

L

{411

i1
fi3n

{{6}}
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Implementation of Stacks
A stack is a list, gives two popular implementations.
1. Array implementation

2. Linked list implementation

Linked List Implementation of Stacks

The first implementation of a stack uses a singly linked list. We perform a push
by inserting at the front of the list. We perform a pop by deleting the element at the
front of the list. A top operation merely examines the element at the front of the list,
returning its value. Sometimes the pop and top operations are combined into one.

Creating an empty stack is also simple. We merely create a header node;
make_null sets the next pointer to NULL.

The push is implemented as an insertion into the front of a linked list, where
the front of the list serves as the top of the stack.

The top is performed by examining the element in the first position of the list.

The pop will delete from the front of the list.

It should be clear that all the operations take constant time, because less a loop
that depends on this size.

Drawbacks and solution

These implementations uses the calls to malloc and free are expensive,
especially in comparison to the pointer manipulation routines. Some of this can be
avoided by using a second stack, which is initially empty. When a cell is to be
disposed from the first stack, it is merely placed on the second stack. Then, when new

cells are needed for the first stack, the second stack is checked first.

Type declaration for linked list implementation of the stack ADT
struct Node;
typedef struct node *ptrToNode;
typedef ptrToNode Stack;
int IsSEmpty(Stack S);
Stack CreateSatck(void);
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void DisposeStack(Stack S);

void MakeEmpty(Stack S);

void Push(ElementType X, Stack S);
ElementType Top (Stack S);

Void Pop(Stack S);

struct node

{

Element_type element;

PtrToNode next;

¥
Routine to test whether a stack is empty-linked list implementation

This routine checks whether Stack is empty or not. If it is not empty it will
return a pointer to the stack. Otherwise return NULL

int is_empty( STACK S)

{

return( S->next == NULL );

}
Routine to create an empty stack-linked list implementation

This routine creates a Stack and return a pointer of the stack. Otherwise return
a warning to say Stack is not created.

STACK create_stack( void )

{

STACK S;

S = malloc( sizeof( struct node ) );

if(S==NULL)

fatal_error(""Out of space!!!");

return S; }
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Routine to make the stack as empty-linked list implementation
This routine makes Stack as empty and return NULL pointer.
Void makeEmpty( STACK S)

{

if(S==NULL)

error ("Must use create_stack first");
else

while ('ISEmpty(S))

pop(S); }

Routine to push onto a stack-linked list implementation
This routine is to insert the new element onto the top of the stack.
Void push( element_type x, STACK S)
{
node_ptr tmp_cell;
tmp_cell = (node_ptr) malloc( sizeof ( struct node ) );
If( tmp_cell == NULL )
fatal_error(""Out of space!!!");
else
{
tmp_cell->element = x;
tmp_cell->next = S->next;
S->next = tmp_cell; } }
Routine to return top element in a stack--linked list implementation
This routine is to return the topmost element from the stack.
element_type top( STACK S)

{

if(is_empty(S))
error("Empty stack");
else

return S->next->element;

¥
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Routine to pop from a stack--linked list implementation
This routine is to delete the topmost element from the stack.

Void pop( STACK S)

{

PtrToNode first_cell;

if(is_empty(S))

error("Empty stack");

else

{

first_cell = S->next;

S->next = S->next->next;

free( first_cell );

Y}

Array implementation of Stacks
An alternative implementation to avoid pointers is that by using an array
implementation. One problem here is that we need to declare an array size
ahead of time. Generally this is not a problem, if the actual number of elements

In the stack is knows in advance. It is usually easy to declare the array to be

large enough without wasting too much space.

Associated with each stack is the top of stack, tos, which is -1 for an empty
stack. To push some element x onto the stack, we increment tos and then set
STACK]tos] = x, where STACK is the array representing the actual stack.

To pop, we set the return value to STACK]tos] and then decrement tos.

Notice that these operations are performed in not only constant time, but
very fast constant time.

Error checking:

The efficiency of implementation in stacks is error testing. linked list
implementation carefully checked for errors.

A pop on an empty stack or a push on a full stack will overflow the array bounds
and cause a crash. Ensuring that this routines does not attempt to pop an empty stack

and Push onto the full stack.
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A STACK is defined as a pointer to a structure. The structure
contains the top_of stack and stack_size fields.
Once the maximum size is known,the stack array can be dynamically allocated.
Stack Declaration
Struct Stack Record
typedef struct StackRecord *Stack;
int IsSEmpty(Stack S);
Stack CreateStack(int MaxElements);
void DisposeStack(Stack S);
void MakeEmpty(Stack S);
void Push(ElementType X, Stack S);
ElementType Top (Stack S);
Void Pop(Stack S);
ElementType TopandPop (Stack S);
struct StackRecord
{
Int Capacity;
int TopofSatck;
ElementType *array;
2
#define EmptyTOS (-1) /* Signifies an empty stack */
#define MinStackSize (5)
Routine to create an empty stack- Array implementation
This routine creates a Stack and return a pointer of the stack. Otherwise return
a warning to say Stack is not created.
Stack CreateStack( unsigned int MaxElements )
{
STACK S;
if( MaxElements < MinStackSize )
error("Stack size is too small™);

S = (malloc( sizeof( struct StackRecord ) );
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if(S==NULL)

fatal_error(Out of space!!!");

S->Array = malloc( sizeof( ElementType ) * MaxElements );

if( S->Array == NULL )

fatalerror("Out of space!!!");

S->Capacity = MaxElements;

MakeEmpty(S);

return(S); }
Routine for freeing stack--array implementation

This routine frees or removes the Stack Structure itself by deleting the array
elements one by one.

Void dispose_stack( Stack S)

{

if(S!=NULL)

{ free( S->Array );
free(S); } %}

Routine to test whether a stack is empty--array implementation
This routine is to check whether stack is empty or not.
int ISEmpty( Stack S)
{
return( S->top_of stack == EmptyTOS); }
Routine to create an empty stack--array implementation
This routine helps to make the Stack as empty one.
Void MakeEmpty( STACK S)
{
S->top_of_stack = EMPTY_TOS; }
Routine to push onto a stack--array implementation
This routine will insert the new elemnt onto the top of the stack using stack
pointer.
Void push( ElementType X, Stack S)
{ if( IsFull(S))
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Error("Full stack");
else
S->Array[ ++S->TopofStack ] = X; }

Routine to return top of stack--array implementation
This routine is to return the topmost element from the stack.

ElementType Top( Stack S)

{

if( "ISEmpty(S))

return S->Array[ S-> TopofStack];

error("Empty stack");

return O;

}

Routine to pop from a stack--array implementation

This routine is to delete the topmost element from the stack.

Void pop( Stack S)
{

if( ISEmpty(S))
error("Empty stack™);
else
S->TopofStack--;

}

Routine to give top element and pop a stack--array implementation
This routine is to return as well as remove the topmost element from the stack.
ElementType TopandPop( Stack S )

{
if( ISEmpty(S))
error("Empty stack");
else

return S->Array[ S->TopofStack-- ];
}
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Stack Applications

Stack is used for the following applications.

1.

Reversing of the string

2. Tower’s of Hanoi’s problem
3. Balancing Symbols

4.
5
6
7

Conversion of Infix to postfix expression

. Conversion of Infix to prefix expression
. Evaluation of Postfix expression

. Used in Function calls

Balancing Symbols

Compilers check your programs for syntax errors, but frequently a lack of one

symbol (such as a missing brace or comment starter) will cause the compiler to

spill out a hundred lines of diagnostics without identifying the real error.

A useful tool in this situation is a program that checks whether everything is

balanced. Thus, every right brace, bracket, and parenthesis must correspond to

their left counterparts.

The sequence [()] is legal, but [(]) is wrong. That it is easy to check these things. For

simplicity, we will just check for balancing of parentheses, brackets, and braces and

ignore any other character that appears.

The simple algorithm uses a stack and is as follows:

Make an empty stack.
Read characters until end of file.
If the character is an open anything, push it onto the stack.
If it is a close anything, then
v If the stack is empty report an error.
v' Otherwise, pop the stack.
v If the symbol popped is not the corresponding opening symbol, then
report an error.

At end of file, if the stack is not empty report an error.
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Expression:
Expression is defined as a collection of operands and operators. The operators
can be arithmetic, logical or Boolean operators.
Rules for expression
v No two operand should be continuous

v No two operator should be continuous

Types of expression:
Based on the position of the operator, it is classified into three.
1. Infix Expression / Standard notation
2. Prefix Expression/ Polished notation
3. Postfix Expression / Reversed Polished notation
Infix Expression:
In an expression if the operator is placed in between the operands, then it is
called as Infix Expression.
Eg: A+B
Prefix Expression:
In an expression if the operator is placed before the operands, then it is called
as Prefix Expression.
Eg: +AB
Postfix Expression:
In an expression if the operator is placed after the operands, then it is called as
Postfix Expression.
Eg: AB+

Conversion of infix to Postfix Expressions

Stack is used to convert an expression in standard form (otherwise known as
infix) into postfix. We will concentrate on a small version of the general problem by
allowing only the operators +, *, and (, ), and insisting on the usual precedence rules.

Suppose we want to convert the infix expression
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atb*c+(d*e+f)*g.
A correctanswerisabc*+de*f+g*+.
Algorithm:

1. We start with an initially empty stack

2. When an operand is read, it is immediately placed onto the output.

3. Operators are not immediately placed onto the output, so they must be saved
somewhere. The correct thing to do is to place operators that have been seen,
but not placed on the output, onto the stack. We will also stack left parentheses
when they are encountered.

4. If we see a right parenthesis, then we pop the stack, writing symbols until we
encounter a (corresponding) left parenthesis, which is popped but not output.

5. If we see any other symbol ('+',*', '(" ), then we pop entries from the stack until
we find an entry of lower priority. One exception is that we never remove a '(’
from the stack except when processing a ')'. For the purposes of this operation,
'+' has lowest priority and '(* highest. When the popping is done, we push the
operand onto the stack.

6. Finally, if we read the end of input, we pop the stack until it is empty, writing

symbols onto the output.

To see how this algorithm performs, we will convert the infix expression into
its postfix form.
atb*c+(d*e+f)*g
First, the symbol a is read, so it is passed through to the output. Then '+' is read and

pushed onto the stack. Next b is read and passed through to the output. Then the stack

‘+ | ab |

Stack Output

will be as follows.

Next a ™*' is read. The top entry on the operator stack has lower precedence than *', so

nothing is output and *' is put on the stack. Next, c is read and output.
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*

+ | abc ]
Stack Output

The next symbol is a '+'. Checking the stack, we find that we will pop a ™*' and place it
on the output, pop the other '+', which is not of lower but equal priority, on the stack,

and then push the '+'.

+ abgc*+ ]
Stack Catpat

The next symbol read is an '(, which, being of highest precedence, is placed on the

stack. Then d is read and output.

|«
+ | | abe* +d |

Stack Output

We continue by reading a ™*'. Since open parentheses do not get removed except when

a closed parenthesis is being processed, there is no output. Next, e is read and output.

< |
[
+ [ abcec*+de |
Stack Oueput

The next symbol read is a '+'. We pop and output ** and then push '+'. Then we read

and output f.

— ST e m—

Stack Ourput

Now we read a ')', so the stack is emptied back to the '('. We output a '+' Onto the stack.

+ [_abc*fde*fﬂ‘ j

Stack Cuatput

We read a "*' next; it is pushed onto the stack. Then g is read and output.

=
+ | |_abn:*+df_-.*f+g

Stack Output
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The input is now empty, so we pop and output symbols from the stack until it is

| abc*F+de*f+pgp*+ |

Stack Output

empty.

As before, this conversion requires only O(n) time and works in one pass
through the input. We can add subtraction and division to this repertoire by assigning
subtraction and addition equal priority and multiplication and division equal priority.

A subtle point is that the expression a - b - ¢ will be converted to ab - c- and not
abc - -. Our algorithm does the right thing, because these operators associate from left
to right. This is not necessarily the case in general, since exponentiation associates
right to left: 223 = 28 = 256 not 43 = 64.

Evaluation of a Postfix Expression
Algorithm:

When a number is seen, it is pushed onto the stack;

When an operator is seen, the operator is applied to the two numbers (symbols)
that are popped from the stackand the result is pushed onto the stack.

For example, the postfix expression 6 52 3 + 8 * + 3 + * is evaluated as
follows:

The first four symbols are placed on the stack. The resulting stack is
TopofStack 3

2
)
6

Next a '+'is read, so 3 and 2 are popped from the stack and their sum, 5, is pushed.
TopofStack 5
5
6




4

Next 8 is pushed.

8

Now, 3 is pushed.

CS3301 - DATASTRUCTURES

TopofStack 8
5
5
6
Now a *" is seen, so 8 and 5 are popped as 8 * 5 = 40 is pushed.
TopofStack 40
5
6
Next a '+' is seen, so 40 and 5 are popped and 40 + 5 = 45 is pushed.
TopofStack 45
6
TopofStack 3
45
6
Next '+' pops 3 and 45 and pushes 45 + 3 = 48.
TopofStack 48
6

Finally, a ™*' is seen and 48 and 6 are poppe

d, the result 6

TopofStack

288

* 48 = 288 is pushed.

The time to evaluate a postfix expression is O(n), because processing each

element in the input consists of stack operations and thus takes constant time. The

algorithm to do so is very simple.

Advantage of postfix expression:

When an expression is given in postfix notation, there is no need to know

any precedence rules;
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Function Calls

When a call is made to a new function, all the variables local to the calling
routine need to be saved by the system. Otherwise the new function will
overwrite the calling routine's variables.
The current location in the routine must be saved so that the new function
knows where to go after it is done.
The reason that this problem is similar to balancing symbols is that a function
call and function return are essentially the same as an open parenthesis and
closed parenthesis, so the same ideas should work.
When there is a function call, all the important information that needs to be
saved, such as register values (corresponding to variable names) and the return
address is saved "on a piece of paper" in an abstract way and put at the top of a
pile. Then the control is transferred to the new function, which is free to replace
the registers with its values.
If it makes other function calls, it follows the same procedure. When the
function wants to return, it looks at the "paper" at the top of the pile and
restores all the registers. It then makes the return jump.
The information saved is called either an activation record or stack frame.
There is always the possibility that you will run out of stack space by having
too many simultaneously active functions. Running out of stack space is always
a fatal error.
In normal events, you should not run out of stack space; doing so is usually an
indication of runaway recursion. On the other hand, some perfectly legal and
seemingly innocuous program can cause you to run out of stack space.

A bad use of recursion: printing a linked list
void /* Not using a header */
print_list( LIST L)
{ if(L != NULL)
{
print_element( L->element );
print_list( L->next );} }
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e The above routine prints out a linked list, is perfectly legal and actually correct.
It properly handles the base case of an empty list, and the recursion is fine. This
program can be proven correct.
e Activation records are typically large because of all the information they
contain, so this program is likely to run out of stack space. This program is an
example of an extremely bad use of recursion known as tail recursion. Tall
recursion refers to a recursive call at the last line.
e Tail recursion can be mechanically eliminated by changing the recursive call
to a goto receded by one assignment per function argument.
e This simulates the recursive call because nothing needs to be saved -- after the
recursive call finishes, there is really no need to know the saved values.
Because of this, we can just go to the top of the function with the values that
would have been used in a recursive call.
The below program is the improved version. Removal of tail recursion is so simple
that some compilers do it automatically.
Printing a list without recursion

Void print_list( LIST L) /* No header */

{

top:

if(L !=NULL)

{

print_element( L->element );

L = L->next;

goto top;

}

}

Recursion can always be completely removed. But doing so can be quite tedious. The
non-recursive programs are generally faster than recursive programs; the speed

advantage rarely justifies the lack of clarity that results from removing the recursion.
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The Queue ADT

Queue is also a list in which insertion is done at one end, whereas deletion is
performed at the other end. Insertion will be at rear end of the queue and deletion will
be at front of the queue. It is also called as FIFO (First In First Out) which means the

element which inserted first will be removed first from the queue.

Queue Model
The basic operations on a queue are
1. enqueue, which inserts an element at the end of the list (called the rear)
2. dequeue, which deletes (and returns) the element at the start of the list
(known as the front).

Abstract model of a queue

degueee () enguete (X, )

QUELE £

Array Implementation of Queues

e Like stacks, both the linked list and array implementations give fast O(1)
running times for every operation. The linked list implementation is
straightforward and left as an exercise. We will now discuss an array
implementation of queues.

e For each queue data structure, we keep an array, QUEUE[], and the positions
g_front and g_rear, which represent the ends of the queue. We also keep track
of the number of elements that are actually in the queue, g_size.

The following figure shows a queue in some intermediate state.

|
slz2]7 01 |

i g-fromt q.rear ‘

e By the way, the cells that are blanks have undefined values in them. In

particular, the first two cells have elements that used to be in the queue.
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To enqueue an element x, we increment _size and g_rear, then set
QUEUE[q_rear] = x.

To dequeue an element, we set the return value to QUEUE[q_front], decrement
g_size, and then increment g_front.. After 10 enqueues, the queue appears to be
full, since g_front is now 10, and the next enqueue would be in a nonexistent
position.

However, there might only be a few elements in the queue, because several
elements may have already been dequeued.

The simple solution is that whenever g_front or q_rear gets to the end of the
array, it is wrapped around to the beginning. This is known as a circular array

implementation.

If incrementing either g_rear or q_front causes it to go past the array, the value is reset

to the first position in the array.

There are two warnings about the circular array implementation of queues.

First, it is important to check the queue for emptiness, because a dequeue when
the queue is empty will return an undefined value.

Secondly, some programmers use different ways of representing the front and
rear of a queue. For instance, some do not use an entry to keep track of the size,
because they rely on the base case that when the queue is empty, q_rear =

g_front - 1.

If the size is not part of the structure, then if the array size is A_SIZE, the queue is full

when there are A_SIZE -1 elements.

In applications where you are sure that the number of enqueues is not larger

than the size of the queue, the wraparound is not necessary.

The routine queue create and queue_dispose routines also need to be

provided. We also provide routines to test whether a queue is empty and to make an

empty queue.

Notice that q_rear is preinitialized to 1 before g_front. The final operation we

will write is the enqueue routine.
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Type declarations for queue--array implementation
struct QueueRecord

{

int Capacity;

int Front;

int Rear;

int Size; /* Current # of elements in Q */

ElementType *Array;

¥

typedef struct QueueRecord * Queue;

Routine to test whether a queue is empty-array implementation
int isempty( Queue Q)
{
return( Q->q_size==0); }

Routine to make an empty queue-array implementation

Void makeempty ( Queue Q)

{

Q->size = 0;

Q->Front = -1,

Q->Rear = -1; }

Routines to enqueue-array implementation
static int succ(int value, Queue Q)
{
if( ++value = = Q->Capacity )
value = 0;
return value; }

Void enqueue( Elementtype x, Queue Q)

{
if(isfull(Q))

error("Full queue™);
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else
{
Q->Size++;
Q->Rear = succ( Q->Rear, Q );
Q->Array[ Q->Rear ] = x;
¥}
Applications of Queues
The applications are,

1. When jobs are submitted to a printer, they are arranged in order of arrival. Then
jobs sent to a line printer are placed on a queue.

2. Lines at ticket counters are queues, because service is first-come first-served.

3. Another example concerns computer networks. There are many network setups
of personal computers in which the disk is attached to one machine, known as
the file server.

4. Users on other machines are given access to files on a first-come first-served
basis, so the data structure is a queue.

Circular Queue:

In Circular Queue, the insertion of a new element is performed at the very first
locations of the queue if the last location of the queue is full, in which the first
element comes after the last element.

Advantages:

It overcomes the problem of unutilized space in linear queue, when it is

implemented as arrays.

FRONT

Q[s] Q[o] Sl 1 &576]
2ls] Q[1] Q[4] ‘. o]

REAR

REAR FRONT
Q[s] 4 Q[o]

]
el %‘3 on]

Q[3] Q2]
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To perform the insertion of the element to the queue, the position of the
element is calculated as rear= (rear+1) % queue_size and set Q[rear]=value.
Similarly the element deleted from the queue using front = (front + 1) %
queue_size.

Enqueue:

This routine insert the new element at rear position of the circular queue.
void CEngueue (int X))

{
if (Front = =— (rear + 1) 20 Maxsize)
print (“‘Queue is overflow’”’);
else
{
if (front = = -1)
front = rear = O;
else
rear = (rear + 1)%6 Maxsize;
CQueue [rear] = X;
3
¥
Dequeue:

This routine deletes the element from the front of the circular queue.
void CQ_dequeue()
{

If(front==-1 && rear==-1)
Print(“Queue is empty™);
Else
{

Temp=CQueue[front];

If(front==rear)
Front=rear=-1,;

Else

Front=(front+1)% maxasize;

I
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Priority Queue:
In an priority queue, an element with high priority is served before an element

with lower priority.
If two elements with the same priority, they are served according to their order

in the queue.
Two types of priority Queue.
|. Max Priority Queue

2. Min Priority Queue

{. Max Priority Queue
Max Priority Queue, elements are inserial in the order in which they arrive they guese
o d first from the queue.

and always maxmum value is remove
ex : insert in order 8, 3, 2, 5 removed in the order 8, 5, 3, 2.
Max Priority queue, the following operation are performed

i. is Empty () - check whether queue is empty

2 insert() - Insertsa ﬁew value into the queue.
3. findmax () - Find max value in the queue.

4. remove() - Delete max value from the queue.

2. Min Priority Queue Representation

Min Priority Queue is similar to Max priority queue except removing maximum elements

first, we remove min. element first in min priority queue.
In Min Priority Queue the following operation are performed
1. isempty () - check whether queue is empty

2. insert ()

Il

inserts a new value into the queue

3. findMin () = fing min. value in the queue

4. re i J
Move() - Delete min value from the queue.

27D
?Uguz ENDED QUEUE (DEQUE)
n
ouble Endeq Queue, insertjon and dele

DELETION
INSERTION 10|

tion operations are performed at both the ends.

at P I T 0 QFTON INSERTION
— DELETION

REAR END
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T e — -
INPUT RESTRICTED DEQUE | '
In this type insertions are allowed at one end and deletions are allowed 4y both ¢,
T AR
FRONT REAL
| A .
’ » “(7'(',“(,”
DCICliOII—-_” .89 B l[”;(:”“”'
IS 555 B

OUTPUT RESTRICTED DEQUE
In this type deletions are allowed at one end and insertions are alloweq ath
Oth

FRONT REAR

Ehr}‘

Insertion —¥]

" e o o o
Deletion —¥] I"Serﬁon

Fig. 4.20 Output restricted output

Insertion at the rear end
- Check for the overflow condition.

Step 1
Step 2 : If it is true, display that the queue is full
Step 3 : Otherwise, If the rear and front pointers are at the initial values C-1). Inc
- Increp,,

both the pointers. Goto step 5.

Step 4 : Increment the rear pointer

Step 5 : Assign the value to Q[rear]

ROUTINE TO INSERT AN ELEMENT REAR AT END

void Insert_rear (int X, DQueue DQ)
{

if (Rear = = Arraysize -1)

{
printf (“Queue Overflow”);
return ;

}

else

{

Rear = Rear + 1;

DQ[Rear] = x;

if (Front == -1)
Front = 0;
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3 o nd
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Isertion at front end

Sepl : Check the front pointer, if it is in the first position (0) then display an error
message that the value cannot be inserted at the front end.

Sep2 - Otherwise, decrement the front pointer
S2p3 : Assign the value to Q[ front]
MUTINE TO INSERT AN ELEMENT AT FRONT END

void Insert_front(int x, DQueue DQ) ; |

{
if{Front = = 0) // element already exists in first position
7
printf(““cannot Inscrt at the frone PosSition ™. S L
- —r
return: T
B

clse
7

iftFront — = -1)

i

Front =— Front + 1:

DO[Front] = X:
ifCtRear — = -1)
Rear — O:

clse

L’}'4

Insertion at the front end =
CTase 1

Front = Front -1:
DOJ[Front] — X:

C N

I L 13 21 37 <3
=

Ir2sers _frorrr (eL)]
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Deletion from Rear End

Check the rear pointer. If it is in the initial value then display that the value cannot

be deleted.
Step2 = Otherwise, delete element at the rear position.

Step 1

Step3 : Ifthe rear and front pointers are at the same position,

Step4 : . Otherwise, decrement the rear pointer.

Lier 1 susy _

reinitialize both the pointers.

430
RO

AT IS LIV T

JITINE TO .’!1:5"::','-":,

void Dequeue, rear (1

)(_)u}:l]c 12¢D)
¢ int X:
ir(Rear & 7 -1)

i
prinil‘("(.)ncuc is empty )3

returin 2

~ = PQ [Rear]:
if(i‘-’ront = = Rear).

{
Front = -13
Recar = -1:
H
else
{

Rear — Rear -1;

3 -

Deletion from Rear End

uolzol3o I I

ol ri1 21 31 [Z3]
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ol nl 121 131 S

i1

Sepl : Check for the anderflow conditr

peietion from Front End :

on. If it is true display that the queue is empty.

Step2” ¢ Otherwise, dalate the element at the front position. by asigning X as Qlfront)

Step3 Ifthe1car ana tfront pointer points to the same position (ic) only one value is present,
th .n reir itialize both the pointers.

Step4 : Crtherwise, Increment the front pointer

ROUTINE TO DELETE AN ELEMENT FROM FRONT END
| void Dequeue_front(DQueue DQ)

\
¢

int X;
‘if(Front = = -1)
{ N
printf(*“Queue is Underflow™);
return;
{
3¢ v 126 frrontls
if(I-ront jrenr)
{
f-ront -13
Rear =13
, -
clse
{
IFront = FFront + 13
H
H
H

Deletion from front end

Deqrecue__ fromnt ()

‘T‘ 'Tl ol B 21 31 41
Q — is ernpily = 5

| 1o| 20|3o |40 lso \
ol [ ] 2] 31
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Dequetle__ Jrornz () F R
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-
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UNIT I TREES 9
Tree ADT — Tree Traversals - Binary Tree ADT — Expression trees — Binary Search
Tree ADT — AVL Trees — Priority Queue (Heaps) — Binary Heap.

TREES

Tree isa Non- Linear datastructure in which data are stored in a hierarchal manner. It is also
defined as a collection of nodes. The collection can be empty. Otherwise, a tree consists of a
distinguished node r, called the root, and zero or more (sub) trees T1, T2, ..., Tk, each of
whose roots are connected by a directed edge to r.

The root of each subtree is said to be a child of r, and r is the parent of each subtree
root. A tree is a collection of n nodes, one of which is the root, and n - 1 edges. That there are
n - 1 edges follows from the fact that each edge connects some node to its parent and every

node except the root has one parent

Generic tree

Terms in Tree

In the tree above figure, the root is A.
v" Node F has A as a parent and K, L, and M as children.
v Each node may have an arbitrary number of children, possibly zero.
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v" Nodes with no children are known as leaves;
The leaves in the tree above are B, C, H, I, P, Q, K, L, M, and N.

v" Nodes with the same parent are siblings; thus K, L, and M are all siblings.

<

Grandparent and grandchild relations can be defined in a similar manner.
v A path from node n1 to nk is defined as a sequence of nodes n1, n2, . . ., nk such that
ni is the parent of ni+1 for 1i <k.
v The length of this path is the number of edges on the path, namely k -1.
v' There is a path of length zero from every node to itself.
v For any node ni, the depth of ni is the length of the unique path from the root
to ni. Thus, the root is at depth 0.
v' The height of ni is the longest path from ni to a leaf. Thus all leaves are at height 0.
v The height of a tree is equal to the height of the root.
Example: For the above tree,
E is at depth 1 and height 2;
F is at depth 1 and height 1; the height of the tree is 3. T
Note:
v' The depth of a tree is equal to the depth of the deepest leaf; this is always
equal to the height of the tree.
v If there is a path from nl to n2, then nl is an ancestor of n2 and n2 is a
descendant of nl. If n1 n2, then nl is a proper ancestor of n2 and n2 is a
proper descendant of n1.

v' A tree there is exactly one path from the root to each node.

Types of the Tree
Based on the no. of children for each node in the tree, it is classified into two to types.
1. Binary tree
2. General tree
Binary tree
In a tree, each and every node has a maximum of two children. It can be

empty, one or two. Then it is called as Binary tree.
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General Tree
In a tree, node can have any no of children. Then it is called as general Tree.
Eg:

Implementation of Trees
Tree can be implemented by two methods.
1. Array Implementation
2. Linked List implementation
Apart from these two methods, it can also be represented by First Child and
Next sibling Representation.

One way to implement a tree would be to have in each node, besides its data, a pointer
to each child of the node. However, since the number of children per node can vary so greatly
and is not known in advance, it might be infeasible to make the children direct links in the
data structure, because there would be too much wasted space. The solution is simple: Keep
the children of each node in a linked list of tree nodes.

Node declarations for trees

typedef struct tree_node *tree_ptr;

struct tree_node

{

element_type element;

tree_ptr first_child,;

tree_ptr next_sibling;

}
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First child/next sibling representation of the tree shown in the below Figure

O
®) G By —(E) @ %
@00
&~

Arrows that point downward are first_child pointers. Arrows that go left to right are

next_sibling pointers. Null pointers are not drawn, because there are too many. In the above
tree, node E has both a pointer to a sibling (F) and a pointer to a child (I), while some nodes
have neither.
Tree Traversals
Visiting of each and every node in a tree exactly only once is called as Tree
traversals. Here Left subtree and right subtree are traversed recursively.
Types of Tree Traversal:
1. Inorder Traversal
2. Preorder Traversal
3. Postorder Traversal
Inorder traversal:
Rules:

e Traverse Left subtree recursively
e Process the node
e Traverse Right subtree recursively

Eg
Inorder traversal: a + b*c + d*e + f*g.
Preorder traversal:
Rules:
e Process the node
e Traverse Left subtree recursively
e Traverse Right subtree recursively

Preorder traversal: ++a*b c*+*defg
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Postorder traversal:
Rules:
e Traverse Left subtree recursively
e Traverse Right subtree recursively
e Process the node

Postorder traversal: a b c*+de*f + g* +

Tree Traversals with an Application
There are many applications for trees. Most important two applications are,
1. Listing a directory in a hierarchical file system

2. Calculating the size of a directory

1. Listing a directory in a hierarchical file system

One of the popular uses is the directory structure in many common operating systems,
including UNIX, VAX/VMS, and DOS.
Typical directories in the UNIX file system (UNIX directory)

fusr®
mark® alex* bill®
/H'““*--..h
book® course?  qunk.c jun|k.n:: work® Lourse®
el
chlr chlr chir cu;}ﬂ»ﬂ“ nurp3|212*
fall¥3*  sprig*  sumBe* fall3* fallzg*

N

sylr sylr sylr  grades  proglor  progdr wiglr  poglr  pradss

v' The root of this directory is /usr. (The asterisk next to the name indicates that /usr is
itself a directory.)

v" lusr has three children, mark, alex, and bill, which are themselves directories. Thus,
{usr contains three directories and no regular files.

v The filename /usr/mark/book/chl.r is obtained by following the leftmost child three
times. Each / after the first indicates an edge; the result is the full pathname.

v" Two files in different directories can share the same name, because they must have
different paths from the root and thus have different pathnames.
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v' A directory in the UNIX file system is just a file with a list of all its children, so the
directories are structured almost exactly in accordance with the type declaration.

v' Each directory in the UNIX file system also has one entry that points to itself and
another entry that point to the parent of the directory. Thus, technically, the UNIX file
system is not a tree, but is treelike.

Routine to list a directory in a hierarchical file system void
list_directory ( Directory_or _file D)
{
list_dir (D, 0); }
Void list_dir ( Directory_or_file D, unsigned int depth )
{
if (D is a legitimate entry)
{
print_name ( depth, D );
if( D is a directory )
for each child, ¢, of D
list_dir( c, depth+1);
} }
The logic of the algorithm is as follow.

v The argument to list_dir is some sort of pointer into the tree. As long as the pointer is
valid, the name implied by the pointer is printed out with the appropriate number of
tabs.

v’ If the entry is a directory, then we process all children recursively, one by one. These
children are one level deeper, and thus need to be indenting an extra space.

This traversal strategy is known as a preorder traversal. In a preorder traversal, work at a
node is performed before (pre) its children are processed. If there are n file names to be
output, then the running time is O (n).
The (preorder) directory listing
usr
mark
book

chrl.c

chr2.c

chr3.c
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course
cop3530
fall88
syl.r
spr89
syl.r
sum89
sylL.r
junk.c
alex
junk.c
bill
work
course
cop3212
fall88
grades
progl.r
prog2.r
fall89
progl.r
prog2.r
grades

2. Calculating the size of a directory

As above UNIX Directory Structure, the numbers in parentheses representing the
number of disk blocks taken up by each file, since the directories are themselves files, they
have sizes too. Suppose we would like to calculate the total number of blocks used by all the
files in the tree. Here the work at a node is performed after its children are evaluated. So it
follows Postorder traversal.

The most natural way to do this would be to find the number of blocks contained in the
subdirectories /usr/mark (30), /usr/alex (9), and /usr/bill (32). The total number of blocks is
then the total in the subdirectories (71) plus the one block used by /usr, for a total of 72.
Routine to calculate the size of a directory unsigned
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int size_directory( Directory_or_file D)
{
unsigned int total_size;
total_size = 0;
if( D is a legitimate entry)
{
total_size = file_size( D );
if( D is a directory )
for each child, ¢, of D
total_size += size_directory( c);
}
return( total_size );
}
Size of the UNIX Directory
chl.r 3
ch2.r 2
ch3.r 4
book 10
syl.r 1
fall88 2
syl.r 5
spr89 6
syl.r 2
sum89
cop3530 12
course 13
junk.c 6
mark 30
junk.c 8
alex 9
work 1
grades 3
progl.r 4
prog2.r 1

CS3301

- DATASTRUCTURES
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fall88 9

prog2.r 2

progl.r 7

grades 9
fall89 19
cop3212 29
course 30

bill 32
lusr 72

If D is not a directory, then size_directory merely returns the number of blocks
used by D. Otherwise, the number of blocks used by D is added to the number of

blocks (recursively) found in all of the children.

Binary Trees
A binary tree is a tree in which no node can have more than two children.

POV

Figure shows that a binary tree consists of a root and two subtrees, Tl and
Tr, both of which could possibly be empty.

Worst-case binary tree

Implementation
A binary tree has at most two children; we can keep direct pointers to them. The
declaration of tree nodes is similar in structure to that for doubly linked lists, in that a node is

a structure consisting of the key information plus two pointers (left and right) to other nodes.
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Binary tree node declarations
typedef struct tree_node *tree_ptr;
struct tree_node

{

element_type element;

tree_ptr left;

tree_ptr right;

j

typedef tree_ptr TREE;

Expression Trees
When an expression is represented in a binary tree, then it is called as an expression Tree.
The leaves of an expression tree are operands, such as constants or variable names, and the
other nodes contain operators. It is possible for nodes to have more than two children. It is
also possible for a node to have only one child, as is the case with the unary minus operator.

We can evaluate an expression tree, T, by applying the operator at the root to the
values obtained by recursively evaluating the left and right subtrees.

In our example, the left subtree evaluates to a + (b * ¢) and the right subtree evaluates
to ((d *e) + ) *g. The entire tree therefore represents (a + (b*c)) + (((d * e) + f)* g).

We can produce an (overly parenthesized) infix expression by recursively
producing a parenthesized left expression, then printing out the operator at the
root, and finally recursively producing a parenthesized right expression. This
general strattegy ( left, node, right ) is known as an inorder traversal; it gives Infix
Expression.

An alternate traversal strategy is to recursively print out the left subtree, the
right subtree, and then the operator. If we apply this strategy to our tree above, the output is a
bc*+de*f+g*+, which is called as postfix Expression. This traversal strategy is
generally known as a postorder traversal.

A third traversal strategy is to print out the operator first and then recursively print out
the left and right subtrees. The resulting expression, + +a*bc*+ *d e f g, is the less useful
prefix notation and the traversal strategy is a preorder traversal

Expression tree for (a+b*c)+((d*e+f) * Q)
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Constructing an Expression Tree
Algorithm to convert a postfix expression into an expression tree
1. Read the postfix expression one symbol at a time.
2. If the symbol is an operand, then
a. We create a one node tree and push a pointer to it onto a stack.
3. If the symbol is an operator,

a. We pop pointers to two trees T1 and T2 from the stack (T1 is popped first) and
form a new tree whose root is the operator and whose left and right children
point to T2 and T1 respectively.

4. A pointer to this new tree is then pushed onto the stack.
Suppose the input is

ab+cde+**

The first two symbols are operands, so we create one-node trees and push pointers to

them onto a stack.

LI T I ]

Next, a '+" is read, so two pointers to trees are popped, a new tree is formed, and a pointer to it

is pushed onto the stack.
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Next, c, d, and e are read, and for each a one-node tree is created and a pointer

to the corresponding tree is pushed onto the stack.

TEENENEN

™

Now a '+' is read, so two trees are merged. Continuing, a *' is read, so we pop two tree

pointers and form a new tree with a "*' as root.

FEENENEE

(+) (+)
O. &) (@ ()

Finally, the last symbol is read, two trees are merged, and a pointer to the final

tree is left on the stack.

The Search Tree ADT-Binary Search Tree

The property that makes a binary tree into a binary search tree is that for every

node, X, in the tree, the values of all the keys in the left subtree are smaller than the key
value in X, and the values of all the keys in the right subtree are larger than the key
value in X.

Notice that this implies that all the elements in the tree can be ordered in some

consistent manner.
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In the above figure, the tree on the left is a binary search tree, but the tree on the right
is not. The tree on the right has a node with key 7 in the left subtree of a node with key 6.
The average depth of a binary search tree is O(log n).

Binary search tree declarations
typedef struct tree_node *tree_ptr;
struct tree_node

{

element_type element;

tree_ptr left;

tree_ptr right;

j

typedef tree_ptr SEARCH_TREE;
Make Empty:

This operation is mainly for initialization. Some programmers prefer to initialize the
first element as a one-node tree, but our implementation follows the recursive definition of
trees more closely.

Find

This operation generally requires returning a pointer to the node in tree T that has key
X, or NULL if there is no such node. The structure of the tree makes this simple. If T is , then
we can just return . Otherwise, if the key stored at T is x, we can return T. Otherwise, we
make a recursive call on a subtree of T, either left or right, depending on the relationship of x
to the key stored in T.

Routine to make an empty tree
SearchTree makeempty (search tree T)
{

if(T!=NULL)

{

Makeempty (T->left);

Makeempty (T->Right);
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Free( T);
}
return NULL; }
Routine for Find operation
Position find( Elementtype X, SearchTree T )
{
if(T == NULL)
return NULL;
if( x < T->element )
return( find( x, T->left) );
else
if( x > T->element )
return( find( x, T->right ) );
else
return T;
}
FindMin & FindMax:
These routines return the position of the smallest and largest elements in the
tree, respectively.
To perform a findmin, start at the root and go left as long as there is a left child. The
stopping point is the smallest element.

The findmax routine is the same, except that branching is to the right child.

Recursive implementation of Findmin for binary search trees

Position findmin( SearchTree T)

{
if(T==NULL)
return NULL,;
else

if( T->left == NULL)
return( T);

else
return( findmin ( T->left ) );



75 CS3301 - DATASTRUCTURES

Recursive implementation of FindMax for binary search trees

Position findmax( SearchTree T )

{
if(T == NULL)
return NULL;
else
if( T->Right == NULL )
return( T);
else
return( findmax( T->right) );
}

Nonrecursive implementation of FindMin for binary search trees
Position findmin( SearchTree T )
{
if(T 1= NULL)

while( T->left 1= NULL )

T=T->left;

return(T);

}
Nonrecursive implementation of FindMax for binary search trees

Position findmax( SearchTree T )

{
if(T 1= NULL)
while( T->right != NULL )
T=T->right;
return(T); }
Insert

To insert x into tree T, proceed down the tree. If x is found, do nothing. Otherwise,
insert x at the last spot on the path traversed.
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To insert 5, we traverse the tree as though a find were occurring. At the node with key
4, we need to go right, but there is no subtree, so 5 is not in the tree, and this is the correct
spot.
Insertion routine

Since T points to the root of the tree, and the root changes on the first insertion, insert

is written as a function that returns a pointer to the root of the new tree.

searchTree insert( elementtype x, SearchTree T )

{
if(T==NULL)
{
T = (SEARCH_TREE) malloc ( sizeof (struct tree_node) );
if(T==NULL)
fatal_error("Out of space!!!");
else
{

T->element = x;

T->left = T->right = NULL; }
}

else

if( x < T->element)

T->left = insert( x, T->left);
else

if( x > T->element )

T->right = insert( x, T->right );
/* else x is in the tree already. We'll do nothing */
return T; }
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Delete

Once we have found the node to be deleted, we need to consider several possibilities.

If the node is a leaf, it can be deleted immediately.

If the node has one child, the node can be deleted after its parent adjusts a pointer to
bypass the node

if a node with two children. The general strategy is to replace the key of this node
with the smallest key of the right subtree and recursively delete that node. Because the
smallest node in the right subtree cannot have a left child, the second

delete is an easy one.

The node to be deleted is the left child of the root; the key value is 2. It is replaced
with the smallest key in its right subtree (3), and then that node is deleted as before.

Deletion of a node (4) with one child, before and after

If the number of deletions is expected to be small, then a popular strategy to
use is lazy deletion: When an element is to be deleted, it is left in the tree and merely marked

as being deleted.
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Deletion routine for binary search trees

Searchtree delete( elementtype X, searchtree T )
{

Position tmpcell,

if(T == NULL)

error("Element not found");

else

if( x < T->element) /* Go left */

T->left = delete( x, T->left );

else

if( x > T->element ) /* Go right */

T->right = delete( x, T->right );

else /* Found element to be deleted */

if( T->left && T->right ) /* Two children */
{

tmp_cell = find_min( T->right);
T->element = tmp_cell->element;

T->right = delete( T->element, T->right );

}

else /* One child */
{

tmpcell = T;

if( T->left == NULL ) /* Only a right child */
T=T->right;

if( T->right == NULL ) /* Only a left child */
T = T->left;

free( tmpcell );

by

return T;

¥

Average-Case Analysis of BST
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v All of the operations of the previous section, except makeempty, should take O(log n)

time, because in constant time we descend a level in the tree, thus operating on a tree

that is now roughly half as large.

v' The running time of all the operations, except makeempty is O(d), where d is the

depth of the node containing the accessed key.

v The average depth over all nodes in a tree is O(log n).

v The sum of the depths of all nodes in a tree is known as the internal path length.
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AVL Trees

The balance condition and allow the tree to be arbitrarily deep, but after every
operation, a restructuring rule is applied that tends to make future operations efficient. These
types of data structures are generally classified as self-adjusting.

An AVL tree is identical to a binary search tree, except that for every node in the
tree, the height of the left and right subtrees can differ by at most 1. (The height of an empty
tree is defined to be -1.)

An AVL (Adelson-Velskii and Landis) tree is a binary search tree with a balance
condition. The simplest idea is to require that the left and right subtrees have the same height.
The balance condition must be easy to maintain, and it ensures that the depth of the tree is
O(log n).

The above figure shows, a bad binary tree. Requiring balance at the root is not enough.

In Figure, the tree on the left is an AVL tree, but the tree on the right is not.
Thus, all the tree operations can be performed in O(log n) time, except possibly insertion.
When we do an insertion, we need to update all the balancing information for the
nodes on the path back to the root, but the reason that insertion is difficult is that inserting a
node could violate the AVL tree property.
Inserting a node into the AVL tree would destroy the balance condition.
Let us call the unbalanced node a. Violation due to insertion might occur in four
cases:
An insertion into the left subtree of the left child of a
An insertion into the right subtree of the left child of a

An insertion into the left subtree of the right child of a

M w0 D ke

An insertion into the right subtree of the right child of
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Violation of AVL property due to insertion can be avoided by doing some
modification on the node a. This modification process is called as Rotation.
Types of rotation
1. Single Rotation
2. Double Rotation

Single Rotation (case 1) — Single rotate with Left

(k2) )
k) A 2N (k2)
AN N /TN 2N

The two trees in the above Figure contain the same elements and are both binary
search trees.

First of all, in both trees k1 < k2. Second, all elements in the subtree X are smaller
than k1 in both trees. Third, all elements in subtree Z are larger than k2. Finally, all elements
in subtree Y are in between k1 and k2. The conversion of one of the above trees to the other
is known as a rotation.

In an AVL tree, if an insertion causes some node in an AVL tree to lose the balance
property: Do a rotation at that node.

The basic algorithm is to start at the node inserted and travel up the tree, updating the

balance information at every node on the path.

i
r
r
f

In the above figure, after the insertion of the in the original AVL tree on the left, node 8
becomes unbalanced. Thus, we do a single rotation between 7 and 8, obtaining the tree on the

right.
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Routine :

Static position Singlerotatewithleft( Position K2)
{
Position k1;
K1=k2->left;
K2->left=k1->right;
K1->right=k2;
K2->height=max(height(k2->left),height(k2->right));
K1->height=max(height(k1->left),k2->height);
Return k1;
}

Single Rotation (case 4) — Single rotate with Right
(Refer diagram from Class note)

Suppose we start with an initially empty AVL tree and insert the keys 1 through 7 in
sequential order. The first problem occurs when it is time to insert key 3, because the AVL
property is violated at the root. We perform a single rotation between the root and its right

child to fix the problem. The tree is shown in the following figure, before and after the
rotation.

.
\\

before after

A dashed line indicates the two nodes that are the subject of the rotation. Next, we insert the
key 4, which causes no problems, but the insertion of 5 creates a violation at node 3, which is
fixed by a single rotation.

Next, we insert 6. This causes a balance problem for the root, since its left subtree is
of height 0, and its right subtree would be height 2. Therefore, we perform a single rotation at
the root between 2 and 4.

The rotation is performed by making 2 a child of 4 and making 4's original left subtree
the new right subtree of 2. Every key in this subtree must lie between 2 and 4, so this

transformation makes sense. The next key we insert is 7, which causes another rotation.
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Routine :

Static position Singlerotatewithright( Position K1)
{
Position k2;
K2=k1->right;
K1->right=k2->left;
K2->left=k1;
K1->height=max(height(k1->left),height(k1->right));
K2->height=max(height(k2->left),k1->height);
Return k2;
}
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Double Rotation

(Right-left) double rotation

OSROINO EROENOERONNO NN
befnre aﬂﬂ

19 19

In the above diagram, suppose we insert keys 8 through 15 in reverse order. Inserting 15 is
easy, since it does not destroy the balance property, but inserting 14 causes a height
imbalance at node 7.

As the diagram shows, the single rotation has not fixed the height imbalance. The problem is
that the height imbalance was caused by a node inserted into the tree containing the middle
elements (tree Y in Fig. (Right-left) double rotation) at the same time as the other trees had
identical heights. This process is called as double rotation, which is similar to a single

rotation but involves four subtrees instead of three.
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In our example, the double rotation is a right-left double rotation and involves 7, 15,
and 14. Here, k3 is the node with key 7, k1 is the node with key 15, and
k2 is the node with key 14.

Next we insert 13, which require a double rotation. Here the double rotation is again a
right-left double rotation that will involve 6, 14, and 7 and will restore the tree. In this case,
k3 is the node with key 6, k1 is the node with key 14, and k2 is the node with key 7. Subtree
A is the tree rooted at the node with key 5, subtree B is the empty subtree that was originally
the left child of the node with key 7, subtree C is the tree rooted at the node with key 13, and
finally, subtree D is the tree rooted at the node with key 15.

If 12 is now inserted, there is an imbalance at the root. Since 12 is not between
4 and 7, we know that the single rotation will work. Insertion of 11 will require a single
rotation:

To insert 10, a single rotation needs to be performed, and the same is true for the
subsequent insertion of 9. We insert 8 without a rotation, creating the almost perfectly

balanced tree.

Routine for double Rotation with left (Case 2)
Static position doublerotatewithleft(position k3)
{
K3->left=singlerotatewithright(k3->left);
Return singlerotatewithleft(k3);
}
Routine for double Rotation with right (Case 3)
Static position doublerotatewithlright(position k1)
{
K1->right=singlerotatewithleft(k1->right);
Return singlerotatewithright(k21);
}
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Node declaration for AVL trees:
typedef struct avinode *position;
typedef struct avinode *avltree;
struct avinode

{

elementtype element;

avltree left;

avltree right;

int height;

Y

typedef avl_ptr SEARCH_TREE;

Routine for finding height of an AVL node
Int height (avltree p)

{
if(p==NULL)
return -1,

else

return p->height;
}

Routine for insertion of new element into a AVL TREE

SEARCH_TREE

insertl( element type x, SEARCH TREE T, avl ptr parent )

{
avl ptr rotated tree;
if( T == NULL )

{ /% Create and return a one-node tree */

T = (SEARCH_TREE) malloc ( sizeof (struct avl node) );

CS3301 - DATASTRUCTURES
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if( T == NULL )

fatal_error("Out of space!!!”):
else

{

T->element = x; T-Dheight = 0;
T->left = T->right = NULL;

}

}

else

{

if( x < T-Delement )

{

T->left = insertl( x, T->left, T ):
if( ( height( T->left ) — height( T->right ) ) = 2
{

if( x < T->left->element )
rotated_tree = s_rotate_left( T ):
else

rotated_tree = d_rotate_left( T ):
if( parent—>left == T )
parent—>left = rotated_tree;

else

parent->right = rotated_tree;

}

else

T->height = max( height (T->left), height(T->right) ) + 1;

}

else

S Symmetric Case for right subtree =/

/% Else x is in the tree already. We'll do nothing #/
}

return T;

}
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PRIORITY QUEUES (HEAPS)

A queue is said to be priority queue, in which the elements are dequeued based on the
priority of the elements.
A priority queue is used in,

e Jobs sent to a line printer are generally placed on a queue. For instance, one job might
be particularly important, so that it might be desirable to allow that job to be run as
soon as the printer is available.

e In a multiuser environment, the operating system scheduler must decide which of
several processes to run. Generally a process is only allowed to run for a fixed period
of time. One algorithm uses a queue. Jobs are initially placed at the end of the queue.
The scheduler will repeatedly take the first job on the queue, run it until either it
finishes or its time limit is up, and place it at the end of the queue. This strategy is
generally not appropriate, because very short jobs will seem to take a long time
because of the wait involved to run. Generally, it is important that short jobs finish as
fast as possible. This is called as Shortest Job First (SJF). This particular application
seems to require a special kind of queue, known as a priority queue.

Basic model of a priority queue
A priority queue is a data structure that allows at least the following two operations:
1. Insert, equivalent of enqueue
2. Deletemin, removes the minimum element in the heap equivalent of the
Queue’s dequeue operation.
Implementations of Priority Queue
1. Array Implementation
2. Linked list Implementation
3. Binary Search Tree implementation
4. Binary Heap Implementation
Array Implementation
Drawbacks:

1. There will be more wastage of memory due to maximum size of the array should be
define in advance

2. Insertion taken at the end of the array which takes O (N) time.

3. Delete_min will also take O (N) times.
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Linked list Implementation

It overcomes first two problems in array implementation. But delete_min operation
takes O(N) time similar to array implementation.
Binary Search Tree implementation

Another way of implementing priority queues would be to use a binary search tree.
This gives an O(log n) average running time for both operations.
Binary Heap Implementation

Another way of implementing priority queues would be to use a binary heap. This
gives an O(1) average running time for both operations.
Binary Heap
Like binary search trees, heaps have two properties, namely, a structure property and a
heap order property. As with AVL trees, an operation on a heap can destroy one of the
properties, so a heap operation must not terminate until all heap properties are in order.

1. Structure Property
2. Heap Order Property

Structure Property

A heap is a binary tree that is completely filled, with the possible exception of the
bottom level, which is filled from left to right. Such a tree is known as a complete binary
tree.

A complete Binary Tree

/ /
ofolo
A complete binary tree of height h has between 2h and 2h+1 - 1 nodes. This implies

that the height of a complete binary tree is log n, which is clearly O(log n).

Array implementation of complete binary tree
Note:
For any element in array position i, the left child is in position 2i, the right
child is in the cell after the left child (2i + 1), and the parent is in position
i12 .
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]

A B

p[e[r]a[u1];
8 .

0 1 2 3 4 3 ] 7 © 10 11 12 13

The only problem with this implementation is that an estimate of the maximum heap
size is required in advance.
Types of Binary Heap
Min Heap

A binary heap is said to be Min heap such that any node x in the heap, the key value
of X is smaller than all of its descendants children.

Max Heap
A binary heap is said to be Min heap such that any node x in the heap, the key

value of X is larger than all of its descendants children.

(197 (36)
P~ <

7)) (3) &3 @)

It is easy to find the minimum quickly, it makes sense that the smallest element
should be at the root. If we consider that any subtree should also be a heap, then any node
should be smaller than all of its descendants.

Applying this logic, we arrive at the heap order property. In a heap, for every node X,
the key in the parent of X is smaller than (or equal to) the key in X.

Similarly we can declare a (max) heap, which enables us to efficiently find and
remove the maximum element, by changing the heap order property. Thus, a priority queue
can be used to find either a minimum or a maximum.

By the heap order property, the minimum element can always be found at the root.



91 CS3301 - DATASTRUCTURES

Declaration for priority queue
struct heapstruct

{

int capacity;

int size;

element_type *elements;

}

typedef struct heapstruct *priorityQ;

Create routine of priority Queue

priorityQ create (int max_elements )

{
priorityQ H;
if( max_elements < MIN_PQ_SIZE)
error("Priority queue size is too small™);
H = (priorityQ) malloc ( sizeof (struct heapstruct) );
if(H==NULL)
fatal_error("Out of space!!!");
H->elements = (element_type *) malloc( ( max_elements+1) * sizeof (element_type)
);
if( H->elements == NULL )
fatal_error("Out of space!!!");

H->capacity= max_elements;

H->size = 0;
H->elements[0] = MIN_DATA,;
return H; }

Basic Heap Operations
It is easy to perform the two required operations. All the work involves ensuring that
the heap order property is maintained.
1. Insert
2. Deletemin



92 CS3301 - DATASTRUCTURES

Insert

To insert an element x into the heap, we create a hole in the next available location,
since otherwise the tree will not be complete.

If x can be placed in the hole without violating heap order, then we do so and are
done. Otherwise we slide the element that is in the hole's parent node into the hole, thus
bubbling the hole up toward the root. We continue this process until x can be placed in the

hole.

(65 @S@

Figure shows that to insert 14, we create a hole in the next available heap location.

Inserting 14 in the hole would violate the heap order property, so 31 is slide down into the

b@ o

@Ko@@

This strategy is continued until the correct location for 14 is found. This general

hole.

strategy is known as a percolate up; the new element is percolated up the heap until the
correct location is found.

We could have implemented the percolation in the insert routine by performing
repeated swaps until the correct order was established, but a swap requires three assignment
statements. If an element is percolated up d levels, the number of assignments performed by

the swaps would be 3d. Our method uses d + 1 assignments.

Routine to insert into a binary heap
[* H->element[0] is a sentinel */

Void insert( element_type X, priorityQ H)
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{

inti;

if(is_full(H))

error("Priority queue is full™);

else

{
I = ++H->size;
while( H->elements[i/2] > x)
{
H->elements[i] = H->elements[i/2];
i/=2;

} H->elements[i] = x; } }

If the element to be inserted is the new minimum, it will be pushed all the way to the
top. The time to do the insertion could be as much as O (log n), if the element to be inserted
is the new minimum and is percolated all the way to the root. On
Deletemin

Deletemin are handled in a similar manner as insertions. Finding the minimum is
easy; the hard part is removing it.

When the minimum is removed, a hole is created at the root. Since the heap now
becomes one smaller, it follows that the last element x in the heap must move somewhere in
the heap. If x can be placed in the hole, then we are done. This is unlikely, so we slide the
smaller of the hole's children into the hole, thus pushing the hole down one level. We repeat
this step until x can be placed in the hole. This general strategy is known as a percolate

down.

In Figure, after 13 is removed, we must now try to place 31 in the heap. 31 cannot be
placed in the hole, because this would violate heap order. Thus, we place the smaller child

(14) in the hole, sliding the hole down one level. We repeat this again, placing 19 into the
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hole and creating a new hole one level deeper. We then place 26 in the hole and create a new

hole on the bottom level. Finally, we are able to place 31 in the hole.

Routine to perform deletemin in a binary heap
element_type delete_min( priorityQ H)
{
int i, child;
element_type min_element, last_element;
if(is_empty(H))
{
error("Priority queue is empty");
return H->elements[0];
}
min_element = H->elements[1];
last_element = H->elements[H->size--];
for(i=1; i*2 <= H->size; i=child )
{
child = i*2;
if( ( child = H->size ) && ( H->elements[child+1] < H->elements [child] ) )
child++;
if( last_element > H->elements[child] )
H->elements[i] = H->elements[child];
else
break;
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}

H->elements]i] = last_element;

return min_element;

The worst-case running time for this operation is O(log n). On average, the element
that is placed at the root is percolated almost to the bottom of the heap, so the average
running time is O (log n).

Other Heap Operations
The other heap operations are
1. Decreasekey
2. Increasekey
3. Delete
4. Buildheap
Decreasekey

The decreasekey(x, A, H) operation lowers the value of the key at position x by a
positive amount A. Since this might violate the heap order, it must be fixed by a percolate up.

USE:

This operation could be useful to system administrators: they can make their programs
run with highest priority.

Increasekey

The increasekey(x, A, H) operation increases the value of the key at position x by a
positive amount A. This is done with a percolate down.

USE:

Many schedulers automatically drop the priority of a process that is consuming
excessive CPU time.

Delete

The delete(x, H) operation removes the node at position x from the heap. This is done
by first performing decreasekey(x,A , H) and then performing deletemin(H). When a process
is terminated by a user, it must be removed from the priority queue.

Buildheap

The buildheap(H) operation takes as input n keys and places them into an empty heap.
This can be done with n successive inserts. Since each insert will take O(1) average and
O(log n) worst-case time, the total running time of this algorithm would be O(n) average but
O(n log n) worst-case.
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UNIT IV MULTIWAY SEARCH TREES AND GRAPHS 9
B-Tree — B+ Tree — Graph Definition — Representation of Graphs — Types of Graph -
Breadth-first traversal — Depth-first traversal — Bi-connectivity — Euler circuits —
Topological Sort — Dijkstra's algorithm — Minimum Spanning Tree — Prim's algorithm

— Kruskal's algorithm

B-Trees
AVL tree and Splay tree are binary; there is a popular search tree that is not binary.
This tree is known as a B-tree.
A B-tree of order m is a tree with the following structural properties:
a. Theroot is either a leaf or has between 2 and m children.
b. All nonleaf nodes (except the root) have between m/2 and m children.
c. All leaves are at the same depth.
All data is stored at the leaves. Contained in each interior node are pointers
pl, p2, ..., pm to the children, and values k1, k2, . .., km - 1, representing the smallest key
found in the subtrees p2, p3, . . ., pm respectively. Some of these pointers might be NULL,
and the corresponding ki would then be undefined.
For every node, all the keys in subtree pl are smaller than the keys in subtree p2, and so on.
The leaves contain all the actual data, which is either the keys themselves or pointers to
records containing the keys.
The number of keys in a leaf is also between m/2 and m.
An example of a B-tree of order 4

A B-tree of order 4 is more popularly known as a 2-3-4 tree, and a B-tree of order 3 is

known as a 2-3 tree
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Our starting point is the 2-3 tree that follows.

8. 11,12 16, 17 22, 23,31 41, 32 58, 59, 61

We have drawn interior nodes (nonleaves) in ellipses, which contain the two pieces of
data for each node. A dash line as a second piece of information in an interior node indicates
that the node has only two children. Leaves are drawn in boxes, which contain the keys. The
keys in the leaves are ordered.

To perform a find, we start at the root and branch in one of (at most) three directions,
depending on the relation of the key we are looking for to the two values stored at the node.

When we get to a leaf node, we have found the correct place to put x. Thus, to insert a
node with key 18, we can just add it to a leaf without causing any violations of the 2-3 tree

properties. The result is shown in the following figure.

8 11, 12| |16,17,. 18 22,23, 3 41, 52 58, 59, 61

If we now try to insert 1 into the tree, we find that the node where it belongs is
already full. Placing our new key into this node would give it a fourth element which is not
allowed. This can be solved by making two nodes of two keys each and adjusting the

information in the parent.

L& 11,12 16, 17, 1§ FZ, 23,3 41, 52 58, 59, 61
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To insert 19 into the current tree, two nodes of two keys each, we obtain the following tree.

1.8 1, 12 16,17 | 18,19 : 22,23, 31| | 41, 52 | |58, 59, 61

This tree has an internal node with four children, but we only allow three per node.
Again split this node into two nodes with two children. Now this node might be one of three
children itself, and thus splitting it would create a problem for its parent but we can keep on

splitting nodes on the way up to the root until we either get to the root or find a node with
only two children.

1.8 11, 12 16, 17 18,19 | 22,23, 31| | 41,52 | |58, 59,61

If we now insert an element with key 28, we create a leaf with four children, which is
split into two leaves of two children.

) ?/C |
|11 12‘

16 1?1 11s.m| Izz,za[ |2s,31] |41.52|Ea. 59, 61
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This creates an internal node with four children, which is then split into two children.
Like to insert 70 into the tree above, we could move 58 to the leaf containing 41 and 52,
place 70 with 59 and 61, and adjust the entries in the internal nodes.
Deletion in B-Tree

e If this key was one of only two keys in a node, then its removal leaves only one key.
We can fix this by combining this node with a sibling. If the sibling has three keys,
we can steal one and have both nodes with two keys.

e If the sibling has only two keys, we combine the two nodes into a single node with
three keys. The parent of this node now loses a child, so we might have to percolate
this strategy all the way to the top.

e If the root loses its second child, then the root is also deleted and the tree becomes one
level shallower.

We repeat this until we find a parent with less than m children. If we split the root, we
create a new root with two children.

The depth of a B-tree is at most log m/2 n.

The worst-case running time for each of the insert and delete operations is thus O(m
logm n) = O( (m/log m) log n), but a find takes only O(log n ).

Definitions
Graph
A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E. Each

edge is a pair (v,w), where v,w € V. Edges are sometimes referred to as arcs.

—»
Edge / arcs

A, B, C, D and E are vertices
Vertex @\
Types of graph @
1. Directed Graph
If the pair is ordered, then the graph is directed. In a graph, if all the edges are
directionally oriented, then the graph is called as directed Graph. Directed graphs are

sometimes referred to as digraphs.

Vertex w is adjacent to v if ®—>‘ and only if (v, w) has an edge E.

S\
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2. Undirected Graph
In a graph, if all the edges are not directionally oriented, then the graph is called as
undirected Graph. In an undirected graph with edge (v,w), and hence (w,v), w is adjacent to

v and v is adjacent to w.

3. Mixed Graph
In a graph if the edges are either directionally or not directionally oriented, then it is

called as mixed graph.

%o

A path in a graph is a sequence of vertices wl, w2, w3, . . ., wn such that (wi, witi) €

E for 1<i<n.

Path length

The length of a path is the number of edges on the path, which is equal to n — 1 where
n is the no of vertices.
Loop

A path from a vertex to itself; if this path contains no edges, then the path length is 0.
If the graph contains an edge (v,v) from a vertex to itself, then the path v, v is sometimes

referred to as a loop.
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Simple Path

A simple path is a path such that all vertices are distinct, except that the first and last
A->C->D->E :/ \ :T

In a graph, if the path starts and ends to the same vertex then it is known as Cycle.

could be the same.

Cycle

A->C->D->E->A
Cyclic Graph
A directed graph is said to be cyclic graph, if it has cyclic path.

Acyclic Graph

A directed graph is acyclic if it has no cycles. A directed acyclic graph is also referred
as DAG.
Connected Graph

An undirected graph is connected if there is a path from every vertex to every other

vertex.

Strongly connected Graph
A directed graph is called strongly connected if there is a path from every vertex to

every other vertex.
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Weakly connected Graph
If a directed graph is not strongly connected, but the underlying graph (without
direction to the arcs) is connected, then the graph is said to be weakly connected.

Complete graph

A complete graph is a graph in which there is an edge between every pair of vertices.

Weighted Graph
In a directed graph, if some positive non zero integer values are assigned to
each and every edges, then it is known as weighted graph. Also called as Network
An example of a real-life situation that can be modeled by a graph is the airport
system. Each airport is a vertex, and two vertices are connected by an edge if there is a
nonstop flight from the airports that are represented by the vertices. The edge could have a

weight, representing the time, distance, or cost of the flight.

Indegree and Outdegree
Indegree : number of edges entering or coming towards a vertex is called Indegree.
Outdegree: Number of edges exiting or going out from a vertex is called Outdegree.
Degree : Number of edges incident on a vertex is called Degree of a vertex.

Degree = Indegree + Outdegree
Source / Start Vertex: A vertex whose indegree is zero is called sink vertex

Sink / Destination Vertex : A vertex whose outdegree is zero is called sink vertex
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Representation of Graphs
1. Adjacency matrix / Incidence Matrix
2. Adjacency Linked List/ Incidence Linked List

Adjacency matrix

We will consider directed graphs. (Fig. 1)

Now we can number the vertices, starting at 1. The graph shown in above figure represents 7
vertices and 12 edges.

One simple way to represent a graph is to use a two-dimensional array. This is known
as an adjacency matrix representation.
For each edge (u, v), we set a[u][v]= 1; otherwise the entry in the array is 0. If the edge has a
weight associated with it, then we can set a[u][v] equal to the weight and use either a very
large or a very small weight as a sentinel to indicate nonexistent edges.

Advantage is, it is extremely simple, and the space requirement is (|V[?).

For directed graph

Alu]lvl={ 1, ifthereisedge fromutov
0 otherwise }

For undirected graph

Alul[vl={ 1, if there is edge between u and v
0 otherwise }

For weighted graph

Afu][vl={ value, if there is edge fromu to v

o, if no edge between u and v }
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Adjacency lists

Adjacency lists are the standard way to represent graphs. Undirected graphs can be
similarly represented; each edge (u, v) appears in two lists, so the space usage essentially
doubles. A common requirement in graph algorithms is to find all vertices adjacent to some
given vertex v, and this can be done, in time proportional to the number of such vertices
found, by a simple scan down the appropriate adjacency list.

An adjacency list representation of a graph (See above fig 5.1)

I 2 —-—l- 4 3 —“+—
2 4 ]|—i—- 5 —+—
T

3 6 | T
4 | 6 7 _]_..] 3

] 1T 3
5| 4 7 | +—=

|

7 5 | T

Topological Sort

A topological sort is an ordering of vertices in a directed acyclic graph, such that if
there is a path from vi to vj, then vj appears after vi in the ordering.

It is clear that a topological ordering is not possible if the graph has a cycle, since for
two vertices v and w on the cycle, v precedes w and w precedes V.

Directed acyclic graph

In the above graph v1, v2, v5, v4, v3, v7, v6 and v1, v2, v5, v4, v7, v3, v6 are both

topological orderings.
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A simple algorithm to find a topological ordering

First, find any vertex with no incoming edges (Source vertex). We can then print this
vertex, and remove it, along with its edges, from the graph.

To formalize this, we define the indegree of a vertex v as the number of edges (u,v).
We compute the indegrees of all vertices in the graph. Assuming that the indegree array is
initialized and that the graph is read into an adjacency list,

Indegree Before Dequeue #

Vertex 1 2 3 4 5 6 7
vl 0 0 0 0 0 0 0
V2 1 0 0 0 0 0 0
v3 2 1 1 1 0 0 0
v4 3 2 1 0 0 0 0
v5 1 1 0 0 0 0 0
V6 3 3 3 2 1 0
V7 2 2 2 1 0 0 0
Enqueue vl V2 V5 v4 v3 V7 V6
Dequeue vl v2 V5 v4 v3 V7 V6

Simple Topological Ordering Routine

Void topsort( graph G)

{
unsigned int counter;
vertex v, w;
for( counter = 0; counter < NUM_VERTEX; counter++)
{

v = find_new_vertex_of _indegree_zero();
if(v=NOT_A_VERTEX)

{

error("Graph has a cycle");

break;

¥
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top_num[v] = counter;
for each w adjacent to v
indegree[w]--;

}

}

Explanation

The function find_new_vertex_of indegree_zero scans the indegree array looking
for a vertex with indegree 0 that has not already been assigned a topological number. It
returns NOT_A_VERTEX if no such vertex exists; this indicates that the graph has a cycle.
Routine to perform Topological Sort
Void topsort( graph G)
{

QUEUE Q;

unsigned int counter;

vertex v, w;

Q = create_queue( NUM_VERTEX);

makeempty( Q );

counter = 0;

for each vertex v

if( indegree[v] =0)

enqueue( v, Q);

while( lisempty( Q) )

{

v = dequeue( Q);

top_num[v] = ++counter; /* assign next number */
for each w adjacent to v

if( --indegree[w] =0)

enqueue(w, Q);

}

if( counter I= NUMVERTEX)
error("Graph has a cycle");
dispose_queue( Q ); /* free the memory */
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¥

Graph Traversal:
Visiting of each and every vertex in the graph only once is called as Graph traversal.
There are two types of Graph traversal.
1. Depth First Traversal/ Search (DFS)
2. Breadth First Traversal/ Search (BFS)

Depth First Traversal/ Search (DFS)

Depth-first search is a generalization of preorder traversal. Starting at some vertex, v,
we process v and then recursively traverse all vertices adjacent to v. If this process is
performed on a tree, then all tree vertices are systematically visited in a total of O(|E|) time,
since |E| = (|V)).

We need to be careful to avoid cycles. To do this, when we visit a vertex v, we mark it
visited, since now we have been there, and recursively call depth-first search on all adjacent
vertices that are not already marked.

The two important key points of depth first search

1. If path exists from one node to another node walk across the edge — exploring
the edge
2. If path does not exist from one specific node to any other nodes, return to the
previous node where we have been before — backtracking
Procedure for DFS
Starting at some vertex V, we process V and then recursively traverse all the vertices adjacent
to V. This process continues until all the vertices are processed. If some vertex is not
processed recursively, then it will be processed by using backtracking. If vertex W is visited
from V, then the vertices are connected by means of tree edges. If the edges not included in
tree, then they are represented by back edges. At the end of this process, it will construct a
tree called as DFS tree.
Routine to perform a depth-first search void

void dfs( vertex v )

{

visited[v] = TRUE;

for each w adjacent to v

if( visited[w] )

dfs(w); }
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The (global) boolean array visited[ ] is initialized to FALSE. By recursively calling
the procedures only on nodes that have not been visited, we guarantee that we do not loop
indefinitely.

* An efficient way of implementing this is to begin the depth-first search at v1. If we need to
restart the depth-first search, we examine the sequence vk, vk + 1, . . . for an unmarked

vertex,where vk - 1 is the vertex where the last depth-first search was started.

An undirected graph

A

~&

Steps to construct depth-first spanning tree

a. We start at vertex A. Then we mark A as visited and call dfs(B) recursively. dfs(B)
marks B as visited and calls dfs(C) recursively.

b. dfs(C) marks C as visited and calls dfs(D) recursively.

c. dfs(D) sees both A and B, but both these are marked, so no recursive calls are made.
dfs(D) also sees that C is adjacent but marked, so no recursive call is made there, and
dfs(D) returns back to dfs(C).

d. dfs(C) sees B adjacent, ignores it, finds a previously unseen vertex E adjacent, and
thus calls dfs(E).

e. dfs(E) marks E, ignores A and C, and returns to dfs(C).

f. dfs(C) returns to dfs(B). dfs(B) ignores both A and D and returns.

g. dfs(A) ignores both D and E and returns.

Depth-first search of the graph
//Z\

(o) = > Back edge
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— 5 Treeedge

The root of the tree is A, the first vertex visited. Each edge (v, w) in the graph is present
in the tree. If, when we process (v, w), we find that w is unmarked, or if, when we process
(w, v), we find that v is unmarked, we indicate this with a tree edge.

If when we process (v, w), we find that w is already marked, and when processing (w, v), we
find that v is already marked, we draw a dashed line, which we will call a back edge, to

indicate that this "edge™ is not really part of the tree.

Breadth First Traversal (BFS)

Here starting from some vertex v, and its adjacency vertices are processed. After all the
adjacency vertices are processed, then selecting any one the adjacency vertex and process
will continue. If the vertex is not visited, then backtracking is applied to visit the unvisited

vertex.

Routine: Example: BFS of the above graph

void BFS (vertex v) o

{ / \

visited[v]= true;

For each w adjacent to v @ G

I (visited[w])

visited[w] = true;

}

Difference between DFS & BFS

S. No DFS BFS

1 Back tracking is possible from a dead end. Back tracking is not possible.

2 Vertices from which exploration is The wvertices to be explored are
incomplete are processed in a LIFO order. organized as a FIFO queue.

3 Search is done in one particular direction at | The vertices in the same level are
the time. maintained parallel. (Left to right) (

alphabetical ordering)
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Order of traversal: @ @ @ @

A->B->C->D->E

Order of traversal:
A>B>C>D>E>F>G~>H

Bi-connectivity / Bi connected Graph:
A connected undirected graph is biconnected if there are no vertices whose removal

disconnects the rest of the graph.

The graph in the example above is biconnected.
It is used in computer networks. If the nodes are computers and the edges are links, then if

any computer goes down, network mail is unaffected if it is a biconnected network.

Articulation points
If a graph is not biconnected, the vertices whose removal would disconnect the graph

are known as articulation points.
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The above graph is not biconnected: C and D are articulation points.
The removal of C would disconnect G, and the removal of D would disconnect E and F, from
the rest of the graph.
Depth-first search provides a linear-time algorithm to find all articulation points in a
connected graph.

e First, starting at any vertex, we perform a depth-first search and number the
nodes as they are visited.

e For each vertex v, we call this preorder number num (v). Then, for every
vertex v in the depth-first search spanning tree, we compute the lowest-
numbered vertex, which we call low(v), that is reachable from v by taking
zero or more tree edges and then possibly one back edge (in that order).

By the definition of low, low (v) is the minimum of
1. num(v)
2. the lowest num(w) among all back edges (v, w)
3. the lowest low(w) among all tree edges (v, w)
The first condition is the option of taking no edges, the second way is to choose no
tree edges and a back edge, and the third way is to choose some tree edges and possibly a

back edge.
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The depth-first search tree in the above Figure shows the preorder number first, and then the
lowest-numbered vertex reachable under the rule described above.

The lowest-numbered vertex reachable by A, B, and C is vertex 1 (A), because they can all
take tree edges to D and then one back edge back to A and find low value for all other
vertices.

Depth-first tree that results if depth-first search starts at C

o1
[}
: ™
| O, 271 . | LR |
/J IJ \ﬂ-_'--/
|L”42| A, 51| ;
.-"--l — \.\""'\— -'I.

TN .
F, 412 B. &1 |
W, W,
To find articulation points,

e The root is an articulation point if and only if it has more than one child, because if it
has two children, removing the root disconnects nodes in different subtrees, and if it
has only one child, removing the root merely disconnects the root.

e Any other vertex v is an articulation point if and only if v has some child w such that
low (w)>= num (v). Notice that this condition is always satisfied at the root;

We examine the articulation points that the algorithm determines, namely C and D. D has a
child E, and low (E)>= num (D), since both are 4. Thus, there is only one way for E to get to
any node above D, and that is by going through D.

Similarly, C is an articulation point, because low (G)>= num (C).

Routine to assign num to vertices
Void assignnum( vertex v )

{

vertex w;

num[v] = counter++;

visited[v] = TRUE;
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for each w adjacent to v
if( visited[w] )

{

parent[w] = v;

assignnum (w ); } }

Routine to compute low and to test for articulation
Void assignlow( vertex v )

{

vertex w;

low[v] = num[v]; /* Rule 1 */

for each w adjacent to v

{

if( num[w] > num[v] ) /* forward edge */
{

assignlow( w );

if( low[w] >= num[v] )

printf( "%v is an articulation point\n", v );

low[v] = min( low[v], low[w] ); /* Rule 3 */

}

else

if( parent[v] != w) /* back edge */

low[v] = min( low[v], num[w] ); /* Rule 2 */ } }

Testing for articulation points in one depth-first search (test for the root is omitted) void
findart( vertex v)

{

vertex w;

visited[v] = TRUE;

low[v] = num[v] = counter++; /* Rule 1 */

for each w adjacent to v

{

if( Ivisited[w] ) /* forward edge */

{

parentfw] = v;
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findart(w);

if( low[w] >= num[v] )

printf ( "%v is an articulation point\n", v );
low[v] = min( low[v], low[w] ); /* Rule */

¥

else

if( parent[v] = w ) /* back edge */

low[Vv] = min( low[v], num[w] ); /* Rule 2 */
}

}

Euler Circuits

We must find a path in the graph that visits every edge exactly once. If we are to solve
the "extra challenge,” then we must find a cycle that visits every edge exactly once. This
graph problem was solved in 1736 by Euler and marked the beginning of graph theory. The
problem is thus commonly referred to as an Euler path or Euler tour or Euler circuit
problem, depending on the specific problem statement.

Consider the three figures as shown below. A popular puzzle is to reconstruct these
figures using a pen, drawing each line exactly once. The pen may not be lifted from the paper
while the drawing is being performed. As an extra challenge, make the pen finish at the same

point at which it started.

T~ _
|

1. The first figure can be drawn only if the starting point is the lower left- or right-hand

Three drawings

corner, and it is not possible to finish at the starting point.
2. The second figure is easily drawn with the finishing point the same as the starting
point.

3. The third figure cannot be drawn at all within the parameters of the puzzle.
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We can convert this problem to a graph theory problem by assigning a vertex to each

intersection. Then the edges can be assigned in the natural manner, as in figure.

The first observation that can be made is that an Euler circuit, which must end on its starting

vertex, is possible only if the graph is connected and each vertex has an even degree (number
of edges). This is because, on the Euler circuit, a vertex is entered and then left.

If exactly two vertices have odd degree, an Euler tour, which must visit every edge but need
not return to its starting vertex, is still possible if we start at one of the odd-degree vertices
and finish at the other.

If more than two vertices have odd degree, then an Euler tour is not possible.

That is, any connected graph, all of whose vertices have even degree, must have an Euler
circuit

As an example, consider the graph in

®
5

(o

The main problem is that we might visit a portion of the graph and return to the starting point
prematurely. If all the edges coming out of the start vertex have been used up, then part of the
graph is untraversed.
The easiest way to fix this is to find the first vertex on this path that has an untraversed edge,
and perform another depth-first search. This will give another circuit, which can be spliced
into the original. This is continued until all edges have been traversed.

Suppose we start at vertex 5, and traverse the circuit 5, 4, 10, 5. Then we are stuck,

and most of the graph is still untraversed. The situation is shown in the Figure.
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: '@/C-J \,f@a ®
8) 2 2 & 10 \@)
\@/\J

We then continue from vertex 4, which still has unexplored edges. A depth-first search might
come up with the path 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4. If we splice this path into the previous
path of 5, 4, 10, 5, then we get a new path of 5, 4, 1, 3,7 ,4, 11, 10, 7, 9, 3, 4, 10, 5.

The graph that remains after this is shown in the Figure

©
2 € 3 &
? &— O © -
® g 1 in
12

The next vertex on the path that has untraversed edges is vertex 3. A possible circuit would
then be 3, 2, 8, 9, 6, 3. When spliced in, this gives the path 5, 4,1, 3,2, 8,9, 6, 3,7, 4, 11, 10,
7,9, 3,4,10,5.

The graph that remains is in the Figure.

9
®
®

® ©

On this path, the next vertex with an untraversed edge is 9, and the algorithm finds the circuit
9, 12, 10, 9. When this is added to the current path, a circuit of 5, 4, 1, 3, 2, 8, 9, 12, 10, 9, 6,
3,7,4,11, 10, 7,9, 3, 4, 10, 5 is obtained. As all the edges are traversed, the algorithm
terminates with an Euler circuit.

Then the Euler Path for the above graph is 5, 4, 1, 3, 2, 8, 9, 12, 10, 9,6, 3, 7, 4, 11,
10,7,9,3,4,10,5

Cut vertex and edges
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A cut vertex is a vertex that when removed (with its boundary edges) from a graph creates

more components than previously in the graph.

A cut edge is an edge that when removed (the vertices stay in place) from a graph creates
more components than previously in the graph.

Find the cut vertices and cut edges for the following graphs

31. « d e 32, a i

33. b i
i L
| \
-z
- >-——a

Answers

31) The cut vertex is c. There are no cut edges.

32) The cut vertices are ¢ and d. The cut edge is (c,d)

33) The cut vertices are b,c,e and i. The cut edges are: (a,b),(b,c),(c,d),(c,e),(e,i),(i,h)
Applications of graph:

Minimum Spanning Tree

Definition:

A minimum spanning tree exists if and only if G is connected. A minimum spanning
tree of an undirected graph G is a tree formed from graph edges that connects all the vertices
of G at lowest total cost.

The number of edges in the minimum spanning tree is |V| - 1. The minimum spanning
tree is a tree because it is acyclic, it is spanning because it covers every edge.

Application:

e House wiring with a minimum length of cable, reduces cost of the

wiring.
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A graph G and its minimum spanning tree

< . o)

There are two algorithms to find the minimum spanning tree
1. Prim's Algorithm
2. Kruskal's Algorithm
Kruskal's Algorithm
A second greedy strategy is continually to select the edges in order of smallest weight

and accept an edge if it does not cause a cycle.
Formally, Kruskal's algorithm maintains a forest. Forest is a collection of trees.
Procedure
e Initially, there are |V/| single-node trees.
e Adding an edge merges two trees into one.
e When the algorithm terminates, there is only one tree, and this is the minimum
spanning tree.

e The algorithm terminates when enough edges are accepted.

At any point in the process, two vertices belong to the same set if and only if they are

connected in the current spanning forest. Thus, each vertex is initially in its own set.

e If uand v are in the same set, the edge is rejected, because since they are already
connected, adding (u, v) would form a cycle.
e Otherwise, the edge is accepted, and a union is performed on the two sets containing

u and v.
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Action of Kruskal's algorithm on G

Edge Weight

oo OB B W NN PP

Action

Accepted
Accepted
Accepted
Accepted
Rejected
Rejected
Accepted
Rejected
Accepted

Kruskal's algorithm after each stage
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Routine for Kruskal's algorithm

void Graph:: kruskal( )

{
int edgesaccepted = 0;
PRIORIT_QUEUE < edge> pg( getedges ());
Edge e;

P

- ®

DISJSET ds ( Numvertex);

v

L
Yg b=

2

L

(L
e

e

®

®
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Vertex U, V,
while( edgesaccepted < NUMVERTEX-1)
{
Pqg. deletemin(e); /e=(u,Vv)
Settype Uset =ds. find( U, S );
Settype Vset = ds.find( V, S );
if( Uset 1= Vset)
{
/I accept the edge
edgesaccepted++;
ds.setunion( S, Uset, Vset );
} } }
Dijkstra‘s Algorithm

If the graph is weighted, the problem becomes harder, but we can still use the

ideas from the unweighted case.

Each vertex is marked as either known or unknown. A tentative distance dv is kept for each
vertex. The shortest path length from s to v using only known vertices as intermediates.
The general method to solve the single-source shortest-path problem is known as Dijkstra’s
algorithm.

Dijkstra's algorithm proceeds in stages, just like the unweighted shortest-path
algorithm. At each stage, Dijkstra's algorithm selects a vertex v, which has the smallest dv

among all the unknown vertices, and declares that the shortest path from s to v is known.
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In the above graph, assuming that the start node, s, is v1. The first vertex selected is v1, with
path length 0. This vertex is marked known. Now that v1 is known.

Initial configuration table

% Knowndv  pv
vl 0 0 0
v2 0 0 0
v3 0 o0 0
v4 0 o0 0
v5 0 o0 0
V6 0 o0 0
v7 0 0 0

The vertices adjacent to v1 are v2 and v4. Both these vertices get their entries adjusted, as
indicated below

After v1 is declared known

v Known dv pv
vl 1 0 0
v2 0 2 vl
v3 0 00 0
v4 0 1 vl
vb 0 o0 0
V6 0 00 0

V7 0 0 0
Next, v4 is selected and marked known. Vertices v3, v5, v6, and v7 are adjacent.

After v4 is declared known

v Known dv pv
vl 1 0 0
v2 0 2 vl
v3 0 3 v4
V4 1 1 vl
V5 0 3 v4
V6 0 9 v4
V7 0 5 v4
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Next, v2 is selected. v4 is adjacent but already known, so no work is performed on it. v5 is
adjacent but not adjusted, because the cost of going through v2 is 2 + 10 = 12 and a path of

length 3 is already known.  After v2 is declared known

v Known dv pv
vl 1 0 0
v2 1 2 vl
v3 0 3 v4
v4 1 1 vl
V5 0 3 v4
V6 0 9 v4
V7 0 5 v4

The next vertex selected is v5 at cost 3. v7 is the only adjacent vertex, but it is not adjusted,
because 3 + 6 > 5. Then v3 is selected, and the distance for v6 is adjusted down to 3 +5=8.

After v5 and v3 are declared known

v Known dv pv
vl 1 0 0

v2 1 2 vl
v3 1 3 v4
v4 1 1 vl
V5 1 3 v4
V6 0 8 v3

V7 0 5 v4
Next v7 is selected; v6 gets updated down to 5 + 1 = 6. The resulting table is

After v7 is declared known

v Known dv pv
vl 1 0 0
v2 1 2 vl
v3 1 3 v4
v4 1 1 vl
v5 1 3 v4
v6 0 6 v7
v7 1 5 v4
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Finally, v6 is selected. The final table is shown

After v6 is declared known and algorithm terminates

v Known dv pv
vl 1 0 0
v2 1 2 vl
v3 1 3 v4
va 1 1 vl
vb 1 3 va
v6 1 6 v7
v7 1 5 v4
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Vertex class for Dijikstra’s algorithm
struct Vertex
{
List adj;
Bool known;
disttype dist;
Vertex path; };
#define NOTAVERTEX 0
Routine for Dijkstra's algorithm

void graph :: dijkstra( Vertex S)

{
for each vertex v
{
v.dist = INFINITY;
v.known = false; }
s.dist =0;

for(;;)

{

v = smallest unknown distance vertex;
if(v== NotAVertex)
break;
v. known = TRUE;
for each w adjacent to v
if( !w. known)
if(v.dist + Cv,w < w.dist )
{
decrease( w.dist to v.dist + Cv,w );
w.path=v; } } }
Routine to print the actual shortest path

void Graph:: printpath( Vertex v)

{
if( v.path = NOTAVERTEX )

{
printpath(v.path);
cout<<"to"; }

cout<< v ; }

CS3301

- DATASTRUCTURES
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UNIT V SEARCHING, SORTING AND HASHING TECHNIQUES 9
Searching — Linear Search — Binary Search. Sorting — Bubble sort — Selection sort —

Insertion sort — Shell sort —. Merge Sort — Hashing — Hash Functions — Separate
Chaining — Open Addressing — Rehashing — Extendible Hashing.

1

orting algorithm is an algorithm that puts elements of a list in a certain order. The most
s : ’ :

A 4 orders are numerical order and lexicographical order. Efficient sorting is important for
use

iimizing the use of other algorithms that require sorted lists to work correctly and for pro-
op

qucing in human readable format input.
u

orting algorithms are often classified by :
* Computational complexity (wofst, average and best case) in terms of the size of the list

(N). For typical sorting algorithms good behaviour is O(NlogN) and worst case behaviour
is O(N?) and the average case behaviour is O(N).

+ Memory Utilization

+ Stability - Maintaining relative order of records with equal keys.
* No. of comparisions.

* Methods applied like Insertion, exchange, selection, merging etc.

Sorting is the process of arranging the elements in either ascending or decending order.

Sorting techniques are categorized into
= Internal Sorting
= External Sorting

' ter.
Internal Sorting takes place in the main memory of a compu

Example ;

_ ; Hea sort, etc.
Bubble sort, Insertion sort, Shell sort, Quick sort P ¢ number of 0b-

computer, a8 th
External Sorting takes place in the secondary memory of a comp

Jexts to be sorted is too large to fit in main memory

F“‘“llple :

Merge Sort, Multiway Merge, Polyphase mer&e-
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5.1.1 INSERTION SORT l mems from e list o b i -
ele n sort consists of N - 1 passes, WhereN th,

insertion sort will insert the jth clemey 'Sthe
1]. After doing this insertion i

[nsertion sorts works by taking
new sorte

current position into @
be sorted. Th

number of elements t0
. into its rightful place among Alll A
occupying A[1]....A[i] are in sorted order.

INSERTION SORT PROCEDURE _ \

void Insertion_Sort (int a[ ], int n)

{

2] e A[‘ ) qu

int i, j, temp ; -

for (i=0; i <n;itt)

{
temp = a[i] ; R
for (j=1;)>0 && a[j-1]> temp ; j--)

afjl=alj-11;
} ;
: afj] =temp ;
} :

}

Example
Consider an unsorted array as follows,

20 10 60 40 - 30 15

PASSES OF INSERTION SORT .

ORIGINAL |20 | 10 | 60 |40 |30 | 15 | POSITIONS MOVED
Afteri=1 |10 |20 | 60 [40 |30 |15 |1

Afteri=2 |10 |20 | 60 [40 |30 [15 |0
Afteri=3 10 | 20 | 40 |60 |30 |15 |1
Afteri=4 [10 | 20 |30 [40 |60 |15 |2
Afteri=5 |10 | 15|20 [30 |40 |60 |4
‘Sorted Array |10 | 15 | 20 {30 [40 |60

| At Ead
ANALYSIS OF INSERTION SORT

BEST CASE ANALYSIS . O(N)

AVERAGE CASE ANALYSIS - O(N?

WORST CASE ANALYSIS O(NZ;
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TONS OTINSERTIONSORY, o~~~
an ’ ‘ 53 ‘

Vil atively efficient for smalj jjg and mostly
| . ' N - sorted |istg,
e expe“§'ve because of shlftmg all following element b

€nts by one,

5_12 gelection Sort

gelection sort secliects the smallest element i, the list and place it ;
selects the second smallest element anq place it in Place it in the first position then

similar way until the entire list is sorteq. the second position and it proceeds in the
selecﬁon Sort Procedure
7 void Selection_Sort (int a[ ], int n)
{
int temp, 1, j;
for (i = 0; i<n; i++)
i
for (j =i+ 1; j<n; j++)
g .
' if (a[i]>a[j])
{ |
temp = a[i];
ali] = afj];
a[j] = temp;
)
| }
_ }
) :
Example :

Consider an unsorted list as follows

o s ]
A[0] A[l] A[2] A[3] Al4]
9 5 ll

Original List 8
Rt o o 8
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5.4 i el SRS X : g,

Pass 1 Qutput :

¥ : osi
The smallest element IS plaf:cd in the lst“[IJele
pass 2 and it starts processing ! et

tion. The output of the pass 1 wijj be the:
ment in the same manner Inpy i

.Passes of Selection Sort i A[3]‘ ALA]
T Jam . Al AR T e
= 3
i=0 1 8 .9 ? :
i=1 & 3 9 8 :
i=2 1 3 8
9 s
i=3 1 3 5 B
i=4 1 3 5 @
Sorted list | 1 3 ORETE
Analysis Of Selection Sort ‘ :
BEST CASE ANALYSIS gt OENP)
AVERAGE CASEANALYSIS =~ :  OMN?
WORST CASEANALYSIS = : O(N?)

Limitations Of Selection Sort

It is inefficient and expensive for large sized list as it requires O(n?) comparisons
Tt doesn’t stop even if the original list is sorted as it looks every element in the list for all passes

‘Advantages Of Selection Sort o
It requires minimum space as the elements are swapped without using any addition storage.

5.1.3 Shell Sort _ ol ‘
Shel! sort was invented by Donald Shell, .It-l-ilrhpr’o/{?és upon bubble sort and insertion sor by
moving out of order eleinents more than one position at a time. It works by arranging the dat

sequence in a two - dimensional array and then sorting the columns of the array using insertior
sort.

In shell short the whole array is first fragmented into K segments whére K is preferably & primé
mumber. /fter e st passitie whols afia is partially sorted In,the next pass, the value of K1
reduced which increases the size of each Setent ot duces'the i e;;ments- e net
value of K is chosen so that it is relatively prime to jts previous value. The process s repeét
until K =1, at whxcl? thg aﬁay lerettad i bk oot i e -to each segment 50 eac[
successive segment is partall sorted.” The shell sort is also called the Diminishing 9"
Sort, because the value of K decreases continuously
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g, DU
5ot i [ SORT ROUTINE \ 5.5
SﬂE VOid She”SOrt (int A[ ], int N) |
{ %
int i’ js k» temp; ‘
for (k=N/2;k>0; k=k/2)

for (i=k;i<N; i+

{
temp = A[i];
for(j=i;j>=k&&A[j-k]>temp;j=j-k)
{ ,
Alj1=Af -k];
}
A[j] = temp;
) |

Example :
Consider an unsorted array-as follows.
81 94 11 96 12 35 17 95 28 58

Here N = 10, the first pass as K =5 (10/2)

g1 94 11.:96- 12 35 17 95 28 58
81 94 11 96 12 3|5 j7 95 28 58
S
L——————'—"”_—'/
Aﬁerﬁl'Stpass
96 58

3 17 1 28 12 81 % P

h ,
" %cond Pass, K is reduced to 3
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- 58
35y 128 1E 81940 96

NENRREES

~ After second pass, : : :

28 12 11 35 17 81 58 95 96 94
In third pass, K is reduced to 1 .

28 12 11 35 17 81 58 95 96 94

The final sorted arr’ay is

112 .17 28 35758 81 94 95 96

ANALYSIS OF SHELL SORT :
BEST CASE ANALYSIS " : O(NlogN)
AVERAGE CASE ANALYSIS : O(N')
WORST CASE ANALYSIS : O(N?)
ADVANTAGESOFSHELLSORT{

* It is one of the-fastest algorithms for sorting small number of elements.

i | requires relatively. smal] amounts of me

mory.
5.1.4 Bubble Sort

~ Bubble sort is one of the simplest x;ntemal sortin

two consecutive elements ang the largest elem

- theend of the.' first pass the largest element gets sorted and Placed at the end
This process is repeated for all pairs of elements untj| jt mo

of the list in that iteratjon, Bubble sort consists of (n-
elements to be sorted. Ip 1* pass the largest element w

pass the second largest element wi] be placed in the (
“first two elements are Compare

1) passes, where ‘n’

n-1)™ position. In (n-

Bubble Sort Procedure

RUCTURES

i Hay .S'lra
"

galgor ithm. Bubble sort works by comparl'ng
ent among these two bubbles towards right

of the sorted list

d
ves the largest element to the &

, I 0
is the numbe y

L
: . g
ill be placed in the n® position. !

1y pass only ¢

I void bubble_sprt (int a[ ], jnt n) !”//]
, :
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St i, j» temps

T Gekisn-ni
{
for (=03 <n-1; j#+
{ -
if @fj]>afj+1])
|
temp = a[j];
- a[j] =a[j+1];
a[j + 1] = temp;
3
. % |

pample: _
Cousider'an unsorted array as follows :

g-l3+] 9 |5 1

A[0] A[1] A[2] A[3] ALY

. e 8 S
il At g 3 9 ‘

Pass 1 &%=
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= —2 2 Dy, A}
.0

. * position
- is placed in the n® po
At the end of 1+ pass, the largest element is pl

essed in the same Mann
The output of pass 1 will be the input for pass 2 and proc b

et
n® element.
Passes of Bubble Sort AL Al3] A[4]
A[0] All] ,
1=0 3 8 5 EI
: 5 1 1 9
i=1 3 S
5 8 9
=3 3 1
: e - 1§ 9
1=3 1 5 8 >
Sorted list 1 5 3
ittt il
*Anlaysis of Bubble Sort :
‘ . BEST CASE ANALYSIS 2 O\
AVERAGE CASE ANALYSIS - o) -
{ WORST CASE ANALYSIS N0 (D)
Advantages of Bubble Sort :

Itis popu-'lar and easy to implement.

It requires minimum s
temporary storage.

-

pace as the elements are swapped in place without using the additiona]

Limitations of Bubble Sort :

case behaviour among all the sorj g techniques. It is 415 called partioning sort which uses
divide and conquer techniques, - :

....... Aln] by picking some keyvalue in
arrange the elements in the array. Pivot
lements are moved so that the clements
€reas those on the right side are greater

can be the first element of an array

and the rest of thee
on left side of the pivot are lesser

than the pivot, wh,
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DY
QUICK SORT ROUTINE
void gsort (intA[], il]t»leﬂ, int right
{

int i PiVOt, temp ;

if (left <right)
{
pivot = left;
i=left+1;
j=right;
while (i <j)
{
while (A [PIVOT] > = Afi)
L=i4]s
‘while (A[PIVOT] <A[j))
| 3=-1;
if (i <j)
{ ,
. femp = Ali);
Ali]=A[);
Afj] = temp;

temp = A[PIVOT];
A[PIVOT] =A[j];

A[j] = temp;
- gsort (A, left, j - 1);
gsort (A, j+1, right);
% ’
AN S
EXample :

C .
OY}Slder an unsorted array as follows,

| 0 20 70 14 60 6l
Here PIVOT = 40, 1 = 20, j = 30

97 30

CS3301 - DATASTRUCTURES

\

//'swap A[i] & Alj]

I/ swap A[PIVOT] & A([j)

// recursively done for partitioned arra




~0

PASSES OF QUICK SOR p 97 30,

{14 20 30} 40 (5
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5.10 e I8

— The value of i is incu--m‘mcd rlllilﬂi[l ].-

pivot, this process 15 1¢ i <] the

— Ifai]> pivot and afj] pivot and also !

. H l s . :
SpINSIDmERei e T is found, then partition array into left sub array ang .

IVOTi ¢ all the clements less than the PIVOT 4y rightnght

ntain §
ter than the PIVOT ks .

PL‘:'IIL‘C' unt

i swap a[i] and afj].

Once the correct location for P
subarray, where left sub array CC.> X
array contains all the elements gre

@) Ao T

0 7w 6 6 . ‘ 'ﬂ
Pivot | 1 6 ’ 1

i ifiv < then Swap (a[i], alil) '

70
VR LA TR R O
Pivot TRl g R s il
S0 g0k 14 . 6D 6L 974 70
Pivot : i : J;

N 0 TR N ) 70"

®

Pivot i ‘ i . J :
. 20° 30 14 - 60 6L 97T .70 |
Pivot ' i V j
@) 2 30 4 6 6 97 70
Pivot ) \ B ] ‘ .
20 30 14 6 41 97. 70
Pivot ' : iy -
20030 5 T4 60 6L 970 g e
Pivot ey i g

I A b <l [ 5 i 5 ‘ il
As'i>'j swap (alj], a[pivot])
i.e swap (60, 40)

97_ 70}

Now, theA pivot element has reached its ¢ g :
: orrect posj . ]
20, 30} is considered as-left sub array, Tpe elposmon’ The elements lesser than the Pivo! {l.

considered as right sub array. Then the o pmemel!ts.greater than the pivot {60, 61,
The resultant sorted array is 14 2 30
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i :;IS OF QUICK SORT e T 501
W EST- CASE ANALYSIS | '

\VERAGE - CASE ANALYSIS
WORST - CASE ANALYSIS

O(N log Ny -
O(NlogN)
oY)

s of Quick Sort

ant ge 3
Al | s faster than other OCN log N) algorithms,

2t haS better cache performance and high speed.

3 Jtisa best sorting algorithm as it applies divide ang conquer principle
4, It works well for large data set without-additional storage

Lim]tﬂtlon ;
* Reqmres more Memory space

« poor selection of pivot leads to 0(n?) complex1ty

™

516 Mcrge Sort

The most common algorithm used in external sorting is the mergesort. This algorithm follows
divide and conquer strategy. In dividing phase, the problem is divided into smaller problem
and solved recursively. In conquering phase, the partitioned array is merged together recur-
sively. Merge sort is applied to the first half and second half of the array. This givés two
sorted halves, which can then be recursively merged together using the merging algorithm.-

The basic mer gmg algorlthm takes two input arrays A and B and an output array C. The first

’;element of A array and B array are compared, then the smaller element is stored in the output
array C and-the corresponding pointer is'incremented. When either input array is exhausted
the remainder of the other array is copied to an output array C. :

MERGE SORT ROUTINE

rvoid mergesort‘ (int A [ ], int temp [ ], int n) - \ -
msort (A, temp. 0, n-1);
o ;
void msort (int A [ ], int temp [ ], int left, int right)
int center;
1f (left <right)
{
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S'lz /’/em?/f

center = (right * I |
msort (As temp, left, ccnwr),’ N
msort (A, temp: center + 1, righ ),. 0
merge (A, tempP left, center + 1, right);

} .
MERGE ROUTINE g t).
| void merge (int A [ ], int temp [ ], jnt left, int center, int righ

{

int i, left _ end, num_elements, tmp. _Ppos;

left_end = center - 1;

tmp_pos = left;

num_elements = right - left + 1' H .
while (( left <= left_end) && (center <= right))

{
if (A [left] <= A[center])
{
temp [tmp_pos] = A [left];
tmp_pos++;
left++;
3 -
else
{
temp [tmp_pos] = A [center];
" tmp_pos++;
center ++ ;
}

while (left < = left end)
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temp [tmp_pos] = Alleft];

left ++;
tmp pos-i'-i-;
}
while (center <= right)
{
temp [tmp _pos] A[center]
center ++
tmp :pos+t;
} . . 1 H
for (i = 0; i <=num_elements ; i++)
p Afright] =temp [right];
: right - -;
}
}
Example :

For instance, to sort the etght element array 24 13,26.1,2,27,38, 15, first four and last four
elements are recursively sorted to obtain 1, 13, 24, 26,72, 15, 27, 38. Finally, these array is
divided into two halves and the mergmg algonthm is apphed to get the sorted array.

T4



38 15

27

26

13

24
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138

15

27
27

«
a N/N
N
— —
O
_ N
O
O
N-/\:: — N
N
v
o
o) <
‘N
v
Q .
on
—

24

13
AN
1

L24 3 ]
-24 : .
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yaind w“'ll'guuquuy _ 518

hin

Qi I Lo ‘ "

i ” m‘,mluuumnllllun Iw appliod wx follows,
o Wi

\ 4 o ¢ ’ ” "
) conatder (st o oloments Ty EY 24,26 ni A aveny nnd (he next four slements 2, 15,27, 38
W :

g

A iy IV arrny

P‘Z‘J:ID TEToT

(™

Aptr Bpt
C areay

Cpte

element 1 from A array and element 2 from B array is compared, then the gmallest
| from A array is copied to an output array C. Then the pointers Aptr and Cptr 18

Piest, the
plement
incremented by one.

A array B array
M 13 [24 |26 ] (2115 [27 |38]
Aptr - Bptr
C array

Cptr
" Next, 13 and 2 are compared and the smallest element 2 from B array is copied to C array and

the pointers Bptr and Cptr gets incremented by one. This proceeds until A array and B array

are exhausted, and all the elements are copied to an output array C.

(1T 13T24T26] [2] 15 [27 [38]

Aptr Bptr
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Cptr
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I 0 P O P T T R B

Aptr

Bptr

352 115‘

£ [ 03 [ShaTal FAab-T

G

R RSURE | ROND 3 & Wi B ¥k b ]

i2] iy
ForEly
s R

4 INGIUG 88 01 Deiho 9w 2tnsmate ads i

Cptr

92 470 1y ' oo -
ATIEY AR E 1T PR s e 2 R sy g LA
REFIE] U DSHTTRIO ades Han s

(TEIETE, BT o

Aptr

Bptr
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g \ _
' M" - 5.17

2 113 15 |24 [26

Cptr

gince AaTaY IS exl?austed, the remaining elements of g array is then copied to C array

[T 13]24[26] Lzl. 15 [27 [38]

Aptr Bptr

11211315 |24 |26 |27 [38

Cptr

Final Sorted ‘Array | 1 | 2 |13 15 |24 |26 27 138

ANALYSIS OF MERGESORT
| BEST CASE ANALYSIS : O(NlogN)
AVERAGE CASE ANALYSIS : O(NlogN)
WORST CASE ANALYSIS : ONlogN)
Limitations of Merge Sort
* Merge sort sorts the larger amount of data making use of external storage device.
* It requires extra memory space "
Advantages

* It has better cache performance
" Merge sort is a stable sort -
It is simpler to understand.

S17Radix Sort

ralised form of bucket
card sort. It
ts are sorted

Radix sort is one of the linear sorting algorithm for integers. Itis a gene Y ot
SOrt. It can be performed using buckets from 0to9. It is also called 21115 e]l emer;
Works by sorting the input based an each digit. In First pass, all the
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. g igit.
“according to the least significant digl

ooy Ual
Slrll
ass, the elements are arrap g, c,
[n second p ificant digit. T ged SN
till the most significant digit. The Numbgy. Ui
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80
25
15
10 187
8 175

0

. After pass 3 : 8, 10,~

Maximum number of digits
sort the list of elements js 3;

HUUDUOLL

15, 05, % %b;

187 "956

n the given list js 3. ‘Therefore the number of passes required o

| BEST CASE ANALYSIS O(N log N)
AVERAGE CASE ANALYSIS O(N log Ny
WORST.CASE ANALYSIS

_ g : Fofp, "8
the next least significant digit and so on of digits in the given numbers. Pasge ifl
a Radix Sort depends upon the number
PASS 1: ST 15, 174, 187
INPUT : ¢ . .
15 ’ |
;8 174 25 . 256 187 8 |
N IR 7 8 9
Buckets ; T
: : 87, 8
After Pass 1: 80, 10, - ~174, 25, 15, 2%, 1
PASS 2 : .
INPUT: - 80, .10 a7 25 .18, 256 ‘189, 77R:
15 - | 187
8 10 25 256 174 80
0- 1 3 3 4 5 7 8 9
After Pass2: g 10,:° . 15, <25,. " 256 174, '80, 187
PASS 3 . '
INPUT : 0, 15, 25, 256,  174; 80, 187
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sv""i;:ﬁcmNG ALGORITHMS s =

5 - archingis @ method to search a data item in the given gef. There

; ' are two types of searching,
They (i) Linear Search :
(ii) Binary Search
1 Linear Search

Lifear Search is used to search a data iten j

n the given set in the sequenti i
. al manner, startin
“from the first element. 1t is also called ag Sequential search, : :

(QUTINE FOR LINEAR SEARCH

. void Linear_Search (int X, int g []intn);
il |
; int flag =0, i;
for (i=0; i <n; i++)
{ 4
if X==a[i]).
1.
flag=1
; break;
: }
} - ;
if (flag==1) :
print(“The element is found”)
else _
: _ print(“The element is not found); _
} . ; -
ANALYSIS OF LINEAR SEARCH
| BEST CASE ANALYSIS 1 o)
| AVERAGE CASE ANALYSIS : ON)
WORST CASE ANALYSIS : .O(N)

322 Binary Search

Binary Search is used to search an item in a sorted list. In this method, initialise the lower

- limitag | ang upper limit as N. the middle position is computed as (lower + upper)/2 and check

the element in the middle position with the data item to be searched. If the data item is greater

an the middle value then the lower limit is adjusted to one greater than the middle value.
Srwise, the upper limit is adjusted to one less than the middle value.

_FOTexample = X=25

PRe A
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)
11
N

¥ - ( IS. '(), 25- 3
LetA= 1, | 2 - L AN Upper [ 9]
.(\)\'L‘f s ]

1 2 1719 |15

19 125 |37 |45

AL1] A2] A[3] A[4] ALSJALG] A[7] AI8] A[9]

check 25 and 15 (je) X > A[middle
the lower limit as middle +1. )
ower limit as middle Lower [6 NIid(“c ljppcr [9)

9 | 151925 |37 "51,

112 |7
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Since the data item is equal to the middle value. The element is found &t (e Positiop 7

ROUTINE FOR BINARY SEARCH

void Binary_Search (int X, inta [1,intn):;

int lower, upper, mid;

lower = |;

upper = n;

while (lower < upper)

{ mid = (lower + upper) / 2;
if (X >a [mid))
lower = mid + 1;
else if (X < a[mid])

upper = mid -1;

else ,

{
print (“Element js found”);
break;

}

}
) :
B L - el

] since the data item is greater than the midd|e valy
« e ;

et} s
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 seare ‘
“,:1 U5 OFBINARY SEARCH ——— 521
W 5T CASE ANALYSIS

(VERAGE CASE ANALYSIS

WORST CASE ANALYSIS

O(1)
O(log N)
@) (log N)

s HASHING TECHNIQUES

fJashing is @ technique used for perfbrming insertions

(ant average time by implementing Hagl, Table data st?:izions B s v
'C.
531 Types of Hashing
static Hashing .
[n static hashing,

t . ' .

: s hash function maps search key values to a fixed set of locations.

pynamic Hashing - :
In Dynamic hashing, the hash table can

function must change as the table grows.
(/'.fy_ 3

grow to handle more items. The associated hash'

Hash mble

The hash table data structure is an arr
avalue associated with each record.

* Ahash table is partioned into array of buckets.
* Each bucket has many slots and each slot holds one record.

ay of some fixed size table, containing the keys. Akey is

Location Slot 1
1 5
2 2
3
4

Fig 5.1 Hash Table
332 Hashing Functions

:\hashing function is a key-to-address transformation which acts upon a given key to compute
® relative position of the key in an array. ;

= . Akey can be a number, a string, a record efc.

A simple Hash Function

Hash (key value) = key_value Mod Table_size

Or
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RS A

Hash table
The hash table data structure is an arra i
' y of some fixed size tabl ini i
a value associated with each record. . ik s ol

* A hash table is partioned into array of buckets.
* Each bucket has many slots and each slot holds one record.

Location Slot 1
1 5 .
2 2
3
4

' Fig 5.1 Hash Table
332 Hashing Functions

{; hashing function is a key-to-address transformation which acts upon a given key to compute
€ relative position of the key in an array.

- . Akey can be a number, a string, a record etc.

A simple Hash Function

Hash (key value) = key_value Mod Table_size

Routine for Hash Function

INDEX hash( char *key, int tablesize )
{

int hash_val = 0;

while( *key '="0")

hash_val += *key++;

return( hash_val % H_SIZE);

}

Collision:

Collision occurs when a ash value of a record being inserted hashes to an address that already
contain a different record (i.e) when two key values hash to the same position.
Example

Values 89 and 39 are hash to the same address 9, if the table size is 10.

Collision Resolution Methods:
1. Open Hashing — Each bucket in the hashtable is the head of a Linkedlist. Collide
elements are stored outside the table. Eg.Separate Chaining
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2. Closed Hashing — Collide elements are stored at another slot in the table. Ensures
that all the elements are stored directly into the hash table. Eg Open addressing.
Rehashing and Extendible Hashing

Open addressing : Linear Probing, Quadratic Probing and Double Hashing

1. Separate Chaining / Open Hashing

The first strategy, commonly known as either open hashing, or separate chaining, isto keep a
list of all elements that hash to the same value. For convenience, our lists have headers.
hash(x) = x mod 10. (The table size is 10)

To perform an insert, we traverse down the appropriate list to check whether the element is
already in place. If the element turns out to be new, it is inserted either at the front of the list

or at the end of the list. New elements are inserted at the front of the list.

O 140 14—

1 1 21 [ 1
2 e

a i

E = & [ J—
s 75 | J—

6 1 J 16 36 | J—
B T—=

= =

= - o 49 [J3—

struct listnode

{

elementtype element;

position next;

+

struct hashtbl
{

int tablesize;
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LIST *thelists;
+

Initialization routine for open hash table
HASHTABLE initializetable(int tablesize )
{

HASHTABLE H,;

inti;

if( table size < MIN_TABLE_SIZE)

{

error(""Table size too small");

return NULL;

}
H = (HASH_TABLE) malloc ( sizeof (struct hashtbl) );
if(H==NULL)

fatalerror("Out of space!!!");

H->tablesize = nextprime( tablesize );
H->thelists = malloc( sizeof (LIST) * H->tablesize );
if( H->thelists == NULL )

fatalerror("Out of space!!!");

for(i=0; i<H->tablesize; i++)

{

H->thelists[i] = malloc( sizeof (struct listnode) );
if( H->thelists[i] == NULL )

fatalerror("Out of space!!!");

else

H->thelists[i]->next = NULL;

}

return H;

¥

Routine for Find operation
Position find( elementtype key, HASHTABLE H )

CS3301 - DATASTRUCTURES
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{

position p;

LIST L;

L = H->thelists[ hash( key, H->tablesize) ];

p = L->next;

while( (p '= NULL) && (p->element != key) )
p = p->next;

return p;

}

Routine for Insert Operation

Void insert( elementtype key, HASHTABLE H )
{

position pos, newcell; LIST L;

pos = find( key, H );

if( pos == NULL)

{

newcell = (position) malloc(sizeof(struct listnode));
if( newcell == NULL )

fatalerror("Out of space!!!");

else

{

L = H->thelists[ hash( key, H->table size ) ];
newcell->next = L->next;

newcell->element = key;

L->next = newcell; } }3}

Closed Hashing (Open Addressing)

Separate chaining has the disadvantage of requiring pointers. This tends to slow the algorithm
down a bit because of the time required to allocate new cells, and also essentially requires the
implementation of a second data structure.

Closed hashing, also known as open addressing, is an alternative to resolving collisions with
linked lists.
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In a closed hashing system, if a collision occurs, alternate cells are tried until an empty cell is
found. More formally, cells hO(x), h1(x), h2(x), . . . are tried in succession where hi(x) =
(hash(x) + F(i) mod tablesize), with F(0) = 0.

The function, F, is the collision resolution strategy. Because all the data goes inside the table,
a bigger table is needed for closed hashing than for open hashing. Generally, the load factor

should be below = 0.5 for closed hashing.

Three common collision resolution strategies are

1. Linear Probing

2. Quadratic Probing

3. Double Hashing

Linear Probing

In linear probing, F is a linear function of i, typically F(i) = i. This amounts to trying cells
sequentially (with wraparound) in search of an empty cell.

F@)=1.

The below Figure shows the result of inserting keys {89, 18, 49, 58, 69} into a closed table
using the same hash function as before and the collision resolution strategy, The first
collision occurs when 49 is inserted,; it is put in the next available spot, namely 0, which is
open. 58 collides with 18, 89, and then 49 before an empty cell is found three away.

{89, 18, 49, 58, 69}

Empty Table After 89 After 18 After 49 After S8 After 69

0 | 49 49 49

1 58 58
i 2 BY
|3

4

3

3
i 7

g 18 18 18 18

9 ' B9 o B9 59 89

Quadratic Probing
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Quadratic probing is a collision resolution method that eliminates the primary clustering
problem of linear probing. Quadratic probing is what you would expect-the collision function
IS

quadratic. The popular choice is F(i) = i?

When 49 collide with 89, the next position attempted is one cell away. This cell is empty, so
49 is placed there. Next 58 collides at position 8. Then the cell one away is tried but another
collision occurs. A vacant cell is found at the next cell tried, which is 22 = 4 away. 58 is thus
placed in cell 2.

{89, 18, 49, 58, 69}

Empty Table  After 80  After 18 After 49 After 58 After 69
0 | 49 49 443
1
2 | 58 58
3 e
4
5
f
B 15 18 15 18
9 49 - | 8 89 . 89

Double Hashing

The last collision resolution method we will examine is double hashing. For double hashing,
one popular choice is f(i) =i h2 (x). This formula says that we apply a second hash function
to x and probe at a distance h2 (x), 2 h2 (x), . . ., and so on. A function such as h2 (X) =R - (x
mod R), with R a prime smaller than H_SIZE, will work well.
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Empty Table  After 82  After 18 After 49 After 58  After 69
0 , 64
| : |
2
3 38 38
4
3
6 | 49 49 49
7| |
8 18 14 18 18 1-
4 g9 89 g i BO 89 -
Rehashing

If the table gets too full, the running time for the operations will start taking too long and
inserts might fail for closed hashing with quadratic resolution. This can happen if there are
too many deletions intermixed with insertions.

A solution, then, is to build another table that is about twice as big and scan down the entire
original hash table, computing the new hash value for element and inserting it in the new
table.

As an example, suppose the elements 13, 15, 24, and 6 are inserted into a closed hash table of

size 7. The hash function is h(x) = x mod 7. Suppose linear probing is used to resolve

collisions.

0 6 i'

| 15 3 23

- 2 24

3 24 _—
4

4

5 5
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Rehashing routines

Hashtable rehash( HASH_TABLE H)
{

unsigned int i, old_size;

cell *old_cells;

old_cells = H->the_cells;

old_size = H->table_size;

[* Get a new, empty table */

H = initialize_table( 2*old_size);

/* Scan through old table, reinserting into new */
for(i=0; i<old_size; i++)

if( old_cells[i].info == legitimate )
insert( old_cells[i].element, H );

free( old_cells);

return H;

¥
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Extendible Hashing

If the amount of data is too large to fit in main memory, then is the number of disk accesses
required to retrieve data. As before, we assume that at any point we have n records to store;
the value of n changes over time. Furthermore, at most m records fit in one disk block. We
will use m = 4 in this section. To be more formal, D will represent the number of bits used by
the root, which is sometimes known as the directory. The number of entries in the directory is
thus 2P . dL is the

number of leading bits that all the elements of some leaf have in common. dL will depend on

the particular leaf, and dL<=D.

CHO) 1 1] 1
s I |I ‘-...
Iy I
o | 'y
{27 L2 ‘ L2} ey
CHHITCHD (r1{F]1 (K] [’ L C R R HCH ) L1 1O}

CHO 1 OH2HD Ch1 1000 1CF1CHCHO) 11140CK1

CHOT T 1431 1M

P

(HORCRL L | 1931110

Suppose that we want to insert the key 100100. This would go into the third leaf, but as the
third leaf is already full, there is no room. We thus split this leaf into two leaves, which are

now determined by the first three bits. This requires increasing the directory size to 3.
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110

If the key 000000 is now inserted, then the first leaf is split, generating two leaves with dL =

000 | oDl | 010 | 0l 100 | 01|

ARV AVAVAN
‘ (2) (2) (3) (3) (2)
* 000100 | | 010100 | | 100000 | | 101000 | | 111000 |
;‘Dmm[} QL1000 | [ 100100 | | 101100 | | 111001
001010 | 101110
{".H'lll[}lli

3.
Since D = 3, the only change required in the directory is the updating of the 000 and 001
pointers.
(X)) ‘ (KM 0l | 011 10 | 101 10| 11l
\ \\l 1\ \ XZ
R . o
Gy | @ (2) (3) 3 @
LT ?ﬂﬂlﬂﬂﬂl QTO100 | | 100000 | | 101000 | TH000
I
COCO0 | [OOT0T0 | [OTT000 || 100100 | | 101100 | 111001
| (01011 01110
| |
!
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Different Methods of Hashing function

METHODS OF HASHING FUNCTION
(a) Mid Square Method

In this method, the key is squard and the middle part of the result based on the number of digits
required for addressing is taken as the hash value. This method works will if the keys do nol
contain a lot of leading or trailing zeros.

H(X) = return middle digits of X*

For example : Map the key 2453 into a hash table of size 1000, there, X = 2453
X*= 6017209
Extract Middle Value 172 as the hash value

(b) Module Division or Division Remainder

This method computes hash value from key using the (%) modulo operator. Here, Table sizc
that is power of 2 like 32, 64 and 1024 should be avoided as it leads to more collisions. It 15

s better 1o select table size not close to power of 2.

’/H(Key) = return Key % Table_size

alway

Let X = 123203241

.......
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In this method, a key is transformed into another number base 10 obtain the hash value

For example :
Map the key (8465),, in the range 0 to 9999 using base 15.
(8465),,= (2795),5
The key 8465 is placed in the hash address 2795
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ject the digits from the positions. 2.4,5and8. Therefore hash value = 2204

select the " > N .

ash value can also be obtained by considering the above digit positions an|

Iy the h
Sl hash value as 4022.

reversing it. W hich yields the

() Radix Transformation
In this method, a key is transformed into another number base 10 obtain the hash value

For example :
Map the key (8465),, in the range 0 to 9999 using base 15.
(8465),, = (2795),
The key 8465 is placed in the hash address 2795

5.3.3 Applications of Hash Tables
- Database Systems
- Symbol Tables
- Data Dictionaries

Network Processing Algorithms
- Browse Cashes
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PRATHYUSHA ENGINEERING COLLEGE
COMPUTER SCIENCE AND ENGINEERI NG
CS3301-DATA STRUCTURES QUESTION BANK
UNIT I

2MARKS
1. Explain the term data structure.

The data structure can be defined as the collection of elements and all the possible
operations which are required for those set of elements. Formally data structure can be
defined as a data structure is a set of domains D, a set of domains F and a set of
axioms A. this triple (D,F,A) denotes the data structure d.

2. What do you mean by non-linear data structure? Give example.

The non-linear data structure is the kind of data structure in which the data may be
arranged in hierarchical fashion. For example- Trees and graphs.
3. What do you linear data structure? Give example.

The linear data structure is the kind of data structure in which the data is
linearly arranged. For example- stacks, queues, linked list.

4. Enlist the various operations that can be performed on data structure.

Various operations that can be performed on the data structure are

» Create
= Insertion of element
» Deletion of element
« Searching for the desired element
= Sorting the elements in the data structure
» Reversing the list of elements.
5. What is abstract data type? What are all not concerned in an ADT?

The abstract data type is a triple of D i.e. set of axioms, F-set of functions and A-
Axioms in which only what is to be done is mentioned but how is to be done is not
mentioned. Thus ADT is not concerned with implementation details.

6. List out the areas in which data structures are applied extensively.

Following are the areas in which data structures are applied extensively.

= Operating system- the data structures like priority queues are
used for scheduling the jobs in the operating system.

« Compiler design- the tree data structure is used in parsing the source
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program.
Stack data structure is used in handling recursive calls.
« Database management system- The file data structure is used in
database management systems. Sorting and searching techniques
can be applied on these data in the file.
= Numerical analysis package- the array is used to perform the
numerical analysis on the given set of data.
= Graphics- the array and the linked list are useful in graphics applications.
= Atrtificial intelligence- the graph and trees are used for the

applications like building expression trees, game playing.

7. What is a linked list?

A linked list is a set of nodes where each node has two fields ‘data’ and ‘link’. The
data field is used to store actual piece of information and link field is used to store address
of next node.

8. What are the pitfall encountered in singly linked list?

Following are the pitfall encountered in singly linked list

» The singly linked list has only forward pointer and no backward link is provided.
Hence the traversing of the list is possible only in one direction. Backward
traversing is not possible.

e Insertion and deletion operations are less efficient because for inserting the
element at desired position the list needs to be traversed. Similarly, traversing of the
list is required for locating the element which needs to be deleted.

9. Define doubly linked list.

Doubly linked list is a kind of linked list in which each node has two link fields.
One link field stores the address of previous node and the other link field stores the address
of the next node.

10. Write down the steps to modify a node in linked lists.

> Enter the position of the node which is to be modified.
> Enter the new value for the node to be modified.
> Search the corresponding node in the linked list.
> Replace the original value of that node by a new value.

> Display the messages as “ the node is modified”.
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11. Difference between arrays and lists.

In arrays any element can be accessed randomly with the help of index of array,
whereas in lists any element can be accessed by sequential access only.

Insertion and deletion of data is difficult in arrays on the other hand insertion and

deletion of data is easy in lists.

12. State the properties of LIST abstract data type with suitable example.
Various properties of LIST abstract data type are
(1) Itis linear data structure in which the elements are arranged adjacent to each
other. (ii) It allows to store single variable polynomial.
(iii)If the LIST is implemented using dynamic memory then it is called linked list.

Example of LIST are- stacks, queues, linked list.

13. State the advantages of circular lists over doubly linked list.

In circular list the next pointer of last node points to head node, whereas in doubly
linked list each node has two pointers: one previous pointer and another is next pointer. The
main advantage of circular list over doubly linked list is that with the help of single
pointer field we can access head node quickly. Hence some amount of memory get saved
because in circular list only one pointer is reserved.

14. What are the advantages of doubly linked list over singly linked list?

The doubly linked list has two pointer fields. One field is previous link field and
another is next link field. Because of these two pointer fields we can access any node
efficiently whereas in singly linked list only one pointer field is there which stores forward
pointer.

15. Why is the linked list used for polynomial arithmetic?

We can have separate coefficient and exponent fields for representing each term of
polynomial. Hence there is no limit for exponent. We can have any number as an exponent.
16. What is the advantage of linked list over arrays?

The linked list makes use of the dynamic memory allocation. Hence the user can
allocate or de allocate the memory as per his requirements. On the other hand, the array
makes use of the static memory location. Hence there are chances of wastage of the
memory or shortage of memory for allocation.

17. What is the circular linked list?

The circular linked list is a kind of linked list in which the last node is connected to the
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first node or head node of the linked list.

18. What is the basic purpose of header of the linked list?
The header node is the very first node of the linked list. Sometimes a dummy value
such -
999 is stored in the data field of header node.

This node is useful for getting the starting address of the linked list.

19. What is the advantage of an ADT?
> Change: the implementation of the ADT can be changed without making changes
in the client program that uses the ADT.
> Understandability: ADT specifies what is to be done and does not specify the
implementation details. Hence code becomes easy to understand due to ADT.

> Reusability: the ADT can be reused by some program in future.
20. What is static linked list? State any two applications of it.

> The linked list structure which can be represented using arrays is called static linked

list.

> |t is easy to implement, hence for creation of small databases, it is useful.
> The searching of any record is efficient, hence the applications in which the record

need to be searched quickly, the static linked list are used.
16 MARKS
1. Explain the insertion operation in linked list. How nodes are inserted after a specified
node.
2. Write an algorithm to insert a node at the beginning of list?
3. Discuss the merge operation in circular linked lists.
4. What are the applications of linked list in dynamic storage management?
5. How polynomial expression can be represented using linked list?
6. What are the benefit and limitations of linked list?
7. Define the deletion operation from a linked list.
8. What are the different types of data structure?
9. Explain the operation of traversing linked list. Write the algorithm and

give an example.
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UNIT 11
2MARKS
1. Define Stack
A Stack is an ordered list in which all insertions (Push operation) and deletion (Pop
operation) are made at one end, called the top. The topmost element is pointed by top. The
top is initialized to -1 when the stack is created that is when the stack is empty. In a stack
S = (al,an), al is the bottom most element and element a is on top of element ai-1. Stack is
also referred as Last In First Out (LIFO) list.
2. What are the various Operations performed on the Stack?
The various operations that are performed on the stack are
CREATE(S) — Creates S as an empty stack.
PUSH(S,X) — Adds the element X to the top of the
stack. POP(S) — Deletes the top most elements from
the stack. TOP(S) — returns the value of top element
from the stack. ISEMTPTY(S) — returns true if
Stack is empty else false. ISFULL(S) - returns true
if Stack is full else false.
3.How do you test for an empty stack?

The condition for testing an empty stack is top =-1, where top is the pointer pointing to
the topmost element of the stack, in the array implementation of stack. In linked list
implementation of stack the condition for an empty stack is the header node link field is
NULL.
4.Name two applications of stack?

Nested and Recursive functions can be implemented using stack. Conversion of
Infix to Postfix expression can be implemented using stack. Evaluation of Postfix
expression can be implemented using stack.
5.Define a suffix expression.

The notation used to write the operator at the end of the operands is called suffix notation.

Suffix notation format : operand operand operator
Example: ab+, where a & b are operands and ‘+’ is addition operator.
6.What do you meant by fully parenthesized expression? Give example.
A pair of parentheses has the same parenthetical level as that of the operator to which
it corresponds. Such an expression is called fully parenthesized expression.
Ex: (a+((b*c) + (d * e))
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7.Write the postfix form for the expression -A+B-C+D?
A-B+C-D+

8.What are the postfix and prefix forms of the expression?
A+B*(C-
D)/(P-R)
Postfix form: ABCD-
*PR-/+ Prefix form:
+A/*B-CD-PR
9.Explain the usage of stack in recursive algorithm implementation?
In recursive algorithms, stack data structures is used to store the return address
when a recursive call is encountered and also to store the values of all the parameters
essential to the current state of the function.
10.Define Queues.
A Queue is an ordered list in which all insertions take place at one end called the rear,
while all deletions take place at the other end called the front. Rear is initialized to -1 and
front is initialized to 0. Queue is also referred as First In First Out (FIFO) list.
11.What are the various operations performed on the Queue?
The various operations performed on the queue are
CREATE(Q) — Creates Q as an empty Queue.
Enqueue(Q,X) — Adds the element X to the Queue.
Dequeue(Q) — Deletes a element from the Queue.
ISEMTPTY(Q) — returns true if Queue is empty else
false. ISFULL(Q) - returns true if Queue is full else
false.

12. How do you test for an empty Queue?

The condition for testing an empty queue is rear=front-1. In linked list implementation

of queue the condition for an empty queue is the header node link field is NULL.

13.Write down the function to insert an element into a queue, in which the
gqueue is implemented as an array. (May 10)

Q — Queue

X —element to added to the queue Q

IsFull(Q) — Checks and true if Queue Q is full
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Q->Size - Number of elements in the queue
Q->Rear — Points to last element of the queue Q
Q->Array — array used to store queue elements
void enqueue (int X, Queue Q) {
if(IsFull(Q))
Error (“Full
queue™);
else {
Q->Size++;
Q->Rear = Q->Rear+1;
Q->Array[ Q->Rear ]=X;
}}
14.Define Dequeue.
Deque stands for Double ended queue. It is a linear list in which insertions and
deletion are made from either end of the queue structure.
15.Define Circular Queue.
Another representation of a queue, which prevents an excessive use of

memory by arranging elements/ nodes Q1,Qz,...Qn in a circular fashion. That is, it is the

queue, which wraps around upon reaching the end of the queue

16 MARKS

1. Write an algorithm for Push and Pop operations on Stack using Linked list. (8)

2. Explain the linked list implementation of stack ADT in detail?

3. Define an efficient representation of two stacks in a given area of memory with n
words and explain.

4. Explain linear linked implementation of Stack and Queue?

a. Write an ADT to implement stack of size N using an array. The elements in
the stack are to be integers. The operations to be supported are PUSH, POP
and DISPLAY. Take into account the exceptions of stack overflow and stack
underflow. (8)

b. A circular queue has a size of 5 and has 3 elements 10,20 and 40 where
F=2 and R=4. After inserting 50 and 60, what is the value of F and R.
Trying to insert 30 at this stage what happens? Delete 2 elements from the
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queue and insert 70, 80 &
90. Show the sequence of steps with necessary diagrams with the value of F
& R. (8 Marks)
5. Write the algorithm for converting infix expression to postfix (polish) expression?
6. Explain in detail about priority queue ADT in detail?
7.Write a function called ‘push’ that takes two parameters: an integer variable and a stack
into
which it would push this element and returns a 1 or a 0 to show success of addition or
failure.
8. What is a DeQueue? Explain its operation with example?
9. Explain the array implementation of queue ADT in detail?
10. Explain the addition and deletion operations performed on a circular queue with
necessary algorithms.(8) (Nov 09)

UNIT 11

1.Define tree

Trees are non-liner data structure, which is used to store data items in a shorted sequence. It
represents any hierarchical relationship between any data Item. It is a collection of nodes,
which has a distinguish node called the root and zero or more non-empty sub trees T1,

T2,....Tk. each of which are connected by a directed edge from the root.

2. Define Height of tree?

The height of n is the length of the longest path from root to a leaf. Thus all leaves
have height zero. The height of a tree is equal to a height of a root.
3. Define Depth of tree?

For any node n, the depth of n is the length of the unique path from the root to
node n. Thus for a root the depth is always zero.
4. What is the length of the path in a tree?

The length of the path is the number of edges on the path. In a tree there is

exactly one path form the root to each node.

5. Define sibling?
Nodes with the same parent are called siblings. The nodes with common
parents are called siblings.
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6. Define binary tree?

A Binary tree is a finite set of data items which is either empty or consists of a

single
item called root and two disjoin binary trees called left sub tree max degree of any node is
two.

7. What are the two methods of binary tree implementation?
Two methods to implement a binary tree are,

a. Linear representation.

b. Linked representation

8. What are the applications of binary tree?

Binary tree is used in data processing.

a. File index schemes

b. Hierarchical database management system

9. List out few of the Application of tree data-structure?

@ The manipulation of Arithmetic expression

@ Used for Searching Operation

@ Used to implement the file system of several popular operating systems

@ Symbol Table construction

@ Syntax analysis
10. Define expression tree?

Expression tree is also a binary tree in which the leafs terminal nodes or
operands and non-terminal intermediate nodes are operators used for traversal.
11. Define tree traversal and mention the type of traversals?

Visiting of each and every node in the tree exactly is called as tree
traversal. Three types of tree traversal

1. Inorder traversal

2. Preoder traversal

3. Postorder traversal.

12. Define in -order traversal?

In-order traversal entails the following steps;
a. Traverse the left subtree

b. Visit the root node

c. Traverse the right subtree
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13. Define threaded binary tree.

A binary tree is threaded by making all right child pointers that would normally
be null point to the in order successor of the node, and all left child pointers that would
normally be null
point to the in order predecessor of the node.

14. What are the types of threaded binary tree?
I.  Right-in threaded

binary tree ii.  Left-in

threaded binary tree iii.

Fully-in threaded binary tree
15. Define Binary Search Tree.
Binary search tree is a binary tree in which for every node X in the tree, the values of all the
keys in its left subtree are smaller than the key value in X and the values of all the keys
in its right
subtree are larger than the key value in X.
16.What is AVL Tree?
AVL stands for Adelson-Velskii and Landis. An AVL tree is a binary search tree which
has the following properties:

1.The sub-trees of every node differ in height by at most one.

2.Every sub-tree is an AVL tree.

Search time is O(logn). Addition and deletion operations also take O(logn) time.

17. List out the steps involved in deleting a node from a binary search tree.

' Deleting a node is a leaf node (ie) No children
v Deleting a node with one child.

'+ Deleting a node with two Childs.
18. What is ‘B’ Tree?

A B-tree is a tree data structure that keeps data sorted and allows searches,
insertions, and deletions in logarithmic amortized time. Unlike self-balancing binary search
trees, it is optimized for systems that read and write large blocks of data. It is most
commonly used in database and file systems.

Important properties of a B-tree:
- B-tree nodes have many more than two children.

- A B-tree node may contain more than just a single element.
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19. What is binomial heaps?
A binomial heap is a collection of binomial trees that satisfies the following
binomial-heap properties:
1. No two binomial trees in the collection have the same size.
2. Each node in each tree has a key.
3. Each binomial tree in the collection is heap-ordered in the sense

that each non-root has a key strictly less than the key of its

parent.The number of trees in a binomial heap is O(log n).
20. Define complete binary tree.

If all its levels, possible except the last, have maximum number of nodes and if
all the nodes in the last level appear as far left as possible.
16 MARKS

1.Explain the AVL tree insertion and deletion with suitable example.
2.Describe the algorithms used to perform single and double rotation on AVL tree.
3.Explain about B-Tree with suitable example.
4.Explain about B+ trees with suitable algorithm.
5.Write short notes on
| Binomial heaps ii. Fibonacci heaps
6.Explain the tree traversal techniques with an example.
7.Construct an expression tree for the expression (a+b*c) + ((d*e+f)*g). Give the outputs
when you apply inorder, preorder and postorder traversals.
8.How to insert and delete an element into a binary search tree and write down the code
for the insertion routine with an example.
9.What are threaded binary tree? Write an algorithm for inserting a node in a threaded
binary tree.
10.Create a binary search tree for the following numbers start from an empty binary search
tree.
45,26,10,60,70,30,40 Delete keys 10,60 and 45 one after the other and show the trees at

each stage.
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UNIT IV
PART A
1. Write the definition of weighted graph?
A graph in which weights are assigned to every edge is called a weighted graph.
2. Define Graph?

A graph G consist of a nonempty set V which is a set of nodes of the graph, a set E
which is the set of edges of the graph, and a mapping from the set of edges E to set of pairs
of elements of V. It can also be represented as G=(V, E).
3.Define adjacency matrix?

The adjacency matrix is an n x n matrix A whose elements aij are given by
Aij =1 if(vi,vj)exists, otherwise 0
4.Define adjacent nodes?

Any two nodes, which are connected by an edge in a graph, are called adjacent
nodes. For example, if an |edge X E is associated with a pair of nodes
(u,v) where u, v | 'V, then we say that the edge x connects the nodes u and v.
5.What is a directed graph?

A graph in which every edge is directed is called a directed graph.
6.What is an undirected graph?
A graph in which every edge is undirected is called an undirected graph.
7.What is a loop?
An edge of a graph, which connects to itself, is called a loop or sling.
8.What is a simple graph?
A simple graph is a graph, which has not more than one edge between a pair of nodes.
9.What is a weighted graph?
A graph in which weights are assigned to every edge is called a weighted graph.
10.Define indegree and out degree of a graph?
In a directed graph, for any node v, the number of edges, which have v as their initial
node, is called the out degree of the node v.
Outdegree: Number of edges having the node v as root node is the outdegree of the node v.
11.Define path in a graph?
The path in a graph is the route taken to reach terminal node from a starting node.
12.What is a simple path?
I. A path inadiagram in which the edges are distinct is called a simple

path. ii.  Itis also called as edge simple.
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13.What is a cycle or a circuit?

A path which originates and ends in the same node is called a cycle or circuit.
14 What is an acyclic graph?

A simple diagram, which does not have any cycles, is called an acyclic graph.
15.What is meant by strongly connected in a graph?

An undirected graph is connected, if there is a path from every vertex to every other
vertex. A directed graph with this property is called strongly connected.
16.When a graph said to be weakly connected?

When a directed graph is not strongly connected but the underlying graph is connected, then
the graph is said to be weakly connected.
17.Name the different ways of representing a graph? Give examples (Nov 10)
a. Adjacency
matrix b.
Adjacency list
18.What is an undirected acyclic graph?

When every edge in an acyclic graph is undirected, it is called an undirected acyclic
graph. It is also called as undirected forest.
19.What is meant by depth?

The depth of a list is the maximum level attributed to any element with in the list or
with in any sub list in the list.
20.What is the use of BFS?

BFS can be used to find the shortest distance between some starting node and the
remaining nodes of the graph. The shortest distance is the minimum number of edges
traversed in order to travel from the start node the specific node being examined.
21.What is topological sort?

It is an ordering of the vertices in a directed acyclic graph, such that: If there is a path
from u to v, then v appears after u in the ordering.
22.Write BFS algorithm

1. Initialize the first node’s dist number and place in queue
2. Repeat until all nodes have been examined

3. Remove current node to be examined from queue

4. Find all unlabeled nodes adjacent to current node

5. If this is an unvisited node label it and add it to the queue
6. Finished.
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23.Define biconnected graph?

A graph is called biconnected if there is no single node whose removal causes the graph
to break into two or more pieces. A node whose removal causes the graph to become
disconnected is called a cut vertex.
24.What are the two traversal strategies used in traversing a graph?

a. Breadth first search
b. Depth first search
25.Articulation Points (or Cut Vertices) in a Graph
A vertex in an undirected connected graph is an articulation point (or cut vertex) if
removing it (and edges through it) disconnects the graph. Articulation points
represent vulnerabilities in a connected network — single points whose failure would split
the network into 2 or more disconnected components. They are useful for designing reliable
networks.
For a disconnected undirected graph, an articulation point is a vertex removing which
increases number of connected components.
Following are some example graphs with articulation points encircled with red
color.
16 MARKS
1. Explain the various representation of graph with example in detail?
2. Explain Breadth First Search algorithm with example?
3. Explain Depth first and breadth first traversal?
4. What is topological sort? Write an algorithm to perform topological sort?(8) (Nov 09)
5. (i) write an algorithm to determine the biconnected components in the given
graph. (10) (may 10)
(if)determine the biconnected components in a graph. (6)
6. Explain the various applications of Graphs.
UNIT -V
2 MARKS
1.What is meant by Sorting?
Sorting is ordering of data in an increasing or decreasing fashion according to some
linear relationship among the data items.
2. List the different sorting algorithms.
» Bubble sort
» Selection sort
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» Insertion sort

» Shell sort

e Quick sort

» Radix sort

» Heap sort

* Merge sort
3. Why bubble sort is called so?

The bubble sort gets its name because as array elements are sorted they

gradually
“bubble” to their proper positions, like bubbles rising in a glass of soda.

4. State the logic of bubble sort algorithm.

The bubble sort repeatedly compares adjacent elements of an array. The first and
second elements are compared and swapped if out of order. Then the second and third
elements are compared and swapped if out of order. This sorting process continues
until the last two
elements of the array are compared and swapped if out of order.

5. What number is always sorted to the top of the list by each pass of the Bubble
sort algorithm?
Each pass through the list places the next largest value in its proper place. In essence, each
item “bubbles” up to the location where it belongs.
6. When does the Bubble Sort Algorithm stop?

The bubble sort stops when it examines the entire array and finds that no
"swaps" are needed. The bubble sort keeps track of the occurring swaps by the use of a
flag.

7. State the logic of selection sort algorithm.
It finds the lowest value from the collection and moves it to the left. This is
repeated until the complete collection is sorted.
8. What is the output of selection sort after the 2" iteration given the
following sequence? 1634692814
Ans: 39 46 16 28 14
9.How does insertion sort algorithm work?
In every iteration an element is compared with all the elements before it. While
comparing if it is found that the element can be inserted at a suitable position, then space is
created for it by shifting the other elements one position up and inserts the desired
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element at the suitable position. This procedure is repeated for all the elements in
the list until we get the sorted elements.

10.What operation does the insertion sort use to move numbers from the unsorted
section to the sorted section of the list?

The Insertion Sort uses the swap operation since it is ordering numbers within a

single list.

11. How many key comparisons and assignments an insertion sort makes in its worst
case?

The worst case performance in insertion sort occurs when the elements of the input
array are in descending order. In that case, the first pass requires one comparison, the
second pass requires two comparisons, third pass three comparisons,....kth pass requires (k-
1), and finally the last pass requires (n-1) comparisons. Therefore, total numbers of
comparisons are:

f(n) = 1+2+3+......... +(n-k)+.....+(n-2)+(n-1) = n(n-1)/2 = 0O(n2)
12. Which sorting algorithm is best if the list is already sorted? Why?

Insertion sort as there is no movement of data if the list is already

sorted and complexity is of the order O(N).

13. Which sorting algorithm is easily adaptable to singly linked lists? Why?

Insertion sort is easily adaptable to singly linked list. In this method there is an
array link of pointers, one for each of the original array elements. Thus the array can be
thought of as a linear link list pointed to by an external pointer first initialized to 0. To
insert the k™ element the linked list is traversed until the proper position for x[K] is found,
or until the end of the list is reached. At that point x[k] can be inserted into the list by
merely adjusting the pointers without shifting any elements in the array which reduces
insertion time.

14. Why Shell Sort is known diminishing increment sort?

The distance between comparisons decreases as the sorting
algorithm runs until the last phase in which adjacent elements are compared. In each step,
the sortedness of the sequence is increased, until in the last step it is completely sorted.

15. Which of the following sorting methods would be especially suitable to sort
alist L consisting of a sorted list followed by a few “random” elements?

Quick sort is suitable to sort a list L consisting of a sorted list followed by a few

“random” elements.
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16.What is the output of quick sort after the 3™ iteration given the following
sequence?
2456 4735109082 31

Pass 1:- (10) 24 (56 47 35 90
82 31) Pass 2:- 10 24 (56 47
3590 82 31) Pass 3:- 10 24
(47 35 31) 56 (90 82)

17.Mention the different ways to select a pivot element.
The different ways to select a pivot element are
» Pick the first element as pivot
= Pick the last element as pivot
» Pick the Middle element as pivot
» Median-of-three elements
» Pick three elements, and find the median x of these elements
= Use that median as the pivot.
« Randomly pick an element as pivot.
18.What is divide-and-conquer strategy?
» Divide a problem into two or more sub problems
= Solve the sub problems recursively
= Obtain solution to original problem by combining these solutions

19. Compare quick sort and merge sort.
Quicksort has a best-case linear performance when the input is sorted, or nearly
sorted. It has a worst-case quadratic performance when the input is sorted in reverse, or
nearly sorted in reverse.
Merge sort performance is much more constrained and predictable than the
performance of quicksort. The price for that reliability is that the average case of merge
sort is slower than the average case of quicksort because the constant factor of merge sort is
larger.
20.Define Searching.
Searching for data is one of the fundamental fields of computing. Often, the difference
between a fast program and a slow one is the use of a good algorithm for the data set.

Naturally,
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the use of a hash table or binary search tree will result in more efficient searching, but more
often than not an array or linked list will be used. It is necessary to understand good ways of
searching data structures not designed to support efficient search.

21.What is linear search?

In Linear Search the list is searched sequentially and the position is returned if
the key element to be searched is available in the list, otherwise -1 is returned. The
search in Linear Search starts at the beginning of an array and move to the end, testing for
a match at each item.
22.What is Binary search?

A binary search, also called a dichotomizing search, is a digital scheme for locating a
specific object in a large set. Each object in the set is given a key. The number of keys is
always a power of 2. If there are 32 items in a list, for example, they might be numbered
0 through 31 (binary
00000 through 11111). If there are, say, only 29 items, they can be numbered 0
through 28 (binary 00000 through 11100), with the numbers 29 through31 (binary
11101, 11110, and
11111) as dummy
keys.
23.Define hash function?

Hash function takes an identifier and computes the address of that identifier in the hash
table using some function.
24.Why do we need a Hash function as a data structure as compared to any other
data structure? (may 10)

Hashing is a technique used for performing insertions, deletions, and finds in
constant average time.
25.What are the important factors to be considered in designing the hash function?
(Nov10)

» To avoid lot of collision the table size should be prime

« For string data if keys are very long, the hash function will take long to compute.
26.. What do you mean by hash table?

The hash table data structure is merely an array of some fixed size, containing the
keys. A key is a string with an associated value. Each key is mapped into some number in

the range O to tablesize-1 and placed in the appropriate cell.
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key to compute the relative position of the key in an array. The choice of hash
function should be simple and it must distribute the data evenly. A simple hash function is
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What do you mean by hash function?

A hash function is a key to address transformation which acts upon a given

hash_key=key mod tablesize.

28.What do you mean by separate chaining?

that hash to the same value. This is called separate chaining because each hash table

element is a separate chain (linked list). Each linked list contains all the elements whose

Separate chaining is a collision resolution technique to keep the list of all elements

keys hash to the same index.

16 MARKS

© N o o A w D PE

10.

11.

Write an algorithm to implement Bubble sort with suitable example.
Explain any two techniques to overcome hash collision.
Write an algorithm to implement insertion sort with suitable example.
Write an algorithm to implement selection sort with suitable example.
Write an algorithm to implement radix sort with suitable example.
Write an algorithm for binary search with suitable example.
Discuss the common collision resolution strategies used in closed hashing system.
Given the input { 4371, 1323, 6173, 4199, 4344, 9679, 1989 } and a hash function of
h(X)=X (mod 10) show the resulting:

a. Separate Chaining hash table

b. Open addressing hash table using linear probing

Explain Re-hashing and Extendible hashing.
Show the result of inserting the keys 2,3,5,7,11,13,15,6,4 into an initially
empty extendible hashing data structure with M=3. (8) (Nov 10)
what are the advantages and disadvantages of various collision resolution

strategies? (6)

***ALL THE BEST***



