ARYUSz,
0> 9

Q,NGINE@,?
y G
%
>

Y B>
ESTD. 2001

PRATHYUSHA
ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

REGULATION 2021
Il YEAR - Il SEMESTER

CS3352 - FOUNDATIONS OF DATA SCIENCE

SYLLABUS

CS3352 FOUNDATIONS OF DATA SCIENCE

COURSE OBJECTIVES:

¢ To understand the data science fundamentals and process.

e To learn to describe the data for the data science process.

e To learn to describe the relationship between data.

e To utilize the Python libraries for Data Wrangling.

e To present and interpret data using visualization libraries in Python

UNITI INTRODUCTION

Data Science: Benefits and uses — facets of data - Data Science Process: Overview — Defining
research goals — Retrieving data — Data preparation - Exploratory Data analysis — build the
model- presenting findings and building applications - Data Mining - Data Warehousing — Basic
Statistical descriptions of Data

UNIT I DESCRIBING DATA
Types of Data - Types of Variables -Describing Data with Tables and Graphs —Describing Data
with Averages - Describing Variability - Normal Distributions and Standard (z) Scores

UNIT Il DESCRIBING RELATIONSHIPS

Correlation —Scatter plots —correlation coefficient for quantitative data —computational
formula for correlation coefficient — Regression —regression line —least squares regression line
— Standard error of estimate — interpretation of r2 —multiple regression equations —regression
towards the mean

UNIT IV PYTHON LIBRARIES FOR DATA WRANGLING

Basics of Numpy arrays —aggregations —computations on arrays —comparisons, masks, boolean
logic — fancy indexing — structured arrays — Data manipulation with Pandas — data indexing and
selection — operating on data — missing data — Hierarchical indexing — combining datasets —
aggregation and grouping — pivot tables

UNIT V DATA VISUALIZATION

Importing Matplotlib — Line plots — Scatter plots — visualizing errors — density and contour plots
— Histograms — legends — colors — subplots — text and annotation — customization — three
dimensional plotting - Geographic Data with Basemap - Visualization with Seaborn.

CS3352 - Foundations of Data Science
UNIT I INTRODUCTION

Data Science: Benefits and uses - facets of data - Data Science Process: Overview - Defining
research goals - Retrieving data - Data preparation - Exploratory Data analysis - build the
model- presenting findings and building applications - Data Mining - Data Warehousing -
Basic Statistical descriptions of Data

Big Data:

Big data is a blanket term for any collection of data sets so large or complex that it becomes
difficult to process them using traditional data management techniques such as for example,
the RDBMS.

I. Data Science:

e Data science involves using methods to analyze massive amounts of data and extract
the knowledge it contains.
e The characteristics of big data are often referred to as the three Vs:
o Volume—How much data is there?
o Variety—How diverse are different types of data?
o Velocity—At what speed is new data generated?
e FourthV:
e Veracity: How accurate is the data?
e Data science is an evolutionary extension of statistics capable of dealing with the
massive amounts of data produced today.
e Data scientist apart from a statistician are the ability to work with big data and
experience in machine learning, computing, and algorithm building. Tools Hadoop,
Pig, Spark, R, Python, and Java, among others.

I1. Benefits and uses of data science and big data

e Data science and big data are used almost everywhere in both commercial and non-
commercial settings.
e Commercial companies in almost every industry use data science and big data to
gain insights into their customers, processes, staff, completion, and products.
e Many companies use data science to offer customers a better user experience.
o Eg: Google AdSense, which collects data from internet users so relevant
commercial messages can be matched to the person browsing the internet
o MaxPoint - example of real-time personalized advertising.
e Human resource professionals:
o people analytics and text mining to screen candidates,
o monitor the mood of employees, and
o study informal networks among coworkers
¢ Financial institutions use data science:
o to predict stock markets, determine the risk of lending money, and
o learn how to attract new clients for their services
e (Governmental organizations:
o internal data scientists to discover valuable information,
o share their data with the public

o Eg: Data.gov is but one example; it’s the home of the US Government’s open
data.

o organizations collected 5 billion data records from widespread applications
such as Google Maps, Angry Birds, email, and text messages, among many
other data sources.

e Nongovernmental organizations:

o World Wildlife Fund (WWF), for instance, employs data scientists to increase
the effectiveness of their fundraising efforts.

o Eg: DataKind is one such data scientist group that devotes its time to the
benefit of mankind.

e Universities:

o Use datascience in their research but also to enhance the study experience of
their students.

o massive open online courses (MOOC) produces a lot of data, which allows
universities to study how this type of learning can complement traditional
classes.

o Eg: Coursera, Udacity, and edX

I11. Facets of data:

The main categories of data are these:
m Structured

m Unstructured

m Natural language

m Machine-generated

m Graph-based

m Audio, video, and images

m Streaming

Structured data:

Structured data is data that depends on a data model and resides in a fixed field
within a record.
Easy to store structured data in tables within databases or Excel files or Structured

Query Language.
1 |Indicator ID |[Dimension List Timeframe Numeric Value Missing Value Flag Confidence Inte
2 (214390830 |[Total (Age-adjusted) 22008 74.6% 73.8%
3 [214390833 |Aged 18-a4 years 2008 59.4% 58.0%
4 [214390831 Aged 18-24 years "2008 37.4% 34.6%
s |214390832 Aged 25-44 years 2008 66.9% 65.5%
6 (214390836 |aged 45-64 years 2008 88.6% 87.7%
7 |214390834 Aged 45-54 years 2008 86.3% 85.1%
8 214390835 |Aged 55-64 years 2008 91.5% 90.4%
9 |214390830 lAged 65 years and over 2008 94.6% 93.8%
10 |214390837 Aged 65-74 years 2008 93.6% 92.4%
11214390838 |Aged 75-84 years 2008 95.6% 94.4%
12 [214390839 lAged 85 years and over 2008 96.0% 94.0%
13 |214390841 |Mmale (Age-adjusted) 22008 72.2% 71.1%
14 '214390842 Female (Age-adjusted) "2008 76.8% 75.9%
15214390843 |White only (Age-adjusted) "2008 73.8% 72.9%
16 '214390844 Black or African American only (Age-adjusted) 2008 77.0% 75.0%
17 (214390845 |American Indian or Alaska Native only (Age-adjusted) 2008 66.5% 57.1%
18 (214390846 |Asian only (Age-adjusted) 2008 80.5% 77.7%
19 (214390847 |Native Hawaiian or Other Pacific Islander only (Age-adjusted) 2008 Dsu
201214290848 |2 or more races (Ave-adiusted) 2008 75.6% 69.6%

Figure 1.1 An Excel table Is an example of structured data.

Unstructured data:

Unstructured data is data that isn’t easy to fit into a data model

The content is context-specific or varying.

Eg: E-mail

Email contains structured elements such as the sender, title, and body text

e Eg:It's a challenge to find the number of people who have written an email
complaint about a specific employee because so many ways exist to refer to a
person.

e The thousands of different languages and dialects.

Delete Move Spam

New team of Ul engineers

CDA@engineer.com

An investment banking client of mine has had the go ahead to build a new team of Ul engineers to work on
wvarious areas of a cutting-edge single-dealer trading platform.

They will be recruiting at all levels and paying between 40k & 85k (+ all the usual benefits of the banking
world). | understand you may not be looking. | also understand you may be a contractor. Of the last 3 hires
they brought into the team, two were contractors of 10 years who | honestly thought would never tum to
what they considered “the dark side.”

This is a genuine opportunity to work in an environment that's built up for best in industry and allows you to
gain commercial experience with all the latest tools, tech, and processes.

There is more information below. | appreciate the spec is rather loose — They are not looking for specialists
in Angular / Node / Backbone or any of the other buzz words in particular, rather an “engineer” who can
wear many hats and is in touch with current tech & tinkers in their own time.

For more information and a confidential chat, please drop me a reply email. Appreciate you may not have
an updated CV, but if you do that would be handy to have a look through if you don't mind sending.

Reply Reply to All Forward

Flgure 1.2 Emall Is simultaneously an example of unstructured data and natural language data.

Natural language:

¢ A human-written email is also a perfect example of natural language data.

e Natural language is a special type of unstructured data;

e It's challenging to process because it requires knowledge of specific data science
techniques and linguistics.

e Topics in NLP: entity recognition, topic recognition, summarization, text
completion, and sentiment analysis.

¢ Human language is ambiguous in nature.

Machine-generated data:

e Machine-generated data is information that’s automatically created by a computer,
process, application, or other machines without human intervention.

e Machine-generated data is becoming a major data resource.

e Eg: Wikibon has forecast that the market value of the industrial Internet will be
approximately $540 billion in 2020.

e International Data Corporation has estimated there will be 26 times more
connected things than people in 2020.

e This network is commonly referred to as the internet of things.

¢ Examples of machine data are web server logs, call detail records, network event
logs, and telemetry.

CSIPERF:TXCOMMIT: 313236

2014-11-28 11:36:13, Info csI 00000153 Creating NT transacticn (seq
69), cobjectname [6]"(null)"

2014-11-28 11:36:13, Info csI 00000154 Created NT tramnsaction (seq 6€9)
reault 0x00000000, handle ROx4eS4

2014-11-28 11:36:13, Info CsI 0000015582014/11/28:10:36:13.471
Beginning NT transaction commiT...

2014-11-28 11:36:13, Info csI 00000156@2014/11/28:10:36:13.705 CSI perf

trace:

CSIPERF:TXCOMMIT ;273983

2014-11-28 11:36:13, Info csI 00000157 Creating KT transaction (seq
70), objectname [6]"(null)"

2014-11-28 11:36:13, Info csI 00000158 Created NT transaction (seg 70)
result 0x00000000, handle @O0x4eSc

2014-11-28 11:36:13, Info CsI 0000015982014/11/28:10:36:13.764
Beginning NT transaction commit...

2014-11-28 11:36:14, Info =134 0000015a82014/11/28:10:36:14.094 CSI pers
trace:

CSIPERF:TXCOMMIT ;386259

2014-11-28 11:36:14, Info CsI 0000015k Creating NT transacticn (aeq
71), cbjectname [6]" (null)"

2014-11-28 11:36:14, Info €sI 0000015¢c Created NT transaction (segqg 71)
result 0Ox00000000, handle @OxieSc

2014-11-28 11:36:14, Info csI 0000015d@2014/11/28:10:36:14.106
Beginning NT TrX&nsaction COMMIT...

2014-11-28 11:36:14, Info CsI 0000015e@2014/11/28:10:36:14.428 CSI perf

trace:
CSIPERF:TXCOMMIT ;375581

Flgure 1.3 Example of machine-generated data

Graph-based or network data:

“Graph” in this case points to mathematical graph theory. In graph theory, a graph
isa

mathematical structure to model pair-wise relationships between objects.

Graph or network data is, in short, data that focuses on the relationship or
adjacency of objects.

The graph structures use nodes, edges, and properties to represent and store
graphical

data.

Graph-based data is a natural way to represent social networks, and its structure
allows you to calculate the shortest path between two people.

Graph-based data can be found on many social media websites.

Eg: LinkedIn, Twitter, movie interests on Netflix

Graph databases are used to store graph-based data and are queried with
specialized

query languages such as SPARQL.

SheE
Crem
- O

Figure 1.4 Friends In a soclal network are an example of graph-based data.

Audio, image, and video:

Audio, image, and video are data types that pose specific challenges to a data
scientist.

Recognizing objects in pictures, turn out to be challenging for computers.

Major League Baseball Advanced Media - video capture to approximately 7 TB per
game for the purpose of live, in-game analytics.

High-speed cameras at stadiums will capture ball and athlete movements to
calculate in real time.

DeepMind succeeded at creating an algorithm that’s capable of learning how to
play video games.

This algorithm takes the video screen as input and learns to interpret everything
via a complex process of deep learning.

Google - Artificial Intelligence Development plans

Streaming data:

The data flows into the system when an event happens instead of being loaded into
a data store in a batch.

Examples are the “What’s trending” on Twitter, live sporting or music events, and
the stock market.

The data science process:

The data science process typically consists of six steps:
o Setting the research goal
o Retrieving data
o Data preparation

o Data exploration
o Data modeling or model building
o Presentation and automation

[Data science process]

—[1: Setting the research goal]+

—[2: Refrieving data]+

—[3: Data preparation]+

—[4: Data exploration]+

—[5: Data modeling]+

—[G: Presentation and automation |&

The data science process

IV. Overview of the data science process:

e A structured data science approach helps you maximize your chances of success in
a data science project at the lowest cost.

e The first step of this process is setting a research goal.

e The main purpose here is to make sure all the stakeholders understand the what,
how, and why of the project.

e Draw the result in a project charter.

Step 1: Defining research goals and creating a project charter
e A project starts by understanding your project's what, why, and how.
e The outcome should be a clear research goal, a good understanding of the context,
e well-defined deliverables, and a plan of action with a timetable.
e The information is then best placed in a project charter.

Spend time understanding the goals and context of your research:

e An essential outcome is the research goal that states the purpose of your
assignment

e inaclear and focused manner.
¢ Understanding the business goals and context is critical for project success.
e To asking questions and devising examples:

o for business expectations,

o how your research is going to change the business, and

o understand how they’ll use your results

Create a project charter:
e The formal agreement on the deliverables.
e All this information is best collected in a project charter.

e A project charter requires teamwork, and your input covers at least the following:
mA clear research goal
m The project mission and context

m How you’re going to perform your analysis

m What resources you expect to use

m Proof that it’s an achievable project, or proof of concepts
m Deliverables and a measure of success

m A timeline

V. Step 2: Retrieving data

The next step in data science is to retrieve the required data.

Sometimes we need to go into the field and design a data collection process.
Many companies will have already collected and stored the data.

That also can be bought from third parties.

look outside your organization for data - high-quality data freely available for
public and commercial use.

Data can be stored in many forms, ranging from simple text files to tables in a
database.

Start with data stored within the company

To assess the relevance and quality of the data that’s readily available within the
company.

Company data - data can be stored in official data repositories such as databases,
data marts, data warehouses, and data lakes maintained by a team of IT
professionals.

Data mart: A data mart is a subset of the data warehouse and will be serving a
specific business unit.

Data lakes: Data lakes contain data in its natural or raw format.

Challenge: As companies grow, their data becomes scattered around many places.
Knowledge of the data may be dispersed as people change positions and leave the
company.

Chinese Walls: These policies translate into physical and digital barriers called
Chinese walls. These “walls” are mandatory and well-regulated for customer data.

[naiascim:mprm]

Define research goal
—[1: Setting the research goal }r{ Create project charter

Data retrieval
Intemal data &

—) || Data ownership
—[2: Retrieving data }?l External data

Emors from data entry

Physically impossible values

Missing values

Data deansing ©

Outliers
Spaces, typos, ...
Emors against codebook

_Aggregating data
—[3: Data preparation]-‘ Extrapolating data

Data transformation | Derived measures

Creating dummies

Reducing number of variables

Merging/joining data sets
Combining data -—,I Set operators

l Creating views

Simple graphs
Combined graphs

—[4: Data exploration };)
Link and brush

| Mongraphical technigues

Model and variable selection

_[5: Data modeling }__ Model execution
Model diagnostic and model comparison

Presenting data
—[6: Presentation and automation }—{ Automating data analysis

Figure 2.1 The six steps of the data sclence process

Don’t be afraid to shop around:

¢ Many companies specialize in collecting valuable information.
e Nielsen and GFK - retail industry.
e Data as Service - Twitter, LinkedIn, and Facebook.

Do data quality checks now to prevent problems later:
e Data Correction and cleansing.

e Dataretrieval - to see if the data is equal to the data in the source document and if
you have the right data types.

e Discover outliers in the exploratory phase, they can point to a data entry error.

Table 2.1 A list of open-data providers that should get you started

Open data slte Description

Data.gov The home of the US Government's open data
https:#/ open-data.europa.eu/ The home of the European Commission's open data

Freebase.org An open database that retrieves its information from sites like
Wikipedia, MusicBrains, and the SEC archive

Data.worldbank.org Open data initiative from the World Bank
Aiddata.org Open data for international development
Open.fda.gov Open data from the US Food and Drug Administration

VL. Step 3: Cleansing, integrating, and transforming data

The model needs the data in a specific format, so data transformation will be the step.
It's a good habit to correct data errors as early on in the process as possible.

Cleansing data:

Data cleansing is a subprocess of the data science process.

It focuses on removing errors in the data.

Then the data becomes a true and consistent representation of the processes.

Types of errors:

Interpretation error - a person’s age is greater than 300 years

Inconsistencies - class of errors is putting “Female” in one table and “F” in another when
they represent the same thing.

Table 2.2 An overview of common errors

General solution

Try to fix the problem early In the data acquisition chain or else fix It in the program.

Error description Possible solution

Errors pointing to false values within one data set

Mistakes during data entry Manual overrules

Redundant white space Use string functions

Impossible values Manual overrules

Missing values Remove observation or value

Outliers Validate and, if erroneous, treat as missing value

(remove or insert)

Errors pointing to inconsistencies beiween data sets

Deviations from a code book Match on keys or else use manual overrules
Different units of measurement Recalculate
Different levels of aggregation Bring to same level of measurement by aggregation

or extrapolation

0.2 T T T T //,,—-ASMghouﬂkrcandwow
018 L ® +—] off a regression estimate.
0.16 |
0.14
0.12 |
Distance 0.1 |
0.08 |
0.06 L 1 Regression line
) influenced by outlier
0.04 |
x
vz x X x X% Normal regression line
0 e R O e T X Do 2 2 9
0 20 40 60 80 100

Row number

Figure 2.5 The enclircled point Influences the model heavlly and Is worth Investigating because It
can point to a reglon where you don't have enough data or might Indicate an error In the data, but It
also can be a valld data polint.

DATA ENTRY ERRORS:
e Data collection and data entry are error-prone processes.
e Errors can arise from human sloppiness, whereas others are due to machine or
hardware failure.

e [Eg:transmission errors

Table 2.3 Detecting outllers on simple varlables with
a frequency table

Value count j_ f ¥ == w GG‘d‘DH .
Good 1598647 :{ = W GGC‘dH
Bad 1354468 .
Godo 15 1f x == "“Bade”:
Bade 1 ¥ = “Bad®
REDUNDANT WHITESPACE:
e Whitespaces tend to be hard to detect but cause errors like other redundant
characters.

e Eg: a mismatch of keys such as “FR” - “FR”
¢ Fixing redundant whitespaces - Python can use the strip() function to remove
leading and trailing spaces.

FIXING CAPITAL LETTER MISMATCHES:
e (Capital letter mismatches - distinction between “Brazil” and “brazil”
e strings in lowercase, such as .lower() in Python. “Brazil”.lower() ==“brazil”.lower()
should result in true.

IMPOSSIBLE VALUES AND SANITY CHECKS:
e Sanity checks are another valuable type of data check.
e Check the value against physically or theoretically impossible values : such as
people taller than 3 meters or someone with an age of 299 years.

check = 0 «= age <= 120

OUTLIERS
e An outlier is an observation that seems to be distant from other observations.

e The normal distribution, or Gaussian distribution, is the most common distribution
in natural sciences.

Distribution with outliers

200

150 |

Frequency 100 |

50 |

0

¥

Figure 2.6 Distribution plots are helpful in detecting outliers and helping you understand the variable.

The high values in the bottom graph can point to outliers when assuming a normal
distribution.

DEALING WITH MISSING VALUES:

Table 2.4 An overview of techniques to handle missing data

Technique

Advantage

Disadvantage

Omit the values

Set value to null

Impute a static value such as 0
or the mean

Impute a value from an esti-
mated or theoretical distribution

Modeling the value (nondepen-
dent)

Easy to perform

Easy to perform

Easy to perform

You don't lose information
from the other variables in
the observation

Does not disturb the model
as much

Does not disturb the model
too much

You lose the information from an
observation

Mot every modeling technique
and/or implementation can han-
dle null values

Can lead to false estimations
from a model

Harder to execute

You make data assumptions
Can lead to too much confidence
in the model

Can artificially raise depen-
dence among the variables

Harder 1o execute

You make data assumptions

DEVIATIONS FROM A CODE BOOK:

e Detecting errors in larger data sets against a code book or against standardized

values

e can be done with the help of set operations.
e A code book is a description of your data form of metadata.

DIFFERENT UNITS OF MEASUREMENT

e When integrating two data sets, we have to pay attention to their respective units

of
e measurement.

e Eg: Data sets can contain prices per gallon and others can contain prices per liter.

DIFFERENT LEVELS OF AGGREGATION
e Having different levels of aggregation is similar to having different types of
measurement.
e Eg: Adata set containing data per week versus one containing data per work week.

Correct errors as early as possible:
e A good practice is to mediate data errors as early as possible in the data collection
e chain and to fix as little as possible.
e The data collection process is error-prone, and in a big organization, it involves many
steps and teams.
Data should be cleansed when acquired for many reasons:
Not everyone spots the data anomalies
If errors are not corrected early on in the process, the cleansing will have to be done.
Data errors may point to a business process that isn’t working as designed.
Data errors may point to defective equipment, etc.,
Data errors can point to bugs in software or in the integration of software.
Data manipulation doesn’t end with correcting mistakes; still need to combine your
incoming data.

Combining data from different data sources:
e Data varies in size, type, and structure, ranging from databases and Excel files to
text documents.

THE DIFFERENT WAYS OF COMBINING DATA:
e Two operations to combine information from different data.
¢ joining: enriching an observation from one table with information from another
table.
e The second operation is appending or stacking: adding the observations
o of one table to those of another table.

JOINING TABLES
¢ Joining tables allows you to combine the information of one observation found in
one

table with the information that you find in another table

CHAPTER 2 The data science process

Client ttem Month] [Client Region J
. John Doe Coca-Cola January ‘ John Doe NY |
| Jackie Qi Pepsi-Cola January J | Jackie Qi NC J
| |
|
[Client Item Month Region]
| John Doe Coca-Cola January NY ‘
| Jackie Qi Pepsi-Cola January NC :Ii_lg::'l:: ?‘I-::m :;i;iggé‘i':?‘t::;;s

e When these keys also uniquely define the records in the table theyare called
primary keys.

APPENDING TABLES
e Appending or stacking tables is effectively adding observations from one table to
another table.

Client ltem Montr | [Cient ltem Month
. John Doe Coca-Cola January | | John Doe Zero-Cola February 1
Jackie Qi PepsiCola January | | JackieQi MaxiCola February

| Ciient ltem Month

John Doe Coca-Cola January
— : Figure 2.8 Appending data

Jackie Qi Pepsi-Cola January from tables is a common
John Doe Zem-Cola February operation but requires an
Jackie Qi Maxi-Cola February eqf.lal structure in the tables

. being appended.

USING VIEWS TO SIMULATE DATA JOINS AND APPENDS

e To avoid duplication of data, we can virtually combine data with views.

e How the sales data from the different months is combined virtually into a yearly
sales table instead of duplicating the data?

e Atablejoin is only performed once, the join that creates the view is recreated every
time it’s queried.

January sales February sales December sales

obs Date obs Date obs Date

1 1-Jan 1 1-Feb 1 1-Dec

Physical tables 2 1-Jan 2 2-Feb 2 1-Dec

n 31-Jan n 28-Feb n 31-Dec

Yearly sales

obs Date

1 1-Jan

View: virtual table 2 1-Jan

31-Dec

Figure 2.9 A vlew helps you combine data without replication.

ENRICHING AGGREGATED MEASURES
e Data enrichment can also be done by adding calculated information to the table.
e Eg: such as the total number of sales or what percentage of total stock has been
sold in a certain region.

Sales t-1 Sales by
Product class Product Salesin$ in Growth product class ~ Rank sales
A B X Y (XYY AX X
Sport Sport 1 95 98 —3.06% 215 2
Sport Sport 2 120 132 -9.09% 215 1
Shoes Shoes 1 10 6 66.67% 10 3

Flgure 2.10 Growth, sales by product class, and rank sales are examples of derlved and
aggregate measures.

TRANSFORMING DATA

e Relationships between an input variable and an output variable aren’t always
linear.

e Take, for instance, a relationship of the form y = aebx,
e Taking the log of the independent variables simplifies the estimation problem.

X 1 2 3 4 5 6 7 8 9 10
log(x) 000 043 068 086 100 1.1 121 129 137 143
1% 000 044 069 087 102 1.1 1.24 132 138 148
Y Y
02 02
15 “® 15 .
o« ® o
e L
° -
1 8- 1 A
[-
.. L
05 - 05 =
0e 0 &=
0 5 10 15 0 0.5 1 15 2
@y -— Linear(y)

Figure 2.11 Transforming x to log X makes the relatlonship between x and y linear (right), compared
with the nondog x (left).

REDUCING THE NUMBER OF VARIABLES
¢ We have too many variables and need to reduce the number because they don’t
add new information to the model.
e Having too many variables in your model makes the model difficult to handle, and

certain techniques don'’t perform well when you overload them with too many
input variables.

Euclidean distance

Euclidean distance or “ordinary” distance is an extension to one of the first things
anyone learns in mathematics about triangles (trigonometry): Pythagoras’s leg theo-
rem. If you know the length of the two sides next to the 90° angle of a right-angled
triangle you can easily derive the length of the remaining side (hypotenuse). The for-

mula for this is hypotenuse = ./(sidel + side2)2. The Euclidean distance between
two points in a two-dimensional plane is calculated using a similar formula: distance

= J({xl —X%2)? + (y1 —y2)?). If you want to expand this distance calculation to more
dimensions, add the coordinates of the point within those higher dimensions to the for-

mula. For three dimensions we get distance = ./((x1 —x2)2 + (y1 —y2)2 + (z1 — z2)32).

e Data scientists use special methods to reduce the number of variables but retain
the maximum amount of data.

e Reducing the number of variables makes it easier to understand the key values.

e These variables, called “component1” and “component2,” are both combinations of
the original variables.

e They're the principal components of the underlying data structure.

Flgure 2.12 Varlable
reduction allows you to
i reduce the number of
bl — — varlables while
£ 6 4 2 0 2 4 6 8 pantalningas much
Component! (27.8%) Information as possible.

TURNING VARIABLES INTO DUMMIES

e Variables can be turned into dummy variables.

e Dummy variables can only take two values: true(1) or false(0).

e They're used to indicate the absence of a categorical effect that may explain the
observation.

e An example is turning one column named Weekdays into the columns Monday
through Sunday.

e We use an indicator to show if the observation was on a Monday; you put 1 on
Monday and 0 elsewhere.

Customer Year Gender Sales

1 2015 F 10
2 2015 M 8
1 2016 F "
3 2016 M 12
4 2017 F 14
3 2017 M 13
M F
Customer Year Sales Male Female]
1 2015 10 0 1
1 2016 1 0 1
2 2015 8 1 L]
Figure 2.13 Turning varlables Into
3 2018 12 1 0 Is a data t mation that
3 2017 13 1 0 breaks a varlable that has multiple
3 2017 2 P P Into multiple varlables, each
having only two possible values: 0 or 1.

VII. Step 4: Exploratory data analysis

Information becomes much easier to grasp when shown in a picture.
The graphical techniques to gain an understanding of your data and the interactions
between variables.

Data science process

1: Setting the research goal |#

ID

2 Refrieving data |

3: Data preparafion |

Simple graphs
Combined graphs

4: Data exploration =7
Link and brush
Nongraphical techniques

5: Datamodeling ~ |*

Flgure 2.14 Step &

ﬂ 6: Presentation and automation]t Data exploration

visualization techniques : simple line graphs or histograms

1.0

0.8 — —

0.6 — —

201 2012 2013 2014 2015 2016

Year

1.0

o8 1 I

0.4 | | L / -II ."I |
\]

0z L U ! /

0.0

2011 2012 2013 2014 2015 2018

1.4

1.2

1.0

Drensity

/ N

0.0 = —=
-0.5 00 05 1.0 15

Figure 2.15 From top to bottom, a bar chart, a line plot, and a distribution
are some of the usad in | tory analysis.

Brushing and Linking:

e With brushing and linking we combine and link different graphs and tables or
views so changes in one graph are automatically transferred to the other graphs.

10 10
LAL)
08 P 08 o0
L]
06 06 -
2 [e o0
Q28_1 04 LENEE. 4 o Q28_3 04 -
e o 'Y L]
& 8
02 * s 02 RN
0‘ ." &
0.0 s 0.0
02 02
02 00 02 04 06 08 10 02 00 02 04 06 08 10
Q28_2 Q28 2
025 0.20
L]
02 0.45 .
015
° 0.10 °
Q4 010 . ° Q285
. L} * o®
- R 0.05 e
: Pl - o ® ®
5 e o
0.00 0.00 @ ooloo oo
005 005
02 00 02 04 06 08 10 02 00 02 04 06 08 10
Q28_2 Q28 2

Figure 2.16 Drawing multiple plots together can help you understand the structure of your data
over multiple variables.

0.8

0.6

0.4

0.2

Q28_1 Qz8 2 Q28 3

0.8
0.8
— 0.6
T
° "I 0.6
04 o
04 e
0.2 u | 0.2 2
0 0
0 005 01 015 02 0 005 01 015 02 0 005 01 015 02

Figure 2.18 Link and brush allows you to select observations in one plot and highlight the same
observations In the other plots.

Pareto Diagram:

A Pareto diagram is a combination of the values and a cumulative distribution.

It’s easy to see from this diagram that the first 50% of the countries contain slightly
less than 80% of the total

amount.

If this graph represented customer buying power and we sell expensive products,
we probably don’t need to spend our marketing budget in every country; we could
start with the first 50%.

10 1 - q10
o——''_'_'__'__'_'_
:-"---''_'_‘-'_
[I e 0.8
80%
05 | - 12 countries | 12 countries los
/"/‘ T
04 {04
.{/H
=
0z | [¥] loz
] MINIRINIATnln
{'{' T |I_| T DD

Country

In a histogram a variable is cut into discrete categories and the number of
occurrences in each category are summed up and shown in the graph.

The boxplot, doesn’t show how many observations are present but does offer an
impression of the distribution within categories.

It can show the maximum, minimum, median, and other characterizing measures at
the same time.

Fraquancy —

2 L
0 —‘ Flgure 2.19 Example histogram:
60 65 70 75 B0 85 90 the number of people In the age-
Age groups of 5-year Intervals

Tabulation, clustering, and other modeling techniques can also be a part of exploratory
analysis.

—

3 T
|
|
|

I,___

]
I
I
I
|
J

=2 I R -

T T T
1 2 3
User category

Figure 2.20 Example boxploi: each user category has a distribution of the
appreciation each has for a certain picture on a photography website.

VIIL. Step 5: Build the models

e With clean data in place and a good understanding of the content, we're ready to
build models with the goal of making better predictions, classifying objects, or
gaining an understanding of the system that we’re modeling.

e The techniques we'll use now are borrowed from the field of machine learning,
data mining, and/or statistics.

¢ Building a model is an iterative process.
e The way we build our model depends on whether we go with classic statistics or
the recent machine learning
¢ and the type of technique we want to use.
e Either way, most models consist of the following main steps:
1 Selection of a modeling technique and variables to enter in the model
2 Execution of the model
3 Diagnosis and model comparison

Model and variable selection

We need to select the variables you want to include in your model and a modeling
technique.

We’ll need to consider model performance and whether our project meets all the
requirements to use your model, as well as other factors:
m Must the model be moved to a production environment and, if so, would it be easy to

implement?

m How difficult is the maintenance on the model: how long will it remain relevant if left

untouched?
m Does the model need to be easy to explain?

Model execution:

e The most programming languages, such as Python, already have libraries such as

StatsModels or Scikit-learn.

e These packages use several of the most popular techniques.
¢ Coding a model is a nontrivial task in most cases, so having these libraries available

can speed up the process.

import statsmodels.api as sm
import numpy as np
predictors = np.random. random(1000) .reshape (500,2)

Imports required
Python modules.

target = predictors.dot (np.array([0.4, 0.6])) + np.random.random(500)
ImRegModel = em.OLS(target,predictors)
result = InReghodel . fit() Fits linear Creates random data for
result. sumary () T Showsmadel | TEBeSSion predictors (x-values) and
it statist on data, semi-random data for
1 SLALGS. the target (y-values) of the
model. We use predictors as
input to create the target so
we infer a correlation here,
Y (target variable) ’
15 .
: A
A .
. ALA
10 - e,
. » .t
.';/ :
L -../'_/ T *
. u./«'/'" '
, ': '/-"‘,.5* "ot
P Figure 2.22 Linear
X (predictor varisble) regresslon trles to fit a
line while minimizing the
20 10 10 20 30 40 50 60 distance to each point

Model fit—For this the R-squared or adjusted R-squared is used.
e This measure is an indication of the amount of variation in the data that gets

captured by the model.

e The difference between the adjusted R-squared and the R-squared is minimal here
because the adjusted one is the normal one + a penalty for model complexity.
¢ A model gets complex when many variables or features are introduced.

Predictor variables have a coefficient—For a linear model this is easy to interpret.
e Inour example if you add “1” to x1, it will change y by “0.7658".
e It's easy to see how finding a good predictor can be your route.

Eg: If, for instance, you determine that a certain gene is significant as a cause for
cancer, this is important knowledge, even if that gene in itself doesn’t determine

whether a person will get cancer.

When to a gene has that impact? This is called significance.

Predictor significance—Coefficients are great, but sometimes not enough evidence exists
to show that the influence is there. This is what the p-value. It means there’s a 5% chance

the predictor doesn’t have any influence.

-~ T
+ + p -« +
7 - # *
o i Y
— - « 1 _— 1
- - F, & h Y
4 . i
AN — \ / — '
¥ 1 I X i s
' 1
\ X) 1 X I 1 X .I
Y J 1 i '\ i
Y Ji LY s i !
temme h K Y ’
Y o Ny i
— — e -5 P .
— s v
+ ¥ +.

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

Flgure 2.24 K-nearest nelghbor technlques look at the k-nearest polnt to make a predictlon.

from sklearn import neighbors
predictors = np.random.random(1000) .reshape (500,2)

target = np.around(predictors.dot (np.array([0.4,

clf
knn

knn.

np.random.random({500)})}

Imports modules.

-

= neighbors.KNeighborsClassifier (n_neighbors=10)

= clf.fit (predictors, target)

score (predictors, target)

0.6]1)) +

Creates random predictor
data and semi-random
target data based on
predictor data.

Fits 10-nearest
neighbors model.

Gets model fit score: what
percent of the classification

was correct?

In [45]: metrics.confusion_matrix(target,prediction)

Out[45]:

Actual value

Number of correctly
predicted cases

Figure 2.25 Confuslon matrix: It shows how many cases were correctly classlifled and Incorrectly
classifled by comparing the prediction with the real values. Remark: the classes (0,1,2) were
added In the figure for clarification.

Model diagnostics and model comparison

Working with a holdout sample helps you pick the best-performing model.

A holdout sample is a part of the data you leave out of the model building so it can be used
to evaluate the model afterward. The principle here is simple: the model should work on
unseen data.

Mean square error is a simple measure: check for every prediction how far it was from the
truth, square this error, and add up the error of every prediction.

1 n -~ |:|_
MSE = = E Figure 2.26 Formula for
H
mean square error
Predicted Predicted Error Ermaor
n Size Price model 1 model 2 model 1 model 2
[1 10 3
2 15 S5
3 18 (=3
4 14 5
820% train 800 = 3
801 12 3 12 10 (u] 2
802 13 4 12 10 1 3
999 21 I 21 10 (u] 11
20% test 100 10 4 12 10 —2 o]
Total 5861 110225 |

Fligure 2.27T A holdout sample helps you compare models and ensures that you can
generallze results to data that the model has not vet seen.

IX. Step 6: Presenting findings and building applications on top of them

Data science process

—[1: Setting the research goal]+

2: Retrieving data |
3: Data preparation |

4: Data exploration |

5: Data modeling | Flgure 2.28 Step 6:

Presenting data
: - Presentatlon and
—[6: Presentafion and automation } { Automating data analysis

e Some work need to repeat it over and over again because they value the
predictions of our models or the insights that you produced.

e For this reason, we need to automate your models.

e This doesn’t always mean that we have to redo all of your analysis all the time.

e Sometimes it’s sufficient that we implement only the model scoring; other times we
might build an application

e that automatically updates reports, Excel spreadsheets, or PowerPoint
presentations.

X. Data Mining:

e Data mining turns a large collection of data into knowledge.

e Asearch engine (e.g., Google) receives hundreds of millions of queries every day.

e Each query can be viewed as a transaction where the user describes her or his
information need.

e For example, Google’s Flu Trends uses specific search terms as indicators of flu
activity.

e It found a close relationship between the number of people who search for flu-
related information and the number of people who actually have flu symptoms.

Databases

i Flat fil

h 4 y

Figure 1.4 Data mining as a step in the process of knowledge discovery.

¢ Insummary, the abundance of data, coupled with the need for powerful data analysis
tools, has been described as a data rich but information-poor situation (Figure 1.2).

e The fast-growing, tremendous amount of data, collected and stored in large and
numerous data repositories, has far exceeded our human ability for comprehension
without powerful

e tools.

e As a result, data collected in large data repositories become “data tombs”—data
archives that are seldom visited.

¢ Unfortunately, however, the manual knowledge input procedure is prone to biases
and errors and is extremely costly and time consuming.

e The widening gap between data and information calls for the systematic
development of data mining tools that can turn data tombs into “golden nuggets” of
knowledge.

e other terms have a similar meaning to data mining—for example, knowledge mining
from data, knowledge extraction, data/pattern analysis, data archaeology, and data
dredging.

Many people treat data mining as a synonym for another popularly used term, knowledge
discovery from data, or KDD, while others view data mining as merely an essential step in
the process of knowledge discovery. The knowledge discovery process is shown in Figure
1.4 as an iterative sequence of the following steps:

1. Data cleaning (to remove noise and inconsistent data)

2. Data integration (where multiple data sources may be combined)

3. Data selection (where data relevant to the analysis task are retrieved from the
database)

4. Data transformation (where data are transformed and consolidated into forms
appropriate for mining by performing summary or aggregation operations)

5. Data mining (an essential process where intelligent methods are applied to extract data
patterns)

6. Pattern evaluation (to identify the truly interesting patterns representing knowledge
based on interestingness measures)

7. Knowledge presentation (where visualization and knowledge representation
techniques are used to present mined knowledge to users)

XI. DataWarehouses
e A data warehouse is a repository of information collected from multiple sources,
stored under a unified schema, and usually residing at a single site.
e Data warehouses are constructed via a process of data cleaning, data integration,
data transformation, data loading, and periodic data refreshing.

Eg: All Electronics

e To facilitate decision making, the data in a data warehouse are organized around
major subjects (e.g., customer, item, supplier, and activity).

e The data are stored to provide information from a historical perspective, such as in
the past 6 to 12 months, and are typically summarized.

e For example, rather than storing the details of each sales transaction, the data
warehouse may store a summary of the transactions per item type for each store or,
summarized to a higher level, for each sales region.

e A data warehouse is usually modeled by a multidimensional data structure, called a
data cube, in which each dimension corresponds to an attribute or a set of attributes
in the schema, and each cell stores the value of some aggregate measure such as
count.

L_j
=
Data source in Chicago J—
— A — [Client)
—————— J Y e —— e T -
| ———— I Clean '|II /
Data source in New York | ,!E:‘“ET:HW kY Data | Query and
I | Transform . —»,)
—-) ; Warchouse '-afa_h_hfiuflf
L Refresh
= - === 'i ! —— -
Data source in Toronto " _ khc“'-‘“t’_]
—
e —

Data source in Vancouver

Figure 1.6 Typical framework of a data warehouse for AllElectronics.

e By providing multidimensional data views and the precomputation of summarized
data, data warehouse systems can provide inherent support for OLAP.

e Online analytical processing operations make use of background knowledge
regarding the domain of the data being studied to allow the presentation of data at
different levels of abstraction.

e Such operations accommodate different user viewpoints.

e Examples of OLAP operations include drill-down and roll-up, which allow the user
to view the data at differing degrees of summarization, as illustrated.

trans_ D | list_ofitem_IDs
T100 11,13, 18, 116

T200 12, 18
» i
Lé'wNew \E‘:rl;ago = 7
o~ 560 7
Toronto 395 /
Vancouver
o <Wancouver,
Q1| 605 | 825 | 14 |00 Ql, security>
E
1
z o
w
E
Q4
| computer | security
home phone
entertainment
item (types)
(a)
Drill-down Roll-up
unlim:datay y:addmss
»
& .
@&’ Chicago & USA 4
New York i
fé e tor Jp‘é Canada _4poq
Toronto
Vancouver I Qi
£ o
E Jan 150 S Q
g =
g Feb 100 g @
-% March 150 4
| computer | security | computer | security
home phone home phone
entertainment entertainment
item (types) item (types)

(b)

Figure 1.7 A multidimensional data cube, commonly used for data warehousing, (a) showing summa-
rized data for AllElectronics and (b) showing summarized data resulting from drill-down and
roll-up operations on the cube in (a). For improved readability, only some of the cube cell
values are shown.

XII. Basic Statistical Descriptions of Data:
Measuring the Central Tendency: Mean, Median, and Mode

e Suppose that we have some attribute X, like salary, which has been recorded for a

set of objects.

Let x1,x2,:::,xN be the set of N observed values or observations for X.

Here, these values may also be referred to as the data set (for X).

Measures of central tendency include the mean, median, mode, and midrange.

The most common and effective numeric measure of the “center” of a set of data is

the (arithmetic)mean.

e Letx1,x2,:::,xN be aset of N values or observations, such as for some numeric
attribute X, like salary.

e The mean of this set of values is

N
Xj

i=1 X txt--t+xy

N N '

1
I

Example 2.6 Mean. Suppose we have the following values for salary (in thousands of dollars), shown

in increasing order: 30, 36, 47, 50, 52, 52, 56, 60, 63, 70, 70, 110. Using Eq. (2.1), we have
W0+364+474504+52+52+564+604+634+704704 110

=
12
696
= — =54.
12
Thus, the mean salary is $58,000.]

Sometimes, each value xi in a set may be associated with a weightwiforiD 1,:::
N.

The weights reflect the significance, importance, or occurrence frequency attached
to their respective values. In this case, we can compute. This is called the weighted
arithmetic mean or the weighted average.

N
D wixi

i=I _ WX +H"'!',_.Ig+-n—|-wf.‘.xl."r
N T witwato+wy
2w

To offset the effect caused by a small number of extreme values, we can instead use
the trimmed mean,which is the mean obtained after chopping off values at the high
and low extremes.

For example, we can sort the values observed for salary and remove the top and
bottom 2% before computing the mean.

We should avoid trimming too large a portion (such as 20%) at both ends, as this can
result in the loss of valuable information.

For skewed data, a better measure of the center of data is the median, which is the
middle value in a set of ordered data values.

[t is the value that separates the higher half of a data set from the lower half.

Median:

Mode:

The median generally applies to numeric data; however, we may extend the concept
to ordinal data.

Suppose that a given data set of N values for an attribute X is sorted in increasing
order.

If N is odd, then the median is the middle value of the ordered set. If N is even, then
the median is not unique; it is the two middlemost values and any value in between.

The median is expensive to compute when we have a large number of observations.
For numeric attributes, however, we can easily approximate the value.

N2 — (3 freq),

fmqmm’jmr

median = Ly + width,

The mode is another measure of central tendency.

e The mode for a set of data is the value that occurs most frequently in the set.

e Therefore, it can be determined for qualitative and quantitative attributes.

e [t is possible for the greatest frequency to correspond to several different values,
which results in more than one mode. Data sets with one, two, or three modes are
respectively called unimodal, bimodal, and trimodal. In general, a data set with two
or more modes is multimodal.

Example 2.8 Mode. The data from Example 2.6 are bimodal. The two modes are $52,000 and
$70,000. .

For unimodal numeric data that are moderately skewed (asymmetrical), we have the
following empirical relation:

mean — mode = 3 X (mean — median). (2.4)

Mid Range:
e The midrange can also be used to assess the central tendency of a numeric data set.
e Itisthe average of the largest and smallest values in the set.
e This measure is easy to compute using the SQL aggregate functions, max() and
min().

Example 2.9 Midrange. The midrange of the data of Example 2.6 is w = §70,000.

In a unimodal frequency curve with perfect symmetric data distribution, the mean,
median, and mode are all at the same center value.

e Data in most real applications are not symmetric.

¢ They may instead be either positively skewed, where the mode occurs at a value
that is smaller than the median or negatively skewed, where the mode occurs at a
value greater than the Median.

(@) Symmetnc data (b) Positively skewed data (€) Megatively skewed data

Figure 2.1 Mean, median, and mode of symmetric versus positively and negatively skewed data.

Measuring the Dispersion of Data: Range, Quartiles, Variance, Standard Deviation,
and Interquartile Range

e Letx1,x2,:::,xN be a set of observations for some numeric attribute, X. The range of
the set is the difference between the largest (max()) and smallest (min()) values.
e Suppose that the data for attribute X are sorted in increasing numeric order.

Imagine that we can pick certain data points so as to split the data distribution into
equal-size consecutive sets, as in Figure 2.2.

These data points are called quantiles.

Quantiles are points taken at regular intervals of a data distribution, dividing it into
essentially equalsize consecutive sets.

The 2-quantile is the data point dividing the lower and upper halves of the data
distribution.

It corresponds to the median.

The 4-quantiles are the three data points that split the data distribution into four
equal parts; each part represents one-fourth of the data distribution. They are more
commonly referred to as quartiles.

The 100-quantiles are more commonly referred to as percentiles; they divide the
data distribution into 100 equal-sized consecutive sets.

The median, quartiles, and percentiles are the most widely used forms of quantiles.

The distance between the first and third quartiles is a simple measure of spread that
gives the range covered by the middle half of the data. This distance is called the
interquartile range (IQR) and is defined as

IQR = Q3 -Q1.

Five-Number Summary, Boxplots, and Outliers:

A common rule of thumb for identifying suspected outliers is to single out values
falling at least 1.5 IQR above the third quartile or below the first quartile.

Because Q1, the median, and Q3 together contain no information about the
endpoints (e.g., tails) of the data, a fuller summary of the shape of a distribution can
be obtained by providing the lowest and highest data values as well. This is known
as the five-number summary.

The five-number summary of a distribution consists of the median (Q2), the
quartiles Q1 and Q3, and the smallest and largest individual observations, written in
the order of Minimum, Q1, Median, Q3, Maximum.

Boxplots are a popular way of visualizing a distribution.

A boxplot incorporates the five-number summary as follows:

Typically, the ends of the box are at the quartiles so that the box length is the
interquartile range.

The median is marked by a line within the box.

Two lines (called whiskers) outside the box extend to the smallest (Minimum) and
largest (Maximum) observations.

5%

L 22 s
25th Median 75th
pementile percentile

Figure 1.2 A plot of the data distribution for some attribute X. The quantiles plotted are quartiles. The

three quartiles divide the distribution into four equal-size consecutive subsets. The second
quartile corresponds to the median,

Boxplot: Figure shows boxplots for unit price data for items sold at four branches of
AllElectronics during a given time period.

For branch 1, we see that the median price of items sold is $80, Q1 is $60, and Q3 is $100.
Notice that two outlying observations for this branch were plotted individually, as their
values of 175 and 202 are more than 1.5 times the IQR here of 40.

220

200 4 *
T
180 4 . T I
160 4 | 1
T
140 | —
2 I .
w 1204 |
=2 |
E |
E 100 4
BO
|
60 1 - L
| |
|
wd{ L L
€1
20 1
Branch | Branch 2 Branch 3 Branch 4

Figure 2.3 Boxplot for the unit price data for items sold at four branches of AllElectronics during a given
time period.

Variance and Standard Deviation

Variance and standard deviation are measures of data dispersion.

They indicate how spread out a data distribution is.

Alow standard deviation means that the data observations tend to be very close to
the mean, while a high standard deviation indicates that the data are spread out
over a large range of values.

7 1 N) 1 N 5 -
cr‘=ﬁ2{x.-—i]‘= ﬁzx; — 7,

i=1 i=1

-

The standard deviation, , of the observations is the square root of the variance,

Graphic Displays of Basic Statistical Descriptions of Data:

Quantile Plot

A quantile plot is a simple and effective way to have a first look at a univariate
data distribution. First, it displays all of the data for the given attribute.
Second, it plots quantile information.

Quantile-Quantile Plot

A quantile-quantile plot, or q-q plot, graphs the quantiles of one univariate distribution
against the corresponding quantiles of another.

It is a powerful visualization tool in that it allows the user to view whether there is a shift
in going from one distribution to another.

Histograms

Histograms (or frequency histograms) are at least a century old and are widely used.
“Histos” means pole or mast, and “gram” means chart, so a histogram is a chart of poles.
Plotting histograms is a graphical method for summarizing the distribution of a given
attribute, X.

Scatter Plots and Data Correlation
e A scatter plot is one of the most effective graphical methods for determining if
there appears to be a relationship, pattern, or trend between two numeric
attributes.
e Each pair of values is treated as a pair of coordinates and plotted as points in the
plane.
e The scatter plot is a useful method for providing a first look at bivariate data to see
o clusters of points and outliers,
o or to explore the possibility of correlation relationships.
e Two attributes, X, and Y, are correlated if one attribute implies the other.
e Correlations can be positive, negative, or null (uncorrelated).
e If the pattern of plotted points slopes from upper left to lower right, X's values
increase as Y's values decrease, suggesting a negative correlation.
e Aline of best fit can be drawn to study the correlation between the variables.

REESLG LNLE LFL LFSERF AFD POLRLELLS SALL LEER S L pAFR. L ER Ly F] L LEEw L E

1440
1241
10

Unit price (%)

80 -
600 -
40ee**
20
0

¥

Oy #&l“"**
Mexdian ser”

et b
1¢+¢**'*
.

2,

'
. L i

0.0

1 1
0.25 050 075 100
Fvalue

Mt P ETL LAmLLIRLLL RRL LI

Figure 2.4 A quantile plot for the unit price data of Table 2.1.

Table 2.1 A Set of Unit Price Data for ltems
Sold at a Branch of AllElectronics

Unit price Count of
%) ftems sold
40 275
43 300
47 250
74 360
75 515
78 540
115 320
117 270
120 350
120
_ 110
S 100+
R
= 00
E sn-
= 70
g
g 60+
=0
50
40

60 70 %0 90 100 100
Branch | (unit price 5)

Figure 2.5 A q-q plot for unit price data from two AllElecrronics branches.

Countof iterms sold
1

2000
1000
D -
4059 6079 3099 100-119 120-139
Unit price (%)

Figure 1.6 A histogram for the Table 2.1 data set.

T
600 & :0*\.0 .
- * *
g Y0 PE * #"‘0‘
7 400+ * .
E 300 . »*
= 300 fﬁ‘ “, *
= 500
100 -
U T T T T T T 1
0 0 40 &0 &0 100 120 140
Unit price (%)
Figure 1.7 A scatter plot for the Table 2.1 data set.
‘e
]
.0 - .
.
L I] 1 ™ .
a ® - . L ™
- . . ®
. . e ? -
L] [] - .
.
(a) (b}

Figure 1.8 Scatter plots can be used to find (a) positive or (b) negative correlations between attributes.

-r... l-... 'J': -* -...: .*.'

L . e :-4 ‘. > 24

we vy Lo S St e . Ly ;:;'"l
:;.:. ‘f\..' ".;?".‘. ., n® 3'-:‘.:" - .‘: .

- ',“-,' L - - ‘.' ."| "..'. =

' L -5 .'II: L

n L g . F -..-' .-'

Figure 2.9 Three cases where there is no observed correlation between the two plotted attributes in each
of the data sets.

UNIT II
DESCRIBING DATA

Types of Data - Types of Variables -Describing Data with Tables and Graphs -Describing
Data with Averages - Describing Variability - Normal Distributions and Standard (z)
Scores

WHAT IS STATISTICS?
Statistics exists because of the prevalence of variability in the real world.

Descriptive Statistics:

e In its simplest form, known as descriptive statistics, statistics provides us with
tools—tables,

e graphs, averages, ranges, correlations—for organizing and summarizing the
inevitable

e variability in collections of actual observations or scores.

e Eg: A tabular listing, ranked from most to least, A graph showing the annual
change in global temperature during the last 30 years

Inferential Statistics:
e Statistics also provides tools—a variety of tests and estimates—for generalizing
beyond collections of actual observations.
e This more advanced area is known as inferential statistics.
e Eg: An assertion about the relationship between job satisfaction and overall
happiness

1. THREE TYPES OF DATA:
e Datais a collection of actual observations or scores in a survey or an experiment.
e The precise form of statistical analysis often depends on whether data are
gualitative, ranked, or quantitative.

Data

| |
IQuaIitative I Ranked IQuantitative

Qualitative Data: Qualitative data consist of words (Yes or No), letters (Y or N), or

numerical codes (0 or 1) that represent a class or category.

Ranked data consist of numbers (1st, 2nd, . . . 40th place) that represent relative
standing within a group.
Quantitative data consists of numbers (weights of 238, 170, . . . 185 lbs) that
represent an amount or a count.

Quantitative Data:

160
193
226
157
180
205
165

QUANTITATIVE DATA: WEIGHTS (IN POUNDS) OF MALE

168
169
160
163
172
151
157

133
245
170
152
160
220
190

Table 1.1
STATISTICS STUDENTS
170 150
160 152
180 150
158 225
170 145
166 152
206 172

165
190
156
135
185
159
175

158
179
190
165
152
156
154

165
157
156
135

Quantitative Data

The weights reported by 53 male students in Table 1.1 are quantitative data, sinceany

single observation, such as 160 lbs, represents an amount of weight.

Data

o oo || e | o || e a | ra || —

87.00
26.00
54.00
39.00
67.00
12.00
28.00
95.00
54.00
68.00
2300
64.00
26.00
43.00
77.00

RData

14.000
3.000
8.500
6.000

11.000
1.000
4.500

15.000
8.500

12.000
2.000

10.000
4.500
7.000

13.000

Ranked Data

The ranked data in order from 1 to 15 depending on the data available in the list.

Table 1.2
QUALITATIVE DATA: “DO YOU HAVE A FACEBOOK
PROFILE?” YES (Y) OR NO (N) REPLIES OF
STATISTICS STUDENTS
Y Y Y N N Y Y Y
Y Y Y N N Y Y Y
N Y N Y Y Y Y Y
Y Y N Y N Y N Y
Y N Y N N Y Y Y
Y Y N Y Y Y Y Y
N N N N Y N N Y
Y Y Y Y Y N Y N
Y Y Y Y N N Y Y
N Y N N Y Y Y Y
Y Y N

Qualitative Data
The Y and N replies of students in Table 1.2 are qualitative data, since any single
observation is a letter that represents a class of replies.

1. TYPES OF VARIABLES

A variable is a characteristic or property that can take on different values.

Discrete and Continuous Variables

Quantitative variables can be further distinguished in terms of whether they are
discrete or continuous.

A discrete variable consists of isolated numbers separated by gaps.

Examples include most counts, such as the number of children in a family; the number
of foreign countries you have visited; and the current size of the U.S. population.

A continuous variable consists of numbers whose values, at least in theory, have no
restrictions.

Examples include amounts, such as weights of male statistics students; durations,and
standardized test scores, such as those on the Scholastic Aptitude Test (SAT).

Approximate Numbers

In theory, values for continuous variables can be carried out infinitely far.

Eg: Someone’s weight, in pounds, might be 140.01438, and so on, to infinity!
Practical considerations require that values for continuous variables be roundedoff.
Whenever values are rounded off, as is always the case with actual values for
continuous variables, the resulting numbers are approximate, never exact.

For example, the weights of the to the nearest pound.

A student whose weight is listed as 150 Ibs could actually weigh between 149.5and
150.5 Ibs.

Independent and Dependent Variables

The most studies raise questions about the presence or absence of a relationship
between two (or more) variables.

Eg: For example, a psychologist might wish to investigate whether couples who
undergo special training in “active listening” tend to have fewer communication
breakdowns than do couples who undergo no special training.

An experiment is a study in which the investigator decides who receives the special
treatment.

Dependent Variable

When a variable is believed to have been influenced by the independent variable, it is
called a dependent variable.

In an experimental setting, the dependent variable is measured, counted, or
recorded by the investigator.

Unlike the independent variable, the dependent variable isn’t manipulated by the
investigator.

Instead, it represents an outcome: the data produced by the experiment.

Eg: To test whether training influences communication, the psychologist countsthe
number of communication breakdowns between each couple

DATA

/

Words Numbers
Relative Standing Amount or Count
v
(Yes, No) (1st, 2nd,...) (160.,...193 Ibs)
Classification Order Equal Intervals/True Zero
FIGURE 1.2
Overview: types of data and levels of measurement.

Observational Studies

Instead of undertaking an experiment, an investigator might simply observe the
relation between two variables. For example, a sociologist might collect paired
measures of poverty level and crime rate for each individual in some group.

Such studies are often referred to as observational studies.

An observational study focuses on detecting relationships between variables not
manipulated by the investigator, and it yields less clear-cut conclusions about cause-
effect relationships than does an experiment.

Confounding Variable

e Whenever groups differ not just because of the independent variable but also because
some uncontrolled variable co-varies with the independent variable, anyconclusion
about a cause-effect relationship is suspect.

e A difference between groups might be due not to the independent variable but toa
confounding variable.

e For instance, couples willing to devote extra effort to special training might already
possess a deeper commitment that co-varies with more active-listening skills.

e Anuncontrolled variable that compromises the interpretation of a study is knownas a
confounding variable.

EXPERIMENT
Treatment Group Control Group
INDEPENDENT Active-Listening No Active-Listening
VARIABLE Training Training
Number of Number of
DES/EE‘&S”L‘E Communication Communication
Breakdowns Breakdowns
OBSERVATIONAL STUDY
FIRST Pre-existing Score

VARIABLE | for Active Listening

Number of /

SECOND icati
Communication
VARIABLE Breakdowns
FIGURE 1.3

Overview: two active-listening studies.

Problems:

Progress Check *1.3 Indicate whether each of the following terms is qualitative (because
it's a word, letter, or numerical code representing a class or category); ranked (because it's
a number representing relative standing); or quantitative (because it's a number representing
an amount or a count).

(a) ethnic group

(b) age

(c) family size

(d) academic major
(e) sexual preference
(f) 1Q score

(g) net worth (dollars)
(h) third-place finish
(i) gender

(i) temperature

1.3 (a) qualitative (e) qualitative (i) qualitative
(b) quantitative (f) quantitative (i) quantitative
(c) quantitative (g) quantitative
(d) qualitative (h) ranked

Progress Check *1.5 Indicate whether the following quantitative observations are
discrete or continuous.

(a) litter of mice

(b) cooking time for pasta

(c) parole violations by convicted felons
(d) IQ

(e) age

(f) population of your hometown

(g) speed of a jetliner

1.5 (a) discrete (d) continuous (g) continuous
(b) continuous (e) continuous
(c) discrete (f) discrete

Progress Check *1.6 For each of the listed studies, indicate whether it is an experiment
or an observational study. If it is an experiment, identify the independent variable and note any
possible confounding variables.

(a) years of education and annual income
(b) prescribed hours of sleep deprivation and subsequent amount of REM (dream) sleep

(c) weight loss among obese males who choose fo participate either in a weight-loss program
or a self-esteem enhancement program

(d) estimated study hours and subsequent test score

(e) recidivism among substance abusers assigned randomly to different rehabilitation pro-
grams

(f) subsequent GPAs of college applicants who, as the result of a housing lottery, live either
on campus or off campus

1.6 (a) observational study
(b) experiment (independent variable: prescribed hours of sleep deprivation)
(¢) experiment (independent variable; two programs; pessible confounding variable:
self-selection of program)
(d) observational study
(e) experiment (indepemdent variable: different rehabilitation programs)
(f) experiment (independent variable: on campus or off campus)

HI.DESCRIBING DATA WITH TABLES AND GRAPHS:

TABLES (FREQUENCY DISTRIBUTIONS)

e A frequency distribution is a collection of observations produced by sorting
observations into classes and showing their frequency (f) of occurrence in each class.

Table 2.1
FREQUENCY
DISTRIBUTION
(UNGROUPED DATA)

WEIGHT f
245
244
243
242

coo—

*

*

161
160
159
158
157

W= &O

*

*

136
135
134
133
Total

‘—‘-QI‘\JQ

[43]
78]

e Toorganize the weights of the male statistics students listed in Table 1.1. First, arrange
a column of consecutive numbers, beginning with the lightest weight
(133) at the bottom and ending with the heaviest weight (245) at the top.

e A short vertical stroke or tally next to a number each time its value appears in the
original set of data; once this process has been completed, substitute for each tally
count a number indicating the frequency (f) of occurrence of each weight.

e When observations are sorted into classes of single values, as in Table 2.1, the result
is referred to as a frequency distribution for ungrouped data.

e The frequency distribution shown in Table 2.1 is only partially displayed becausethere
are more than 100 possible values between the largest and smallest observations.

Grouped Data

e When observations are sorted into classes of more than one value, as in Table 2.2,the

result is referred to as a frequency distribution for grouped data.

Table 2.2
FREQUENCY
DISTRIBUTION
(GROUPED DATA)

WEIGHT

f

240-249 1
230-239 0
220-229 3
210-219 0
200-209 2
190-199 4
180-189 3
170179 7
160-169 2
150-159 7
140-149 1
130-139 3
Total 53

1
1

Data are grouped into class intervals with 10 possible values each.

The bottom class includes the smallest observation (133), and the top classincludes
the largest observation (245).

The distance between bottom and top is occupied by an orderly series of classes.
The frequency (f) column shows the frequency of observations in each class and,at
the bottom, the total number of observations in all classes.

Gaps between Classes:

The size of the gap should always equal one unit of measurement.

It should always equal the smallest possible difference between scores within a
particular set of data.

Since the gap is never bigger than one unit of measurement, no score can fall intothe

gap.

How Many Classes?

Classes should not be too large and not too high.

When There Are Either Many or Few Observations:

Grouping of classes can be 10, the recommended number of classes, as
recommended.

Real Limits of Class Intervals

The real limits are located at the midpoint of the gap between adjacent tabled
boundaries; that is, one-half of one unit of measurement below the lower tabled
boundary and one-half of one unit of measurement above the upper tabled boundary.
Eg: The real limits for 140-149 in Table 2.2 are 139.5 (140 minus one-half of the unit
of measurement of 1) and 149.5 (149 plus one-half of the unit of measurement of 1),
and the actual width of the class interval would be 10 (from 149.5 139.5 = 10).

Table 2.3
FREQUENCY
DISTRIBUTION WITH

TOD MANY
INTERVALS

WEIGHT
245249
240244
235—239
230234
2252209
220224
215-219
210214
205—209
200—204
195—199
190—194
1856—189
180—84
176179
170174
165—169
160—164
1556—1509
150154
145—149
140144
135—139
130134
Total

Table 2.4

FREQUENCY
DISTRIBUTION WITH
TOO FEW INTERVALS

WEIGHT f
200-249 B
150199 43

100-149 _4
Total 53

o
m‘—‘-I‘\JD—‘-mtDU‘I"-.IU‘II‘\JI‘\J—‘-BI-DDI‘\.‘IDD—‘-I‘\.‘IDDD—‘-'q.

GUIDELINES

Essential:

1. Each observation should be included in one, and only one, class.

Example: 130-139, 140-149, 150-159, etc.

2. List all classes, even those with zero frequencies.

Example: Listed in Table 2.2 is the class 210-219 and its frequency of zero.

3. All classes should have equal intervals.

Example: 130-139, 140-149, 150-159, etc. It would be incorrect to use 130-139, 140-
159, etc.,

Optional:

4. All classes should have both an upper boundary and a lower boundary.

Example: 240-249. Less preferred would be 240-above, in which no maximum value can
be assigned to observations in this class.

5. Select the class interval from convenient numbers, such as 1, 2, 3, . .. 10, particularly 5
and 10 or multiples of 5 and 10.

Example: 130-139, 140-149, in which the class interval of 10 is a convenient number.
6. The lower boundary of each class interval should be a multiple of the class interval.
Example: 130-139, 140-149, in which the lower boundaries of 130, 140, are multiples of10,
the class interval.

7. Aim for a total of approximately 10 classes. Example:

The distribution in Table 2.2 uses 12 classes.

CONSTRUCTING FREQUENCY DISTRIBUTIONS

1. Find the range

2. Find the class interval required to span the range by dividing the range by the desired
number of classes

3. Round off to the nearest convenient interval

4. Determine where the lowest class should begin.

5. Determine where the lowest class should end.

6. Working upward, list as many equivalent classes as are required to include the largest
observation.

7. Indicate with a tally the class in which each observation falls.

8. Replace the tally count for each class with a number—the frequency (f)] —and showthe
total of all frequencies.

9. Supply headings for both columns and a title for the table.

Problems:
Progress Check *2.2 The IQ scores for a group of 35 high school dropouts are as follows:

]| 85 84 79 80
a7 06 74 86 104
9% T 105 a0 i
123 80 100 a3 108
98 69 99 85 80
110 109 94 100 103
112 90 a0 o8 89

(a) Construct a frequency distribution for grouped data.
(b) Specify the real limits for the lowest class interval in this frequency distribution.

2.2 (a) Calculating the class width,

123-69 _54 .,
10 10

Round off to a convenient number, such as 5.

1] TALLY* f
120124 / 1
115119 0
110-114 i 2
105109 i 3
100-104 THL 4

0509 L 6
004 i 7
8589 i 4
8084 i 3
7579 i 3
70-74 / 1
6569 / A

Total 3

*Tally column wsually is omitted from the finished table.

(b) 64.5-605

Progress Check *2.3 What are some possible poor features of the following frequency
distribution?

ESTIMATED WEEKLY TV VIEWING TIME

(HRS) FOR 250 SIXTH GRADERS
VIEWING TIME f
35—above 2
30-34 5
25-30 20
20-22 60
1519 60
1014 M
510 H
-4 _29
Total 250

2.3 Not all observations can be assigned to one and only one class (because of gap between
20-22 and 25-30 and overlap between 25-30 and 30-34). All classes are not equal in
width (25-30 versus 30-34). All classes do not have both boundaries (35-above).

OUTLIERS
e The appearance of one or more very extreme scores are called outliers.
e Ex: AGPA of 0.06, an 1Q of 170, summer wages of $62,000

Check for Accuracy
e Whenever you encounter an outrageously extreme value, such as a GPA of 0.06,
attempt to verify its accuracy.
e Ifthe outlier survives an accuracy check, it should be treated as a legitimate score.

Might Exclude from Summaries
e We might choose to segregate (but not to suppress!) an outlier from any summaryof
the data.
e We might use various numerical summaries, such as the median and interquartile
range, to that ignore extreme scores, including outliers.

Might Enhance Understanding
e Avalid outlier can be viewed as the product of special circumstances, it might helpyou
to understand the data.
e Eg: crime rates differ among communities

Problem:

Progress Check *2.4 Identify any outliers in each of the following sets of data collected
from nine college students.

SUMMER INCOME AGE FAMILY SIZE GPA
56,450 20 2 2.30
$4,820 19 4 4.00
$5,650 61 3 3.56
$1,720 32 6 2.89
$600 19 18 215
$0 22 2 3.01
$3,482 23 6 3.09
$25,700 27 3 3.50
58,548 2 4 3.20

2.4 Qutliers are a summer income of $25,700; an age of 61; and a family size of 18. No
outliers for GPA.

RELATIVE FREQUENCY DISTRIBUTIONS

e Relative frequency distributions show the frequency of each class as a part or
fraction of the total frequency for the entire distribution.

e This type of distribution allows us to focus on the relative concentration of
observations among different classes within the same distribution.

e Inthecase of the weight data in Table 2.2, it permits us to see that the 160s accountfor
about one-fourth (12/53 = 23, or 23%) of all observations.

Constructing Relative Frequency Distributions
e To convert a frequency distribution into a relative frequency distribution, dividethe
frequency for each class by the total frequency for the entire distribution.

Table 2.5
RELATIVE FREQUENCY DISTRIBUTION

WEIGHT f RELATIVE f
240-249 1 .02
230-239 0 .00
220-229 3 .06
210-219 0 .00
200-209 2 .04
190199 4 .08
180189 3 .06
170179 7 13
160-169 12 .23
150159 17 32
140-149 1 .02
130139 3 _06

Total 53 1.02*

* The sum does not equal 1.00 because of rounding-off errors.

Percentages or Proportions?
e A proportion always varies between 0 and 1, whereas a percentage always varies
between 0 percent and 100 percent.
e To convert the relative frequencies in Table 2.5 from proportions to percentages,
multiply each proportion by 100; that is, move the decimal point two places to theright.

Problem:

Progress Check *2.5 GRE scores for a group of graduate school applicants are distrib-
uted as follows:

GRE f
725-749 1
700-724 3
675-699 14
650674 30
625649 34
600624 42
575-599 30
550-574 27
525-549 13
500-524 4
475-499 _2

Total 200

Convert to a relative frequency distribution. When calculating proportions, round numbers to

two digits to the right of the decimal point, using the rounding procedure specified in Section
A 7 af Annandiv A

25 [gRe RELATIVE
725-749 .01
700-724 02
675-699 07
650674 15
625649 A7
600624 .21
575-599 15
550-574 14
525-549 o7
500-524 .02
475-499 _.0

Totals 1.02

*From 13/200 = .065, which rounds to .07.

CUMULATIVE FREQUENCY DISTRIBUTIONS

Cumulative frequency distributions show the total number of observations in eachclass
and in all lower-ranked classes.

This type of distribution can be used effectively with sets of scores, such as test scores
for intellectual or academic aptitude.

Under these circumstances, cumulative frequencies are usually converted, in turn,to
cumulative percentages. Cumulative percentages are often referred to as percentile
ranks.

Constructing Cumulative Frequency Distributions

To convert a frequency distribution into a cumulative frequency distribution, addto
the frequency of each class the sum of the frequencies of all classes ranked below it.
This gives the cumulative frequency for that class.

Begin with the lowest-ranked class in the frequency distribution and work upward,
finding the cumulative frequencies in ascending order.

Cumulative Percentages

If relative standing within a distribution is particularly important, then cumulative
frequencies are converted to cumulative percentages.

Percentile Ranks
e When used to describe the relative position of any score within its parent
distribution, cumulative percentages are referred to as percentile ranks.
e The percentile rank of a score indicates the percentage of scores in the entire
distribution with similar or smaller values than that score.

Approximate Percentile Ranks (from Grouped Data)
e The assignment of exact percentile ranks requires that cumulative percentages be
obtained from frequency distributions for ungrouped data.
e If we have access only to a frequency distribution for grouped data, cumulative
percentages can be used to assign approximate percentile ranks.

Table 2.6
CUMULATIVE FREQUENCY DISTRIBUTION
CUMULATIVE
WEIGHT f CUMULATIVE f PERCENT
240-249 1 53 100
230-239 0 52 98
220-229 3 52 98
210-219 0 49 g2
200-209 2 49 g2
190-199 4 47 89
180189 3 43 81
170179 7 40 75
160169 12 33 62
150-159 17 21 40
140-149 1 4 8
130139 _3 3 6
Total 53
Problem:
Progress Check *2.6
(a) Convert the distribution of GRE scores shown in Question 2.5 to a cumulative frequency
distribution.

(b) Convert the distribution of GRE scores obtained in Question 2.6(a) to a cumulative percent
frequency distribution.

GRE f
725-749 1
700724 3
675699 14
650674 30
625-649 34
600624 42
575-999 30
550-574 27
525-549 13
500-524 4
475-499 _2

Total 200

2.6

(a) (b)

CUMULATIVE CUMULATIVE

GRE f PERCENT(%)
725-749 200 100
700-724 199 100
675-699 196 98
650-674 182 9
625-649 152 76
600-624 118 59
575-599 76 38
550-574 46 23
525-549 19 10
500-524 6 3
475-499 2 1

FREQUENCY DISTRIBUTIONS FOR QUALITATIVE (NOMINAL) DATA
e When, among a set of observations, any single observation is a word, letter, or
numerical code, the data are qualitative.
e Determine the frequency with which observations occupy each class, and report
these frequencies.
e This frequency distribution reveals that Yes replies are approximately twice as
prevalent as No replies.

Table 2.7
FACEBOOK PROFILE
SURVEY

Response f
Yes 56
No Bk

Total 83

Ordered Qualitative Data
e Whether Yes is listed above or below No in Table 2.7.
e When, however, qualitative data have an ordinal level of measurement because
observations can be ordered from least to most, that order should be preserved inthe
frequency table.

Relative and Cumulative Distributions for Qualitative Data
e Frequency distributions for qualitative variables can always be converted into
relative frequency distributions.
e That a captain has an approximate percentile rank of 63 among officers since 62.5(or
63) is the cumulative percent for this class.

Table 2.8
RANKS OF OFFICERS IN THE U.S. ARMY (PROJECTED 2016)

RANK f PROPORTION CUMULATIVE PERCENT
General K1k .004* 100.0
Colonel 13,156 167 09.6
Major 16,108 .204 829
Captain 29,169 370 62.5
Lieutenant 20,083 .255 255
Total 78,827

Problem:

Progress Check *2.8 Movie ratings reflect ordinal measurement because they can be
ordered from most to least restrictive: NC-17, R, PG-13, PG, and G. The ratings of some films
shown recently in San Francisco are as follows:

PG PG PG PG-13 G

G PG-13 R PG PG

R PG R PG R
NC-17 NC-17 PG G PG-13

(a) Construct a frequency distribution.

(b) Convert to relative frequencies, expressed as percentages.

(c) Construct a cumulative frequency distribution.

(d) Find the approximate percentile rank for those films with a PG rating.

2.8

(a) (h) (c)
MOVIE RELATIVE CUMULATIVE
RATINGS f (%) f
NC-17 2 10 20
R 4 20 18
PG-13 3 15 14
PG 8 40 11
G 3 15 3

Totals 20 100%

(d) Percentile rank for films with a PG rating is 55 (from % multiplied by 100).

INTERPRETING DISTRIBUTIONS CONSTRUCTED BY OTHERS

e When inspecting a distribution for the first time, train yourself to look at the entire
table, not just the distribution.
e Read the title, column headings, and any footnotes.
e Where do the data come from? Is a source cited? Next, focus on the form of the
frequency distribution.
e When interpreting distributions, including distributions constructed by someone.
GRAPHS

e Data can be described clearly and concisely with the aid of a well-constructed
frequency distribution.

GRAPHS FOR QUANTITATIVE DATA
Histograms

Important features of histograms:

e Equal units along the horizontal axis (the X axis, or abscissa) reflect the variousclass
intervals of the frequency distribution.

e Equal units along the vertical axis (the Y axis, or ordinate) reflect increases in
frequency.

e The intersection of the two axes defines the origin at which both numerical scales
equal 0.

e Numerical scales always increase from left to right along the horizontal axis and
from bottom to top along the vertical axis.

e The body of the histogram consists of a series of bars whose heights reflect the
frequencies for the various classes.

e The adjacent bars in histograms have common boundaries that emphasize the
continuity of quantitative data for continuous variables.

15—

L .

<, < <
{EL) ;){%L) ’%\))}o\) Gb\))‘%{)%b\e a\e%o\c’ ‘%{6’ 70\9
P o B G B B B R e o R
Weight (pounds)

FIGURE 2.1

Histogram.

Frequency Polygon
e Animportant variation on a histogram is the frequency polygon, or line graph.
e Frequency polygons may be constructed directly from frequency distributions.
e However, we will follow the step-by-step transformation of a histogram into a
frequency polygon.

A. This panel shows the histogram for the weight distribution.

B. Place dots at the midpoints of each bar top or, in the absence of bar tops, at midpointsfor
classes on the horizontal axis, and connect them with straight lines.

C. Anchor the frequency polygon to the horizontal axis.

D. Finally, erase all of the histogram bars, leaving only the frequency polygon.

Progress Check *2.9 The following frequency distribution shows the annual incomes in
dollars for a group of college graduates.

INCOME f
130,000-139,999 1
120,000-129,999 0
110,000-119,999 1
100,000-109,999 3

90,000-99,999 1
80,000-89,999 5
70,000-79,999 7
60,000-69,999 10
50,000-59,999 14
40,000-49,999 23
30,000-39,999 17
20,000-29,999 10
10,000-19,999 8
0-9,999 _3
Total 103
A [
15—
10—
f
5 -
4 P 1
o 140 160 180 200 220 240
B
15—
10—
f
5 -
0o 1a0 1e0
c
15—
10—
f
s

¥

180 200 220 240
140 160 180 200 220 240
D
15—
10—
f
5 —
l}.r
140 160 180 200 220 240
Weight (pounds)

FIGURE 2.2

Transition from histogram to frequency polygon.
(a) Construct a histogram.

(b) Construct a frequency polygon.

(e) Is this distribution balanced or lopsided?

2.9
20 N
(a) ()
15—
fio—
s
o 40,000 80,000 120,000
Income

Nore: Ordinarily, only either (a) a histogram, or (b} a frequency polygon would be shown.
When closing the left flank of (b), imagine extending a line to the midpeint of the
first unoccupied class (10,000 to —1) on the left, but stop the line at the vertical
axis, as shown.

(c) Lopsided.
Stem and Leaf Displays

e Stem and leaf displays are ideal for summarizing distributions, such as that for
weight data, without destroying the identities of individual observations.

Constructing a Display

e The leftmost panel of Table 2.9 re-creates the weights of the 53 male statistics
students listed in Table 1.1.

e To construct the stem and leaf display for these data, when counting by tens, the
weights range from the 130s to the 240s.

e Arrange a column of numbers, the stems, beginning with 13 (representing the
130s) and ending with 24 (representing the 240s).

e Draw a vertical line to separate the stems, which represent multiples of 10, fromthe
space to be occupied by the leaves, which represent multiples of 1.

e Next, enter each raw score into the stem and leaf display.

Tahle 2.9
GONSTRUCTING STEM AND LEAF DISPLAY FROM WEIGHTS OF MALE
STATISTICS STUDENTS
RAW SCORES STEM AND LEAF DISPLAY

160—__ 165 135 175
193 168— 245 165 13 355
226 189 170 185 14 5
152 160 386 154 =45 | 27178020269826476
180 170~_ 160 —-179 16 1035890006555
205 150 225 165 __ 17 2000259
163 152 190 206 N 18—__ | 005
157 160 159 165~ \19 3000
151 190 172 157 520 56
157 150 190 156 N2~
220 133 166 135 22 TH05
145 180 158 23
158 152 152 24 5
172 170 156

Interpretation
e The weight data have been sorted by the stems. All weights in the 130s are listed
together; all of those in the 140s are listed together, and so on.
e A glance at the stem and leaf display in Table 2.9 shows essentially the same pattern
of weights depicted by the frequency distribution in Table 2.2 and the histogram.
Selection of Stems
e Stem values are not limited to units of 10.
e Dependingon the data, you might identify the stem with one or more leading digitsthat
culminates in some variation on a stem value of 10, such as 1, 100, 1000, or even .1,
.01, .001, and so on.
e Stem and leaf displays represent statistical bargains.

Problem:
Progress Check *2.10 Construct a stem and leaf display for the following 10 scores
obtained from a group of four-year-old children.
120 9% 118 117 99 111
126 8 8 124 104 113
108 141 123 137 78 9%
102 132 109 106 143
210 7 |8
8 |5 8
9 (8 9 6
0 (8 2 9 6 4
"n |8 7 1 3
12 |0 6 3 4
13 |2 7
14 |1 3
Norz: The order of the leaves within each stem depends on whether you entered 10
scores column by column (as above) or row by row.
TYPICAL SHAPES

e Whether expressed as a histogram, a frequency polygon, or a stem and leaf display,
an important characteristic of a frequency distribution is its shape.

A. NORMAL

C. POSITIVELY SKEWED

Few extreme
observations

Positive direction
—_—

FIGURE 2.3
Typical shapes.

Normal

e Any distribution that approximates the normal shape in panel A of Figure 2.3 canbe

analyzed

e The familiar bell-shaped silhouette of the normal curve can be superimposed on many
frequency distributions, Eg: uninterrupted gestation periods of human fetuses, scores
on standardized tests, and even the popping times of individual kernels in a batch of

popcorn.

Bimodal

e Any distribution that approximates the bimodal shape in panel B of Figure 2.3 reflect
the coexistence of two different types of observations in the same distribution.
e Eg: The distribution of the ages of residents in a neighborhood consisting largely of

B. BIMODAL

D. NEGATIVELY SKEWED

Few extreme
observations

Negative direction
——

either new parents or their infants has a bimodal shape.

Positively Skewed

e The two remaining shapes in Figure 2.3 are lopsided.

e A lopsided distribution caused by a few extreme observations in the positive

direction as in panel C of Figure 2.3, is a positively skewed distribution.

e Eg: most family incomes under $200,000 and relatively few family incomesspanning

a wide range of values above $200,000.

Negatively Skewed

e A lopsided distribution caused by a few extreme observations in the negative

direction as in panel D of Figure 2.3, is a negatively skewed distribution.

e Eg: Most retirement ages at 60 years or older and relatively few retirement ages

spanning the wide range of ages younger than 60.

Progress Check *2.11 Describe the probable shape—normal, bimodal, positively
skewed, or negatively skewed—for each of the following distributions:

(a) female beauty contestants’ scores on a masculinity test, with a higher score indicating a
greater degree of masculinity

(b) scores on a standardized |1Q test for a group of people selected from the general population
(c) test scores for a group of high school students on a very difficult college-level math exam

(d) reading achievement scores for a third-grade class consisting of about equal numbers of
regular students and learning-challenged students

(e) scores of students at the Eastman School of Music on a test of music aptitude (designed
for use with the general population)

2.11 (a) Positively skewed (d) Bimodal
(b) Normal (e} Megatively skewed
(c) Positively skewed

A GRAPH FOR QUALITATIVE (NOMINAL) DATA

e The equal segments along the horizontal axis are allocated to the different wordsor
classes that appear in the frequency distribution for qualitative data.

e Likewise, equal segments along the vertical axis reflect increases in frequency.

e The body of the bar graph consists of a series of bars whose heights reflect the
frequencies for the various words or classes.

e A person’s answer to the question “Do you have a Facebook profile?” is either Yesor
No, not some impossible intermediate value, such as 40 percent Yes and 60 percent
No.

60—

40—

20—

Yes No
Replies

FIGURE 2.4
Bar graph.

Progress Check *2.12 Referring to the box “Constructing Graphs” on page 47 for step-
by-step instructions, construct a bar graph for the data shown in the following table:

RACE/ETHNICITY OF U.S.
POPULATION, 2010 (IN MILLIONS)
Race/Ethnicity f
African American 37.7
Asian American* 17.2
Hispanic 50.5
White 196.8

Total** 302.2

*Mostly Asians, but also other races, such as
Native Americans and Eskimos.

% Total does not include 6.6 million non-
Hispanics reporting two or more races.
Source: www.uscensus.gov/prod/census2010/

212,y

150—

i

[=]

S
I

f (Millions)

50—

[]

African Asian Hispanic White
American American

MISLEADING GRAPHS

Graphs can be constructed in an unscrupulous manner to support a particular point
of view.

For example, to imply that comparatively many students responded Yes to the
Facebook profile question, an unscrupulous person might resort to the various tricks.
The width of the Yes bar is more than three times that of the No bar, thus violatingthe
custom that bars be equal in width.

The lower end of the frequency scale is omitted, thus violating the custom that the
entire scale be reproduced, beginning with zero.

The height of the vertical axis is several times the width of the horizontal axis, thus
violating the custom, heretofore unmentioned, that the vertical axis be approximately
as tall as the horizontal axis is wide.

50—

40—

30

Yes No
Replies

FIGURE 2.5
Distorted bar graph.

Problem:
Progress Check *2.13 Criticize the graphs that appear here (ignore the inadequate label-
ing of both axes).
100 20—
75 15—
50 |- 0
25| 5L
0]
910 1920 2930 3940 4950 59
A B
50
il 150
0" 60 80 100 120 140 160 180 200
C
a5 100 —
100 — 80—
80— “r
70
60— 65— 50—
40— 60—
551
o e 9F i
0 0

0505 % 2% % %% AN ’"@‘%@ .

D E F

2.13 (a) Widths of two rightmost bars aren't the same as those of two leftmost bars.

(b) Histogram is more appropriate, assuming numbers are for a continuous quantita-
tive variable.

(c) Height of the vertical axis is too small relative to the width of the horizontal axis,
causing the histogram to be sguashed.

(d) Poorly selected frequency scale along the vertical axis, causing the histogram to be
squashed.

(e) Bars have unequal widths. There are no wiggly lines along vertical axis indicating a
break between 0 and 50.

(f) Height of the vertical axis is too large relative to the horizontal axis, causing the
differences between the bars to be exaggerated.

1V.DESCRIBING DATA WITH AVERAGES:

MODE
e The mode reflects the value of the most frequently occurring score.

Table 3.1
TERMS IN YEARS
OF 20 RECENT U.S.

CHRONOLOGICALLY

4 (Harrison)

CORLOMWONTDNCCON &SNS AS

(Clinton)

Source: The New York Times
Almanac (2012).

e Distributions can have more than one mode.

e Distributions with two obvious peaks, even though they are not exactly the same
height, are referred to as bimodal.

e Distributions with more than two peaks are referred to as multimodal.

e The presence of more than one mode might reflect important differences among
subsets of data.

Problems:

Progress Check *3.1 Determine the mode for the following retirement ages: 60, 63, 45,
63, 65,70, 55, 63, 60, 65, 63.
mode = 63

Progress Check *3.2 The owner of a new car conducts six gas mileage tests and obtains
the following results, expressed in miles per gallon: 26.3, 28.7, 27.4, 26.6, 27.4, 26.9. Find
the mode for these data.

mode = 27.4
MEDIAN
e The median reflects the middle value when observations are ordered from leastto
most.
e The median splits a set of ordered observations into two equal parts, the upperand
lower halves.

e In other words, the median has a percentile rank of 50, since observations with
equal or smaller values constitute 50 percent of the entire distribution.

Finding the Median

Tahle 3.2
FINDING THE MEDIAN

A. INSTRUCTIONS

Order scores from least to most.

Find the middle position by adding one to the total number of scores and dividing by 2.

If the middle position is a whole number, as in the left-hand panel below, use this number to count into the set of
ordered scores.

The value of the median equals the value of the score located at the middle position.

If the middle position is not a whole number, as in the right-hand panel below, use the two nearest whole numbers
to count into the set of ordered scores.

The value of the median equals the value midway between those of the two middlemost scores; to find the midway
value, add the two given values and divide by 2.

(=] oo LN =

B. EXAMPLES
Set of five scores: Set of six scores:
2,8,2,7,6 3,8,9,31.8
1 226,7,8 1 1,3.3,8,8,9

2,2,6,7,8

|
.2, !
4 median=6 1,3,3,8,8,9
I
YAA

6 median = 32L8 =55

e To find the median, scores always must be ordered from least to most

e When the total number of scores is odd, as in the lower left-hand panel of Table 3.2,
there is a single middle-ranked score, and the value of the median equals the value of
this score.

e When the total number of scores is even, as in the lower right-hand panel of Table3.2,
the value of the median equals a value midway between the values of the two
middlemost scores.

e In either case, the value of the median always reflects the value of middle-ranked
scores, not the position of these scores among the set of ordered scores.

e The median term can be found for the 20 presidents.

Problems:
Progress Check *3.3 Find the median for the following retirement ages: 60, 63, 45, 63,

65,70, 55, 63, 60, 65, 63.
median = 63

Progress Check *3.4 Find the median for the following gas mileage tests: 26.3, 28.7, 27.4,
26.6,27.4,26.9.

median = 27.15

Table 3.3
TERMS IN YEARS OF 20 RECENT U.S. PRESIDENTS
ARRANGED
BY LENGTH

12
8
8
8
8
8
8
[}
[}
5 (mean = 5.60)
4
4
4
4
4
4
4
3
2
2

MEAN
e The mean is the most common average, calculated many times.
e The mean is found by adding all scores and then dividing by the number ofscores.

sumof all scores

Mean =
number of scores

[]

e To find the mean term for the 20 presidents, add all 20 terms in Table 3.1 (4 +. ..
+ 4 + 8) to obtain a sum of 112 years, and then divide this sum by 20, the number
of presidents, to obtain a mean of 5.60 years.

Sample or Population?
e Statisticians distinguish between two types of means—the population mean and the
sample mean—depending on whether the data are viewed as a population (a
complete set of scores) or as a sample (a subset of scores).

Formula for Sample Mean
e When symbols are used, X designates the sample mean, and the formula becomesand
reads: “X-bar equals the sum of the variable X divided by the sample size n.”

SAMPLE MEAN
go=X
f (3.1)

Formula for Population Mean
e The formula for the population mean differs from that for the sample mean only
because of a change in some symbols.
e The population mean is represented by U (pronounced “mu”), the lowercase Greek
letter m for mean, where the uppercase letter N refers to the population size.
e Otherwise, the calculations are the same as those for the sample mean.

POPULATION MEAN
_IX
HEN (3.2)

Mean as Balance Point

e The mean serves as the balance point for its frequency distribution.

e The mean serves as the balance point for its distribution because of a special
property:

e The sum of all scores, expressed as positive and negative deviations from the
mean, always equals zero.

e Inits role as balance point, the mean describes the single point of equilibrium at
which, once all scores have been expressed as deviations from the mean.

e The mean reflects the values of all scores, not just those that are middle ranked(as
with the median), or those that occur most frequently (as with the mode).

Problems:
Progress Check *3.5 Find the mean for the following retirement ages: 60, 63, 45, 63, 65,
70,55, 63, 60, 65, 63.

mean = % =61.09

Progress Check *3.6 Find the mean for the following gas mileage tests: 26.3, 28.7, 27 .4,
26.6,27.4,26.9.

mean = % =27.22

WHICH AVERAGE?
If Distribution Is Not Skewed
e When a distribution of scores is not too skewed, the values of the mode, median, and
mean are similar, and any of them can be used to describe the central tendency of the
distribution.

If Distribution Is Skewed
e When extreme scores cause a distribution to be skewed, as for the infant death rates
for selected countries listed in Table 3.4, the values of the three averages candiffer.

Table 3.4
INFANT DEATH RATES
FOR SELECTED
COUNTRIES (2012)

INFANT
DEATH
COUNTRY RATE*
Sierra Leone 182
Pakistan 86
Ghana 72
India 56
South Africa 45
Cambodia 40
Mexico 16
China 14
Brazil 14
United States 7
Cuba 6
United Kingdom 6
Netherlands 4
Israel 4
France 4
Denmark 4
Germany 4
Japan 3
Sweden 3

*Rates per 1000 live births.
Source: 2014 World
Development Indicators.

Interpreting Differences between Mean and Median

e When adistribution is skewed, report both the mean and the median.

e The differences between the values of the mean and median signal the presence of a
skewed distribution.

e If the mean exceeds the median, as it does for the infant death rates, the underlying
distribution is positively skewed because of one or more scores with relatively large
values, such as the very high infant death rates for a number of countries, especially
Sierra Leone.

e On the other hand, if the median exceeds the mean, the underlying distribution is
negatively skewed because of one or more scores with relatively small values.

A few extreme
scores

Lower half | Upper half
of frequency | of frequency

Positive direction %
_

i

85§
3
= : =
A. Positively Skewed Distribution
(mean exceeds median)

f
A few ext
so;.:se o Lower half | Upper half
of frequency ! of frequency
Negative direction
¢ cC Cc O
3 8 3
S 3 =
=
B. Negatively Skewed Distribution
(median exceeds mean)
FIGURE 3.2

Mode, median, and mean in positively and negatively skewed distributions.

Problem:

Progress Check *3.7 Indicate whether the following skewed distributions are positively
skewed because the mean exceeds the median or negatively skewed because the median

exceeds the mean.

(a) a distribution of test scores on an easy test, with most students scoring high and a few
students scoring low

(b) a distribution of ages of college students, with most students in their late teens or early
twenties and a few students in their fifties or sixties

(c) a distribution of loose change carried by classmates, with most carrying less than $1 and
with some carrying $3 or $4 worth of loose change

(d) a distribution of the sizes of crowds in attendance at a popular movie theater, with most
audiences at or near capacity

3.7 (a) negatively skewed because the median exceeds the mean
(b) positively skewed because the mean exceeds the median
(c) positively skewed
(d) negatively skewed

Special Status of the Mean
e The mean is the single most preferred average for quantitative data.
Using the Word Average

e An average can refer to the mode, median, or mean—or even geometric mean or
the harmonic mean.

e Conventional usage prescribes that average usually signifies mean, and this
connotation is often reinforced by the context.

e Forinstance, grade point average is virtually synonymous with mean grade point.

AVERAGES FOR QUALITATIVE AND RANKED DATA
Mode Always Appropriate for Qualitative Data

e But when the data are qualitative, your choice among averages is restricted.
e The mode always can be used with qualitative data.

Median Sometimes Appropriate
e The median can be used whenever it is possible to order qualitative data from
least to most because the level of measurement is ordinal.
e Do not treat the various classes as though they have the same frequencies when
they actually have different frequencies.

Inappropriate Averages
e Itwould not be appropriate to report a median for unordered qualitative data with
nominal measurement, such as the ancestries of Americans.

Tahle 3.5
FINDING THE MEDIAN FOR ORDERED
QUALITATIVE DATA: RANKS OF OFFICERS IN
THE U.S. ARMY (PROJECTED 2016)

RANK % CUMULATIVE %

General 0.4

Colonel 16.7

Major 204

Captain 37.0 25.5+37.0 =l62.5

Lieutenant 25.5 25.5
100.0

Source: http:/fwww.Statista.com/statistics

Problem:

Progress Check *3.8 College students were surveyed about where they would most like
to spend their spring break: Daytona Beach (DB), Cancun, Mexico (C), South Padre Island (SP),
Lake Havasu (LH), or other (0). The results were as follows:

Find the mode and, if possible, the median.

DB DB
C SP
0 SP
DB C

C
C

LH
DB
DB
0

DB

LH
DB

3.8 mode = DB (Daytona Beach)
Impossible to find the median when qualitative data are unordered, with only nominal

measurement.

Averages for Ranked Data

e When the data consist of a series of ranks, with its ordinal level of measurement,the

median rank always can be obtained.
e [t's simply the middlemost or average of the two middlemost ranks.

V.DESCRIBING VARIABILITY:

e In Figure 4.1, each of the three frequency distributions consists of seven scores with
the same mean (10) but with different variabilities.

e Before reading on, rank the three distributions from least to most variable.

e The distribution A has the least variability, distribution B has intermediate variability,

and distribution C has the most variability.

e Fordistribution A with the least (zero) variability, all seven scores have the samevalue

(10).

e For distribution B with intermediate variability, the values of scores vary slightly(one
9 and one 11), and for distribution C with most variability, they vary even more (one
7, two 9s, two 11s, and one 13).

il 0]
6_. o)
R 0]
faf- =
0
3_ oot
- [9]
0
L 0
T 111 11X
0 8 9 10 11 12 13
A
FIGURE 4.1

Three distributions with the same mean (10) but different amounts of variability. Numbers

w 3—{o|o|o|e|o]

in the boxes indicate distances from the mean.

11 1213

- N WL OO N

0

!

I =T
| B8l [=lo1] [3]
o e blt i
7 8 910 111213
C

X

Importance of Variability

Variability assumes a key role in an analysis of research results.

Eg: A researcher might ask: Does fitness training improve, on average, the scores of
depressed patients on a mental-wellness test?

To answer this question, depressed patients are randomly assigned to two groups,
fitness training is given to one group, and wellness scores are obtained for both
groups.

Figure 4.2 shows the outcomes for two fictitious experiments, each with the same
mean difference of 2, but with the two groups in experiment B having less variability
than the two groups in experiment C.

Notice that groups B and C in Figure 4.2 are the same as their counterparts in Figure
4.1.

Although the new group B* retains exactly the same (intermediate) variability as
group B, each of its seven scores and its mean have been shifted 2 units to the right.
Likewise, although the new group C* retains exactly the same (most) variability asgroup
C, each of its seven scores and its mean have been shifted 2 units to the right.
Consequently, the crucial mean difference of 2 (from 12 — 10 = 2) is the same for both
experiments.

EXPERIMENT B EXPERIMENT C
61— [_] Group B 6 [1GroupC
5 — — [__] Group B* 5 [1 GroupC*
4+ — 4 —
F ol el Fial - « U I ..
21— 2 A I N R
1— 1
*"|||||||||||X “’"IT||||||||,T|X
0 7 8 9 10 11 1213 14 15 0 7 8 9 1T0 11 1T2 13 14 15
73 73- X_C X_C'
FIGURE 4.2

Two experiments with the same mean difference but dissimilar variabilities.

variabilities within groups assume a key role in inferential statistics.

The relatively larger variabilities within groups in experiment C translate into less
statistical stability for the observed mean difference of 2 when it is viewed as justone
outcome among many possible outcomes for repeat experiments.

Progress Check *4.1 For a given mean difference—say, 10 points—between two
groups, what degree of variability within each of these groups (small, medium, or large) makes
the mean difference

(a) ...most conspicuous with more statistical stability?

(b) ...least conspicuous with less statistical stability?

4.1 (a) small
(b) large

RANGE

The range is the difference between the largest and smallest scores.

In Figure 4.1, distribution A, the least variable, has the smallest range of 0 (from 10 to
10); distribution B, the moderately variable, has an intermediate range of 2 (from 11
to 9); and distribution C, the most variable, has the

largest range of 6 (from 13 to 7), in agreement with our intuitive judgments about
differences in variability.

Disadvantages of Range

The range has several shortcomings.

First, since its value depends on only two scores—the largest and the smallest—it
fails to use the information provided by the remaining scores.

The value of the range tends to increase with increases in the total number of
scores.

VARIANCE

Variance and Standard Deviation are the two important measurements in
statistics.

Variance is a measure of how data points vary from the mean.

The standard deviation is the measure of the distribution of statistical data.

Reconstructing the Variance

To qualify as a type of mean, the values of all scores must be added and thendivided
by the total number of scores.

In the case of the variance, each original score is re-expressed as a distance or
deviation from the mean by subtracting the mean.

= — = 7+

61— kel 61— 61—

5 % 51 & 5

Pl — - — fal-

3 e 3+ — 3

o[0] =1l 0 1 =1 [3
#III(I)IIIX ”'||||1(|)1||||X ,,,I|3| |1(|)1|||?|X
0 7 8 9 1011 1213 07 8 910 11 1213 0 7 8 91011 1213

A B c
FIGURE 4.1

Three distributions with the same mean (10) but different amounts of variability. Numbers

in the boxes indicate distances from the mean.

For each of the three distributions in Figure 4.1, the face values of the sevenoriginal
scores have been re-expressed as deviation scores from their mean of 10.

For example, in distribution C, one score coincides with the mean of 10, four scores
(two 9s and two 115s) deviate 1 unit from the mean, and two scores (one 7 and one

13) deviate 3 units from the mean, yielding a set of seven deviation scores: one 0,
two -1s, two 1s, one -3, and one 3.

Mean of the Deviations Not a Useful Measure

e The sum of all negative deviations always counterbalances the sum of all positive
deviations, regardless of the amount of variability in the group.
e A measure of variability, known as the mean absolute deviation (or m.a.d.), can be

salvaged by summing all absolute deviations from the mean, that is, by ignoring
negative signs.

Mean of the Squared Deviations

e Before calculating the variance (a type of mean), negative signs must be eliminated
from deviation scores. Squaring each deviation generates a set of squared deviation
scores, all of which are positive.

STANDARD DEVIATION

e The standard deviation, the square root of the mean of all squared deviations fromthe
mean, that is,

standard deviation = /variance

The standard deviation is a rough measure of the average amount by which scores
deviate on either side of
e their mean.
e Thestandard deviation as a rough measure of the average amount by which scores
deviate on either side of their mean.
Majority of Scores within One Standard Deviation
For most frequency distributions, a majority of all scores are within one standard

deviation on either side of the mean.
105

§=15 | 5=15|s=15|s=15

X-2s X-1s X+1s X+2s
1Q Scores for Fourth Graders

[a majority
[a small minerity

[a majority
[a small minority

| —’_’_’_'_?—\—
7 7 7

5=10|s=10|5s=10|5=10

X-25 X—1s X+1s X+25
Study Times [nours) for College Students

FIGURE 4.3

Some generalizations that apply to most frequency distributions.

e In Figure 4.3, where the lowercase letter s represents the standard deviation.

e Assuggested in the top panel of Figure 4.3, if the distribution of 1Q scores for a class
of fourth graders has a mean (X) of 105 and a standard deviation (s) of 15, amajority
of their 1Q scores should be within one standard deviation on either sideof the mean,
that is, between 90 and 120.

e For most frequency distributions, a small minority of all scores deviate more thantwo
standard deviations on either side of the mean.

e Forinstance, among the seven deviations in distribution C, none deviates more than
two standard deviations (2 A~ 1.77 = 3.54) on either side of the mean.

Generalizations Are for All Distributions
e These two generalizations about the majority and minority of scores are independent
of the particular shape of the distribution.

Standard Deviation: A Measure of Distance

e There’s an important difference between the standard deviation and mean.

e The mean is a measure of position, but the standard deviation is a measure of
distance. Figure 4.4 describes the weight distribution for the males.

e The mean (X) of 169.51 Ibs has a particular position or location along thehorizontal
axis: It is located at the point, and only at the point, corresponding to
169.51 lbs.

e Ontheother hand, the standard deviation (s) of 23.33 Ibs for the same distributionhas
no particular location along the horizontal axis.

Value of Standard Deviation Cannot Be Negative
e Standard deviation distances always originate from the mean and are expressed as
positive deviations above the
e The actual value of the standard deviation can be zero or a positive number, it can
never be a negative number because any negative deviation disappears when
squared.

15 —

. ‘ - —

o 120 160 180 20 20 240
f 3*3—2333 s=2333+s—233 J[1
X2 X — x X+ 18 X+ 28 X+33

Weight (pounds)
FIGURE 4.4

Weight distribution with mean and standard deviation.

Problem:
Progress Check *4.2 Employees of Corporation A eamn annual salaries described by a
mean of $30,000 and a standard deviation of $10,000.
(a) The majority of all salaries fall between what two values?
(b) A small minority of all salaries are less than what value?
(c) A small minority of all salaries are more than what value?

(d) Answer parts (a), (b), and (c) for Corporation B's employees, who earn annual salaries
described by a mean of $90,000 and a standard deviation of $2,000.

4.2 (a) $80,000 to $100,000

(b) $70,000

(c) $110,000

(d) $88,000 to $92,000; $86,000; $94,000

Progress Check *4.3 Assume that the distribution of 1Q scores for all college students
has a mean of 120, with a standard deviation of 15. These two bits of information imply which
of the following?

(a) All students have an IQ of either 105 or 135 because everybody in the distribution is either
one standard deviation above or below the mean. True or false?

(b) All students score between 105 and 135 because everybody is within one standard devia-
tion on either side of the mean. True or false?

(c) On the average, students deviate approximately 15 points on either side of the mean. True
or false?

(d) Some students deviate more than one standard deviation above or below the mean. True
or false?

(e) All students deviate more than one standard deviation above or below the mean. True or false?
(f) Scott’s |0 score of 150 deviates two standard deviations above the mean. True or false?

4.3 (a) False. Relatively few students will score exactly one standard deviation from the
mean.

(b) False. Students will score both within and beyond one standard deviation from the
mean.

(c) True

(d) True

(e) False. See (b).

(f) True

STANDARD DEVIATION
Sum of Squares (SS)
e Calculating the standard deviation requires that we obtain first a value for the
variance.
e However, calculating the variance requires, in turn, that we obtain the sum of the
squared deviation scores.
e The sum of squared deviation scores symbolized by SS, merits special attention
because it’s a major component in calculations for the variance, as well as many other
statistical measures.

Sum of Squares Formulas for Population

SUM OF SQUARES (SS) FOR POPULATION (DEFINITION FORMULA)
S =3(X - p)* @.1)

where 3§ represents the sum of squares, I directs us to sum over the expression to its
right, and (X — p1)* denotes each of the squared deviation scores. Formula 4.1 should be
read as “The sum of squares equals the sum of all squared deviation scores.” You can
reconstruct this formula by remembering the following three steps:

1. Subtract the population mean, x, from each original score, X, to obtain a devia-
tion score, X — .

2. Square each deviation score, (X -)", to eliminate negative signs.
3. Sumall squared deviation scores, Z (X - u)”.

SUM OF SQUARES (SS) FOR POPULATION (COMPUTATION FORMULA)

(x)

SS=YXx>—
z N (4.2)

where £X",the sum of thesquared X scores, i obtained by first squaring each X score
and then summing all squared X scores; (T X) the square of sum of all X scores, i
obtained by first adding all X scores and then squaring the sum of all X scores; and N
1 the population sz,

Tahle 4.1
CALCULATION OF POPULATION STANDARD DEVIATION &
(DEFINITION FORMULA)

A. COMPUTATION SEQUENCE
Assign a value to N1 representing the number of X scores
Sum all X scores 2
Obtain the mean of these scores 3
Subtract the mean from each X score to obtain a deviation score 4
Square each deviation score 5
Sum all squared deviation scores to obtain the sum of squares 6
Substitute numbers into the formula to obtain population variance, o® 7
Take the square root of o ? to obtain the population standard deviation, o 8

B. DATA AND COMPUTATIONS

4 5
X X-p (X—uF
13 3 9
10 0 0
11 1 1
7 3 9
9 1 1
11 1 1
9 1 1
1 N=7 2 I X=70 B SS=I(X—uP=22
3u=20-10
=3
7 o255 _22 _ 8 o= 55 _ |22 _ 314-177
=N T TN AT

Sum of Squares Formulas for Sample

Sample notation can be substituted for population notation in the above two formu-
las without causing any essential changes:

SUM OF SQUARES (SS) FOR SAMPLE (DEFINITION FORMULA)
S5 =3(X-X)* (4.3)

- _______________________________________
(COMPUTATION FORMULA)

(EX)?
n 4.4

S§=%Xx2_

Table 4.2
CALCULATION OF POPULATION STANDARD DEVIATION (=) (COMPUTATION
FORMULA)

A. COMPUTATIONAL SEQUENCE
Assign a value to N representing the number of X scores 1
Sum all X scores 2
Square the sum of all X scores 3
Square each X score 4
Sum all squared X scores §
Substitute numbers into the formula to obtain the sum of squares, 55 B
Substitute numbers into the formula to obtain the population variance, o* 7
Take the square root of * to obtain the population standard deviation, - 8

B. DATA AND COMPUTATIONS
4
X X¢

13 169
10 100
11 121
7 49
9 81
11 121
g 81

InN=7 2YX=T70 BYX-=7122
3 (X X2 = 4900

2
6555 X2 _%Jzz-ﬂggz-mhgg

55 22 f
152=T:?:3-14 8,- %=E=ﬂ.ﬂ3_14=1_ﬁ

Standard Deviation for Population o

. sum of all squared deviation scores
variance =

number of scores
or, in symbols:

VARIANCE FOR POPULATION
2 S8
T =

N (4.5)

STANDARD DEVIATION FOR POPULATION

{T=‘\f;=%

(4.6)

where & represents the population standard deviation, ./ instructs us to take the

square root of the covered expression, and 5§ and N are defined above.
By referring to the last two steps in either Table 4.1 or 4.2, you can verify that the

value of the variance, &, equals 3.14 for distribution C because

. =E=E=3.14
N 7

and that the value of the standard deviation, &, equals 1.77 for distribution C because

o= J% =J% =4/3.14 =1.77

Standard Deviation for Sample (s)

Although the sum of squares term remains essentially the same for both populations
and samples, there is a small but important change in the formulas for the variance and
standard deviation for samples. This change appears in the denominator of each for-
mula where N, the population size, is replaced not by s, the sample size, but by n — 1,
as shown:

VARIANCE FOR SAMPLE
, SS
=
n—1 4.7)

STANDARD DEVIATION FOR SAMPLE

n=1

(4.8)

where 5 and s represent the sample variance and sample standard deviation, 55 is the
sample sum of squares as defined in either Formula 4.3 or 4.4, and n is the sample size.*

Progress Check * 4.4 Using the definition formula for the sum of squares, calculate the
sample standard deviation for the following four scores: 1, 3, 4, 4.

Table 4.3

CALCULATION OF SAMPLE STANDARD DEVIATION (S)
(DEFINITION FORMULA)

A. COMPUTATION SEQUENCE
Assign a value to n1 representing the number of X scores
Sum all X scores 2
Obtain the mean of these scores 3
Subfract the mean from each X score to obtain a deviation score 4
Square each deviation score 5
Sum all squared deviation scores to obtain the sum of squares &
Substitute numbers into the formula to obtain the sample variance, 5° 7
Take the square root of s* to obtain the sample standard deviation, 58

B. DATA AND COMPUTATIONS

4 5
X X— X (X— X
7 4 16
3 0 0
1 -2 4
0 -3 9
4 1 1
1 n=5 2 5x=15 B SS—T(X— X)=130
= 15
3 X:—:E
2

55 30 55 30

2

L) - f_= — =150 =274
S =033 R P J:

44 s (1= 37 — (3— 3P+ (4— 3%+ (4— 3 =JE=1.41
¥ 4= 1 3

Table 4.4
CALCULATION OF SAMPLE STANDARD DEVIATION (S)
(COMPUTATION FORMULA)

A. COMPUTATIONAL SEQUENCE
Assign a value to p representing the number of X scores 1
sum all X scores 2
Square the sum of all X scores |3
Square each X score 4
Sum all squared X scores 5
Substitute numbers into the formula to obtain the sum of squares, 55 6
Substitute numbers into the formula to obtain the sample variance, s* 7
Take the square root of & to obtain the sample standard deviation, 5 8

B. DATA AND COMPUTATIONS

4
X X:
7 49
3 9
1 1
0 0
4 16
1 n=5 2Ix=15 BXX?=75
3 (TXP =225
2
6 SS=EJ{E—@=?5—%=?5—45=EU

75255 _30 o0 g 55 _ 30 FEo_074
n-1 4 n-1 4

Progress Check * 4.5 Using the computation formula for the sum of squares, calculate
the population standard deviation for the scores in (a) and the sample standard deviation for

the scores in (b).
(a) 1,3,7,2,0,4,7,3 (b) 10,8,5,0,1,1,7,9,2

Progress Check *4.6 Days absent from school for a sampie of 10 first-grade children are:
8,57,1,405,7,2 9.

a) Before calculating the standard deviation, decide whether the definitional or computa-
fional formula would be more efficient. Why?

b) Use the more efficient formula to calculate the sample standard deviation.
4.6 (a) computation formula since the mean is not a whole number.

214 2304

—jlﬂ=1.|"9.EB =3.05

b $=4—7;

If u Is Known

For the sake of the present discussion, now assume that we know the value of the
population mean, g —let’s say it equals 2. (Any value assigned to u other than 3, the
value of X, would satisfy the current argument. It's reasonable to assume that the
values of u and X will differ because a random sample exactly replicates its popula-
tion rarely, if at all.) Furthermore, assume that we take a random sample of n = 5

Table 4.5
TWO ESTIMATES OF POPULATION VARIABILITY
WHEN £ IS UNKNOWN WHEN IS KNOWN
(X=3 (u=2)
X x-X (X—Xp | x X—u (X— pf
7 7-3= 4 16 7 7-2= 5 25
3 3-3= 10 0 3 3-2= 1
1 1-3=-2 4 1 1-2=- 1
0 0-3=-3 9 0 0-2=-2 4
4 4-3= 1 1 4 4-2= 72 4
EX-X)= 0 EX-XF=30 E(X— py)=5 E(X— yf=135
df=n-1=5-1=4 df=n=5
—\3 2
- X= 35
sﬂ{ﬂrf=n—1}=u=¥=15u 2(df =) = = #) = =7.00
[fulIs Unknown

e [t would be most efficient if, as above, we could use a random sample of ndeviations
expressed around the population mean, X -, to estimate variability inthe population.

e But this is usually impossible because, in fact, the population mean is unknown.

e Therefore, we must substitute the known sample mean, X, for the unknown
population mean, y, and we must use a random sample of n deviations expressed
around their own sample mean, X =X, to estimate variability in the population.

e Although there are n = 5 deviations in the sample, only n - 1 = 4 of these deviationsare
free to vary because the sum of the n = 5 deviations from their own sample mean
always equals zero.

DEGREES OF FREEDOM (df)

e Degrees of freedom (df) refers to the number of values that are free to vary, givenone
or more mathematical restrictions, in a sample being used to estimate a population
characteristic.

e The concept of degrees of freedom is introduced only because we are using scoresin a
sample to estimate some unknown characteristic of the population.

VARIANCE FOR SAMPLE
2 _55 _58
-1 df 4.9)

STANDARD DEVIATION FOR SAMPLE
o[5S _ JS_?
m—1 df [4.].D:|

where 5* and s represent the sample variance and standard deviation, S5 is the sum of
squares as defined in either Formula 4.3 or 4.4, and df is the degrees of freedom and
equals m — 1.

Progress Check *4.7 As a first step toward modifying his study habits, Phil keeps daily
records of his study time.

(a) During the first two weeks, Phil's mean study time equals 20 hours per week. If he studied
22 hours during the first week, how many hours did he study during the second week?

(b} During the first four weeks, Phil's mean study time equals 21 hours. If he studied 22, 18,
and 21 hours during the first, second, and third weeks, respectively, how many hours did
he study during the fourth week?

(c) If the information in (a) and (b) is to be used to estimate some unknown population char-
acteristic, the notion of degrees of freedom can be introduced. How many degrees of
freedom are associated with (a) and (b)?

(d) Describe the mathematical restriction that causes a loss of degrees of freedom in (a) and {b).

4.7 (a) 18 hours
(b} 23 hours
(e} df=1in(a)and gf=3in (b)
(d) When all observations are expressed as deviations from their mean, the sum of all
deviations must equal zero.

INTERQUARTILE RANGE (IQR)
e The most important spinoff of the range, the interquartile range (IQR), is simply the
range for the middle 50 percent of the scores.

Table 4.6
CALCULATION OF THE IQR

A. INSTRUCTIONS

1 Order scores from least o most.

2 To determine how far to penetrate the set of ordered scores, begin at either end,
then add 1 to the total number of scores and divide by 4. If necessary, round the
result to the nearest whole number.

2 Beginning with the largest score, count the requisite number of steps (calculated
in step 2) into the ordered scores to find the location of the third quartile.

4 The third quartile equals the value of the score at this location.

3 Beginning with the smallest score, again count the requisite number of steps into
the ordered scores to find the location of the first quartile.

6 The first quartile equals the value of the score at this location.

7 The IQR equals the third quartile minus the first quartile.

B. EXAMPLE
17,92910,11,11,13
a7+ 1)/4=2
3 7,92910,11,11,13

I

"
third quartile =11
7,9,9,10,11,11,13

|

4
a

|
B first quartile = 9
7I0R=11-9=2

Progress Check *4.8 Determine the values of the range and the IOR for the following
sets of data.

(a) Retirement ages: 60, 63, 45, 63, 635, 70, 55, 63, 60, 65, 63

(b) Residence changes: 1,3,41,0,2,5,8,0,2,3,4,7,11,0,2,3,4

4.8 (a) range = 25; IOR=65-60=15
(b) range =11;I0R=4-1=3

MEASURES OF VARIABILITY FOR QUALITATIVE AND RANKED DATA
Qualitative Data

e Measures of variability are virtually nonexistent for qualitative or nominal data.

e |tis probably adequate to note merely whether scores are evenly divided among the
various classes, unevenly divided among the various classes, or concentrated mostly
in one class.

e Forexample, if the ethnic composition of the residents of a city is about evenly divided
among several groups, the variability with respect to ethnic groups is maximum; there
is considerable heterogeneity.

Ordered Qualitative and Ranked Data
e If qualitative data can be ordered because measurement is ordinal then it’s
appropriate to describe variability by identifying extreme scores.
e Forinstance, the active membership of an officers’ club might include no one witha
rank below first lieutenant or above brigadier general.

VI.NORMAL DISTRIBUTIONS AND STANDARD (z) SCORE:

THE NORMAL CURVE
e Adistribution based on 30,910 men usually is more accurate than one based on 3091,
and a distribution based on 3,091,000 usually is even more accurate.
e Butitis prohibitively expensive in both time and money to even survey 30,910 people.
Fortunately, it is a fact that the distribution of heights for all American men—not just
3091 or even 3,091,000—approximates the normal curve, a well- documented
theoretical curve.

A5 —

Proportion

05—

| I i

7 B2 B3 B4 B5 868 67 B8 B9 F0 71 72 73 T4 7T5 7B
. Height (inches)

*62 inches or shorter

76 inches or taller

FIGURE 5.1
Relative frequency distribution for heights of 3091 men.
Source: National Center for Health Statistics, 1960—-62, Series 11, No. 14, Mean

updated bv authors.

In Figure 5.2, the idealized normal curve has been superimposed on the original
distribution for 3091 men.

A5 —
B .
g 10—
=]
&= T
o5 —]
L T | | | [I
62 63 64 65 66 6¥ 68 69 70O F1 F2 T3 T4 TFTH5 TG
Height (incheas)
FIGURE 5.2

Normal curve superimposed on the distribution of heights.

Interpreting the Shaded Area
e The total area under the normal curve in Figure 5.2 can be identified with all FBI
applicants.
e Viewed relative to the total area, the shaded area represents the proportion of
applicants who will be eligible because they are shorter than exactly 66 inches.

Finding a Proportion for the Shaded Area
e To find this new proportion, we cannot rely on the vertical scale in Figure 5.2, because
it describes as proportions the areas in the rectangular bars of histograms, not the
areas in the various curved sectors of the normal curve.

Properties of the Normal Curve

e A normal curve is a theoretical curve defined for a continuous variable, asdescribed
in Section 1.6, and noted for its symmetrical bell-shaped form.

e Because the normal curve is symmetrical, its lower half is the mirror image of its
upper half.

e Being bell shaped, the normal curve peaks above a point midway along the
horizontal spread and then tapers off gradually in either direction from the peak

e The values of the mean, median (or 50th percentile), and mode, located at a point
midway along the horizontal spread, are the same for the normal curve.

Importance of Mean and Standard Deviation
e When you’re using the normal curve, two bits of information are indispensable:
values for the mean and the standard deviation.

Different Normal Curves

69 79
Al rent N Same Standard Deviation B. Same Mean,

FIGURE 5.3
Different normal curves.

e Every normal curve can be interpreted in exactly the same way once any distancefrom
the mean is

e expressed in standard deviation units.

e For example, .68, or 68 percent of the total area under a normal curve—any normal
curve—is within one standard deviation above and below the mean, and only .05, or

5 percent, of the total area is more than two standard deviations aboveand below the
mean.

z SCORES

e A z score is a unit-free, standardized score that, regardless of the original units of
measurement, indicates how many standard deviations a score is above or belowthe
mean of its distribution.

e To obtain a z score, express any original score, whether measured in inches,
milliseconds, dollars, IQ points, etc., as a deviation from its mean

e where X is the original score and W and o are the mean and the standard deviation,
respectively, for the normal distribution of the original scores.

e Since identical units of measurement appear in both the numerator and denominator
of the ratio for z, the original units of measurement cancel each otherand the z score
emerges as a unit-free or standardized number, often referred to as a standard score.

A z score consists of two parts:

1. a positive or negative sign indicating whether it’s above or below the mean; and
2.a number indicating the size of its deviation from the mean in standard deviation
units.

e Az score of 2.00 always signifies that the original score is exactly two standard
deviations above its mean.

e Similarly, az score of —1.27 signifies that the original score is exactly 1.27 standard
deviations below its mean.

e A zscore of 0 signifies that the original score coincides with the mean.

o (3.1

Converting to z Scores
e To answer the question about eligible FBI applicants, replace X with 66 (the maximum
permissible height), u with 69 (the mean height), and o with 3 (the standard deviation
of heights) and solve for z as follows:

66—69 -3
3 3

=1

Progress Check *5.1 Express each of the following scores as a z score:
(a) Margaret’s 1Q of 135, given a mean of 100 and a standard deviation of 15
(b) ascore of 470 on the SAT math test, given a mean of 500 and a standard deviation of 100

(c) adaily production of 2100 loaves of bread by a bakery, given a mean of 2180 and a stan-
dard deviation of 50

(d) Sam’s height of 69 inches, given a mean of 69 and a standard deviation of 3

(e) a thermometer-reading error of —3 degrees, given a mean of 0 degrees and a standard

deviation of 2 degrees
.1 (a) 233 (d) 0.00
(b) -0.30 (e) —1.50
(c) -1.60
STANDARD NORMAL CURVE

e If the original distribution approximates a normal curve, then the shift to standardor z
scores will always produce a new distribution that approximates the standardnormal

curve.
e The standard normal curve always has a mean of 0 and a standard deviation of 1.
However, to verify that the mean of a standard normal distribution equals 0, replace
X in the z score formula with p, the mean of any normal distribution, andthen solve

for z:

X—;r_,u—y_{}_n
o o o

Mean of z =

e Likewise, to verify that the standard deviation of the standard normal distribution
equals 1, replace X in the z score formula with p + 10, the value corresponding to one
standard deviation above the mean for any (nonstandard) normal distribution, and
then solve for z:

X—u pu+tlo—pu lo

Standard deviation of z = —=1
o o o

e Althoughthereisaninfinite number of different normal curves, each with its ownmean
and standard deviation, there is only one standard normal curve, with a mean of 0 and
a standard deviation of 1.

Figure 5.4 illustrates the emergence of the standard normal curve from three different
normal curves: that for the men’s heights, with a mean of 69 inches and a standard
deviation of 3 inches; that for the useful lives of 100-watt electric light bulbs, with a
mean of 1200 hours and a standard deviation of 120 hours; and that for the 1Q scores of
fourth graders, with a mean of 105 points and a standard deviation of 15 points.

Heights Useful Lives 1Q
(inches) (hours) Scores

T T T T T T T T T T T T T X
60 63 66 69 72 75 78 0%‘-%\0 /(}{3 RS 60 75 90 105 120 135 150

z 3-2-10 1 2 3 3-2-101 2

3-2-10 1 2 3=z

FIGURE 5.4
Converting three normal curves to the standard normal curve.

e Converting all original observations into z scores leaves the normal shape intactbut
not the units of measurement.

e Shaded observations of 66 inches, 1080 hours, and 90 1Q points all reappear as az
score of —1.00.

Standard Normal Table
e Essentially, the standard normal table consists of columns of z scores coordinated
with columns of proportions.

Using the Top Legend of the Tabhle

Table 5.1 shows an abbreviated version of the standard normal curve, while Table A
in Appendix C on page 458 shows a more complete version of the same curve. Notice
that columns are arranged in sets of three, designated as A, B, and C in the legend at
the top of the table. When using the top legend. all entries refer to the upper half of
the standard normal curve. The entries in column A are z scores, beginning with 0.00
and ending (in the full-length table of Appendix C) with 4.00. Given a z score of zero
or more, columns B and C indicate how the z score splits the area in the upper half of
the normal curve. As suggested by the shading in the top legend, column B indicates
the proportion of area between the mean and the z score, and column C indicates the
proportion of area beyond the z score, in the upper tail of the standard normal curve.

Using the Bottom Legend of the Table

Because of the symmetry of the normal curve, the entries in Table 5.1 and Table A
of Appendix C also can refer to the lower half of the normal curve. Now the columns
are designated as A’, B’, and C’ in the legend at the bottom of the table. When using the
bottom legend, all entries refer to the lower half of the standard normal curve.

Imagine that the nonzero entries in column A’ are negative z scores, beginning
with —0.01 and ending (in the full-length table of Appendix C) with —4.00. Given a
negative z score, columns B” and C’ indicate how that z score splits the lower half
of the normal curve. As suggested by the shading in the bottom legend of the table,
column B’ indicates the proportion of area between the mean and the negative z score,
and column C’ indicates the proportion of area beyond the negative z score, in the
lower tail of the standard normal curve.

Progress Check *5.2 Using Table A in Appendix C, find the proportion of the total area
identified with the following statements:

(a) above a z score of 1.80

(b) between the mean and a z score of —0.43

(c) below a z score of -3.00

(d) between the mean and a z score of 1.65

(e) between z scores of 0 and —1.96

5.2 (a) .0359 (d) .4505
(b) .1664 (e) .4750
(c) .0013

TABLE 5.1
PROPORTIONS (OF AREAS) UNDER THE STANDARD NORMAL CURVE
FOR VALUES OF z (FROM TABLE A OF APPENDIX C)

A B C

L AN AN AN

0.00 .0000 .5000 0.40 .1554 .3446 0.80 .2881 .2119
0.01 .0040 .4960 0.41 .1591 .3409 0.81 .2910 .2090

0.99 .3389 .1611
1.00 .3413>.1587
o ° < L . b 1 1 3438 1 62

0.38 .1480 .3520 0.78 .2823 .2711 1/18 .3810 .1190
0.39 .1517 .3483 0.79 .2852 .2148 1/19 .3830 .1170

- AN AN+ AN AN AN AN

A B c |a B c

SOLVING NORMAL CURVE PROBLEMS

10000 -

A A

FIGURE 5.5
Interpretation of Table A, Appernndix .

FINDING PROPORTIONS

Example: Finding Proportions for One Score

Now we’ll use a step-by-step procedure, adopted throughout this chapter, to find the
proportion of all FBI applicants who are shorter than exactly 60 inches, given that the
distribution of heights approximates a normal curve with a mean of 69 inches and a
standard deviation of 3 inches.

1. Sketch a normal curve and shade in the target area, as in the left part of
Figure 3.6. Being less than the mean of 69, 66 is located to the left of the mean.
Furthermore, since the unknown proportion represents those applicants who are
shorter than 66 inches, the shaded target sector is located to the left of 66.

2. Plan your solution according to the normal table. Decide precisely how you
will find the value of the target area. In the present case, the answer will be
obtained from column C’ of the standard normal table, since the target area coin-
cides with the type of area identified with column C’, that is, the area in the lower
tail beyond a negative Z.

3. Convert X to z. Express 66 as a z score:

X—u 66-69 -3

i= —=—l

o 3 3

Find: Proportion Below 66 Solution:

1587
Target Area (from column C")

+ X ply
66 69 -1.00 0O

Answer: .1587

FIGURE 5.6
Finding proportions.

4. Find the target area. Refer to the standard normal table, using the bottom leg-
end, as the z score is negative. The arrows in Table 5.1 show how to read the
table. Look up column A’ to 1.00 (representing a 7 score of —1.00), and note the
corresponding proportion of . 1587 in column C’: This is the answer, as suggested
in the right part of Figure 5.6. It can be concluded that only .1587 (or .16) of all
of the FBI applicants will be shorter than 66 inches.

Progress Check *5.3 Assume that GRE scores approximate a normal curve with a mean
of 500 and a standard deviation of 100.

(a) Sketch a normal curve and shade in the target area described by each of the following
statements:

(i) lessthan 400
(if) more than 650
(iii) less than 700

(b) Plan solutions (in terms of columns B, C, B’, or C’ of the standard normal table, as well as
the fact that the proportion for either the entire upper half or lower half always equals
.5000) for the target areas in part (a).

(c) Convert to zscores and find the proportions that correspond to the target areas in part (a).

%3 (a,) (by) C (e) z=-1.00
AL answer = .1587

(a) (b)) C (c;) z=1.50
Zh answer = .0668

(a,) (b;) .5000 + B (cg) z=2.00
Ah answer = .5000 + .4772

= 9772

Example: Finding Proportions between Two Scores

Assume that, when not interrupted artificially, the gestation periods for human fetuses
approximate a normal curve with a mean of 270 days (9 months) and a standard devia-
tion of 15 days. What proportion of gestation periods will be between 245 and 255 days?

1. Sketch a normal curve and shade in the target area, as in the top panel of
Figure 5.7. Satisfy yourself that, in fact, the shaded areca represents just those
gestation periods between 245 and 255 days.

2. Plan your solution according to the normal table. This type of problem requires
more effort to solve because the value of the target area cannot be read directly
from Table A. As suggested in the bottom two panels of Figure 5.7, the basic idea
is to identify the target area with the difference between two overlapping areas
whose values can be read from column C’ of Table A. The larger area (less than
255 days) contains two sectors: the target area (between 245 and 255 days) and
a remainder (less than 245 days). The smaller area contains only the remainder
(less than 245 days). Subtracting the smaller area (less than 245 days) from the
larger arca (less than 255 days). therefore, eliminates the common remainder
(less than 245 days), leaving only the target area (between 245 and 255 days).

3. Convert X to z by expressing 255 as

255-270 -—-15
Z= = =—1.00
15 15

and by expressing 245 as

. 245-=-270 _ =25 — 167
15 15

Find: Proportion Batweaen 245 and 255

Target Area

245 955 270

Solution:

0475
(from column C°)

1587
(from column G')

iy £ 7T z
—1.00 0 —1.67 0
Answer: .1587
— .0475
112

FIGURE 5.7
Finding proportions.

4. Find the target area. Look up column A’ to a negative z score of —1.00
(remember, you must imagine the negative sign), and note the corresponding
proportion of .1587 in column C’. Likewise, look up column A’ to a z score of
—1.67, and note the corresponding proportion of .0475 in column C’. Subtract
the smaller proportion from the larger proportion to obtain the answer, .1112.
Thus, only .11, or 11 percent, of all gestation periods will be between 245 and
255 days.

Finding Proportions beyond Two Scores

Assume that high school students’ 1Q scores approximate a normal distribution with
amean of 105 and a standard deviation of 15. What proportion of 1Qs are more than 30
points either above or below the mean?

1. Sketch a normal curve and shade in the two target areas, as in the top panel

of Figure 5.8.

2. Plan your solution according to the normal table. The solution to this type of
problem is straightforward because each of the target areas can be read directly
from Table A. The target area in the tail to the right can be obtained from column
C, and that in the tail to the left can be obtained from column C’, as shown in the
bottom two panels of Figure 5.8.

Find: Proportion Beyond 30 Points from Mean

Target Area Target Area

75 105 135

Solution:

0228 0228

(from column C) (from :-:-!,1"1'. C')

iy - Z oy Frad
0 2.00 —2.00 0
Answer: 0228
+ .0228
0456
FIGURE 5.8
Finding proportions.

3. Convert X to z by expressing I(Q scores of 135 and 75 as

. lSS—]DSzﬂzlm
15 15

. T5-105 =—3{} ——2.00
15 15

4. Find the target area. In Table A, locate a z score of 2.00 in column A, and note
the comresponding proportion of .0228 in column C. Because of the symmetry of
the normal curve, you need not enter the table again to find the proportion below
a 7 score of —2.00. Instead, merely double the above proportion of .0228 to obtain
0456, which represents the proportion of students with [(Qs more than 30 points
either above or below the mean.

Progress Check *5.5 Assume that SAT math scores approximate a normal curve with a
mean of 500 and a standard deviation of 100.

(a) Sketch a normal curve and shade in the target area(s) described by each of the following
statements:

(i) maorethan 570
(i) flessthan 515
(ili) between 520 and 540
(iv) between 470 and 520
(v) more than 50 points above the mean
(vi) more than 100 points either above or below the mean
(vii) within 50 points either above or below the mean</RLLNL=
(b) Plan solutions {in terms of columns B, C, B’, and C’) for the target areas in part (a).

(e) Convert to zscores and find the target areas in part (a).

535 (a,) N (c,) z zz%m
(a5) (b;) .5000 +B (e;) z=0.15
Aﬁ 5000 + .0596 = .5596
(a;) i D (by) largerB— (eg) z=0.20; z=0.40
smaller B 1554 — 0793 = .0761
or larger C — or 4207 — .3446 = .0761
smaller C

(b) B +B () z=-0.30;2z=0.20
1179 + .0793 = .1972

N

(as) Lh (bs) C (cs) 33 EB%SU
N
N

(b) C +C (c) z=-1.00;z=1.00
or 2(C) 1587 + 1587 = .3174
(b,) B +B (¢,) z=-0.50;z= 050
or 2(B) 1915 + .1915 = 3830

FINDING SCORES

Example: Finding One Score

Exam scores for a large psychology class approximate a normal curve with a mean
of 230 and a standard deviation of 50. Furthermore, students are graded “on a curve.”
with only the upper 20 percent being awarded grades of A. What is the lowest score on
the exam that receives an A?7

1. Sketch a normal curve and, on the correct side of the mean. draw a line repre-
senting the target score. as in Figure 5.9. This is often the most difficult step. and
it involves semantics rather than statistics. It's often helpful to visualize the target

Find: Lowest Score in Upper 20% Solution:
.2995

(nearest entry to

\-3000 in column B)

i .2005

(nearest entry to
-2000 in column C)

LA
0 0.84
(from column A)

>
|
1}
:
®
>
|

=u + {z)}{o)

230 + (0.84)(50)
=230 + 42

272

FIGURE 5.9
Finding scores.

score as splitting the total area into two sectors—one to the left of (below) the target
score and one to the nght of (above) the target score. For example, in the present
case, the target score is the point along the base of the curve that splits the total area
into 80 percent, or .B000 to the left, and 20 percent, or 2000 to the right. The mean
of a normal curve serves as a valuable frame of reference since it always splits the
total area into two egual halves—. 5000 to the left of the mean and .5000 to the nght
of the mean. Since more than .S000—that 15, .B000—of the total area 1s to the left
of the target score, this score must be on the upper or right side of the mean. On the
other hand, if less than 5000 of the total area had been to the left of the target score,
this score would have been placed on the lower or left side of the mean.

2. Plan vour solution according to the normal table. In problems of this type.
you must plan how to find the z score for the target score. Because the target
score is on the right side of the mean, concentrate on the area in the upper half of
the normal curve, as described in columns B and C. The right panel of Figure 5.9
indicates that either column B or C can be used to locate a z score in column A.
It is crucial, howewver, to search for the single value (.3000) that is valid for col-
umn B or the single value (.2000) that is valid for column C. Note that we look
in column B for 3000, not for .8000. Table A is not designed for sectors, such as
the lower 8000, that span the mean of the normal curve.

3. Find z. Refer to Table A. Scan column C to find .2000. If this value does not

appear in column C, as typically will be the case, approximate the desired value
({and the correct score) by locating the entry in column C nearest to .2000. If
adjacent entries are equally close to the target value, use either entry—it is your
choice. As shown in the right panel of Figure 5.9, the entry in column C clos-
est to 2000 is .2005, and the corresponding z score in column A equals 0.84.
Werify this by checking Table A. Also note that exactly the same z score of 0.84
would have been identified if column B had been searched to find the entry
(.2995) nearest to 3000. The z score of 0.84 represents the point that separates
the upper 20 percent of the area from the rest of the area under the normal curve.

4. Convert z to the target score. Finally, convert the 7 score of 0.84 into an exam

score, given a distribution with a mean of 230 and a standard deviation of 50.
¥ ou'll recall that a z score indicates how many standard deviations the original
score is above or below its mean. In the present case, the target score must be
located .84 of a standard deviation above its mean. The distance of the target
score above its mean equals 42 (from .84 x 50), which, when added to the mean
of 230, yvields a value of 272. Therefore, 272 is the lowest score on the exam that
receives an A.

When converting 7 scores to original scores, you will probably find it more efficient to

use the following equation (derived from the 7 score equation on page 86):

CONVERTING z SCORE TO ORIGINAL SCORE

X=pu+(2)o) (5.2)

where X is the target score, expressed in original units of measurement; | and & are the
mean and the standard deviation, respectively, for the original normal curve; and z 1s
the standard score read from column A or A’ of Table A. When appropriate numerical
substitutions are made, as shown in the bottom of Figure 5.9, 272 is found to be the

answer, in agreement with our earlier conclusion.

Example: Finding Two Scores

Assume that the annual rainfall in the San Francisco area approximates a normal
curve with a mean of 22 inches and a standard deviation of 4 inches. What are the
rainfalls for the more atypical years, defined as the driest 2.5 percent of all years and
the wettest 2.5 percent of all years?

1. Sketch a normal curve. On either side of the mean, draw two lines repre-
senting the two target scores, as in Figure 5.10. The smaller (driest) target score
splits the total area into .0250 to the left and .9750 to the right, and the larger
(wettest) target score does the exact opposite.

2. Plan your solution according to the normal table. Because the smaller target
score 15 located on the lower or left side of the mean, we will concentrate on the
area in the lower half of the normal curve, as described in columns B and C°. The
target 7 score can be found by scanning either column B’ for .4750 or column C’

Find: Pairs of Scores for the Extreme 2.5% Solution:

L0250 to {0250 to (entry in column C*)
the leit the right L0250

(entry in column C)
{0250

iy z iy Frd
7 0 ? —1.96 0 196
(from column A" (from column A)
Answer: Xpin = i + (2)(s) Answer: Xpa, = s + (2)(e)
=22 + (—1.96)(4) =22 + (1.96)(4)
=22 784 =22+ 78B4
=14.16 = 20.84

FIGURE 5.10
Finding scores.

for .0230. After finding the smaller target score, we will capitalize on the sym-
metrical properties of normal curves to find the value of the larger target score.

3. Find z. Referring to Table A, we can scan column B’ for .4750, or the entry
nearest to .4750. In this case, 4750 appears in column B’, and the corresponding
z score in column A’ equals —1.96. The same z score of —1.96 would have been

obtained if column C” had been searched for a valae of .0250.

4. Convert z to the target score. When the appropriate numbers are substituted
in Formula 5.2, as shown in the bottom panel of Figure 5.10, the smaller target
score equals 14.16 inches, the amount of annual rainfall that separates the driest
2.5 percent of all years from all of the other years.

The location of the larger target score is the mirror image of that for the smaller
target score. Therefore, we need not even consult Table A to establish that its z score
equals 1.96—that is, the same value as the smaller target score, but without the nega-
tive sign. When 1.96 1s converted to inches of ranfall, as shown in the bottom of
Figure 5.10, the larger target equals 29.84 inches, the amount of annual rainfall that

separates the wettest 2.5 percent of all years from all other years.

Progress Check *5.6 Assume that the burning times of electric light bulbs approximate
a normal curve with a mean of 1200 hours and a standard deviation of 120 hours. If a large
number of new lights are installed at the same time (possibly along a newly opened freeway),
at what time will

(a) 1 percent fail? (Hint: This splits the total area into .0100 to the left and .9900 to the right.)
(b) 50 percent fail?
(c) 95 percent fail?

(d) If a new inspection procedure eliminates the weakest 8 percent of all lights before they
are marketed, the manufacturer can safely offer customers a money-back guarantee on
all lights that fail before hours of burning time.

5.6 (a) 1200 + (-2.33)(120) = 920.40
(b) 1200 + (0.00)(120) = 1200
(c) 1200 + (1.65)(120) = 1398
or 1200 + (1.64)(120) = 1396.80
(d) 1200 + (1.41)(120) = 1030.80

DOING NORMAL CURVE PROBLEMS
Road the problam carsfully to determina whiether a proportion
or a score is to be found.

-—FINDING PROPORTIONS —-
1. Sketch the mormal curve and shade in the target area.

Examplas: One Ares Two Areas
AN NV AN NN
Ll | T

2. Plam the solution in terms of the normal table.

T R

o b 5 . RS
i~ W)

C E larger B — smaller B

n

W0+B B 4+B C2C
3.Convert Xtoz: z=2=4

4. Find the target area by entering sither column A or A" with z, and
noding the comasponding proportion from column B, C, B°, or G
FINDING SCORES
1. Sketch the mormal curve and, on the comect side of the mean,

draw a line represanting the target scora.

Examplas: To Left of Maan To Right of Meaan
(area to lofi less than 50000 (area fo left mone than S000)

1 il

2. Plan the solution in terms of the normal table.
' b
C'orB' BorC

3. Find z by locating the entry nearest to that desired in column
B, G, B', or C" and reading out tha comasponding z score.

R R

-
¥

=r

4. Convert z to the target score: X = u + (z)(s)

z Scores for Non-normal Distributions

e zscores are not limited to normal distributions. Non-normal distributions also canbe
transformed into sets of unit-free, standardized z scores.

¢ In this case, the standard normal table cannot be consulted, since the shape of the
distribution of z scores is the same as that for the original non-normal distribution.

e Forinstance, if the original distribution is positively skewed, the distribution of z
scores also will be positively skewed.

e Regardless of the shape of the distribution, the shift to z scores always produces a
distribution of standard scores with a mean of 0 and a standard deviation of 1.

Interpreting Test Scores

e The use of z scores can help you identify a person’s relative strengths and
weaknesses on several different tests.

Importance of Reference Group

e Remember that z scores reflect performance relative to some group rather thanan
absolute standard.

e A meaningful interpretation of z scores requires, therefore, that the nature of the
reference group be specified.

Progress Check *5.7 Convert each of the following test scores to z scores:

TEST SCORE MEAN STANDARD DEVIATION
(a) 53 50 9
(b) 38 40 10
(c) 45 30 20
(d) 28 20 20
Table 5.2

SHARON’S ACHIEVEMENT TEST SCORES

SUBJECT RAW SCORE MEAN STANDARD DEVIATION z SCORE

Math 159 14 10 1.80
English 83 75 16 0.50
Psych 23 27 6 —0.67

.7 (a) 0.33 () 0.75
(b) -0.20 (d) 0.40

Progress Check *5.8
(a) Referring to Question 5.7, which one test score would you prefer?

(b) Referring to Question 5.7, if Carson had earmed a score of 64 on some test, which of the
four distributions (a, b, c, or d) would have permitted the most favorable interpretation of this
score?

Answers on page 427.

5.8 (a) A test score of 45 from distribution ¢ because it converts to the largest z score
(0.75).
(b) Distribution b, because it yields a larger z score (2.40) than any other distribution.

Standard Score
e Whenever any unit-free scores are expressed relative to a known mean and a known
standard deviation, they are referred to as standard scores.
e Although z scores qualify as standard scores because they are unit-free andexpressed
relative to a known mean of 0 and a known standard deviation of 1, other scores also
qualify as standard scores.

Transformed Standard Scores

e Being by far the most important standard score, z scores are often viewed as
synonymous with standard scores.

e For convenience, particularly when reporting test results to a wide audience, z scores
can be changed to transformed standard scores, other types of unit-free standard
scores that lack negative signs and decimal points.

e These transformations change neither the shape of the original distribution nor the
relative standing of any test score within the distribution.

|
—3 —2c 1o Owr 1o 20 B
Standard Deviations

| | | | | | |

| 1 1 | 1 | | z
—3 —2 —1 [+] 1 =2 3

| | | | | | |

| 1 1 | 1 | 1 T
2|D aiG 4iG 5|G B0 7|C| 80

| | | | | o]
5|d5 YIG BIE 1('_|FO 1Ms 1:|3() 145

| 1 1 | | GRE
200 300 400 S00 E00 TOoO 2800

Standard Scores

FIGURE 5.11

Conunon transformed standard scores associated with normal curves.

Figure 5.11 shows the values of some of the more common types of transformed standard
scores relative to the various portions of the area under the normal curve.

Converting to Transformed Standard Scores

Use the following formula to convert any original standard score, Z, info a frans-
formed standard score, 7', having a distribution with any desired mean and standard
deviation.

TRANSFORMED STANDARD SCORE
7' = desired mean + (z) (desired standard deviation) (5.3)

where 7” (called z prime) is the transformed standard score and z is the original stan-
dard score.

For instance, if you wish to convert a z score of —1.50 into a new distribution of 7’
scores for which the desired mean equals 500 and the desired standard deviation equals
100, substitute these numbers into Formula 5.3 to obtain

z 500 + (=1.50) (100)
500-150
= 350

Progress Check *5.9 Assume that each of the raw scores listed originates from a distri-
bution with the specified mean and standard deviation. After converting each raw score into a
zscore, transform each z score into a series of new standard scores with means and standard
deviations of 50 and 10, 100 and 15, and 500 and 100, respectively. (In practice, you would
transform a particular z into only one new standard score.)

RAW SCORE STANDARD DEVIATION

24 9
3

UNIT III DESCRIBING RELATIONSHIPS
Correlation -Scatter plots -correlation coefficient for quantitative data —~computational
formula for correlation coefficient - Regression -regression line -least squares
regression line - Standard error of estimate - interpretation of r2 -multiple regression
equations -regression towards the mean

|. Correlation:

An investigator suspects that a relationship exists between the number of greeting
cards sent and the number of greeting cards received by individuals.

The investigator obtains the estimates for the most recent holiday season fromfive
friends, as shown in Table 6.1.

The data in Table 6.1 represent a very simple observational study with two
dependent variables.

Table 6.1
GREETING CARDS
SENT AND
RECEIVED BY FIVE
FRIENDS

NUMBER
OF CARDS

FRIEND SENT RECEIVED

Andrea 5 10
Mike 7 12
Doris 13 14
Steve 9 18
John 1 6

AN INTUITIVE APPROACH

A tendency for pairs of scores to occupy similar relative positions in theirrespective
distributions.

Positive Relationship

Trends among pairs of scores can be detected most easily by constructing a list of
paired scores in which the scores along one variable are arranged from largest to
smallest.

In panel A of Table 6.2, the five pairs of scores are arranged from the largest (13) to
the smallest (1) number of cards sent.

This table reveals a pronounced tendency for pairs of scores to occupy similar relative
positions in their respective distributions.

For example, John sent relatively few cards (1) and received relatively few cards (6),
whereas Doris sent relatively many cards (13) and received relatively many cards (14).
Therefore, that the two variables are related.

Insofar as relatively low values are paired with relatively low values, and relatively
high values are paired with relatively high values, the relationship is positive.

Negative Relationship
e Although John sent relatively few cards (1), he received relatively many (18).
e From this pattern, we can conclude that the two variables are related.
e This relationship implies that “You get the opposite of what you give.”
e Insofar as relatively low values are paired with relatively high values, and relatively
high values are paired with relatively low values, the relationship is negative.

Little or No Relationship
e No regularity is apparent among the pairs of scores in panel C.
e For instance, although both Andrea and John sent relatively few cards (5 and 1,
respectively), Andrea received
e relatively few cards (6) and John received relatively many cards (14).
e We can conclude that little, if any, relationship exists between the two variables.

Tahle 6.2
THREE TYPES OF
RELATIONSHIPS

A. POSITIVE
RELATIONSHIP

FRIEND SENT RECEIVED
Doris 13 14
Steve 9 18
Mike 7 12
Andrea 5 10
John 1 6

B. NEGATIVE
RELATIONSHIP

FRIEND SENT RECEIVED
Doris 13 6
Steve 9 10
Mike 7 14
Andrea 5 12
John 1 18

C. LITTLE OR NO
RELATIONSHIP
FRIEND SENT RECEIVED
Doris 13 10
Steve 9 18

Mike 7 12
Andrea 5 6
John 1 14

e Two variables are positively related if pairs of scores tend to occupy similar relative
positions (high with high and low with low) in their respective distributions.

e They are negatively related if pairs of scores tend to occupy dissimilar relative
positions (high with low and vice versa) in their respective distributions.

Progress Check *6.1 Indicate whether the following statements suggest a positive or
negative relationship:

(a) More densely populated areas have higher crime rates.

(b) Schoolchildren who often watch TV perform more poorly on academic achievement tests.
(c) Heavier automobiles yield poorer gas mileage.

(d) Better-educated people have higher incomes.

(e) More anxious people voluntarily spend more time performing a simple repetitive task.

6.1 (a) Positive. The crime rate is higher, square mile by square mile, in densely populated
cities than in sparsely populated rural areas.
(b) Negative. As TV viewing increases, performance on academic achievement tests
tends to decline.
(c) Negative. Increases in car weight are accompanied by decreases in miles per gallon.

(d) Positive. Increases in educational level—grade school, high school, college—tend
to be associated with increases in income.

(e) Positive. Highly anxious people willingly spend more time performing a simple
repetitive task than do less anxious people.

I1.SCATTERPLOTS
e A scatterplot is a graph containing a cluster of dots that represents all pairs of scores.

Construction

e To construct a scatterplot, as in Figure 6.1, scale each of the two variables along the
horizontal (X) and vertical (Y) axes, and use each pair of scores to locate a dotwithin
the scatterplot.

e For example, the pair of numbers for Mike, 7 and 12, define points along the X andY
axes, respectively.

e Using these points to anchor lines perpendicular to each axis, locate Mike’s dot where
the two lines intersect.

20—

Number of Cards Received
S
|
L]

| | | |
0 5 1 10 15 20

Number of Cards Sent

FIGURE 6.1

Scatterplot for greeting card exchange.

Positive, Negative, or Little or No Relationship?

A dot cluster that has a slope from the lower left to the upper right, as in panel Aof
Figure 6.2, reflects a positive relationship.

Small values of one variable are paired with small values of the other variable, and
large values are paired with large values.

In panel A, short people tend to be light, and tall people tend to be heavy.

On the other hand, a dot cluster that has a slope from the upper left to the lower
right, as in panel B of Figure 6.2, reflects a negative relationship.

Small values of one variable tend to be paired with large values of the other
variable, and vice versa.

A dot cluster that lacks any apparent slope, as in panel C of Figure 6.2, reflects littleor
no relationship.

Small values of one variable are just as likely to be paired with small, medium, or
large values of the other variable.

Strong or Weak Relationship?

The more closely the dot cluster approximates a straight line, the stronger (the more
regular) the relationship will be.

Figure 6.3 shows a series of scatterplots, each representing:

A different positive relationship between 1Q scores for pairs of people whose
backgrounds reflect different degrees of genetic overlap, ranging from minimum
overlap between foster parents and foster children to maximum overlap between
identical twins.

A. Positive Relationship B. Negative Relationship C. Little or No Relationship

250 ® 70 w70
—_ g -"..::’_'..‘.. ;
2 200 Sl L 2 65
§. g‘ ol A 2
= 150 g 60 g 60
= . : 2
= =4 8 I
o 100 . x 55 . . S x B5 . e .
; o w . w L '. .
T v 4 ¢ &£ T L 1 1 1 g Ty L | L
o” e 6 70 75 — 0 5 10 1B 20 - 0" e 65 70 75
Height (inches) Heavy Smoking (years) Height (inches)
FIGURE 6.2
Three types of relationships.
Perfect Relationship
e Adot cluster that equals a straight line reflects aperfect relationship between two
variables.

Curvilinear Relationship
e The a dot cluster approximates a straight line and, therefore, reflects a linear
relationship.
e Sometimes a dot cluster approximates a bent or curved line, as in Figure 6.4, and
therefore reflects a curvilinear relationship.
e Eg: physical strength, as measured by the force of a person’s handgrip, is less for
children, more for adults, and then less again for older people.

A. Foster Parents and B. Parents and C. Identical
Foster Children Children Twins
high " . .o s -
o . CE : R o . .
w ‘. ' * s @ * 0% .
'E ¢ o1 g ..': 'o.’. . —g . O.'o
= .“" ’. . w PRt T LRt '§ o..:.
O B :. v % &% . A -
AR 1 * = . .., : . @ .o.o
w ‘e o . o0
F=r = .50 . =75
o (r=27) (r = :50) (r=.75)
low high low high low high
Foster Parents' IQ Parents' 1Q One Twin's 1Q
FIGURE 6.3

Three positive relationships. (Scatterplots simulated from a 50-year literature survey.)
Source: Erlenmeyer-Kimling, L., & Jarvik, L. F. (1963). “Genetics and Intelligence: A
Review.” Science, 142, 1477-1479.

3() -
)
2
3
S
s 20—
2
£
()
g 10
2
-t
a

I I I
0 20 40 60
Age (years)

FIGURE 6.4

Curvilinear relationship.

Progress Check *6.2 Critical reading and math scores on the SAT test for students A, B,
G, D, E, F, G, and H are shown in the following scatterplot:

800
700 e .
600 — *F

oH
500 |— .G *B

Math Scores

40— p. o

300 — » |

Tyl L1 1 1 |
&

0 300 400 500 600 70O 800
Critical Reading Scores

(a) Which student(s) scored about the same on both tests?
(b) Which student(s) scored higher on the critical reading test than on the math test?

(c) Which student(s) will be eligible for an honors program that requires minimum scores of
700 in critical reading and 500 in math?

(d) Is there a negative relationship between the critical reading and math scores?

6.2 (a) |D,F () E.H
(b) B,H,E (d) No. The relationship is positive.

111.ACORRELATION COEFFICIENT
FOR QUANTITATIVE DATA : r
e A correlation coefficient is a number between —1 and 1 that describes the
relationship between pairs of variables.
e The type of correlation coefficient, designated as r, that describes the linear
relationship between pairs of variables for quantitative data.

Key Properties of r
e Named in honor of the British scientist Karl Pearson, the Pearson correlation
coefficient, r, can equal any value between —1.00 and +1.00.
e Furthermore, the following two properties apply:
e Thesign of rindicates the type of linear relationship, whether positive or negative.
e The numerical value of r, without regard to sign, indicates the strength of the
linear relationship.

Sign of r
e A number with a plus sign (or no sign) indicates a positive relationship, and a
number with a minus sign indicates a negative relationship.

Numerical Value of r
e The more closely a value of r approaches either —1.00 or +1.00, the stronger the
relationship.
e The more closely the value of r approaches 0, the weaker the relationship.
e r=-.90indicates a stronger relationship than does an r of —.70, and
e r=-.70indicates a stronger relationship than does an r of .50.

Interpretation of r

e Located along a scale from —1.00 to +1.00, the value of r supplies information
about the direction of a linear relationship—whether positive or negative—and,

e generally, information about the relative strength of a linear relationship—whether
relatively

e weak because r is in the vicinity of 0, or relatively strong because r deviates fromO in
the direction of

e either +1.00 or —1.00.

r Is Independent of Units of Measurement
e Thevalue of r is independent of the original units of measurement.
e Same value of r describes the correlation between height and weight for a groupof
adults.
e rdependsonlyon the pattern among pairs of scores, which in turn show no tracesof
the units of measurement for the original X and Y scores.

A positive value of r reflects a tendency for pairs of scores to occupy similar relative
locations in their respective distributions, while a negative value of r reflects a
tendency for pairs of scores to occupy dissimilar relative locations in their respective
distributions.

Range Restrictions

The value of the correlation coefficient declines whenever the range of possible Xor Y
scores is restricted.

For example, Figure 6.5 shows a dot cluster with an obvious slope, represented byan r
of .70 for the positive relationship between height and weight for all college students.
If, the range of heights along Y is restricted to students who stand over 6 feet 2 inches
(or 74 inches) tall, the abbreviated dot cluster loses its slope because of theweights
among tall students.

Therefore, as depicted in Figure 6.5, the value of r drops to .10.

Sometimes it’s impossible to avoid a range restriction.

For example, some colleges only admit students with SAT test scores above some
minimum value.

Caution

We have to be careful when interpreting the actual numerical value of r.

An r of .70 for height and weight doesn’t signify that the strength of this relationship
equals either .70 or 70 percent of the strength of a perfect relationship.

The value of r can’t be interpreted as a proportion or percentage of some perfect
relationship.

78—

74

70—
=r=.70

66 —

Height ()

62 —

58—

T, 1 | | | | |
! 120 140 160 180 200 220
Weight (X)

FIGURE 6.5
Effect of range restriction on the value of r.

Verbal Descriptions

e Wheninterpreting a new r, you'll find it helpful to translate the numerical value ofr
into a verbal description of the relationship.

e Anr of .70 for the height and weight of college students could be translated into
“Taller students tend to weigh more”;

e Anr of —.42 for time spent taking an exam and the subsequent exam score couldbe
translated into “Students who take less time tend to make higher scores”; and

e Anrinthe neighborhood of O for shoe size and IQ could be translated into “Little, if
any, relationship exists between shoe size and 1Q.”

Progress Check *6.3 Supply a verbal description for each of the following correlations.
(If necessary, visualize a rough scatterplot for r, using the scatterplots in Figure 6.3 as a frame

of reference.)
(a) an rof —.84 between total mileage and automobile resale value

(b) an rof —.35 between the number of days absent from school and performance on a math
achievement test

(c) an rof .03 between anxiety level and college GPA

(d) an rof .56 between age of schoolchildren and reading comprehension

6.3 (a) Cars with more total miles tend to have lower resale values.
(b) Students with more absences from school tend to score lower on math achieve-
ment tests.
(c) Little or no relationship between anxiety level and college GPA.
(d) Older schoolchildren tend to have better reading comprehension.

Correlation Not Necessarily Cause-Effect

e Acorrelation coefficient, regardless of size, never provides information about whether
an observed relationship reflects a simple cause-effect relationship or some more
complex state of affairs.

e Eg: correlation between cigarette smoking and lung cancer.

e American Cancer Society representatives interpreted the correlation as a causal
relationship: Smoking produces lung cancer.

e Tobacco industry representatives interpreted the correlation as, both the desire to
smoke cigarettes and lung cancer are caused by some more basic but unidentified
factors, such as the body metabolism or personality of some people.

e According to this reasoning, people with a high body metabolism might be more prone
to smoke and, quite independent of their smoking, more vulnerable to lungcancer.

e Therefore, smoking correlates with lung cancer because both are effects of some
common cause or causes.

Role of Experimentation

e In the present case, laboratory animals were trained to inhale different amounts of
tobacco tars and were then euthanized.

e Autopsies revealed that the observed incidence of lung cancer varied directly withthe
amount of inhaled tobacco tars, even though possible “contaminating” factors,such as
different body metabolisms or personalities, had been neutralized either through
experimental control or by random assignment of the subjects to different test
conditions.

Progress Check *6.4 Speculate on whether the following correlations reflect simple
cause-effect relationships or more complex states of affairs. (Hint: A cause-effect relation-
ship implies that, if all else remains the same, any change in the causal variable should always
produce a predictable change in the other variable.)

{a) caloric intake and body weight
{b) height and weight
{c) SAT math score and score on a calculus test

{d) poverty and crime
6.4 (a) simple cause-effect (b) complex (c) complex (d) complex

IV.DETAILS: COMPUTATION FORMULA FORTr

Calculate a value for r by using the following computation formula:

CORRELATION COEFFICIENT (COMPUTATION FORMULA)
SP

w

po_oox
[ss,Ss, 6

where the two sum of squares terms in the denominator are defined as

2
sS, =X(X-X) =z X’ _(zx)
f
58, =% (Y-¥) =3y’ - (ZY)
. n

and the sum of the products term in the numerator, SPD,, is defined in Formula 6.2.

|
SUM OF PRODUCTS (DEFINITION AND COMPUTATION FORMULAS)
(ZX)(ZY)

SPIF=Z(X—X)[}’—Y)=ZX}’— ; 62

Progress Check *6.5 Couples who attend a clinic for first pregnancies are asked to esti-
mate (independently of each other) the ideal number of children. Given that X and Y represent

the estimates of females and males, respectively, the results are as follows:

COUPLE X

Mmoo e
PO — G MO) —
WO MW &M g

Calculate a value for r, using the computation formula (6.1).

65 r= 4 =.65

J(4)(9.33)

Table 6.3
CALCULATION OF r: COMPUTATION FORMULA

A. COMPUTATIONAL SEQUENCE
Assign a value to n (1), representing the number of pairs of scores.
Sum all scores for X (2) and for ¥(3).
Find the product of each pair of Xand ¥ scores (4), one at a time, then add all of these
products ().
Square each X score (B8), one at a time, then add all squared X scores (F).
Square each Y score (8), one at a time, then add all squared ¥ scores (9).
Substitute numbers into formulas (10) and solve for SP” 55, and SS},
Substitute into formula (11) and solve for r.

B. DATA AND COMPUTATIONS

CARDS 4 B 8
FRIEND SENT, X RECEIVED, ¥ XY Xz ¥?
Doris 13 14 182 169 196
Steve 9 18 162 81 324
Mike 7 12 84 49 144
Andrea 5 10 50 25 100
John 1 6 b 1 36

1n=5 2XIX=35 3ZI¥=60 B EX¥=484 FIX*=325 BZIY =800

10 SPR}, =ZIF—{EX1{EF] =484 [3525[]) =484—-420=64
(ZX) e (357

55, =xx2 =1L —325-) 39524560
2
y
ss, =EF2——[EH) =E-[][]——{Eg]2 _800—720=80

11 r= F 4%

Jssxss}r J(80)(80) 80

V. Regression
TWO ROUGH PREDICTIONS

e A correlation analysis of the exchange of greeting cards by five friends for the
most recent holiday season suggests a strong positive relationship between
cards sent and cards received.

e When informed of these results, another friend, Emma, who enjoys receiving
greeting cards, asks you to predict how many cards she will receive during the
next holiday season, assuming that she plans to send 11 cards.

TWO ROUGH PREDICTIONS
e Predict “Relatively Large Number”
Rough Prediction for Emma:
e We could offer Emma a very rough prediction by recalling that cards sent and
received tend to occupy similar relative locations in their respective
distributions.
e Therefore, Emma can expect to receive a relatively large number of cards, sinceshe
plans to send a relatively large number of cards.

Predict “between 14 and 18 Cards”

e To obtain a slightly more precise prediction for Emma, refer to the scatter plotfor
the original five friends shown in Figure 7.1.

e Notice that Emma’s plan to send 11 cards locates her along the X axis between
the 9 cards sent by Steve and the 13 sent by Doris.

e Using the dots for Steve and Doris as guides, construct two strings of arrows, one
beginning at 9 and ending at 18 for Steve and the other beginning at 13 and ending
at 14 for Doris.

e We can predict that Emma’s return should be between 14 and 18 cards, the
numbers received by Doris and Steve.

4 4
20—
(Stave, 18) -—|¢— +— «— «— <—T (Steve)
15
(Doris, Doris)
- oris, 14) <—H—<—<—<—‘—¥<—‘—$ (Doris
2
3 t
P 10— s T T
5 t i
Bl t t
t f
t t
l T | T l | X
0 10 1 20
(Steve Q)T [
(Doris, 13)
Cards Sent
FIGURE 7.1

A rough prediction for Emma (using dots for Steve and Doris).

VI. A REGRESSION LINE

All five dots contribute to the more precise prediction, illustrated in Figure 7.2,
that Emma will receive 15.20 cards.

The solid line designated as the regression line in Figure 7.2, which guides the
string of arrows, beginning at 11, toward the predicted value of 15.20.

If all five dots had defined a single straight line, placement of the regression line
would have been simple; merely let it pass through all dots.

Predictive Errors

Figure 7.3 illustrates the predictive errors that would have occurred if the regression
line had been used to predict the number of cards received by the fivefriends.

Solid dots reflect the actual number of cards received, and open dots, always located
along the regression line, reflect the predicted number of cards received.

The largest predictive error, shown as a broken vertical line, occurs for Steve, whosent
9 cards.

Although he actually received 18 cards, he should have received slightly fewer than 14
cards, according to the regression line.

The smallest predictive error none for Mike, who sent 7 cards.

He actually received the 12 cards that he should have received, according to the
regression line.

Y
20—
Regrassion
Y Line
Predictive Error :
51— for Steve
° ; «
2
£
§ 10
o ® Known
s © Predicted
5 —
| | 1 |
0 5 10 15 20
Cards Sent
FIGURE 7.3

Predictive errors.

Total Predictive Error

The smaller the total for all predictive errors in Figure 7.3, the more favorable will be
the prognosis for our predictions.

The regression line to be placed in a position that minimizes the total predictive error,
that is, that minimizes the total of the vertical discrepancies between the solid and open
dots shown in Figure 7.3.

(a) Predict the approximate rate of inflation, given an unemployment rate of 5 percent.
(b) Predict the approximate rate of inflation, given an unemployment rate of 15 percent.

Progress Check *7.1 To check your understanding of the first part of this chapter, make
predictions using the following graph.

= B
=
o
2
& s
@ Regression
T al— Line
=
=
= 2
=
| | | |
4]] 10 15 20

Unemployment Rate (percent)

7.1 (a) approximately 5-6 percent
(b) approximately 2—3 percent

VII. LEAST SQUARES REGRESSION LINE

e To avoid the arithmetic standoff of zero always produced by adding positive and
negative predictive errors

e the placement of the regression line minimizes the total squared predictive
error.

e When located like this, the regression line is often referred to as the least
squares regression line.

Least Squares Regression Equation

Happily, an equation pinpoints the exact least squares regression line for any scat-
terplot. Most generally, this equation reads:

LEAST SQUARES REGRESSION EQUATION
Y'=bX +a (7.1)

where ¥ represents the predicted value (the predicted number of cards that will be
received by any new friend, such as Emma); X represents the known value (the known
number of cards sent by any new friend); and b and a represent numbers calculated
from the original correlation analysis, as described next.®

Finding Values of b and a

To obtain a working regression equation, solve each of the following expressions,
first for b and then for a, using data from the original correlation analysis. The expres-
sion for b reads:

SOLVING FOR b

b=r :
S8, (1.2)

where r represents the correlation between X and Y (cards sent and received by the five
friends); §§ represents the sum of squares for all ¥ scores (the cards received by the

five friends); and S5, represents the sum of squares for all X scores (the cards sent by
the five friends).
The expression for a reads:

SOLVING FOR a

a=Y-bX (7.3)

where ¥ and X refer to the sample means for all ¥ and X scores, respectively, and b 1s
defined by the preceding expression.

The values of all terms in the expressions for b and a can be obtained from the
original correlation analysis either directly, as with the value of r, or indirectly, as with
the values of the remaining terms: S5, S5, ¥, and X. Table 7.1 illustrates the computa-
tional sequence that produces a least squares regression equation for the greeting card
example, namely,

Y'=80(X)+6.40

where .80 and 6.40 represent the values computed for b and a, respectively.

Table 7.1
DETERMINING THE LEAST SQUARES REGRESSION EQUATION

A. COMPUTATIONAL SEQUENCE

Determine values of 55, SS ’ and r (1) by referring to the onginal correlation analysis
in Table 6.3.

Substitute numbers into the formula (2) and solve for b.

Assign values to X and ¥ (3) by referring to the original correlation analysis in

Table 6.3.

Substitute numbers into the formula (4) and solve for a.

Substitute numbers for b and a in the least squares regression equation (9).

B. COMPUTATIONS

1 S5 - 80*
S8, = 80*
r=.80
55 80
b: _!l'- =.B{] —=.B{]
2 b=riss, =Yg
3 E_ ?ii
V=12"

a=Y —(b)(X)=12—(.80)(7)=12-5.60 = 6.40
Y = (b)(X)+a
(.80)(X)+6.40

Key Property

e Once numbers have been assigned to b and a, as just described, the least squares
regression equation emerges as a working equation with a most desirable property:

e |t automatically minimizes the total of all squared predictive errors for known Y
scores in the original correlation analysis.

Solving for Y’

e Inits present form, the regression equation can be used to predict the number of
cards that Emma will receive, assuming that she plans to send 11 cards.
e Simply substitute 11 for X and solve for the value of Y’ as follows:

¥' = &0(11)+6.40
= 8.80+6.40
= 15.20

e Even when no cards are sent (X = 0), we predict a return of 6.40 cards because ofthe
value of a.

e Also, notice that sending each additional card translates into an increment of
only .80 in the predicted return because of the value of b.

e Whenever b has a value less than 1.00, increments in the predicted return will
lag—by an amount equal to the value of b, that is, .80 in the present case—
behind increments in cards sent.

e |[f the value of b had been greater than 1.00, then increments in the predicted
return would have exceeded increments in cards sent.

A Limitation
e Emma might survey these predicted card returns before committing herself to a
particular card investment. There is no evidence of a simple cause-effect
relationship between cards sent and cards received.

Progress Check *7.2 Assume that an rof .30 describes the relationship between edu-
cational level (highest grade completed) and estimated number of hours spent reading each
week. More specifically:

EDUCATIONAL LEVEL (X) WEEKLY READING TIME (Y)
X=13 Y= 8
SS =25 58,=50
r=.30

(a) Determine the least squares equation for predicting weekly reading time from educational
level.

(b) Faith's education level is 15. What is her predicted reading time?

(c) Keegan's educational level is 11. What is his predicted reading time?

7.2 (a) b= \/g—-g(BO) = 42;a=8-(42)(13) =254

(b) Y =(42)(15) + 2.54 = 8.84
(¢) YV =(42)(11)+254=7.16

VIll. STANDARD ERROR OF ESTIMATE,s y | x

e Emma’s investment of 11 cards will yield a return of 15.20 cards, we would be
surprised if she actually received 15 cards.

e |tis more likely that because of the imperfect relationship between cards sent and
cards received,

e Emma’s return will be some number other than 15.

e Although designed to minimize predictive error, the least squares equation doesnot
eliminate it.

Finding the Standard Error of Estimate

The estimate of error for new predictions reflects our failure to predict the number
of cards received by the onginal five friends, as depicted by the discrepancies between
solid and open dots in Figure 7.3. Known as the standard error of estimate and symbol-
ized as s . this estimate of predictive error complies with the general format for any
sample standard deviation, that is, the square root of a sum of squares term divided by
its degrees of freedom. (See Formula 4.10 on page 76.) The formula for S reads:

STANDARD ERROR OF ESTIMATE (DEFINITION FORMULA)

. = SS_‘FII . E{r_}'"}z
ix Un—E \ n-2 (7.4)

where the sum of squares term in the numerator, 8§ _, represents the sum of the squares
for predictive errors, ¥ — ¥, and the degrees of freedom term in the denominator,
n — 2, reflects the loss of two degrees of freedom because any straight line, including
the regression line, can be made to coincide with two data points. The symbol 5 is
read as “s sub y given x.”)
Although we can estimate the overall predictive error by dealing directly with pre-
dictive errors, ¥ — Y, it is more efficient to use the following computation formula:

STANDARD ERROR OF ESTIMATE (COMPUTATION FORMULA)

{5&,(1-?]
S.I: - - @
o n—2 (7.5)

where 55 is the sum of the squares for ¥ scores (cards received by the five friends),
that is,

(zr)

n

55, =L(Y-¥)=Zr -

and r is the correlation coefficient (cards sent and received).

Key Property

The standard error of estimate represents a special kind of standard deviation that
reflects the magnitude of predictive error.

You might find it helpful to think of the standard error of estimate, 5, as a
rough measure of the average amount of predictive error—that is, as a rough
measure of the average amount by which known Y values deviate from their
predicied ¥’ values.*

The value of 3.10 for 5_, as calculated in Table 7.3, represents the standard devia-
tion for the discrepancies &IWEEL'I known and predicted card returns originally shown
in Figure 7.3. In its role as an estimate of predictive error, the value of 5 can be
attached to any new prediction. Thus, a concise prediction statement may read: “The
predicted card return for Emma equals 15.20 £ 3.10." in which the latter term serves
as a rough estimate of the average amount of predictive error, that is, the average
amount by which 15.20 will either overestimate or underestimate Emma’s true card
return.

Table 7.3
CALCULATION OF THE STANDARD ERROR OF ESTIMATE, 5,

A. COMPUTATIONAL SEQUENCE
Assign values to 55_and r (1) by referning to previous work with the least squares
regression equation in Table 7.1.
Substitute numbers into the formula (2) and solve for 5,

B. COMPUTATIONS
1 55, =80
r=.80

2
) {ssj,n—rz} _\]B"(1'[-5“]) _ [0(36) [2880 em
Tz N 52 V3 '\j g V0

=3.10

Importance of r

Substituting a value of 1 for r, we obtain

S8y = S8, (1=r")=S5,[1-(1)"] = 58,[1-1] = 55,[0] = 0

substituting a value of O for r in the numerator of Formula 7.5, we obtain

SSyx = 88, (1-r*) = S5,[1-(0)*] = §5,[1-0] = S5,[1] = S5,

Progress Check *7.3

(a) Calculate the standard error of estimate for the data in Question 7.2 on page 132, assum-
ing that the correlation of .30 is based on n = 35 pairs of observations.

(b) Supply a rough interpretation of the standard error of estimate.

2
7.3 (a) syx= 50(13;5:;0])= 50:5':?1) =4/1.38=1.17

ASSUMPTIONS
Linearity

e Use of the regression equation requires that the underlying relationship be linear.

Homoscedasticity

e Use of the standard error of estimate, sy|x, assumes that except for chance, the dots
in the original scatterplot will be dispersed equally about all segments of the
regression line.

e when the scatterplot reveals a dramatically different type of dot cluster, such as
that shown in Figure 7.4.

e Thestandard error of estimate for the data in Figure 7.4 should be used cautiously,since
its value overestimates the variability of dots about the lower half of the regression
line and underestimates the variability of dots about the upper half of the regression
line.

Regression Line

FIGURE 7.4
Violation of homoscedasticity assumption. (Dots lack equal
variability about all line segments.)

INTERPRETATION OF r?

e The squared correlation coefficient, r2, provides us a key interpretation of the
correlation coefficient and also a measure of predictive accuracy that
supplements the standard error of estimate, sy|x.

Repetitive Prediction of the Mean

e Pretend that we know the Y scores (cards received), but not the corresponding X
scores (cards sent), for each of the five friends.

e Lacking information about the relationship between X and Y scores, we could not
construct a regression equation and use it to generate a customized prediction, Y’',for
each friend.

e We mount a primitive predictive effort by always predicting the mean, Y, for eachof
the five friends’ Y scores.

e The repetitive prediction of Y for each of the Y scores of all five friends will supplyus
with a frame of reference against which to evaluate our customary predictive effort
based on the correlation between cards sent (X) and cards received (Y).

Predictive Errors

Panel A of Figure 7.5 shows the predictive errors for all five friends when the mean for
all five friends, Y, of 12 (shown as the mean line) is always used to predict each of their
five Y scores.

Panel B shows the corresponding predictive errors for all five friends when a series of
different Y’ values, obtained from the least squares equation (shown as the least
squares line), is used to predict each of their five Y scores.

Panel A of Figure 7.5 shows the error for John when the mean for all five friends, Y, of 12
is used to predict his Y score of 6.

Shown as a broken vertical line, the error of -6 for John (fromY-Y =6 -12 = -6)
indicates that Y overestimates John’s Y score by 6 cards. Panel B shows a smaller error
of -1.20 for John when a Y’ value of

7.20 is used to predict the same Y score of 6.

This Y’ value of 7.20 is obtained from the least squares equation, where the number of
cards sent by John, 1, has been substituted for X.

¥' = B0(X)+6.40
= .80(1)+6.40
= 7120

Error Variability (Sum of Squares)
The sum of squares of any set of deviations, now called errors, can be calculated by first
squaring each error (to eliminate negative signs), then summing all squared errors.

S8, =3(Y — ¥’

Using the errors for the five friends shown in Panel A of Figure 7.5, this becomes
A =[(=6)" +(=2)* +0* +6% +27] =80
The error variability for the customized predictions from the least squares equation

can be designated as 55, since each } score is expressed as a squared deviation from
its corresponding ¥ and then summed, that is

S8y = Z(Y =Y')
Using the errors for the five friends shown in Panel B of Figure 7.5, we obtain:

S8 =[(=1.2)" +(=0.4)* + 0% +(4.4)* +(—2.8)"]1=28.8

A. Ermrors Using Mean

-k
o

Cards Recs ved
]

15

-t
(=]

Cards Recaived

5= John
| | |
0 5 10 15
Cards Sent
FIGURE 7.5

Predictive errors for five friends.

Proportion of Predicted Variability

SSy measures the total variability of Y scores that occurs after only primitive
predictions based on Y are made while SSy|x measures the residual variability of Y
scores that remains after customized leastsquare predictions are made.

The error variability of 28.8 for the least squares predictions is much smaller than the
error variability of 80 for the repetitive prediction of Y, confirming the greater accuracy
of the least squares predictions

apparent in Figure 7.5.

To obtain an SS measure of the actual gain in accuracy due to the least squares
predictions, subtract the residual variability from the total variability, that is, subtract
SSy|x from SSy, to obtain

This result, .64 or 64 percent, represents the proportion or percent gain in predictive
accuracy when the repetitive prediction of Y is replaced by a series of customized Y’
predictions based on the least squares equation.

S5, =55y, =80—-28.8=51.2

To express this difference, 51.2, as a gain in accuracy relative to the original error
variability for the repetitive prediction of ¥, divide the above difference by SS , that is,
SSy—SSy: ~ 80-288 512

5§, 80 80

¥

64

the square of the correlation coefficient, 2, always indicates the proportion of
total variability in one variable that is predictable from its relationship with the
other variable.

Expressing the equation for r*in symbols, we have:

rZINTERPRETATION
2 _ SSy. _ SSy = SSyy
SS}. SSY (7.6)

where the one new sum of squares term, §S , is simply the variability explained by or
predictable from the regression equation, that is,

S8, = X(Y'-Y)

Accordingly, r* provides us with a straightforward measure of the worth of our least
squares predictive effort.*

r 2 Does Not Apply to Individual Scores:

e The total variability of all Y scores—as measured by SSY—can be reduced by 64
percent when each Y score is replaced by its corresponding predicted Y’ score andthen
expressed as a squared deviation from the mean of all observed scores.

e Thus, the 64 percent represents a reduction in the total variability for the five Y scores
when they are replaced by a succession of predicted scores, given the leastsquares
equation and various values of X.

Small Values of r 2

e When transposed from r to r2, Cohen’s guidelines, state that a value of r2in the
vicinity of .01, .09, or .25 reflects a weak, moderate, or strong relationship,
respectively.

r 2Doesn’t Ensure Cause-Effect

e [fthe correlation between mental health scores of sixth graders and their weaningages
as infants equals .20, we cannot claim, therefore, that (.20)(20) = .04 or 4 percent of
the total variability in mental health scores is caused by the differencesin weaning
ages.

e r2js indicating the proportion or percent of predictable variability, you also might
encounter references to r2 as indicating the proportion or percent of explained
variability.

¢ In this context, “explained” signifies only predictability, not causality.

Progress Check *7.4 Assume that an rof .30 describes the relationship between educa-
tional level and estimated hours spent reading each week.

(a) According to 2, what percent of the variability in weekly reading time is predictable
from its relationship with educational level?

(b) What percent of variability in weekly reading time is not predictable from this rela-
tionship?

(c) Someone claims that 9 percent of each person’s estimated reading time is predict-
able from the relationship. What is wrong with this claim?

Progress Check *7.5 Asindicated in Figure 6.3 on page 111, the correlation between the
IQ scores of parents and children is .50, and that between the IQ scores of foster parents and
foster children is .27.

(a) Does this signify, therefore, that the relationship between foster parents and foster
children is about one-half as strong as the relationship between parents and children?

(b) Use r to compare the strengths of these two correlations.

7.4 (a) 9 percent predicted.

(b) 91 percent not predicted.
(c) 9 percent refers o the variability of alf estimated reading times.

7.5 (a) No

(b) The 7 of .25 for parents and children is about four times greater than the 7 of .07
for foster parents and foster children.

X. MULTIPLE REGRESSION EQUATIONS

Any serious predictive effort usually culminates in a more complex equation that
contains not just one but several X, or predictor variables.

For instance, a serious effort to predict college GPA might culminate in the
following equation:

Y’ = 410(X,)+.005(X,)+.001(X;) +1.03

where Y’ represents predicted college GPA and X1, X2, and X3 refer to high
school GPA, IQ score, and SAT score, respectively.

By capitalizing on the combined predictive power of several predictor variables,
these multiple regression equations supply more accurate predictions for Y’ than
could be obtained from a simple regression equation.

XI. REGRESSION TOWARD THE MEAN

Regression toward the mean refers to a tendency for scores, particularly extreme
scores, to shrink toward the mean.

For example, because of regression toward the mean, we would expect that
students who made the top five scores on the first statistics exam would not make
the top five scores on the second statistics exam. Although all five studentsmight
score above the mean on the second exam, some of their scores would regress back
toward the mean.

On the second test, even though the scores of these five students continue to
reflect an above-average permanent component, some of their scores will suffer
because of less good luck or even bad luck.

The net effect is that the scores of at least some of the original five top studentswill
drop below the top five scores—that is, regress back toward the mean—onthe
second exam.

Appears in Many Distributions

Regression toward the mean appears among subsets of extreme observations fora
wide variety of distributions.

It appears for the subset of best (or worst) performing stocks on the New York Stock
Exchange across any period, such as a week, month, or year.

It also appears for the top (or bottom) major league baseball hitters duringconsecutive
seasons. Table 7.4 lists the top 10 hitters in the major leagues during2014 and shows
how they fared during 2015.

e Notice that 7 of the top 10 batting averages regressed downward, toward 260s,the
approximate mean for all hitters during 2015.

The Regression Fallacy

e The regression fallacy is committed whenever regression toward the mean is
interpreted as a real, rather than a chance, effect.

e A classic example of the regression fallacy occurred in an Israeli Air Force studyof
pilot training.

e Some trainees were praised after very good landings, while others were
reprimanded after very bad landings.

e On their next landings, praised trainees did more poorly and reprimanded
trainees did better.

e Avalid conclusion considers regression toward the mean.

Table 7.4
REGRESSION TOWARD THE MEAN: BATTING AVERAGES OF TOP
10 HITTERS IN MAJOR LEAGUE BASEBALL
DURING 2014 AND HOW THEY FARED DURING 2015

BATTING AVERAGES*

TOP 10 HITTERS (2014) 2014 2015 REGRESS TOWARD MEAN?
1. J. Alture 341 313 Yes
2. V. Martinez 335 .282 Yes
3. M. Brantley 327 310 Yes
4. A. Beltre 324 287 Yes
5. J.Abreu 317 .290 Yes
6. R. Cano 314 287 Yes
7. A. McCutchen 314 292 Yes
8. M. Cabrera 313 338 No
9. B. Posey 311 318 No

10. B. Revere .306 .306 No

Avoiding the Regression Fallacy

e The regression fallacy can be avoided by splitting the subset of extreme observations
into two groups.

e Inthe previous example, one group of trainees would continue to be praised aftervery
good landings and reprimanded after very poor landings.

e Asecond group of trainees would receive no feedback whatsoever after very goodand
very bad landings.

e In effect, the second group would serve as a control for regression toward the mean,
since any shift toward the mean on their second landings would be due to chance.

e Most important, any observed difference between the two groups would be viewed
as a real difference not attributable to the regression effect.

Progress Check *7.6 After a group of college students attended a stress-reduction clinic,
declines were observed in the anxiety scores of those who, prior to attending the clinic, had
scored high on a test for anxiety.

(a) Can this decline be attributed to the stress-reduction clinic? Explain your answer.

(b) What type of study, if any, would permit valid conclusions about the effect of the stress-
reduction clinic?
Answers on page 429.

7.6 (a) No, because the observed decline could be due to regression toward the mean,

given that the students scored high on the anxiety test prior to attending the clinic.

(b) An experiment where students who score high on the anxiety test are randomly
assigned either to attend the stress-reduction clinic or to be in a control group.

UNIT IV PYTHON LIBRARIES FOR DATA WRANGLING

Basics of Numpy arrays —aggregations —~computations on arrays —comparisons, masks, boolean logic -
fancy indexing - structured arrays — Data manipulation with Pandas - data indexing and selection -
operating on data - missing data - Hierarchical indexing - combining datasets - aggregation and
grouping - pivot tables

[. Basics of Numpy arrays:
NumPy array manipulation to access data and subarrays, and to split, reshape, and join the arrays.

Basic array manipulations:
Attributes of arrays
Determining the size, shape, memory consumption, and data types of arrays
Indexing of arrays
Getting and setting the value of individual array elements
Slicing of arrays
Getting and setting smaller subarrays within a larger array
Reshaping of arrays
Changing the shape of a given array
Joining and splitting of arrays
Combining multiple arrays into one, and splitting one array into many

NumPy Array Attributes

1. Creating numpy arrays:

The Three random arrays: a one-dimensional, two-dimensional, and three-dimensional array.

We’ll use NumPy’s random number generator, which we will seed with a set value in order to ensure that the

same random arrays are generated each time this code is run:

In[1]: import as
np.random.seed(0) # seed for reproducibility

x1 = np.random.randint(10, slze=6) # One-dimensional array
X2 = np.random.randint(10, slze=(3, 4)) # Two-dimensional array
%3 = np.random.randlnt(10, slze=(3, 4, 5)) # Three-dimensional array

2. Attributes:

Each array has attributes ndim (the number of dimensions), shape (the size of each dimension), and size (the
total size of the array):

In[2]: print("x3 ndim: ", x3.ndlm)
print("x3 shape:", x3.shape)
print("x3 slze: ", x3.slze)

X3 ndim: 3
x3 shape: (3, 4, 5)
%3 slze: 60

In[3]: print("dtype:", x3.dtype)
dtype: inte4

In[4]: print{"itemsize:", x3.1ltemslze, "bytes")
print("nbytes:", x3.nbytes, "bytes")

1ltemsilze: 8 bytes
nbytes: 480 bytes

3. Array Indexing: Accessing Single Elements

In a one-dimensional array, you can access the ith value (counting from zero) by specifying the desired index in
square brackets, just as with Python lists:

In[5]: x1
Out[5]: array([5, ©, 3, 3, 7, 9]}
In[6]: x1[@]
Out[6]: 5
In[7]: =x1[4]
Qut[7]: 7
To index from the end of the array, you can use negative indices:
In[8]: =x1[-1]
Out[8]: 9
In[2]: =x1[-2]
Out[9]: 7
In a multidimensional array, you access items using a comma-separated tuple of
indices:
In[18]: x2

Out[1e]: array([[3, 5., 2, 4].
[7, 6, 8, 8].
[1, 6, 7, T1])

In[11]: x2[0, 0]
Out[11]: 3

In[12]: x2[2, @]
Out[12]: 1
In[13]: x2[2, -1]
Out[13]: 7
You can also modify values using any of the above index notation:

In[14]: x2[8, @] = 12
2
Out[14]: array([[12, 5, 2, 4],

[7, 6, 8, B8],
[1, 6, 7, 71]

4. Array Slicing: Accessing Subarrays

We can also use them to access subarrays with the slice notation, marked by the colon (:) character.
The NumPy slicing syntax follows that of the standard Python list; to access a slice of an array X, use this:

X[start:stop:step]
If any of these are unspecified, they default to the values start=0, stop=size of dimension, step=1.

One-dimensional subarrays

In[16]: x = np.arange(18)
X

Out[16]: array([e, 1, 2, 3, 4, 5, 6, 7, B, 9]
In[17]: x[:5] # first five elements

Out[17]: array([e, 1, 2, 3, 4])

In[18]: x[5:] # elements after index 5
Out[18]: array([5, 6, 7, &, 9])

In[19]: x[4:7] # middle subarray

Out[19]: array([4, 5, &])

In[22]: %x[::-1] # all elements, reversed
Out[22]: array([9, 8, 7, 6, 5, 4, 3, 2, 1, 8])
In[23]: x[5::-2] # reversed every other from index 5

Out[23]: array([5, 3, 1]}

Multidimensional subarrays

Multidimensional slices work in the same way, with multiple slices separated by commas.
For example:

In[24]: x2

Out[24]: array([[12, 5, 2, 4],

[7, &, 8, B8],

[1, 6, 7, 71D
In[25]: x2[:2, :3] # two rows, three columns
Out[25]: array([[12, 5, 2],

[7, 6, 811

In[26]: x2[:3, ::2] # all rows, every other column

Out[26]: array([[12, 2],

[7., 8],
[1, 71D
Finally, subarray dimensions can even be reversed together:
In[27]: x2[z:-1, :1:-1]
Out[27]: array([[7, 7, 6, 1],
[8 8, 6, 7],
[4, 2, 5,12]D)

5. Accessing array rows and columns

One commonly needed routine is accessing single rows or columns of an array.
We can do this by combining indexing and slicing, using an empty slice marked by a single colon (:):

In[29]: print(x2[@, :]) # first row of x2
[12 5 2 4]
In the case of row access, the empty slice can be omitted for a more compact syntax:
In[36]: print({x2[0]) # equivalent to x2[8, :]
[12 5 2 4]

6. Subarrays as no-copy views

NumPy array slicing differs from Python list slicing: in lists, slices will be copies.
The array slices is that they return views rather than copies of the array data
Consider our two-dimensional array from before:

In[31]: print(x2)

[[12 5 2 4]
[7 6 8 8]
[1 6 7 7]1]

Let’s extract a 2x2 subarray from this:

In[32]: x2_sub = x2[:2, :2]
print(x2_sub)

[[12 5]
[7 6]]
Now if we modify this subarray, we'll see that the original array is changed! Observe:

In[33]: x2_sub[@, 6] = 99
print(x2_sub)

[[99 5]

[7 6]]
In[34]: print(x2)
[[99 5 2 4]

[7 6 8 8]
[1 6 7 7]

7. Creating copies of arrays

Despite the nice features of array views, it is sometimes useful to instead explicitly copy the data within an
array or a subarray.
This can be most easily done with the copy() method:

In[35]: x2 sub copy = x2[:2, :2].copy()
print(x2_sub_copy)

[[99 5]
[7 6]]

If we now modify this subarray, the original array is not touched:
In[36]: x2_sub_copy[0, 0] = 42
print(x2_sub_copy)

[[42 5]
[7 6]]

In[37]: print(x2)

[[99 5 2 4]
[7 6 8 8]
[1 6 7 7]

8. Reshaping of Arrays

The most flexible way of doing this is with the reshape() method.
For example, if we want to put the numbers 1 through 9 in a 3X3 grid, we can do the following:

In[38]: grid = np.arange(l, 18).reshape((3, 3))
print{grid)

[[1 23]
[4 5 6]
[7 8 9]]

Another common reshaping pattern is the conversion of a one-dimensional array into a two-dimensional row or
column matrix.

We can do this with the reshape method, or more easily by making use of the newaxis keyword within a slice
operation:

In[39]: x = np.array([1, 2, 3]

row vector via reshape
x.reshape((1, 3))

out[39]: array([[1, 2, 31])

In[48]: # row vector via newaxis
x[np.newaxls, :]

Out[40]: array([[1, 2, 31D

In[41]: # column vector via reshape
x.reshape((3, 1))

Out[41]: array([[1],
21,
(31D

In[42]: # column vector via newaxis
®[:, np.newax1s]

Out[42]: array([[1],
[21.
(31D

9. Array Concatenation and Splitting
It’s also possible to combine multiple arrays into one, and to conversely split a single array into multiple arrays.
Concatenation of arrays

Concatenation, or joining of two arrays in NumPy, is primarily accomplished through the routines
np.concatenate, np.vstack, and np.hstack. np.concatenate takes a tuple or list of arrays as its first argument

In[43]: x = np.array([1, 2, 3])
y = np.array([3, 2, 1])
np.concatenate([x, v])
Out[43]: array([1, 2, 3, 3, 2, 1])
You can also concatenate more than two arrays at once:

In[44]: z = [99, 99, 99]
print{np.concatenate([x, y, z]))

[1 2 3 3 2 19999 99]
np.concatenate can also be used for two-dimensional arrays:

In[45]: grid = np.array([[1, 2, 3],
[4, 5, 61D

In[46]: # concatenate along the first axis
np.concatenate([grid, grid])

Out[46]: array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 61D

In[47]: # concatenate along the second axis (zero-indexed)
np.concatenate([grid, grid], axls=1)
out[47]: array([[1, 2, 3, 1, 2, 3],
[4, 5. 6, 4, 5, 6]
For working with arrays of mixed dimensions, it can be clearer to use the np.vstack
(vertical stack) and np.hstack (horizontal stack) functions:
In[48]: x = np.array([1, 2, 3])

grid = np.array([[9, 8, 7].
[6, 5, 41D

vertically stack the arrays

np.vstack([x, grid])

Out[48]: array([[1, 2, 3],
[9, 8, 71,
[6, 5, 411)

In[49]: # horizontally stack the arrays
y = np.array([[99],

[2210)
np.hstack([grid, y])

Out[49]: array([[9, 8, 7, 99],
[6. 5 4,91D

Similarly, np.dstack will stack arrays along the third axis.

Splitting of arrays
The opposite of concatenation is splitting, which is implemented by the functions np.split, np.hsplit, and
np.vsplit. For each of these, we can pass a list of indices giving the split points:

In[58]: x = [1, 2, 3, 99, 99, 3, 2, 1]
x1, x2, x3 = np.split(x, [3, 5])
print(x1, x2, x3)

[123][99 99] [3 2 1]

Notice that N split points lead to N + 1 subarrays. The related functions np.hsplit
and np.vsplit are similar:

In[51]: grid = np.arange(16).reshape((4, 4))
grid

Out[51]: array([[&, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 18, 11],
[12, 13, 14, 15]])

In[52]: upper, lower = np.vsplit(grid, [2])
print(upper)
print(lower)

[[e 12 3]
[456 7]]

[[8 9 10 11]
[12 13 14 15]]

In[53]: left, right = np.hsplit{gorid, [2])
print(left)
print{right)

[[e 1]
[4 5]
[8 9]
[12 13]]

[[2 3]
[6 7]
[10 11]
[14 15]]

imilarly, np.dsplit will split arrays along the third axi:

I1. Aggregations: Min, Max, and Everything in Between

1. Summing the Values in an Array

As a quick example, consider computing the sum of all values in an array. Python
itself can do this using the built-in sum function:
In[1]: import as

In[2]: L = np.random.random{160)
sum(L)

Out[2]: 55.61209116604941

The syntax is quite similar to that of NumPy’s sum function, and the result is the same
in the simplest case:

In[3]: np.sum(L)
Out[3]: 55.612091166049424

However, because it executes the operation in compiled code, NumPy’s version of the
operation is computed much more quickly:

In[4]: blg_array = np.random.rand(108608008)
%timelt sum(blg_array)
%timelt np.sum(blg_array)

10 loops, best of 3: 104 ms per loop
1000 loops, best of 3: 442 ps per loop

Be careful, though: the sum function and the np.sum function are not identical, which can sometimes lead to
confusion! In particular, their optional arguments have different meanings, and np.sum is aware of multiple
array dimensions, as we will see in the following section.

2. Minimum and Maximum

Similarly, Python has built-in min and max functions, used to find the minimum value
and maximum value of any given array:

In[5]: min(blg_array), max(blg array)

Out[5]: (1.1717128136634614e-06, ©.9999976784968716)
NumPy’s corresponding functions have similar syntax, and again operate much more
quickly:

In[6]: np.mln{blg_array)., np.max(blg_array)

Out[6]: (1.1717128136634614e-06, ©.9999976784968716)

In[7]: %¥timelt min{blg_array)
¥timelt np.min{blg_array)

1® loops, best of 3: 82.3 ms per loop
1860 loops, best of 3: 497 ps per loop

For min, max, sum, and several other NumPy aggregates, a shorter syntax is to use
methods of the array object itself:

In[8]: print(blg_array.min(), blg_array.max(), blg_array.sum())
1.17171281366e-06 8.999997678497 459911.628197

Whenever possible, make sure that you are using the NumPy version of these aggre-
gates when operating on NumPy arrays!

3. Multidimensional aggregates

One common type of aggregation operation is an aggregate along a row or column.
Say you have some data stored in a two-dimensional array:

In[2]: M = np.random.random{(3, 4))
print{M)

[[©.8967576 @.03783739 0.75952519 0.06682827]
[©.8354065 ©.99196818 0.19544769 ©.43447084]
[8.66859307 ©.15038721 0.37911423 0.6687194]]

By default, each NumPy aggregation function will return the aggregate over the entire
array:

In[16]: M.sum()
Out[18]: 6.0B50555667387118

Aggregation functions take an additional argument specifying the axis along which
the aggregate is computed. For example, we can find the minimum value within each
column by specifying axis=0:

In[11]: M.mln(ax1ls=0)

Out[11]: array([©.668593087, ©.03783739, 0.19544769, 0.06682827])
The function returns four values, corresponding to the four columns of numbers.
Similarly, we can find the maximum value within each row:

In[12]: M.max(axls=1)

out[12]: array([©.8967576 , ©.99196818, 0.6687194])

Other aggregation functions

Table 2-3. Aggregation functions available in NumPy

Function Name NaN-safe Version Description

np.sum np.nansum Compute sum of elements
np.prod np.nanprod Compute product of elements
np.mean np.nanmean Compute median of elements
np.std np.nanstd Compute standard deviation
np.var np.nanvar Compute variance

np.min np.nanmin Find minimum value
np.max np.nanmax Find maximum value
np.argmin np.nanargmin Find index of minimum value
np.argmax np.nanargmax Find index of maximum value
np.median np.nanmedian Compute median of elements

np.percentlle np.nanpercentile Compute rank-based statistics of elements
np.any N/A Evaluate whether any elements are true
np.all N/A Evaluate whether all elements are true

Example: What Is the Average Height of US Presidents?

Aggregates available in NumPy can be extremely useful for summarizing a set of values.

As a simple example, let’s consider the heights of all US presidents.

This data is available in the file president_heights.csv, which is a simple comma-separated list of
labels and values:

In[12]: 'head -4 data/prestident helghts.cswv

order ,name ,helght{cm)
1,George Washlngton, 189

2,John Adams, 178
3,Thomas Jefferson,189

WEe'll use the Pandas package, which we'll explore more fully in Chapter 3, to read the
file and extract this information (note that the heights are measured in centimeters):
In[14]: import as
data = pd.read_csv('data/president_heights.csv')

heights = np.array(data['height{cm}'])
print(heights)

[189 178 189 163 183 171 185 168 173 183 173 173 175 178 183 193 178 173
174 183 183 168 178 178 182 188 183 178 182 188 175 17¥9 183 1593 182 183
177 185 1BS8 188 182 185]

Now that we have this data array, we can compute a variety of summary statistics:

In[15]: print("Mean height: ", heights.mean())
print("Standard deviation:", heights.std())
print("Minimum height: ", heights.min())
print("Maximum height: ", heights.max())

Mean height: 179.738095238

Standard deviation: 6.93184344275

Minimum height: 163

Maximum height: 193

Note that in each case, the aggregation operation reduced the entire array to a single
summarizing value, which gives us information about the distribution of values. We
may also wish to compute quantiles:

In[16]: print("25th percentile: ", np.percentile(heights, 25))
print("Median: ", np.median{heights))
print("75th percentile: ", np.percentile(heights, 75))

25th percentile: 174.25

Median: 1B2.8

75th percentile: 183.@

‘We see that the median height of US presidents is 182 cm, or just shy of six feet.

Of course, sometimes it's more useful to see a visual representation of this data, which
we can accomplish using tools in Matplotlib (we'll discuss Matplotlib more fully in
Chapter 4). For example, this code generates the chart shown in Figure 2-3:

In[17]: %matplotlib inline
import as
import ; seaborn.set() # set plot style

In[18]: plt.hist(heights)
plt.title('Height Distribution of US Presidents')
plt.xlabel('height (cm)"')
plt.ylabel('number'});

Height Distnbution of LS Presdents

numaer

180 185 16840 185

heigiht (om)

Figure 2-3. Histogram of presidential heights

I11. Computation on Arrays: Broadcasting

Another means of vectorizing operations is to use NumPy’s broadcasting functionality. Broadcasting is simply
a set of rules for applying binary ufuncs (addition, subtraction, multiplication, etc.) on
arrays of different sizes.

Introducing Broadcasting

Recall that for arrays of the same size, binary operations are performed on an element-by-element basis:
Broadcasting allows these types of binary operations to be performed on arrays of different sizes—for example,
we can just as easily add a scalar (think of it as a zero dimensional array) to an array:

In[1]: import as

In[2]: @ = np.array([&, 1, 2])
b = np.array([5, 5, 5])
a+b

Out[2]: array([5, 6, T7])

In[3]: a + 5
Out[3]: array([5, &, 7])

We can think of this as an operation that stretches or duplicates the value 5 into the
array [5, 5, 5], and adds the results. The advantage of NumPy’s broadcasting is that
this duplication of values does not actually take place, but it is a useful mental model
as we think about broadcasting.

We can similarly extend this to arrays of higher dimension. Observe the result when
we add a one-dimensional array to a two-dimensional array:

In[4]: M = np.ones((3, 3))

M

Out[4]: array([[1., 1., 1.1,
[1., 1., 1.1,
[1., 1., 1.11)

In[5]: M + a

Out[5]: array([[1., 2., 3.1,
[1., 2., 3.1,
[1., 2., 3.1D)

Here the one-dimensional array a is stretched, or broadcast, across the second
dimension in order to match the shape of M.

While these examples are relatively easy to understand, more complicated cases can
involve broadcasting of both arrays. Consider the following example:

In[6]: @ = np.arange(3)
b = np.arange(3)[:, np.newaxis]
print{a)
print{b)
[6 1 2]
[rel
[1]
[21]
In[7T]: a + b

Out[7]: array([[®, 1, 2],
[1, 2, 3],
[z, 3, 411D

fp. arange(3)+5

L/ R 5 ILb |5 = 5167
np. ones{(3, 31)+np.arange(3)

1111 ol1]12 1123
1 1 (1 + 01 I = 1 L
11111 0opa e 11213
np. anes|(3, 1))+np.arange(3)

o Lu aji1]2 0l
1 i + | .aat =111z
1P E o | Lk 134

Figure 2-4. Visualization of NumPy broadcasting

The light boxes represent the broadcasted values: again, this extra memory is not
actually allocated in the course of the operation, but it can be useful conceptually to
imagine that it is.

Rules of Broadcasting

Broadcasting in NumPy follows a strict set of rules to determine the interaction between the two arrays:

* Rule 1: If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is
padded with ones on its leading (left) side.

* Rule 2: If the shape of the two arrays does not match in any dimension, the array with shape equal to 1 in that
dimension is stretched to match the other shape.

* Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

To make these rules clear, let’s consider a few examples in detail.

Broadcasting example 1
Let’s look at adding a two-dimensional array to a one-dimensional array:

In[&]: M
a

np.ones{{2, 3))
np.arange(3)

Let’s consider an operation on these two arrays. The shapes of the arrays are:

M.shape (2, 3)
a.shape = (3,)

We see by rule 1 that the array a has fewer dimensions, so we pad it on the left with
ones:

M.shape -= (2, 3)
a.shape -> (1, 3)

By rule 2, we now see that the first dimension disagrees, so we stretch this dimension
to match:

M.shape -> (2, 3)
a.shape -> (2, 3)
The shapes match, and we see that the final shape will be (2, 3):
In[2]: M + a
Out[2]: array([[1., 2., 3.],
[1., 2., 3.1}
Broadcasting example 2
Let’s take a look at an example where both arrays need to be broadcast:

In[18]: a
b

np.arange(3).reshape((3, 1))
np.arange(3)

Again, we'll start by writing out the shape of the arrays:

a.shape = (3, 1)
b.shape (3,)

Rule 1 says we must pad the shape of b with ones:

a.shape -= (3, 1)
b.shape -= (1, 3)

And rule 2 tells us that we upgrade each of these ones to match the corresponding
size of the other array:

a.shape ->» (3, 3)
b.shape -= (3, 3)
Because the result matches, these shapes are compatible. We can see this here:
In[11]: a + b
Out[11]: array([[®e, 1, 2],
[1, 2, 31,
[2, 3, 4]
Broadcasting example 3

Now let’s take a look at an example in which the two arrays are not compatible:

In[12]: M = np.ones((3, 2))
a = np.arange(3)

This is just a slightly different situation than in the first example: the matrix M is
transposed. How does this affect the calculation? The shapes of the arrays are:

M.shape = (3, 2)
a.shape = (3,)

Again, rule 1 tells us that we must pad the shape of a with ones:

M.shape -= (3, 2)
a.shape -= (1, 3)

By rule 2, the first dimension of a is stretched to match that of M:

M.shape -= (3, 2)
a.shape -» (3, 3)

Now we hit rule 3—the final shapes do not match, so these two arrays are incompati-
ble, as we can observe by attempting this operation:

Broadcasting in Practice

Broadcasting operations form the core of many examples we'll see throughout this
book. We'll now take a look at a couple simple examples of where they can be useful.

Centering an array

In the previous section, we saw that ufuncs allow a NumPy user to remove the need
to explicitly write slow Python loops. Broadcasting extends this ability. One com-

monly seen example is centering an array of data. Imagine you have an array of 10
observations, each of which consists of 3 values. Using the standard convention (see
“Data Representation in Scikit-Learn” on page 343), we'll store this in a 10x3 array:

In[17]: X = np.random.random{{12, 3))

We can compute the mean of each feature using the mean aggregate across the first
dimension:

In[18]: Xmean = X.mean{d)
Emean

Out[18]: array([©.53514715, 0.66567217, ©.44385899])

And now we can center the X array by subtracting the mean (this is a broadcasting
operation):

In[19]: X_centered = X - Xmean

To double-check that we've done this correctly, we can check that the centered array
has near zero mean:

In[28]: X_centerad.mean(d)
Out[28]: array([2.220446052-17, -7.77156117e-17, -1.66533454e-17])

To within-machine precision, the mean is now zero.

Plotting a two-dimensional function

One place that broadcasting is very useful is in displaying images based on two-
dimensional functions. If we want to define a function z = f{x, y), broadcasting can be
used to compute the function across the grid:

In[Z1]: & x and y have 58 steps from & to 5
*x = np.linspace(d, 5, 58)
y = np.linspace(@, 5, 50)[:, np.newaxis]

[Fa R *,]

Z = np.sin{x) ** 10 + np.cos(1@ + y * x) * mp.cos(x)

We'll use Matplotlib to plot this two-dimensional array (these tools will be discussed
in full in *Density and Contour Plots™ on page 241):

In[22]: %matplotlib inline
import as

In[Z3]: plt.imshow(z, origim='lower®, extent=[0, 5, @, 5],
amap="viridis")
plt.colorbar();

Loo

075

050

w

000

~

-0.25

-0.50
1

=-0.75

0

o 1

Figure 2-5. Visualization of a 2D array

IV. Comparisons, Masks, and Boolean Logic

This section covers the use of Boolean masks to examine and manipulate values within NumPy arrays. Masking
comes up when you want to extract, modify, count, or otherwise manipulate values in an array based on some
criterion: for example, you might wish to count all values greater than a certain value, or perhaps remove all

outliers that are above some threshold.
In NumPy, Boolean masking is often the most efficient way to accomplish these types of tasks.

Example: Counting Rainy Days

Imagine you have a series of data that represents the amount of precipitation each day
for a year in a given city. For example, here we'll load the daily rainfall statistics for
the city of Seattle in 2014, using Pandas (which is covered in more detail in Chap-
ter 3):

In[1]: import as
import as

use Pandas to extract rainfall inches as a NumPy array
rainfall = pd.read_csv{'data/Seattle2814.csv' }['PRCP'].values
inches = rainfall f 254 # 1/18mm -> inches

inches.shape

Out[1]: (365,)

The array contains 365 values, giving daily rainfall in inches from January 1 to
December 31, 2014.

In[2]: ¥matplotlib inline
import as
import ; seaborn.set() # set plot styles

In[3]: plt.hist{inches, 4a);

¥

150

i -— —

Figure 2-6. Histogram of 2014 rainfall in Seattle

One approach to this would be to answer these questions by hand: loop through the data, incrementing a
counter each time we see values in some desired range.

For reasons discussed throughout this chapter, such an approach is very inefficient, both from the standpoint of
time writing code and time computing the result.

Comparison Operators as ufuncs

NumPy also implements comparison operators such as < (less than) and > (greater than) as element-wise
ufuncs.

The result of these comparison operators is always an array with a Boolean data type.

All six of the standard comparison operations are available:

In[4]: x = np.array([1, 2, 3, 4, 51}

In[5]: %= = 3 # less than

Out[5]: array([True, True, False, False, False], dtype=bool)}
In[6]: =% = 3 & greater than

Out[&]: array([False, False, False, True, True], dtype=bool)
In[7]: =% == 3 # less than or equal

Out[7]: array([True, True, True, False, False], dtype=bool)}
In[8]: x »= 3 # greater than or equal

Out[8]: array([False, False, True, True, True], dtype=bool)
In[9]: x !'= 3 # not equal

Out[9]: array([True, True, False, True, True], dtype=bool)
In[18]: x = 31 # equal

Out[1@]: array([False, False, True, False, False], dtype=bool)

It is also possible to do an element-by-element comparison of two arrays, and to
include compound expressions:

In[11]: (2 * X) == (X ** 2)
Out[11]: array([False, True, False, False, False], dtype=bool)

As in the case of arithmetic operators, the comparison operators are implemented as
ufuncs in NumPy; for example, when you write x < 3, internally NumPy uses

np.less(x, 3). A summary of the comparison operators and their equivalent ufunc
is shown here:

Operator Equivalent ufunc

== np.equal

1= np.not_equal
< np.less

<= np.less_equal
= np.greater

= np.greater_equal

Working with Boolean Arrays

Given a Boolean array, there are a host of useful operations you can do. We'll work
with x, the two-dimensional array we created earlier:

In[14]: primt{x)
[[5833]
[7935]
[2 47 6]]
Counting entries
To count the number of True entries in a Boolean array, np.count_nonzero is useful:

In[15]: # how many values less than &7
np.count_nonzero(x < &)

Out[15]: 8

We see that there are eight array entries that are less than 6. Another way to get at this
information is to use np.sum; in this case, False is interpreted as , and True is inter-
preted as 1:

In[16]: np.sumi{x = 6)
Out[16]: 8

The benefit of sum() is that like with other NumPy aggregation functions, this sum-
mation can be done along rows or columns as well:

In[17]: # how many values less than & in each row?
np.sumi{x = 6, axls=1)

Qut[17]: array([4, 2, 2])

This counts the number of values less than 6 in each row of the matrix.

If we're interested in quickly checking whether any or all the values are true, we can
use (you guessed it) np.any() or np.all():

In[18]: # are there any values greater than 87
np.any{x = 8)

Out[18]: True

In[19]: # are there any values less than rzero?
np.any{x = @)

Out[19]: False

In[28]: # are all values less than 187
np.all{x = 18)

Out[28]: True

In[21]: # are all values equal to &7
np.all{x == &)

Qut[21]: False
np.all() and np.any() can be used along particular axes as well. For example:

In[22]: # are all values in each row less than 87
np.alli{x <« &, axis=1)

Qut[22]: array([True, False, True], dtype=bool)

Here all the elements in the first and third rows are less than 8, while this is not the
case for the second row.

Boolean operators
NumPy overloads these as ufuncs that work element-wise on (usually Boolean) arrays.

For example, we can address this sort of compound question as follows:
In[23]: np.sum{{inches = A8.5) & (lnches = 1))
Out[23]: 29

So we see that there are 29 days with rainfall between 0.5 and 1.0 inches.

Using the equivalence of A AND B and NOT (A OR B) (which you may remember if
you've taken an introductory logic course), we can compute the same result in a dif-
ferent manner:

In[24]: np.sum{~{ {ilmches <= 0.5) | (iLnches == 1)} })
Qut[24]: 29

Combining comparison operators and Boolean operators on arrays can lead to a wide
range of efficient logical operations.

The following table summarizes the bitwise Boolean operators and their equivalent
ufuncs:

Operator Equivalent ufunc

& np.biltwlise and
| np.biltwlise_or
" np.biltwlise xor

~ np.biltwlise_not

Boolean Arrays as Masks:

We looked at aggregates computed directly on Boolean arrays.

A more powerful pattern is to use Boolean arrays as masks, to select particular subsets of the data themselves.
Returning to our x array from before, suppose we want an array of all values in the array that are less than, say,
5!

In[26]: x

Qut[26]: array([[5, @, 3, 3],
[7, 5, 3, 5],
[2, 4, 7, 611}
We can obtain a Boolean array for this condition easily, as we've already seen:

In[27]: x < &

Qut[27]: array{[[False, True, True, True],
[False, False, True, False],
[True, True, False, False]], dtype=bool)

Now to select these values from the array, we can simply index on this Boolean array;
this is known as a masking operation:

In[28]: x[x = 5]
Out[28]: array([@, 3, 3, 3, 2, 4]}

What is returned is a one-dimensional array filled with all the values that meet this
condition; in other words, all the values in positions at which the mask array is True.

Using the Keywords and/or Versus the Operators &/|

One commeon point of confusion is the difference between the keywords and and or
on one hand, and the operators & and | on the other hand. When would you use one
versus the other?

The difference is this: and and or gauge the truth or falsehood of entire object, while &
and | refer to bits within each object.

When you use and or or, it's equivalent to asking Python to treat the object as a single
Boolean entity. In Python, all nonzero integers will evaluate as True. Thus:

In[38]: bool{42), bool(8)
Qut[38]: (True, False)
In[31]: bool{4Z and 8)
Qut[31]: False

In[32]: bool{4Z or)

Qut[32]: True
IV. Fancy Indexing:

We’ll look at another style of array indexing, known as fancy indexing.

Fancy indexing is like the simple indexing we’ve already seen, but we pass arrays of indices in place of single
scalars.

This allows us to very quickly access and modify complicated subsets of an array’s values.

Exploring Fancy Indexing

Exploring Fancy Indexing

Fancy indexing is conceptually simple: it means passing an array of indices to access
multiple array elements at once. For example, consider the following array:

In[1]: import as
rand = np.randon.RandonState{42)

¥ = rand.randint{108, size=10)

primt({x)
[51 92 14 71 68 28 82 B6 74 74]
Suppose we want to access three different elements. We could do it like this:
In[2]: [=x[3], x[7], x[2]]
out[2]: [71, B6, 14]
Alternatively, we can pass a single list or array of indices to obtain the same result:

In[3]: ind = [3, 7, 4]
x[ind]

Out[3]): array{[71, 86, 68])

With fancy indexing, the shape of the result reflects the shape of the index arrays
rather than the shape of the array being indexed:

In[4]: ind = np.array([[2, T].
[4, 511}
x[ind]

Out[4]): array([[71, B&],
[e8, 28]]1)

Fancy indexing also works in multiple dimensions. Consider the following array:

In[5]: X = np.arange({12)}.reshape((2, 4))

X
Out[5]): array([[&, 1, 2, 3].
[4, &5 8, T].
[3! gl]-Er 11]]}
Like with standard indexing, the first index refers to the row, and the second to the
column:
In[&]: row = np.array([0, 1, 2])
col = np.array([2, 1, 2]}

K[row, col]

ODut[e]: array([2, 5, 11])

for example, if we combine a column vector and a row vector within the indices, we
get a two-dimensional result:
In[7]: X[row[:, np.mewaxis], col]

Out[7]: array([[2, 1, 3],
[& 5 7.
[18, 9, 11]])

Here, each row value is matched with each column vector, exactly as we saw in broad-
casting of arithmetic operations. For example:

In[8]: row[:, mp.newaxis] * col

Out[B8]: arraw([[6, &, @],
[z, 1, 3],
[4, 2, 6]1])

It is always important to remember with fancy indexing that the return value reflects
the broadcasted shape of the indices, rather than the shape of the array being indexed.

Combined Indexing

For even more powerful operations, fancy indexing can be combined with the other
indexing schemes we've seen:

In[9]: primt(X)

[2 3]

[e 1

[4 5 & 7]

[& 918 11]]

We can combine fancy and simple indices:
In[18]: X[2, [2, &, 1]]
Out[18]: array([18, &, 9]}

We can also combine fancy indexing with slicing:
In[11]: X[1:, [2, @, 1]]

Out[11]: array([[6., 4, &].
[18, B, 91D}

And we can combine fancy indexing with masking:
In[12]: mask = np.array([1, 2, 1, @], dtype=bool)
¥[row[:, np.newaxis], mask]
Out[12]: array([[B, 2].
[4, 6],
[8, 18]])
All of these indexing options combined lead to a very flexible set of operations for
accessing and modifying array values.

Example: Selecting Random Points

One common use of fancy indexing is the selection of subsets of rows from a matrix.
For example, we might have an N by [matrix representing N points in D dimen-
sions, such as the following points drawn from a two-dimensional normal distribu-
tion:
In[13]: mean = [B, &]
cov = [[1, 2],
[z, 511
X = rand.multivariate_normal{mean, cowv, 108}
X.shape
Dut[13]: (188, 2)

Using the plotting tools we will discuss in Chapter 4, we can visualize these points as
a scatter plot (Figure 2-7):

In[14]: %¥matplotlib inline
import as
import ; seaborn.set() #& for plot styling

plt.scatter(X[:, 8], X[:, 1]);

Figure 2-7. Normally distributed points

Let’s use fancy indexing to select 20 random points. We'll do this by first choosing 20
random indices with no repeats, and use these indices to select a portion of the origi-
nal array:

In[15]: indices = np.random.choice(X.shape[@], 28, replace=False)
indices

Out[15]: array([93, 45, 73, 81, 58, 18, 98, 94, 4, 64, 65, 80, 47, 84, 82,
B8, 25, 98, &3, 28])

In[16]: selection = X[indices] # fancy indexing here
selection. shape

Out[16]: (28, 2)
Now to see which points were selected, let's over-plot large circles at the locations of
the selected points (Figure 2-8):

In[17]: plt.scatter(X[:, 8], X[z, 1], alpha=0.3}
plt.scatter(selection[:, 2], selection[:, 1],
facecolor="none", s=20808);

el
< L] 2 1] 1 F) 3

Figure 2-8. Random selection among poinis

This sort of strategy is often used to quickly partition datasets, as is often needed in
train/test splitting for validation of statistical models (see “Hyperparameters and
Model Validation” on page 359), and in sampling approaches to answering statistical
questions.

Modifying Values with Fancy Indexing

Just as fancy indexing can be used to access parts of an array, it can also be used to
modify parts of an array. For example, imagine we have an array of indices and wed
like to set the corresponding items in an array to some value:
In[1E]: ® = mp.arange(18)
i = np.array([2, 1, 3, 4]}

x[1] = 99
print{:x)

[B99 39 390 5 & 799 0]

We can use any assignment-type operator for this. For example:

In[19]: =[1] -= 18
print(x)

[BB2 8 3B9 5 & 782 9]

Notice, though, that repeated indices with these operations can cause some poten-

tially unexpected results. Consider the following:

In[28]: = = np.zeros{18)

x[[8, 8]] = [4, &]
printix)

[6. 8. ©. 8. 8. 8. 8. 8. 8. 8.]

Where did the 4 go? The result of this operation is to first assign x[8] = 4, followed
by x[8] = 6. The result, of course, is that x[8] contains the value 6.

Fair enough, but consider this operation:

In[21]: i = [2, 3, 3, 4, 4, 4]
x[1] += 1
x

Out[21]: array([6., ©., 1., 1., 1., B., 8., 8., @.,

Example: Binning Data

In[23]: np.random.seed(42}
®x = np.random.randn188)

compute a histogram by hand
bins = np.linspace(-5, 5, 28)
counts = np.zeros_Llike(bins)

find the approprigte bin for each x
i = np.searchsorted({bins, x)

odd 1 to each of these bins
np.add.at{counts, i, 1)

The counts now reflect the number of points within each bin—in other words, a his-
togram (Figure 2-9):

In[24]: # plot the resuvlts
plt.plot{bins, counts, linestyle="steps'};

=

.1

o
f + 2 1] 2 - &

Figure 2-9. A histogram computed by hand

a.1)

In[26]: x = np.random.randn(1808086)
print{ "NumPy routine:")
ktimelt counts, edges = np.histogram{x, bins)

print{"Custom routine:")
Etimeit np.add.at{counts, np.searchsorted{bins, x}, 1)

HumPy routine:
18 loops, best of 3: &B.7 ms per loop
Custom routine:
18 Lloops, best of 3: 135 ms per Lloop

V. Structured Data: NumPy’s Structured Arrays

This section demonstrates the use of NumPy’s structured arrays and record arrays, which provide efficient
storage for compound, hetero- geneous data.

Imagine that we have several categories of data on a number of people (say, name, age, and weight), and we’d
like to store these values for use in a Python program. It would be possible to store these in three separate
arrays:

In[2]: name = ['Alice’, 'Bob', 'Cathy’, 'Doug']
age = [25, 45, 37, 19]
weight = [55.0, 85.5, 68.0, 61.5]

We can similarly create a structured array using a compound data type specification:

In[4]: # Use g compound data type for structwred arrays
data = np.zeros(4, dtype={"names":{"name"', 'age', "weight"'},
‘formats'z{"U1B", "i4°, "f3'3})
prinmt{data.dtype)

[{"name"', "<U18"'), ('age', '<i4'), (‘'weight', "=fB"}]

Now that we've created an empty container array, we can fill the array with our lists of
values:
In[5]: data["mame'] = name
data['age"] = age
data["weight'] = weilght
print{data)
[("Alice', 25, 55.8) ('Bob', 45, 85.5) ('Cathy’, 37, 68.8)
("Doug’, 19, 61.5)]

In[7]: # Get first row of doto
datal2]

Out[7]: ("Alice', 25, 55.8)

In[&8]: # Get the name from the last row
data[-1]["nama"]

Out[8]: '"Doug'
Using Boolean masking, this even allows you to do some more sophisticated opera-
tions such as filtering on age:

In[9]: # Get mames where oge is under 38
data[data['age"] = 38]["nam="]

Dut[9]: array(["Alice", "Doug'].
dtype="-=U18"1

Creating Structured Arrays

Structured array data types can be specified in a number of ways. Earlier, we saw the
dictionary method:

In[18]: np.dtype({"names":('name", "age", "weight'),
“formats':('U18", 'i4", "FB)}P)

Dut[18]: dtype([{'name’, '<U18"), ("age', '<id'), ('weight', '<f8")])
For clarity, numerical types can be specified with Python types or NumPy dtypes

instead:

In[11]: np.dtype({ "names":('name", "age", "weight'),
"formats' :({np.str_, 18), int, np.float32}})

Out[11]: dtype([{'name’, *<U18"), ("age, '<i8'), ('weight', '<f4')])
A compound type can also be specified as a list of tuples:

In[12]: np.dtype([{'name', '518'), ('age', 'i4'), ('weight', "fB')}])

Out[12]: dtype([{'name', "518'}), ('age', "<id'}, ('weight', '=f8'}])

If the names of the types do not matter to you, you can specify the types alone in a
comma-separated string:

In[13]: np.dtype('S18,i4,f3")

Table 2-4. NumPy data types

Character Destription Eample

b Byte np.dtype('b')

i Signed integer np.dtype('1i4") == np.int32

"u" Unsigned integer np.dtype('ul") == np.uintd

£ Flaating poant np.dtype('fB8") == np.inté4

'c" Complex floating point np.dtype('cl6') == np.complex128
'gT 'a' string np.dtype('55")

Y Unicode string np.dtype('U') = np.str_

'l Raw data (void) np.dtype('V'} = np.void

More Advanced Compound Types

It is possible to define even more advanced compound types. For example, you can
create a type where each element contains an array or matrix of values. Here, we'll
create a data type with a mat component consisting of a 3x3 floating-point matrix:
In[14]: tp = np.dtype([('id', 'i8"), ('mat’, 'f8', (3, IND
X = np.zeros{1, dtype=tp)

print{X[a])
print{X["mat'][]}

(e, [[e.8, 8.8, 8.8], [0.8, 8.8, 8.8], [8.8, 8.8, 8.8]])
[[8. 8. @6.]

[8. 8. 6.]

[8. 8. 8.]]

RecordArrays: Structured Arrays with a Twist

NumPy also provides the np.recarray class, which is almost identical to the struc-
tured arrays just described, but with one additional feature: fields can be accessed as
attributes rather than as dictionary keys. Recall that we previously accessed the ages
by writing:

In[15]: data['age']

ODut[15]: array([25, 45, 37, 19], dtype=int3Z)
If we view our data as a record array instead, we can access this with slightly fewer
keystrokes:

In[16]: data_rec = data.view(np.recarray)
data_rec.age

Out[1&8]: array([25, 45, 37, 19], dtype=int32)}

The downside is that for record arrays, there is some extra overhead involved in
accessing the fields, even when using the same syntax. We can see this here:
In[17]: %timeit data['age"]

Ktimeit data_rec["age']
%timeit data_rec.age

16000088 loops, best of 3: 241 ns per Loop

168608 loops, best of 3: 4.61 ps per loop

1600008 loops, best of 3: 7.27 ps per loop
Whether the more convenient notation is worth the additional overhead will depend
O YOUr OWIN appliv;aﬁun.

VI. Data Manipulation with Pandas

Data Indexing and Selection

Data Selection in Series

A Series object acts in many ways like a one-dimensional NumPy array, and in many ways like a standard

Python dictionary.

Series as dictionary
Like a dictionary, the Series object provides a mapping from a collection of keys to a collection of values:

In[1]: import as
data = pd.Serles({[&.25, 8.5, 8.75, 1.8],
index=['a", "b', 'c", "d'1)
data

Qut[1]: a 8.25

b .58
C B.75
d 1.88

ditype: floatéd
In[2]: data['b"]
Qut[2]: 8.5
We can also use dictionary-like Python expressions and methods to examine the
keys/indices and values:
In[2]: "2" im data
Out[3]: True
In[4]: data.keys(}
Out[4]: Index(['a", 'b', 'c’, 'd"], dtype="object")
In[5]: Tist{data.items())
Dut[5]: [("a', 8.25), ('b', @.5), ('c', B.75), ('d", 1.8)]

Series objects can even be modified with a dictionary-like syntax. Just as you can

extend a dictionary by assigning to a new key, you can extend a Series by assigning
to a new index value:

In[6]: data['e’] = 1.25

data
Dut[E]: a B.25
b a.ce
C B.7%
d 1.88
a 1.25

dtype: floated

Series as one-dimensional array
A Series builds on this dictionary-like interface and provides array-style item selection via the same basic
mechanisms as NumPy arrays—that is, slices, masking, and fancy indexing. Examples of these are as follows:

In[8]: # slicinmg by implicit integer index

data[@:2]
Dut[B]: = 8.25
b B.58

ditype: floated

In[%]: # maskimg
data[(data = 0.3) & (data < 8.8)]

Qut[9]: b 8.58
C 8.7%
ditype: floated

In[18]: # fancy indexing
data[["z", "e']]
Qut[18]: a 8.25

e 1.25
dtype: floated

Indexers: loc, iloc, and ix
For example, if your Series has an explicit integer index, an indexing operation such as data[1] will use the
explicit indices, while a slicing operation like data[1:3] will use the implicit Python-style index.

In[11]: data = pd.Series{["a", 'B", "c'], index=[1, 3, 5]
data

Dut[11]: 1 a

3 b
L C

dtype: object

In[12]: # explicit index when indexing
data[1]

Qut[12]: "a°

In[13]: # implicit index when slicing
data[1:3]

dut[13]: 3 b
5 C

dtype: object

First, the loc attribute allows indexing and slicing that always references the explicit
index:

In[14]: data.loc[1]
Out[14]: "a’
In[15]: data.loc[1:3]

Out[15]: 1 a
3 b
dtype: object

The 1loc attribute allows indexing and slicing that always references the implicit
Python-style index:

In[1£]: data.iloc[1]

Out[16]: b’

In[17]: data.iloc[1:2]

ut[17]: 3 b
5 C
dtype: object

A third indexing attribute, ix, is a hybrid of the two, and for Series objects is equivalent to standard []-based
indexing.

Data Selection in DataFrame:

DataFrame as a dictionary

In[i18]: area = pd.Series{{"California’: 4239&7, 'Texas': &5
'Mew York': 141297, 'Florida': 17
'Tllinois": 149935%})
pop = pd.Series({'California’: 38332521, "Texas': 26448193,
'New York': 19651127, 'Florida": 19552868,
"Tilinois": 12882135})
data = pd.DataFrame{{"area':area, "pop':popl)
data

Qut[18]: area pop
California 423967 36332521
Florida 178312 19552868
Illinols 149995 12882135
Hew York 141297 19651127
Texas E€05EE2 2644B193

662,
3

g
p312,

The individual Series that make up the columns of the DataFrame can be accessed
via dictionary-style indexing of the column name:

In[19]: data["area']
Qut[19]): Californila 423567

Florida 178312
ITlinols 14999L%
New York 141297
Texas EOLERZ

Name: area, diype: intéd

DataFrame as two-dimensional array

As mentioned previously, we can also view the DataFrame as an enhanced two-
dimensional array. We can examine the raw underlying data array using the values

attribute:
In[24]: data.values

Qut[24]): array([

Lo e B e W N |

4.23%96T000e+05, 3.833252182+87, 9.84139261e:81],
1.783128608e+085, 1.9552B6B8e+B87, 1.14B86121e:82],
1.459995800e+05, 1.2BE213582+87, B.58BITAZEe:01],
1.41297008e+85, 1.960112782+87, 1.3598T76746e:82],
6.95662000e:05, 2.644819382+87, 3.80187484e:81]1)

With this picture in mind, we can do many familiar array-like observations on the
DataFrame itself. For example, we can transpose the full DataFrame to swap rows and

columns:

In[25]: data.T

Qut[25]):

California Florida ITlinois Mew York
area 4.23096TBe+B5 1.782312024+05 1.4000C00:05 1.4120700-05
pop 3.83325204+87 1.9552862+87 1.2B8214e:87 1.0651130.87

density 9.6413930+81 1.148061e+02 B.5BE3T6e+A1 1.398767e:02
In[2E]: data.iloc[:3, :2]

Qut[28]: area pop
California 423967 38332521
Florida 1768312 19552866
IMl1inols 149995 1288213%

In[29]: data.loc[:'I111lnods", :'pop']

Out[29]: area pop
California 423967 38332521
Florida 178312 19552866
IMl1inols 149995 1288213%

The 1x indexer allows a hybrid of these two approaches:
In[38]: data.ix[:2, :'pop']

Qut[38]: area pop
California 423967 38332521
Florida 178312 19LL2BEE
ITlinols 149995 1288213%

Texas

6. 90662004085
2.64481004+87
3.B818740+081

Additional indexing conventions

There are a couple extra indexing conventions that might seem at odds with the pre-
ceding discussion, but nevertheless can be very useful in practice. First, while index-
ing refers to columns, slicing refers to rows:

In[33]: data['Florida': "Illinois"]

Out[33]: area pop density
Florida 178312 19557868 114.886121
Illinols 149995 12882135 B5_BE3TE3

Such slices can also refer to rows by number rather than by index:
In[34]: data[l:31]
ut[34]: area pop density
Florida 178312 195528608 114.886121
Tllinols 149995 12882135 BL.B83763
Similarly, direct masking operations are also interpreted row-wise rather than
column-wise:

In[25]: data[data.density = 184]

Out[3&]: area pop density
Florida 178312 19557868 114.886121
New York 141297 19651127 139.876746

Operating on Data in Pandas:
Pandas : for unary operations like negation and trigonometric functions, the ufuncs will preserve index and

column labels in the output, and for binary operations such as addition and multiplication, Pandas will
automatically align indices when passing the objects to the ufunc.

Ufuncs: Index Preservation

Because Pandas is designed to work with NumPy, any NumPy ufunc will work on
Pandas Series and DataFrame objects. Let’s start by defining a simple Series and
DataFrame on which to demonstrate this:

In[1]: import as
import as

In[2]: rmg = np.random.Random5State(d?)
ser = pd.Series(rng.randint(d, 18, 4))
ser

Out[2]: @ &
1 3
2 [
3 4
diype: 1intéd

In[3]: df = pd.DataFrame{rng.randint(d, 18, {3, 433,
columns=['A", "B', 'C"', 'D'])

df
Out[3]: ABCOD
8 &6 9 2 6
1 7 4 37
2 7T 2 5 4

If we apply a NumPy ufunc on either of these objects, the result will be another Pan-
das object with the indices preserved:

In[4]: np.exp{ser)

Qut[4]: @ 483. 428793

1 20.885537
2 1896.633158
3 54 L9R158
ditype: floated

Or, for a slightly more complex calculation:
In[5]: np.sin{df * np.pl [4)

Out[5]: A B C D
@ -1.800000 7.871068c-91 1.000000 -1.0000000+00
1 -0.707167 1.224647e-16 0.767187 -7.0710680-81
7 -0.76T107 1.800000c:00 -B.707187 1.22464Te-16

UFuncs: Index Alignment

For binary operations on two Series or DataFrame objects, Pandas will align indices
in the process of performing the operation. This is very convenient when you are
working with incomplete data, as we'll see in some of the examples that follow.

Index alignment in Series

As an example, suppose we are combining two different data sources, and find only
the top three US states by area and the top three US states by populafion:

In[&]: area = pd.Serles({'Alaska": 1723337, 'Texas': E9LEEZ,
"Californmia’: 4239671, name="area")

population = pd.Sertes({'California”: 38332521, "Texas': 26448193,

"Mew York': 12651127}, name="population')

Let’s see what happens when we divide these to compute the population density:
In[7]: population [area

Dut[7]: Alaska HaN
California 33.413926
Mew York HaN
Texas 38.818744
diype: floated

The resulting array contains the union of indices of the two input arrays, which we
could determine using standard Python set arithmetic on these indices:

In[B]: area.index | population.index
Dut[B8]: Index(['Alaska', 'California’, "New York', 'Texas'], dtype='object')

In[%]: A = pd.Serles{[2, 4, &], index=[8, 1, 2]}
B = pd.Sertes([1, 2, 5], index=[1, 2, 21}
A+ B

Qut[9]: @ NaM
1 5.@
2 9.8
3 NalM

diype: floated

Index alignment in DataFrame

A similar type of alignment takes place for both columns and indices when you are
performing operations on DataFrames:
In[11]: A = pd.DataFrame{rng.randint{e, 28, (2, 2},

columns=11st{'AB'})
A

Out[11]: A B
1 11
51

In[12]: B = pd.DataFrame{rng.randint{2, 18, (3, 33},
columns=11st{ 'BAC"})
B

Dut[12]:

[=a = =

B
B 4
15
2 9
In[13]: A + B

Out[13]: B C
15.8 NaN
6.8 NaN

NaM NaM

[Il =
=

= L =

= O I 3=

Table 3-1. Mapping between Python operators and Pandas methods

+ add()

- sub(), subtracty{)

* muly), multiply)

! truediv(), div(), divide()
I floordiv()

¥ mod()

* pow(}

Ufuncs: Operations Between DataFrame and Series

When you are performing operations between a DataFrame and a Series, the index and column alignment is
similarly maintained.

Operations between a DataFrame and a Series are similar to operations between a two-dimensional and one-
dimensional NumPy array.

In[15]: A = rng.randint(10, size=(3, 4))
A

Out[15]: array([[3, 8, 2, 4],

[2, 6, 4, 8],

[6, 1,3, 8]])

In[16]: A - A[0]

Out[16]: array([[0, 0, 0, 0],
[-1,-2, 2, 4],
[3,-7,1,4]])

subtraction between a two-dimensional array and one of its rows is applied row-wise.

In Pandas, the convention similarly operates row-wise by default:
In[17]: df = pd.DataFrame(A, columns=Ilist('QRST"))

df - df.iloc[0]

Out[17]: QRS T

00000

1-1-224

23-714

If you would instead like to operate column-wise, you can use the object methods
mentioned earlier, while specifying the axis keyword:

In[18]: df.subtract(df['R"], axis=0)

Out[18]: QRS T

0-50-6-4

1-40-22

25027

VII. Handling Missing Data

In the real world is that real-world data is rarely clean and homogeneous. In particular, many interesting
datasets will have some amount of data missing

Trade-Offs in Missing Data Conventions

A number of schemes have been developed to indicate the presence of missing data in a table or DataFrame.
Two strategies: using a mask that globally indicates missing values, or choosing a sentinel value that indicates a
missing entry.

In the masking approach, the mask might be an entirely separate Boolean array, or it may involve appropriation
of one bit in the data representation to locally indicate the null status of a value.

In the sentinel approach, the sentinel value could be some data-specific convention. Eg: IEEE floating-point
specification.

Missing Data in Pandas
The way in which Pandas handles missing values is constrained by its reliance on the NumPy package, which
does not have a built-in notion of NA values for nonfloating- point data types.

None: Pythonic missing data

The first sentinel value used by Pandas is None, a Python singleton object that is often
used for missing data in Python code. Because None is a Python object, it cannot be
used in any arbitrary NumPy/Pandas array, but only in arrays with data type
'object’ (ie., arrays of Python objects):

In[1]: import as
import as

In[2]: walsl = mp.array([1l, Wonz, 3, 2]}
valsl

Qut[2]: array([1l, Mone, 3, 4], diype=-object)

NaN: Missing numerical data

The other missing data representation, NaN (acronym for Not a Number), is different;
it is a special floating-point value recognized by all systems that use the standard
IEEE floating-point representation:

In[5]: wals2 = np.array([l, np.man, 3, 4])
vals2.dtype

Qut[5]: dtype(floatcd”)
Notice that NumPy chose a native floating-point type for this array: this means that
unlike the object array from before, this array supports fast operations pushed into
compiled code. You should be aware that NaN is a bit like a data virus—it infects any
other object it touches. Regardless of the operation, the result of arithmetic with NaN
will be another NaN:

In[&]: 1 + np.nan

Qut[&]: man

In[7]: @ * mnp.nan

Qut[7]: man

NaN and None in Pandas

NaN and Mone both have their place, and Pandas is built to handle the two of them
nearly interchangeably, converting between them where appropriate:

In[18]: pd.Series{[1, np.man, 2, None])

Out[18]: @
1
2
3

i.8
HaN
2.8
NaN

dtype: float&d

For types that don't have an available sentinel value, Pandas automatically type-casts
when NA values are present. For example, if we set a value in an integer array to
np.nan, it will automatically be upcast to a floating-point type to accommodate the

MA:

In[11]: x = pd.Serties{range(?), dtype=int)

X

Out[11]: 8 @
1 1
dtype: int&d

In[12]: x[8] = Mone

X

Dut[12]: @
1

HaN

1.8

dtype: floatéd

Table 3-2. Pandas handling of NAs by type

Typedass Conversion when storing NAs NA sentinel value

floating Mo change np.nan
object Mochange Kone or np.nan
integer Castto floatéd np.nan
boolean Casttoobject None or np. nan

Keep in mind that in Pandas, string data is always stored with an object dtype.

Operating on Null Values

As we have seen, Pandas treats None and NaN as essentially interchangeable for indi-
cating missing or null values. To facilitate this convention, there are several useful

methods for detecting, removing, and replacing null values in Pandas data structures.
They are:

isnull()
Generate a Boolean mask indicating missing values

notnull()
Opposite of Lsnull()

dropnal)
Beturn a filtered version of the data

fillna()
Return a copy of the data with missing values filled or imputed

Detecting null values

Pandas data structures have two useful methods for detecting null data: 1snul1() and
notnull(). Either one will return a Boolean mask over the data. For example:

In[13]: data = pd.5Series{[1, np.nan, "hello’, Hone])

In[14]: data.isnull(}

OQut[14]: @ False

1 Trus
2 False
3 Trus

dtype: bool

Dropping null values

In addition to the masking used before, there are the convenience methods, dropna()
(which removes NA values) and fillna() (which fills in NA values). For a Series,
the result is straightforward:

In[15]: data.dropnal}

Out[16]: @ 1
2 hello
dtype: object

For a DataFrame, there are more options. Consider the following DataFrame:

In[17]: df = pd.DataFrame([[1, np.nan, 2],
[z, 3, 1.
[np.nan, 4, &1
df
Dut[17]: a 1 2
@ 1.8 HaN 2
1 2.6 3.8 C
2 NaN 4.8 &

We cannot drop single values from a DataFrame; we can only drop full rows or full
columns. Depending on the application, you might want one or the other, so
dropna() gives a number of options for a DataFrame.

By default, dropna(} will drop all rows in which any null value is present:
In[1E]: df.dropnal)
Out[18]: 8 12
B L

Filling null values

Sometimes rather than dropping NA values, youd rather replace them with a valid
value. This value might be a single number like zero, or it might be some sort of
imputation or interpolation from the good values. You could do this in-place using
the 1snull() method as a mask, but because it is such a common operation Pandas
provides the fillna() method, which returns a copy of the array with the null values
replaced.

Consider the following Series:

In[23]: data = pd.Seriles{[1, np.nam, Z, None, 3], imdex=11st{'abcde'})
data

Out[23]: 2 1.8
b MNaN
C 2.8
d NaN

e 3.8
dtype: floatcd

We can fill NA entries with a single value, such as zero:
In[24]: data.fillnald)

Qut[24]: a 1.8
b 8.8
C 2.8
d 0.8
e 3.8
dtype: floatéd

We can specify a forward-fill to propagate the previous value forward:

In[25]): # forward-fill
data.fillna({method="FF11L")

Out[25]: 1.8

L Pad Pad =
[e =]

d
b
C
d
g
dtype: floatéd

Or we can specify a back-fill to propagate the next values backward:

In[26]: # back-fill
data. flllna(method="0F1L11")

Dut[26]: a 1.8
b 2.8
C 2.8
d 3.8
e 3.8
dtype: floatcd

VIII. Hierarchical Indexing:

Hierarchical indexing (also known as multi-indexing) - to incorporate multiple index levels within a
single index. In this way, higher-dimensional data can be compactly represented within the familiar one-
dimensional Series and two-dimensional DataFrame objects.

A Multiply Indexed Series

The better way: Pandas Multilndex

Fortunately, Pandas provides a better way. Our tuple-based indexing is essentially a
rudimentary multi-index, and the Pandas MultiIndex type gives us the type of opera-
tions we wish to have. We can create a multi-index from the tuples as follows:

In[5]: index = pd.MultiIndex.from_tuples{index)
index

Dut[5]: Multilndex(levels=[['California’, *Mew York', 'Texas'], [20@8, 28181],
labels=[[®, @, 1, 1, 2, 2], [0, 1, @, 1, 8, 111}
Notice that the MultiIndex contains multiple levels of indexing—in this case, the state
names and the years, as well as multiple labels for each data point which encode these
levels.

If we reindex our series with this MultiIndex, we see the hierarchical representation
of the data:

In[&]: pop = pop.retndex{index)
Fop
Out[6]: California 2868 313IBT1648
2818 37253056

New York 2888 18976457
2818 15378182

Texas 2068 208851828

2818 25145561
ditype: intcd

Multilndex as extra dimension

You might notice something else here: we could easily have stored the same data
using a simple DataFrame with index and column labels. In fact, Pandas is built with
this equivalence in mind. The unstack() method will quickly convert a multiply-

indexed Series into a conventionally indexed DataFrame:

In[8]: pop_df = pop.unstack()
pop_df

Dut[B]: 2080 2018
California 33871648 37253956
New York 18976457 19378182
Texas 20851820 25145561

Naturally, the stack() method provides the opposite operation:

In[%]: pop_df.stack()

Qut[9]: Californlia 2684 33871648
2814 37253956
New York 26884 1B9TE45T
2814 19378182
Texas 28648 26851828
2814 25145561
dtype: int&4

Methods of Multilndex Creation

The most straightforward way to construct a multiply indexed Series or DataFrame
is to simply pass a list of two or more index arrays to the constructor. For example:

In[12]: df = pd.DataFrame(np.random.rand(4, 2},
index-[['2", "a', 'B", "b'], [1, 2, 1, 211,
columns=['datal’', 'datai'])

df
Dut[12]: datal dataz
a1l 8.554233 6.356872
2 0.925244 6.219474
b1 ©.441759 @.518854
2 8.17149L 0.3BEE&BE

The work of creating the MultiIndex is done in the background.

Similarly, if you pass a dictionary with appropriate tuples as keys, Pandas will auto-
matically recognize this and use a MultiIndex by default:

In[13]: data = {({'Califernia’, 2008}: 33871648,
({"Caltfornia’, 2818%: 3I72539L&,
("Texas", 2008): 20851820,
('Texas", 2018%: 25145561,
{"New York", 2008%: 1B9TE&457,
{"New York", 2818): 19378182}
pd.Series{data)

Out[13]): California 2000 33871648
281a 37253956
New York 2804 1B97E4LT
2814 19378182
Texas 2804 208L1820
2818 251455861
dtype: int&d

Nevertheless, it is sometimes useful to explicitly create a MultiIndex; we'll see a cou-
ple of these methods here.

Multilndex level names

Sometimes it is convenient to name the levels of the MultiIndex. You can accomplish
this by passing the names argument to any of the above MultiIndex constructors, or
by setting the names attribute of the index after the fact:

In[18]: pop.index.names = ["state', *year']
pop
Qut[18]: state year
California 2864 33871648
2814 37253956
New York 2668 1B9764ET
2814 193178182
Texas 28648 2BEL1E28
2814 25145561
dtype: intsd

With more involved datasets, this can be a useful way to keep track of the meaning of
various index values.

Multilndex for columns

In a DataFrame, the rows and columns are completely symmetric, and just as the rows
can have multiple levels of indices, the columns can have multiple levels as well. Con-
sider the following, which is a mock-up of some (somewhat realistic) medical data:

In[19]:
Merarchical indices and columns
index = pd.MultiIndex.from product{[[2813, 28147, [1, 211.
names=['year', "visit'])
columns = pd.MultiIndex.from_product([['Bob", 'Guildo’, 'Swe"], ['HR', 'Temp"']],
names=['subject’, "type'])

Explicit Multilndex constructors

For more flexibility in how the index is constructed, you can instead use the class
method constructors available in the pd.MultiIndex. For example, as we did before,
you can construct the MultiIndex from a simple list of arrays, giving the index values
within each level:

In[14]: pd.MultiIndex.from_arrays{[["a', 'a", 'D', 'B'], [1, 2, 1, Z11}

Dut[14]: MultiIndex(levels=[['a', 'b'], [1, 211,
labels=[[®, @, 1, 1], [8, 1, 8, 1]

You can construct it from a list of tuples, giving the multiple index values of each
point:
In[15]: pd.MultiIndex.from_tuples{[({'a', 1), ("', 2}, ('b*, 1), ('D", 2}]1)

Out[15]: MultiIndex(levels=[['a', 'b"], [1, 2]].
labels=[[8, @, 1, 1], [8, 1, 8, 1]

You can even construct it from a Cartesian product of single indices:
In[16]: pd.MultilIndex.from_product{[["2", "b'], [1, 21D}

Out[16]: MultiIndex(levels=[['a"', 'b'], [1, 211.
labels=[[@, 8, 1, 11, [@®, 1, 8, 111}

Indexing and Slicing a Multilndex

Indexing and slicing on a MultiIndex is designed to be intuitive, and it helps if you
think about the indices as added dimensions. We'll first look at indexing multiply
indexed Series, and then multiply indexed DataFrames.

Multiply indexed Series
Consider the multiply indexed Serties of state populations we saw earlier:

In[21]: pop
Qut[21]: state year
California 2868 J3ET1648
2814 IT253956
Now York 2868 1B9TR457
2816 15937R1A82
Texas 268 ZBBL1EZE
2818 25145551
dtype: intéd

We can access single elements by indexing with multiple terms:
In[22]: pop['California’, 2808]
Out[22]): 33BT1648

The MultiIndex also supports parfial indexing, or indexing just one of the levels in
the index. The result is another Series, with the lower-level indices maintained:

In[23]: pop['California’]

Out[23]: year
2880 33871648
2818 37253956
dtype: intéad

Multiply indexed DataFrames
A multiply indexed DataFrame behaves in a similar manner. Consider our toy medi-

cal DataFrame from before:
In[2E]: health_data
Dut[28]: subject Bob Guido Sue
type HR Temp HR Temp HR Temp
year visit
2811 1 i1.8 3|7 32.8 36.7 3.8 3I7.2
2 44.8 3IT.7 EB.8 35,8 29.8 387
2814 1 i8.8 3I7.4 39.8 37.8 &1.8 38.9
2 47.8 3T.B 48.8 37.3 51.8 36.%

Remember that columns are primary in a DataFrame, and the syntax used for multi-

ply indexed Series applies to the columns. For example, we can recover Guido’s heart
rate data with a simple operation:

In[29]: health_data['Culdo’, "HR"]
Qut[29]): year wisit

2813 1 32.0
2 ta.a
2014 1 39.0
2 48.8

Name: (Guido, HR), diype: floatéd
Rearranging Multi-Indices

Sorted and unsorted indices
Many of the Multilndex slicing operations will fail if the index is not sorted.

Pandas provides a number of convenience routines to perform this type of sorting;
examples are the sort_index() and sortlevel() methods of the DataFrame. We'll
use the simplest, sort_index(), here:

In[3&]: data = data.sort_index{)

data
Dut[3&]: char 1int
a 1 B.883081
2 B.164974
b 1 8.0881653
2 B.526226
C 1 B.T741658
2 B.565264

dtype: floatéd
With the index sorted in this way, partial slicing will work as expected:
In[37]: data["a":"b"]
Dut[37]: char 1int

a 1 8.883881
2 B.164974
1] 1 B.801693
2 B.526226

dtype: floatéd

Stacking and unstacking indices

In[3E]: pop.unstack(level=0)

Dut[38]: state California New York Texas
year
2088 33871648 1BGTE4L7 20851828
2818 37253906 19378182 2L14LL61

In[32]: pop.unstack(level=1)

Qut[39]: year 2668 2818
state
California 323871648 37253556
New York 18976457 153TE1682
Texas 28851828 25145561

The opposite of unstack() is stack(), which here can be used to recover the original
series:

In[48]: pop.unstack().stack()

Out[48]: state year
California 2888 33871648
2816 37253956
Mew York 2828 18976457
2816 193781682

Texas 2000 20851820
2018 25145561

dtype: int&d

Index setting and resetting

Another way to rearrange hierarchical data is to turn the index labels into columns;
this can be accomplished with the reset_index method. Calling this on the popula-
tion dictionary will result in a DataFrame with a stafe and year column holding the
information that was formerly in the index. For clarity, we can optionally specify the
name of the data for the column representation:

In[41]: pop_flat = pop.reset_index{name="population’)
pop_flat

Out[41]: state year population
B Caltfornia 2088 33871648
1 Caltfornia 20818 37253056
2 How York 2006 1B0TEALT
3 New York 2816 19378182
4 Texas 2088 208851828
5 Texas 2018 25145561

Data Aggregations on Multi-Indices

We've previously seen that Pandas has built-in data aggregation methods, such as
mean(), sum(), and max(). For hierarchically indexed data, these can be passed a
level parameter that controls which subset of the data the aggregate is computed on.

For example, let’s return to our health data:

In[42]: health_data

Qut[43]: subject Bob Guido Sue
type HR Temp HR Tamp HR Tamp
year visit
2813 1 31.8 38.7 32.8 36.T7T 3L.8 37.2
2 448 37.7 LB.8 3L.8 29.8 36.7
2814 1 e 3I7.4 3158 3IT.B 61.8 35.9
2 47.8 37.8 48.8 37.3 51.8 36.5

Perhaps wed like to average out the measurements in the two visits each year. We can
do this by naming the index level wed like to explore, in this case the year:

In[44]: data_mean = health_data.mean(level="year"'}

data_mean
Out[44]): subject Bob Guido Sua
typa HR Temp HR Temp HR Temp
year

2013 37r.5 38.2 41.8 35.BE 3Z2.8 36.95
2014 38.5 37.6 43.5 37.55 G56.8 36.7@

VIII. Combining Datasets: Concat and Append

Simple Concatenation with pd.concat

Pandas has a function, pd.concat(), which has a similar syntax to np.concatenate
but contains a number of options that we'll discuss momentarily:

Signature in Pandas v@.18

pd.concat{obis, axls=9, joln="outer', jolm_axes=Mone, lgnore index=False,
keys=None, levels=MNone, names=Hone, verify integrity=False,
copy=Trua)

pd.concat() can be used for a simple concatenation of Series or DataFrame objects,
just as np.concatenate() can be used for simple concatenations of arrays:
In[6]: serl = pd.Sertes(['A", 'B", 'C'], tndex=[1, 2, I}
ser? = pd.Sertes(['D’, 'E', 'F'], index=[4, 5,]}
pd.concat{[serl, ser?])

Out[6]: 1 A

b T B e ==

2
3
4
L
[
d

type: object
It also works to concatenate higher-dimensional objects, such as DataFrames:

Duplicate indices

One important difference between np.concatenate and pd.concat is that Pandas
concatenation preserves indices, even if the result will have duplicate indices! Consider
this simple example:

In[9]: =
Yy

make df('AB', [0, 11)
make df('AB', [2, 2])

y.lndex = x.index # make duplicate indices!
print{x}; print{y); print{pd.concat{[x, v]1))

X y pd.concat([x, y1)
A B A B A B
@ AB BB O AZ B2 B AD BE
1 A1 Bl 1 A2 B3I 1 Al Bi
8 A2 B2
1 A3 B3

Notice the repeated indices in the result. While this is valid within DataFrames, the outcome is often
undesirable. pd.concat() gives us a few ways to handle it.

Catching the repeats as an error.
Ignoring the index.
Adding Multilndex keys

IX. Aggregation and Grouping

An essential piece of analysis of large data is efficient summarization: computing aggregations like sum(),
mean(), median(), min(), and max()

Simple Aggregation in Pandas

In[7]: df = pd.DataFrame{{"A': rng.rand(5),

'‘B': rng.rand{:)})
df

Dut[7]: A B
8.155995 0.A20584
0.058884 ©.969919
8.866176 ©.832443
8.601115 9.212339
0.708873 0.18182C

In[8]: df.mean()

R N

Out[8]: A B.47TEEE
B B.443428

ditype: floatéd

Table 3-3. Listing of Pandas aggregation methods
| fion —
count() Total number of items

first(), last() Firstand last item
mean(), median() Mean and median

min), max() Minimum and maximum
std(),var() Standard deviation and variance
mad() Mean absolute deviation
prod{) Product of all items

sum() Sum of all items

These are all methods of DataFrame and Series objects.

GroupBy: Split, Apply, Combine

A canonical example of this split-apply-combine operation, where the “apply” is asummation aggregation, is
illustrated in Figure 3-1.

Figure 3-1 makes clear what the GroupBYy accomplishes:

* The split step involves breaking up and grouping a DataFrame depending on the

value of the specified key.

* The apply step involves computing some function, usually an aggregate, transformation,

or filtering, within the individual groups.

* The combine step merges the results of these operations into an output array.

Here it’s important to realize that the intermediate splits do not need to be explicitly instantiated.

In[11]: df = pd.DataFrame({'key': ['A', 'B*, "C', "A', "B', 'C'],
"data": range{&)}, columns=["key', 'data’'])
df

Dut[11]: key data

Ll N
(i == e = i T = = e =]
Ll R -

We can compute the most basic split-apply-combine operation with the groupby()
method of DataFrames, passing the name of the desired key column:

In[i12]: df.groupby('key")

Split
A sum
ey [dcta pply (sum)
key |data
Input Al |—> 1
key |data A4
Combine
Al
key |data
B |2 key |data
key |data AlS
C|j3|]—>»|8]|2|—>» Em—
B|7 B |7
I B
€19
B|S
C|é6 \\\\\\‘ data /,///)'
i key |dafa
|3 |—»
. ()

Figure 3-1. A visual representation of a groupby operation

To produce a result, we can apply an aggregate to this DataFrameGroupBy object,
which will perform the appropriate apply/combine steps to produce the desired
result:

In[12]: df.groupby(key’).sum{)

Dut[13]: data
kay
A 3
B 5
C 7
The GroupBYy object

The GroupBy object is a very flexible abstraction.

Column indexing. The GroupBy object supports column indexing in the same way as
the DataFrame, and returns a modified GroupBYy object. For example:

In[14]: planets.groupby(‘'method’)

Out[14]: <pandas.core.groupby.DataFrameGroupBy object at 0x1172727b8>

In[15]: planets.groupby(‘'method")['orbital_period']

Out[15]: <pandas.core.groupby.SeriesGroupBy object at 0x117272da0>

Iteration over groups. The GroupBY object supports direct iteration over the groups,
returning each group as a Series or DataFrame:

In[17]: for (method, group) in planets.groupby(‘'method"):

print("{0:30s} shape={1}".format(method, group.shape))

Dispatch methods. Through some Python class magic, any method not explicitly
implemented by the GroupBYy object will be passed through and called on the groups,
whether they are DataFrame or Series objects. For example, you can use the
describe() method of DataFrames to perform a set of aggregations that describe each
group in the data:

In[18]: planets.groupby(‘'method")['year'].describe().unstack()

Aggregation. Were now familiar with GroupBy aggregations with sum(), median(),
and the like, but the aggregate() method allows for even more flexibility. It can take
a string, a function, or a list thereof, and compute all the aggregates at once. Here isa
quick example combining all these:

In[28]: df.groupby(key'}).aggregate(['min', np.median, max])

Qut[28]: datal dataz
min median max mln median max

key

A é 1.5 32 3 4.8 &
B 1 2.5 4 @ .58 7
C 2 3.5 & 3 &8 9

Another useful pattern is to pass a dictionary mapping column names to operations
to be applied on that column:

In[21]: df.groupby('key').aggregate({ datal": 'min‘,
‘data": "'max'})

Qut[21]: datal dataz
koy
A a 5
B 1 T
C 2 9

Filtering. A filtering operation allows you to drop data based on the group proper-
ties. For example, we might want to keep all groups in which the standard deviation is
larger than some critical value:

In[22]:
def Tilter_func(x):
return x['data?"].std() = 4

print{df); print(df.groupby('key").std(});
print({df.groupby("key').filter{filter_func))

df df .groupby{ "key").std({)
koy datal data? kay datal data?

& A 2.12137 1.414214

] B 2.12132 4.949747

3 C 2.12132 4.242641

3

T

9

W bl B =
[= = e I o T = = e]
(W N R W Ry % R T o]

df .groupby("key'). fllter{fllter_func)
key datal dataz
1 B 1 a

The filter() function should return a Boolean value specifying whether the group
passes the filtering. Here because group A does not have a standard deviation greater
than 4, it is dropped from the result.

Transformation. While aggregation must return a reduced version of the data, trans-
formation can return some transformed version of the full data to recombine. For
such a transformation, the output is the same shape as the input. A common example
is to center the data by subtracting the group-wise mean:

In[23]: df.groupby(key'}.transform(lambda x: x - x.mean{))

Dut[23]: datal dataz
g -1.% 1.8
i -1.t 3.5
2 -1.&. -3.8
3 1.5 1.8
4 1.5 1.5
5 1.5 1.8

The apply() method. The apply() method lets you apply an arbitrary function to the
group results. The function should take a DataFrame, and return either a Pandas
object (e.g., DataFrame, Series) or a scalar; the combine operation will be tailored to
the type of output returned.

For example, here is an apply() that normalizes the first column by the sum of the
second:

In[24]: def morm_by_dataZ(x):
x 15 a DataFraome of group values
¥["datal"] /= x['data?'].sum{)
return x

print(df); print{df.groupby(key"').apply(norm by data2}))

df df .groupby('key').apply(norm_by data2)
key datal dataz key datal dataz

B A] L 8 A B8.800008 L

1 B i | a 1 B @.142857)

2 C 2 3 2 C B.16686T7 3

i A 3 3 3 A @.3T75008 3

4 B 4 T 4 B 8.5T71429 T

L C 5 9 £ € ©.416867 9

Specifying the split key
In the simple examples presented before, we split the DataFrame on a single column

name. This is just one of many options by which the groups can be defined, and we’ll
go through some other options for group specification here.

Alist, array, series, or index providing the grouping keys. The key can be any series or list
with a length matching that of the DataFrame. For example:

Inf25]: L =1[8, 1, &, 1, 2, @]
print({df); print{df.groupby(L}.sum{))

df df .groupby (L. sum{}
key datal dataz datal dataz

a8 T 17

1 4 3

2 4 T

Lo bl R
™ E e N 0 e
o L B = @D
W o= b bl DM

Of course, this means there’s another, more verbose way of accomplishing the
df . groupby('key') from before:

In[26]: print(df); print{df.groupby(df[key']).sum{})

df df .groupby (df["key'1).sumi)
key datal data? datal dataz
A 3 8
B L 7
C 7 12

e I =
[T = = e T T = = e e
[Ea N S SR X I T - =]
O =] b b WM

A dictionary or series mapping index to group. Another method is to provide a dictionary
that maps index values to the group keys:
In[27]: df? = df.set_index('key')

mapplng = {"A': "vowel', 'B': 'comsomant', 'C": "consonant'}
print(df2); print(dfZ.groupby{mapping}.sum{})

df2 dfZ.groupby(mapping).sum{)
key datal data? datal dataz
8 consonant 12 19
vowel 3 8

D == ==
L e
WD L @ LA

Any Python function. Similar to mapping, you can pass any Python function that will
input the index value and output the group:

In[28]: print(df2); print{dfZ.groupby{str.Llower).mean{))

dfz df2.groupby{str.lower) .mean{)
key datal data? datal data?

A <] g a 1.5 4.8

B 1 8 b 2.5 3.5

C 2 3 C 3.5 6.8

A 3 3

B 4 T

C 5 9

Alistofvalid keys. Further, any of the preceding key choices can be combined to

group on a multi-index:

In[29]: df2.groupby([str.Llower, mapplng]).meand)

Out[29]: datal dataz
3 vowal 1.5 4.8
b consonant 2.5 3.5
C consonant 3.5 6.8

We have seen how the GroupBY abstraction lets us explore relationships within a dataset.
A pivot table is a similar operation that is commonly seen in spreadsheets and other programs that operate on

tabular data.

X. Pivot Tables

The pivot table takes simple columnwise data as input, and groups the entries into a two-dimensional table that
provides a multidimensional summarization of the data.

Motivating Pivot Tables

For the examples in this section, we'll use the database of passengers on the Titanic,
available through the Seaborn library (see “Visualization with Seaborn” on page 311):

In[1]: import as
import as
import as

titanic = sns.load dataset{'titanic")
In[2]: titanic.head(}

Dut[2]:
survived pclass sex age slbsp parch fare embarked class 1)

] a 3 male 22.8 1 8 T7.2c08 S Third
1 1 1 female 3B.8 1 8 71.28313 C First
2 1 1 female 26.8] 8 7.9258 5 Third
3 1 1 female 35.8 1 8 L53.1808 % First
4 d 3 male 35.8 2] 8 B.BLEA 5 Third

who adult male deck embark _town alive alone
8 man True MWaN Southampton no False
1 woman False C Cherbourg vyes False
2 woman False MaN Southampton vyes True
3 woman False C Southampton yes False
4 man True HMWaN Southampton no True

This contains a wealth of information on each passenger of that ill-fated voyage,
including gender, age, class, fare paid, and much more.

Pivot Table Syntax

Here is the equivalent to the preceding operation using the pivot_table method of
DataFrames:

In[5]: titamic.pivot_table('survived', tindex="sex', columns="class")

Dut[5]: class First Second Third
sex
female B.968085 @.921853 A.560688
male B8.36B852 B6.1574687 6.135447

Multilevel pivot tables

Just as in the GroupBy, the grouping in pivot tables can be specified with multiple lev-
els, and via a number of options. For example, we might be interested in looking at
age as a third dimension. We'll bin the age using the pd. cut function:

In[6]: age = pd.cut(titanic['age"], [0, 18, 2087}
titanic.pivot_table('survived', ['sex', age], 'class')

Dut[6]: class First Second Third
S8X age

female (@, 18] ©.509091 1.808808 ©.51152%

(18, 88] ©.972973 0.900800 0.423729

male (@, 18] ©.800008 0.5000808 0.2156B5

(18, 88] ©.37-060 0.871429 ©.133663

We can apply this same strategy when working with the columns as well; let’s add info
on the fare paid using pd.qcut to automatically compute quantiles:

In[7]: fare = pd.qcut(titanic['fare"], 2)
titanic.plvot_table("survived®, ['sex', age], [fare, 'class'])

Out[7]:

fare [6, 14.454]

class First Second Third W

sax age

female (8, 18] HaN 1.980888 8.T714286
(18, B8] NaN @.830888 6.444444

male (@, 18] NaN @G.888088 6.268870
(18, B8] 8.8 0.898039 @.12C080

fare (14.454, 512.329]

class First Second Third

sax age

female (@8, 18] 8.989691 1.8668086 O0.318182
(18, 88] 8.972973 0.914286 6.391384
male (@, 18] 6.800000 ©.81B182 6.178L71
(18, 88] 8.391304 06.8308383 06.1%92368

Additional pivot table options
The full call signature of the pivot_table method of DataFrames is as follows:

call signature aos of Pandas 8.18

DataFrame.plvot_table{data, wvalues=Mone, index=Mone, columns=MNone,
aggfunc="mean', FLll_value=None, margins=False,
dropna=True, marglns_name='AL1l"}

The aggfunc keyword controls what type of aggregation is applied, which is a mean
by default. As in the GroupBy, the aggregation specification can be a string represent-
ing one of several common choices ("sum’, "'mean’, 'count’, 'min’', 'max’', etc.) or a
function that implements an aggregation (np. sum(), min(), sum(), etc.). Additionally,
it can be specified as a dictionary mapping a column to any of the above desired

options:

In[B]: titanic.pilvot_table{index="sex", columns='class',
aggfunc={"survived' :sum, 'fare':'mean'l}l)

Out[B8]: Tare

survived

class First Second Third First Second Third

s5ex

female 186.125798 21.978121 16.118818 91.8 Ta.e T72.4
male 67.226127 19.741782 12.661633 4.8 17.8 47.4

At times it's useful to compute totals along each grouping. This can be done via the

margins keyword:

In[2]: titanilc.plvot_table('survived', index="sex', columns="class', marglns=True)

Out[9]: class First Second Third
sex
female B.95B085 8.921853 0.580880
male B.36BB52 B, 157487 8.135447
Al B.6206308 8.472826 8.242363

Al

8.742038
6.188968
8.383838

UNIT V
DATA VISUALIZATION
Importing Matplotlib - Line plots - Scatter plots - visualizing errors - density and contour plots -
Histograms - legends - colors - subplots - text and annotation - customization - three dimensional
plotting - Geographic Data with Basemap - Visualization with Seaborn.

Simple Line Plots
The simplest of all plots is the visualization of a single function y = f x . Here we will take a first look
at creating asimple plot of this type.
The figure (an instance of the class plt.Figure) can be thought of as a single container that contains
all the objectsrepresenting axes, graphics, text, and labels.
The axes (an instance of the class plt.Axes) is what we see above: a bounding box with ticks and
labels, which willeventually contain the plot elements that make up our visualization.

Line Colors and Styles
e The first adjustment you might wish to make to a plot is to control the line colors and styles.
e To adjust the color, you can use the color keyword, which accepts a string argument
representing virtuallyany imaginable color. The color can be specified in a variety of ways
e If no color is specified, Matplotlib will automatically cycle through a set of default colors for
multiple lines

Different forms of color representation.

specify color by name - color="blue’
short color code (rgbcmyk) - color='g'
Grayscale between 0 and 1 - color="0.75'

Hex code (RRGGBB from 00 to FF) -
color="#FFDD44' RGB tuple, values 0 and 1
color=(1.0,0.2,0.3)all HTML color names
supported -
color="chartreuse’

e We can adjust the line style using the linestyle keyword.
Different line styles

linestyl
e='soli

d'

linestyl
e='das

hed'

linestyl
e='das

hdot'

linestyl

Axes
Limits

e='dott
ed'

Short assignment
linestyle="-
"# solid
linestyle='-
-' # dashed
linestyle='-
S H#
dashdot
linestyle="
' # dotted

linestyle and color codes can be combined into a single nonkeyword argument to the plt.plot()
function

plt.plot(x, x + 0, '-g') #

solid green plt.plot(x, x +

1, '--c') # dashed cyan

plt.plot(x, x + 2, '-.k') #

dashdot blackplt.plot(x, x

+3,"r'); # dotted red

e The most basic way to adjust axis limits is to use the plt.xlim() and plt.ylim() methods
Example
plt.xlim(10, 0)
plt.ylim(1.2, -1.2);
e The plt.axis() method allows you to set the x and y limits with a single call, by passing a list that specifies
[xmin, xmax, ymin, ymax]
plt.axis([-1, 11, -1.5, 1.5]);

e Aspect ratio equal is used to represent one unit in x is equal to one unit in y. plt.axis(‘'equal’)

Labeling Plots
The labeling of plots includes titles, axis labels, and simple
legends.Title - plt.title()
Label - plt.xlabel()
plt.ylabel()
Legend - plt.legend()

Example programs
Line color
import matplotlib.pyplot as
pltimport numpy as np
fig=
plt.figure()ax =
plt.axes()
x =np.linspace(0, 10,
1000)ax.plot(x, np.sin(x));
plt.plot(x, np.sin(x - 0), color="blue") # specify color by name
plt.plot(x, np.sin(x - 1), color="'g") # short color code
(rgbcmyk) plt.plot(x, np.sin(x - 2), color="0.75") # Grayscale
between 0 and 1
plt.plot(x, np.sin(x - 3), color="#FFDD44") # Hex code (RRGGBB from 00 to
FF)plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB tuple, values 0 and 1
plt.plot(x, np.sin(x - 5), color="'chartreuse');# all HTML color names
supported

1.00 A
0.75 A \ \
0.50 A \
0.25 4
0.00 +
—0.25 1
—0.50 1

p /

—1.00 A

o
N
-~
)]
(o]
o

Line styie
import matplotlib.pyplot as plt

import numpy as npfig =
pltjfigure()
ax = plt.axes()
x =np.linspace(0, 10, 1000)
plt.plot(x, x + 0, linestyle="solid")
plt.plot(x, x + 1,
linestyle='dashed') plt.plot(x, x +
2, linestyle="'dashdot')plt.plot(x, x
+ 3, linestyle="dotted");
For short, you can use the following
codes:plt.plot(x, X + 4, linestyle="-") # solid
plt.plot(x, x + 5, linestyle="--") # dashed
plt.plot(x, x + 6, linestyle="-.") # dashdot
plt.plot(x, x + 7, linestyle=""); # dotted

17.5

15.0 A

12.5 A

10.0 A

7.5 1

5.0

257

0.0 A

Axis limit with label and legend

A Sine Curve

1.5

import matplotlib.pyplot as
pltimport numpy as np

flg — 1.0
plt.figure()ax =
plt.axes() 57
x = np.linspace(0, 10, 1000) -

= 0.0

pltxlim(-1, 11)
pltylim(-1.5, 1.5);
plt.plot(x, np.sin(x), '-g', label="sin(x)") =031
plt.plot(x, np.cos(x), ":b’,

label="cos(x)")plt.title("A Sine -1.01

Curve")

plt.xlabel("x") -15 0 T T r p -
plt.ylabel("sin(x)"); x

pltlegend();

Simple Scatter Plots

An
joil

bther commonly used plot type is the simple scatter plot, a close cousin of the line plot. Instead of points beilug

1ed by line segments, here the points are represented individually with a dot, circle, or other shape.
Syntax
plt.plot(x, y, 'type of symbol ', color);

Example
plt.plot(x, y, ‘o', color="black’);

e Thethird argumentin the function call is a character that represents the type of symbol used for the plotting.
Just as you can specify options such as '-' and '--' to control the line style, the marker style has its own set of
short string codes.

Example
e Various symbols used to specify ['0’, ., ',", "X, '+, 'V, 'A< S!St

e Short hand assignment of line, symbol and color also allowed.
plt.plot(x, y, "-ok');

e Additional arguments in plt.plot()
We can specify some other parameters related with scatter plot which makes it more attractive. Th
arecolor, marker size, linewidth, marker face color, marker edge color, marker edge width, etc

Example
plt.plot(x, y, "-p', color='gray’,
markersize=15, linewidth=4,
markerfacecolor='white',
markeredgecolor="gray’,
markeredgewidth=2)
plt.ylim(-1.2, 1.2);

Scatter Plots with plt.scatter

e Asecond, more powerful method of creating scatter plots is the plt.scatter function, which can be used very
similarly to the plt.plot function
plt.scatter(x, y, marker='0");

e The primary difference of plt.scatter from plt.plot is that it can be used to create scatter plots where the
properties of each individual point (size, face color, edge color, etc.) can be individually controlled or mapped
to data.

e Notice that the color argument is automatically mapped to a color scale (shown here by the colorbar()
command), and the size argument is given in pixels.

e Cmap —color map used in scatter plot gives different color combinations.

Perceptually Uniform Sequential

['viridis', 'plasma', 'inferno', 'magma']

Sequential

['Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', 'Y1lOrBr', 'Y1lOrRd4d',
'OrRd', 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'Y1lGnBu', 'PuBuGn', 'BuGn',
'Y1Gn']

Sequential (2)

['binary', 'gist yarg', 'gist gray', 'gray', 'bone', 'pink', 'spring', 'summer',
'autumn', 'winter', 'cool', 'Wistia', 'hot', 'afmhot', 'gist heat', 'copper']

4

Diverging

['"PiYG', '"PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu' 'RAY1Bu', 'RdAY1lGn', 'Spectral',
'coolwarm', 'bwr', 'seismic']

Qualitative

['Pastell', 'Pastel2?', 'Paired', 'Accent', 'Dark2', 'Setl', 'Set2', 'Set3',
'tabl0', 'tab20', 'tab20b', 'tab20c']

Miscellaneous

['flag', 'prism', 'ocean', 'gist earth', 'terrain', 'gist stern', 'gnuplot',
'gnuplot2', 'CMRmap', 'cubehelixT, 'brg', 'hsv', ’gist_ra?nbow’, 'rainbow',
'jJet', 'nipy spectral', 'gist ncar']

Example programs.

Simple scatter plot.
import numpy as np
import matplotlib.pyplot as
pltx = np.linspace(0, 10, 30)
y = np.sin(x)
plt.plot(x, y, ‘o', color="black");

Scatter plot with edge color, face color, size,
and width of marker. (Scatter plot with line)

import numpy as np
import matplotlib.pyplot as
pltx = np.linspace(0, 10, 20)
y = np.sin(x)

plt.plot(x, y, '-0',
color="gray’,
markersize=15,
linewidth=4,
markerfacecolor='yellow',
markeredgecolor="red’,
markeredgewidth=4)
pltylim(-1.5, 1.5);

Scatter plot with random colors, size and transparency
import numpy as np

import matplotlib.pyplot as plt

rng =

np.random.RandomState(0)x =
rng.randn(100)

y =rng.randn(100)

colors =

rng.rand(100)

sizes = 1000 * rng.rand(100)

plt.scatter(x, y, c=colors, s=sizes, alpha=0.3,
map="viridis')plt.colorbar()

Visualizing Errors

1.00 1

0.75 1

0.50 1

0.25 4

0.0049 @

—0.25

—0.50 A

—0.75 A

—1.00 4

T
10

15

1.0 A

0.5

0.0

-1.0

-1.5

T
10

0.8

0.6

r0.4

0.2

For any scientific measurement, accurate accounting for errors is nearly as important, if not more important,
than accurate reporting of the number itself. For example, imagine that I am using some astrophysical
observations to estimate the Hubble Constant, the local measurement of the expansion rate of the Universe.
In visualization of data and results, showing these errors effectively can make a plot convey much more
completeinformation.

Types of errors
Basic Errorbars
Continuous Errors

Basic Errorbars
A basic errorbar can be created with a single Matplotlib function call.
import as
plt.style.use('seaborn-whitegrid')
import as
x = np.linspace(0, 10, 50)
dy=0.8
y = np.sin(x) + dy * np.random.randn(50)
plt.errorbar(x, y, yerr=dy, fmt=".k');

| ! ’)W W””

|
'y

8 10

|
H” ’HH”W |

Here the fmt is a format code controlling the appearance of lines and points, and has the same syntax as

0 2

theshorthand used in plt.plot()

In addition to these basic options, the errorbar function has many options to fine tune the outputs.
Usingthese additional options you can easily customize the aesthetics of your errorbar plot.

plt.errorbar(x, y, yerr=dy, fmt="0', color="black',ecolor='lightgray', elinewidth=3, capsize=0);

2
1]j |
D
-1
-2
o] 2 4] 8 10

In some situations it is desirable to show errorbars on continuous quantities. Though Matplotlib does not
have a built-in convenience routine for this type of application, it’s relatively easy to combine primitives like
plt.plot and plt.fill_between for a useful result.
Here we’ll perform a simple Gaussian process regression (GPR), using the Scikit-Learn API. This is a method
of fitting a very flexible nonparametric function to data with a continuous measure of the uncertainty.

Continuous Errors

Density and Contour Plots

To display three-dimensional data in two dimensions using contours or color-coded
regions.There are three Matplotlib functions that can be helpful for this task:

e plt.contour for contour plots,

e plt.contourf for filled contour plots, and
e plt.imshow for showing images.

Visualizing a Three-Dimensional Function 2
A contour plot can be created with the plt.contour function.

(3]
1}
11
I
]
"
1
4 [N
1"
1
1
|

I
ttakes three arguments:
e agrid of x values, 1
e agrid of yvalues, and . :.|'.
e agrid of z values. ':‘\
The x and y values represent positions on the plot, and the | \\ zZ

values will be represented by the contour levels. \
The way to prepare such data is to use the np.meshgrid \‘
function, which builds two-dimensional grids from one- '
dimensional arrays:
Example ; 1
def f(x, y):

return np.sin(x) ** 10 + np.cos(10 +y * x) * np.cos(x)

x = np.linspace(0, 5, 50)

y = np.linspace(0, 5, 40)

X, Y = np.meshgrid(x, y)

Z=1(X,Y)

plt.contour(X, Y, Z, colors='black');

e Notice that by default when a single color is used, negative values
andpositive values by solid lines.

Alternatively, you can color-code the lines by specifying a colormap with the cmap argument.
We’'ll also specify that we want more lines to be drawn—20 equally spaced intervals within the data range.

are represented by dashed lines,

7

plt.contour(X, Y, Z, 20, cmap='RdGy");

One potential issue with this plot is that it is a bit “splotchy.” That is, the color steps are discrete rather
thancontinuous, which is not always what is desired.

You could remedy this by setting the number of contours to a very high number, but this results in a
ratherinefficient plot: Matplotlib must render a new polygon for each step in the level.

A better way to handle this is to use the plt.imshow() function, which interprets a two-dimensional grid
ofdata as an image.

There are a few potential gotchas with imshow().

Finally, it can sometimes be wuseful to combine

plt.imshow() doesn’t accept an x and y grid, so you must manually specify the extent [xmin, xmax, ymin,
ymax] of the image on the plot.

plt.imshow() by default follows the standard image array definition where the origin is in the upper left,
notin the lower left as in most contour plots. This must be changed when showing gridded data.
plt.imshow() will automatically adjust the axis aspect ratio to match the input data; you can change this
bysetting, for example, plt.axis(aspect='image') to make x and y units match.

contour plots and image plots. we’ll use a partially ' s
transparent background image (with transparency set L 075
via the alpha parameter) and over-plot contours with
labels on the contours themselves (using the plt.clabel() - 0.50
function):
contours = plt.contour(X, Y, Z, 3, colors="'black') 823
plt.clabel(contours, inline=True, fontsize=3) 6
plt.imshow(Z, extent=[0, 5, 0, 5], origin="lower",
cmap='RdGy', alpha=0.5) - -0.25
plt.colorbar();
=100 8
Example Program gms %
import numpy as np =
import matplotlib.pyplot as plt — 050
def f(x, y): _
return np.sin(x) ** 10 + np.cos(10 +y * x) *
np.cos(x) om0
x = np.linspace(0, 5, 50) -0.25
y = np.linspace(0, 5, 40) =
X, Y = np.meshgrid(x, y) =
Z=1(X,Y) =075

plt.imshow(Z, extent=[0, 10, 0, 10],
origin='lower', cmap='RdGy')
plt.colorbar()

-1.00

Histograms
Histogram is the simple plot to represent the large data set. A histogram is a graph showing
frequencydistributions. It is a graph showing the number of observations within each given interval.

Parameters

plt.hist() is used to plot histogram. The hist() function will use an array of numbers to create a
histogram,the array is sent into the function as an argument.

e bins - A histogram displays numerical data by grouping data into "bins" of equal width. Each bin is plotted
as a bar whose height corresponds to how many data points are in that bin. Bins are also sometimes called
"intervals", "classes", or "buckets".

e normed - Histogram normalization is a technique to distribute the frequencies of the histogram over a wider
range than the current range.

e x-(n,) array or sequence of (n,) arrays Input values, this takes either a single array or a sequence of arrays
which are not required to be of the same length.

e histtype - {'bar', 'barstacked', 'step', 'stepfilled'},
optionalThe type of histogram to draw.

e 'bar'is a traditional bar-type histogram. If multiple data are given the bars are arranged side by side.
e 'barstacked'is a bar-type histogram where multiple data are stacked on top of each other.
e 'step' generates a lineplot that is by default unfilled.
o 'stepfilled’ generates a lineplot that is by default

filled.Default is 'bar’

e align - {'left’, 'mid’, 'right'}, optional
Controls how the histogram is
plotted.

o 'left": bars are centered on the left bin edges.
e 'mid': bars are centered between the bin edges.
e 'right': bars are centered on the right bin
edges.Default is 'mid'
e orientation - {'horizontal’, 'vertical'}, optional
If 'horizontal', barh will be used for bar-type histograms and the bottom kwarg will be the left edges.
e color - color or array_like of colors or None, optional
Color spec or sequence of color specs, one per dataset. Default (None) uses the standard line color
sequence.

Default is None
e label - str or None, optional. Default is None

Other parameter
e **kwargs - Patch properties, it allows us to pass a
variable number of keyword arguments to a
python function. ** denotes this type of function.

Example

import numpy as np

import matplotlib.pyplot as plt
plt.style.use('seaborn-white')
data = np.random.randn(1000)
plt.hist(data);

The hist() function has many options to tune both the calculation and the display; here’s an example of a
morecustomized histogram.
plt.hist(data, bins=30, alpha=0.5,histtype='stepfilled’, color="'steelblue’,edgecolor="none');

The plt.hist docstring has more information on other customization options available. I find this combination
of histtype='stepfilled' along with some transparency alpha to be very useful when comparing histograms of
several distributions

x1

= np.random.normal(0, 0.8, 1000)

x2 = np.random.normal(-2, 1, 1000)

x3 = np.random.normal(3, 2, 1000)

kwargs = dict(histtype="stepfilled’, alpha=0.3, bins=40)
plt.hist(x1, **kwargs)

plt.hist(x2, **kwargs)

plt.hist(x3, **kwargs);

80

Fo

80

20

10

o

— —2 (8] 2 <4 & 8 10
Two-Dimensional Histograms and Binnings
e We can create histograms in two dimensions by dividing points among two dimensional bins.
e We would define x and y values. Here for example We'll start by defining some data—an x and y array
drawn from a multivariate Gaussian distribution:
e Simple way to plot a two-dimensional histogram is to use Matplotlib’s plt.hist2d() function

Example

mean = [0, 0]

cov =[[1, 1], [1, 2]]

X, ¥y = np.random.multivariate_normal(mean, cov, 1000).T
plt.hist2d(x, y, bins=30, cmap="'Blues')

cb = plt.colorbar()

cb.set_label('counts in bin')

10

14

4 12
10
2 u
-. 8 =
L & B £
0 6 %
n
u n
.I 4
-2
2
-4 — 0
-3 -2 -1 0 1 2 3
Legends

Plot legends give meaning to a visualization, assigning labels to the various plot elements. We previously saw
how to create a simple legend; here we’ll take a look at customizing the placement and aesthetics of the legend
in Matplotlib.
Plot legends give meaning to a visualization, assigning labels to the various plot elements. We previously saw
how to create a simple legend; here we’ll take a look at customizing the placement and aesthetics of the legend
in Matplotlib

plt.plot(x, np.sin(x), '-b', label='Sine')

plt.plot(x, np.cos(x), '--r', label='Cosine')

plt.legend();

Customizing Plot Legends
Location and turn off the frame - We can specify the location and turn off the frame. By the parameter loc and
framon.

ax.legend(loc="'upper left', frameon=False)

fig

Number of columns - We can use the ncol command to specify the number of columns in the legend.
ax.legend(frameon=False, loc='lower center', ncol=2)
fig

Rounded box, shadow and frame transparency

11

We can use a rounded box (fancybox) or add a shadow, change the transparency (alpha value) of the frame, or
change the padding around the text.
ax.legend(fancybox=True, framealpha=1, shadow=True, borderpad=1)

fig

Choosing Elements for the Legend

e The legend includes all labeled elements by default. We can change which elements and labels appear in
thelegend by using the objects returned by plot commands.

e The plt.plot() command is able to create multiple lines at once, and returns a list of created line instance
Passing any of these to plt.legend() will tell it which to identify, along with the labels we’d like to specif]
y = np.sin(x[:, np.newaxis] + np.pi * np.arange(0, 2, 0.5))
lines = plt.plot(x, y)
plt.legend(lines[:2],['first','second']); 3

Applying label individually.

plt.plot(x, y[:, 0], label="first')

plt.plot(x, y[:, 1], label="second')
plt.plot(x, y[:, 2:])
plt.legend(framealpha=1, frameon=True);

Multiple legends . — Sine

It is only possible to create a single legend for the entire plot. If

you try to create a second legend using plt.legend() or ax.legend(), 0 2 2 6 8 10
it willsimply override the first one. We can work around this by

creating a

new legend artist from scratch, and then using the lower-level ax.add_artist() method to manually add the
second artist to the plot

Example
import matplotlib.pyplot as plt
plt.style.use('classic')
import numpy as np
x = np.linspace(0, 10, 1000)
ax.legend(loc='lower center', frameon=True, shadow=True,borderpad=1,fancybox=True)
fig

Color Bars
In Matplotlib, a color bar is a separate axes that can provide a key for the meaning of colors in a plot
Forcontinuous labels based on the color of points, lines, or regions, a labeled color bar can be a great tool.
The simplest colorbar can be created with the plt.colorbar() function.

Customizing Colorbars
Choosing color map.
We can specify the colormap using the cmap argument to the plotting function that is creating the
visualization.Broadly, we can know three different categories of colormaps:
e Sequential colormaps - These consist of one continuous sequence of colors (e.g., binary or viridis).
e Divergent colormaps - These usually contain two distinct colors, which show positive and negative
deviations from a mean (e.g., RdBu or PuOr).
e Qualitative colormaps - These mix colors with no particular sequence (e.g., rainbow or jet).

TT

~

12

Color limits and extensions

Discrete colorbars

Colormaps are by default continuous, but sometimes you’'d like to
represent discrete values. The easiest way to do this is to use the
plt.cm.get_cmap() function, and pass the name of a suitable colormap
along with the number of desired bins.

Matplotlib allows for a large range of colorbar customization. The colorbar itself is simply an instance of
plt.Axes, so all of the axes and tick formatting tricks we’ve learned are applicable.

We can narrow the color limits and indicate the out-of-bounds values with a triangular arrow at the top
andbottom by setting the extend property.

plt.subplot(1, 2, 2)

plt.imshow(l, cmap='RdBu")

plt.colorbar(extend="both')

plt.clim(-1, 1);

0 0
10
100 ¥
s na
00 4 75 20 ; o 0.6
- . . . o
200 25 400 - k. ;i 0z
00 . i v 0.0
200 25 50 -0.2
-5.0 ' e
200+ A 4 75 a0 | . : -0.6
& : -0.8
1000 M oo 2 -10
"0 200 400 &0 810 1000 0 X0 400 0 S00 1000

plt.imshow(l, cmap=plt.cm.get_cmap('Blues’, 6))
plt.colorbar()
plt.clim(-1, 1);

Subplots

Matplotlib has the concept of subplots: groups of smaller axes that can exist together within a single figure.
These subplots might be insets, grids of plots, or other more complicated layouts.
We’'ll explore four routines for creating subplots in Matplotlib.

e plt.axes: Subplots by Hand

e plt.subplot: Simple Grids of Subplots

e plt.subplots: The Whole Grid in One Go

e plt.GridSpec: More Complicated Arrangements

plt.axes: Subplots by Hand

The most basic method of creating an axes is to use the plt.axes function. As we’ve seen previously,
bydefault this creates a standard axes object that fills the entire figure.

plt.axes also takes an optional argument that is a list of four numbers in the figure coordinate system.
These numbers represent [bottom, left, width,height] in the figure coordinate system, which ranges from 0
atthe bottom left of the figure to 1 at the top right of the figure.

13

For example,

1.0

we might create an inset axes at the top-right corner of 10
another axes by setting the x and y position to 0.65 (that is, oo
starting at 65% of the width and 65% of the height of the *° o
figure) and the xand y extents to 0.2 (that is, the size of the 00 53030608 L0

axes is 20% of the width and 20% of the height of the figure). ©°¢

import matplotlib.pyplot as plt 04
import numpy as np
ax1 = plt.axes() # standard axes 02

ax2 = plt.axes([0.65, 0.65, 0.2, 0.2])

0.0 0.2 0.4 0.6 0.8 1.0

Vertical sub plot
The equivalent of plt.axes() command within the

object-oriented interface is ig.add_axes(). Let's use
this to create two vertically stacked axes.

fig = plt.figure()

ax1 = fig.add_axes([0.1, 0.5, 0.8, 0.4],

xticklabels=[], ylim=(-1.2, 1.2))

ax2 = fig.add_axes([0.1, 0.1, 0.8, 0.4],

ylim=(-1.2, 1.2))

x = np.linspace(0, 10)

axl.plot(np.sin(x)) 10
ax2.plot(np.cos(x));

e We now have two axes (the top with no tick
labels) that are just touching: the bottom of the 00l
upper panel (at position 0.5) matches the top of
the lower panel (at position 0.1+ 0.4).

e If the axis value is changed in second plot both ' _; ;1

05}

05}

the plots are separated with each other,
exampleax2 = fig.add_axes([0.1, 0.01, 0.8, 0.4

0 10 20 30 40

plt.subplot: Simple Grids of Subplots
e Matplotlib has several convenience routines to align columns or rows of subplots.
e The lowest level of these is plt.subplot(), which creates a single subplot within a grid.

1.0 - - - - 1.0 - - - - 1.0
08} 108 | 108
@231] @32 [@33
e This command takes three integer 04 104} 104}
arguments—the number of rows, the number o2 oz} {oz2}

of columns, and the index of the plot to be
created in this scheme, which runs from the

e R L1
0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

upper left to the bottom right = !
foriin range(1, 7): 08 108 08
plt.subplot(2, 3, i) . 06 (2,3, 4) {06} (2.3, 5) {06} (2,3, 6)
p|ttext(05, 05, Str((Z, 3, |)), 04l lpal loal
fontsize=18, ha='center")
0.2 10.2 0.2

plt.subplots: The Whole Grid in One Go

e The approach just described can become quite tedious when you’re creating a large grid of subplots,
especially if you’d like to hide the x- and y-
axis labels on the inner plots.

e For this purpose, plt.subplots() is the easier 08}
tool to use (note the s at the end of subplots).

e Rather than creating a single subplot, this
function creates a full grid of subplots in a 04f
single line, returning them in a NumPy array.

e The arguments are the number of rows and
number of columns, along with optional 00
keywords sharex and sharey, which allow you
to specify the relationships between different
axes. 08}

e Herewe’ll create a 2x3 grid of subplots, where
all axes in the same row share their y- axis
scale, and all axes in the same column share 04}
their x-axis scale

fig, ax = plt.subplots(2, 3, sharex='col’,

sharey="row’)

Note that by specifying sharex and sharey,

we’'ve automatically removed inner labels on

the grid to make the plot cleaner.

10

061

02r¢

10

06

021

00 | | | | | | | | | | | |
000204 0608 10000204060810000204060810

plt.GridSpec: More Complicated Arrangements

To go beyond a regular grid to subplots that span multiple rows and columns, plt.GridSpec() is the best
tool. The plt.GridSpec() object does not create a plot by itself; it is simply a convenient interface that is
recognizedby the plt.subplot() command.

For example, a gridspec for a grid of two rows and three columns with some specified width and height
spacelooks like this:

10 10

0.8 08

0.6 06
grid = plt.GridSpec(2, 3, wspace=0.4, hspace=0.3) i aal
From this we can specify subplot locations and 02 ozl
extentsplt.subplot(grid[0, 0]) 0.0 0.0

00020406 0810 0.0 0.2 0.4 0.6 0.8 1.0

plt.subplot(grid[0, 1:])
plt.subplot(grid[1, :2]) ° "
plt.subplot(grid[1, 2]); o

0.6 e

04 04t

0.2 02

D%.O 0?2 0‘4 0‘6 0?8 10 DIC{’).O 0‘2 014 0.‘6 0.‘8 1.0

Text and Annotation

e The most basic types of annotations we will use are axes labels and titles, here we will see some more
visualization and annotation information’s.

15

e Text annotation can be done manually with the plt.text/ax.text command, which will place text at a
particular x/y value.

e The ax.text method takes an x position, a y position, a string, and then optional keywords specifying the
color, size, style, alignment, and other properties of the text. Here we used ha="right' and ha='center', where
ha is short for horizontal alignment.

Transforms and Text Position

e We anchored our text annotations to data locations. Sometimes it’s preferable to anchor the text to a
positionon the axes or figure, independent of the data. In Matplotlib, we do this by modifying the transform.

e Any graphics display framework needs some scheme for translating between coordinate systems.

e Mathematically, such coordinate transformations are relatively straightforward, and Matplotlib has a well-
developed set of tools that it uses internally to perform them (the tools can be explored in the
matplotlib.transforms submodule).

e There are three predefined transforms that can be useful in this situation.

o ax.transData - Transform associated with data coordinates
o ax.transAxes - Transform associated with the axes (in units of axes dimensions)
o fig.transFigure - Transform associated with the figure (in units of figure dimensions)

Example

import matplotlib.pyplot as plt

import matplotlib as mpl

plt.style.use('seaborn-whitegrid')

import numpy as np

import pandas as pd

fig, ax = plt.subplots(facecolor='lightgray')

ax.axis([0, 10, 0, 10])

transform=ax.transData is the default, but we'll specify it anyway
ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData)
ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes)
ax.text(0.2, 0.2, ". Figure: (0.2, 0.2)", transform=fig.transFigure);

10

. Data: (1, 5)

- Figure: (02 {}2} _Axes: LO-S. 0_1}

o 2 = & 8 10

16

Note that by default, the text is aligned above and to the left of the specified coordinates; here the “.” at the
beginning of each string will approximately mark the given coordinate location.

The transData coordinates give the usual data coordinates associated with the x- and y-axis labels. The
transAxes coordinates give the location from the bottom-left corner of the axes (here the white box) as a
fraction of the axes size.

The transfigure coordinates are similar, but specify the position from the bottom left of the figure (here the
gray box) as a fraction of the figure size.

Notice now that if we change the axes limits, it is only the transData coordinates that will be affected, while the
others remain stationary.

Arrows and Annotation
e Along with tick marks and text, another useful annotation mark is the simple arrow.
e Drawing arrows in Matplotlib is not much harder because there is a plt.arrow() function available.
e The arrows it creates are SVG (scalable vector graphics)objects that will be subject to the varying
aspectratio of your plots, and the result is rarely what the user intended.
e The arrow style is controlled through the arrowprops dictionary, which has numerous options available.

Three-Dimensional Plotting in Matplotlib
We enable three-dimensional plots by importing the mplot3d toolkit, included with the main Matplotlib
installation.

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
fig = plt.figure()
ax = plt.axes(projection='3d')

With this 3D axes enabled, we can now plot a
varietyof three-dimensional plot types.

Three-Dimensional Points and Lines

The most basic three-dimensional plot is a line or scatter plot created from sets of (%, y, z) triples.

In analogy with the more common two-dimensional plots discussed earlier, we can create these using the
ax.plot3D

and ax.scatter3D functions

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

ax = plt.axes(projection='3d")

Data for a three-dimensional line

zline = np.linspace(0, 15, 1000)

xline = np.sin(zline)

yline = np.cos(zline)

ax.plot3D(xline, yline, zline, 'gray')

Data for three-dimensional scattered points
zdata =15 * np.random.random(100)

xdata = np.sin(zdata) + 0.1 * np.random.randn(100)
ydata = np.cos(zdata) + 0.1 * np.random.randn(100)

ax.

scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens');plt.show()
Notice that by default, the scatter points have their transparency adjusted to give a sense of depth on the page

Three-Dimensional Contour Plots

e mplot3d contains tools to create three-dimensional relief plots using the same inputs.

e Like two-dimensional ax.contour plots, ax.contour3D requires all the input data to be in the form of

two-dimensional regular grids, with the Z data evaluated at each point.

e Here we’ll show a three-dimensional contour diagram of a three dimensional sinusoidal function
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
def f(x, y):

return np.sin(np.sqrt(x ** 2 + y ** 2))

X = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)
X, Y = np.meshgrid(x, y)
Z=1f(X,Y)
fig = plt.figure()
ax = plt.axes(projection='3d")
ax.contour3D(X, Y, Z, 50, cmap="binary"')
ax.set_xlabel('x")
ax.set_ylabel('y")
ax.set_zlabel('z')
plt.show()
Sometimes the default viewing angle is not optimal, in which case we can use the view_init method to
set theelevation and azimuthal angles.
ax.view_init(60, 35)
fig

Wire frames and Surface Plots
e Two other types of three-dimensional plots that work on gridded data are wireframes and surface plots.
e These take a grid of values and project it onto the specified threedimensional surface, and can make
theresulting three-dimensional forms quite easy to visualize.
wireframe
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
fig = plt.figure()
ax = plt.axes(projection='3d")
ax.plot_wireframe(X, Y, Z, color="black’)
ax.set_title('wireframe'); \ ',“/‘,‘,"
plt.show() AN
Wl N A !
LK
e A surface plot is like a wireframe plot, but each : ‘
faceof the wireframe is a filled polygon.

18

e Adding a colormap to the filled polygons can aid perception of the topology of the surface being visualized

surface

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

ax = plt.axes(projection='3d")
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
cmap='viridis', edgecolor='none")
ax.set_title('surface')

plt.show()

Surface Triangulations

e For some applications, the evenly sampled grids required by
the preceding routines are overly restrictive and
inconvenient.

e Inthese situations, the triangulation-based plots can be very useful.

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

theta =2 * np.pi * np.random.random(1000)

r=6 * np.random.random(1000)

X = np.ravel(r * np.sin(theta))

y = np.ravel(r * np.cos(theta))

z=f(x,y)

ax = plt.axes(projection="'3d')

ax.scatter(x, y, z, c=z, cmap='viridis', linewidth=0.5)

Geographic Data with Basemap

e One common type of visualization in data science is
thatof geographic data.

e Matplotlib’s main tool for this type of visualization is the Basemap toolkit, which is one of several
Matplotlib toolkits that live under the mpl_toolkits namespace.

e Basemap is a useful tool for Python users to have in their virtual toolbelts

e [nstallation of Basemap. Once you have the Basemap toolkit installed and imported, geographic plots
alsorequire the PIL package in Python 2, or the pillow package
in Python 3.
import as
import as
from import Basemap
plt.figure(figsize=(8, 8))
m = Basemap(projection="ortho', resolution=None,
lat_0=50, lon_0=-100)
m.bluemarble(scale=0.5);

e Matplotlib axes that understands spherical coordinates
andallows us to easily over-plot data on the map

19

e We’'ll use an etopo image (which shows topographical features both on land and under the ocean) as

themap background
Program to display particular area of the map with latitude
andlongitude lines
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from itertools import chain
fig = plt.figure(figsize=(8, 8))
m = Basemap(projection='lcc', resolution=None,
width=8E6, height=8E6,
lat_0=45, lon_0=-100,)
m.etopo(scale=0.5, alpha=0.5)
def draw_map(m, scale=0.2):
draw a shaded-relief image
m.shadedrelief(scale=scale)
lats and longs are returned as a dictionary
lats = m.drawparallels(np.linspace(-90, 90, 13))
lons = m.drawmeridians(np.linspace(-180, 180, 13))
keys contain the plt.Line2D instances
lat_lines = chain(*(tup[1][0] for tup in lats.items()))
lon_lines = chain(*(tup[1][0] for tup in lons.items()))
all_lines = chain(lat_lines, lon_lines)
cycle through these lines and set the desired style
for line in all_lines:
line.set(linestyle="-', alpha=0.3, color="r')

Map Projections

The Basemap package implements several dozen such projections, all referenced by a short format code. Here

we’llbriefly demonstrate some of the more common ones.
e Cylindrical projections
e Pseudo-cylindrical projections
e Perspective projections
e Conic projections

Cylindrical projection

e The simplest of map projections are cylindrical projections, in which lines of constant latitude and

e

s it

longitudeare mapped to horizontal and vertical lines, respectively.

e This type of mapping represents equatorial regions quite well, but results in extreme distortions near

thepoles.

e The spacing of latitude lines varies between different cylindrical projections, leading to different
conservation properties, and different distortion near the poles.
e Other cylindrical projections are the Mercator (projection="merc') and the cylindrical equal-area

(projection='cea') projections.

e The additional arguments to Basemap for this view specify the latitude (lat) and longitude (lon) of
thelower-left corner (llcrnr) and upper-right corner (urcrnr) for the desired map, in units of degrees.

import as
import as

from import Basemap
20

fig = plt.figure(figsize=(8, 6), edgecolor="'w")

m = Basemap(projection="cyl', resolution=None,
llcrnrlat=-90, urcrnrlat=90,

llcrnrlon=-180, urcrnrlon=180,)

draw_map(m)

Pseudo-cylindrical projections

Pseudo-cylindrical projections relax the requirement that meridians (lines of constant longitude)
remainvertical; this can give better properties near the poles of the projection.

The Mollweide projection (projection='moll') is one common example of this, in which all meridians
areelliptical arcs

It is constructed so as to

preserve area across the map: though there
aredistortions near the poles, the area of small
patches reflects the true area.

Other pseudo-cylindrical projections are the
sinusoidal (projection='sinu') and Robinson
(projection="robin') projections.

The extra arguments to Basemap here refer to
the central latitude (lat_0) and longitude
(lon_0) for the desired map.

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.basemap import Basemap

fig = plt.figure(figsize=(8, 6), edgecolor='w')

m = Basemap(projection="moll’, resolution=None,
lat_0=0, lon_0=0)

draw_map(m)

Perspective projections

Perspective projections are constructed using a particular choice of perspective point, similar to if you
photographed the Earth from a particular point in space (a point which, for some projections, technically
lieswithin the Earth!).

21

One common example is the orthographic projection (projection="'ortho'), which shows one side of the globe
as seen from a viewer at a very long distance.

Thus, it can show only half the globe at a time.

Other perspective-based projections include the
gnomonic projection (projection='gnom') and
stereographic projection (projection='stere’).

These are often the most useful for showing small
portions of the map.

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.basemap import Basemap

fig = plt.figure(figsize=(8, 8))

m = Basemap(projection="'ortho', resolution=None,
lat_0=50, lon_0=0)

draw_map(m);

Conic projections

A conic projection projects the map onto a single cone, which is then unrolled.

This can lead to very good local properties, but regions far from the focus point of the cone may
becomevery distorted.

One example of this is the Lambert conformal conic projection (projection='lcc').

It projects the map onto a cone arranged in such a way that two standard parallels (specified in Basemap by
lat_1 and lat_2) have well-represented distances, with scale decreasing between them and increasing
outsideof them.

Other useful conic projections are the equidistant conic (projection='eqdc') and the Albers equal-area
(projection="aea') projection

import numpy as np

import matplotlib:pyplot as plt

from mpl_toolkits.basemap import Basemap

fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='lcc', resolution=None,

lon_0=0, lat_0=50, lat_1=45, lat_2=55, width=1.6E7, height=1.2E7)

draw_map(m)

Drawing a Map Background

The Basemap package contains a range of useful functions for drawing borders of physical features like
continents,oceans, lakes, and rivers, as well as political boundaries such as countries and US states and counti
The following are some of the available drawing functions that you may wish to explore using IPython’s
helpfeatures:

* Physical boundaries and bodies of water

drawcoastlines() - Draw continental coast

lines

drawlsmask() - Draw a mask between the land and sea, for use with projecting images on one or
the otherdrawmapboundary() - Draw the map boundary, including the fill color for oceans
drawrivers() - Draw rivers on the map

fillcontinents() - Fill the continents with a given color; optionally fill lakes with another color

* Political boundaries

drawcountries() - Draw country
boundaries drawstates() - Draw US state
boundaries drawcounties() - Draw US
county boundaries

* Map features

drawgreatcircle() - Draw a great circle between two
pointsdrawparallels() - Draw lines of constant latitude
drawmeridians() - Draw lines of constant longitude
drawmapscale() - Draw a linear scale on the map

* Whole-globe images

bluemarble() - Project NASA’s blue marble image onto the
mapshadedrelief() - Project a shaded relief image onto the
map etopo() - Draw an etopo relief image onto the map
warpimage() - Project a user-provided image onto the map

Plotting Data on Maps
e The Basemap toolkit is the ability to over-plot a variety of data onto a map background.
e There are many map-specific functions available as methods of the Basemap

instance.Some of these map-specific methods are:

contour()/contourf() - Draw contour lines or filled

contoursimshow() - Draw an image

pcolor()/pcolormesh() - Draw a pseudocolor plot for irregular/regular

meshesplot() - Draw lines and/or markers

scatter() - Draw points with

markersquiver() - Draw vectors

barbs() - Draw wind barbs

drawgreatcircle() - Draw a great

circle

Visualization with Seaborn
The main idea of Seaborn is that it prnvidpq high-lpvp] commands to create a varietv of p]nf tvpes

useful forstatistical data exploration, and even some statistical model fitting.

His

tograms, KDE, and densities

e |n statistical data visualization, all you want is to plot
histograms and joint distributions of variables. We have
seen that this is relatively straightforward in Matplotlib

e Rather than a histogram, we can get a smooth estimate of
the distribution using a kernel density estimation, which
Seaborn does with sns.kdeplot
import as
import as
data = np.random.multivariate_normal([0, 0], [[5, 2], [2,
211, size=2000)
data = pd.DataFrame(data, columns=['x’, 'y'])
for colin 'xy":

sns.kdeplot(data[col], shade=True)

e Histograms and KDE can be combined using distplot
sns.distplot(data['x'])
sns.distplot(data['y']);

atwo-dimensional visualization of the data.

Pair plots

other.

import as
iris = sns.load_dataset("iris"
sns.pairplot(iris, hue='species’, size=2.5);

24

025

020

Density

010

0.05

0.00

-100 -75 50 25

e If we pass the full two-dimensional dataset to kdeplot, we will get

0.0 25 5.0 7.5 10.0
¥

/ |
1
4
4 ®.- 4 2 0 2 4 6 8
¥

e We can see the joint distribution and the marginal distributions together using sns.jointplot.

When you generalize joint plots to datasets of larger dimensions, you end up with pair plots. This is very usejrll
forexploring correlations between multidimensional data, when you'’d like to plot all pairs of values against edch

We’ll demo this with the Iris dataset, which lists measurements of petals and sepals of three iris species:

sepal
(&)

45

4.0

35

sepal.width

©®
02 ®
L) ~-
b4 .3’:.“.‘
o 2200
a %

petal.length

0
7
6
5 &%
4
3
2

20
15

10

petal.width

05 >

0.0

Faceted histograms

L] L]
= g
(:I‘lmg.' e l‘m.
2 3 4 5 2 4 6 8
sepal.width petal.length

$32%

 Siivertore

0

1 2
petal.width

variety
Setosa
Versicolor
Virginica

e Sometimes the best way to view data is via histograms of subsets. Seaborn’s FacetGrid makes this

extremely simple.

e We’'ll take a look at some data that shows the amount that restaurant staff receive in tips based on

variousindicator data

£ 1me = Lunch tme = Dinnar
30
i)
o
15
10
; L
o —
35

N

=Xag

HER

SBLURS = HEE

@ 5 10 15 2 25 3 35 40 O 5 10 15 20 25 30 35 40

Ap_pct 1p_pot

Factor plots
Factor plots can be useful for this kind of visualization as well. This allows you to
view the distribution of aparameter within bins defined by any other parameter.

BD
50— i
.

ap - *
z
E in o i
S Il Mal=

. H Femel=

in

1 -

a T T T T

Thur Fri Sat ain

Day
Joint distributions

Similar to the pair plot we saw earlier, we can use sns.jointplot to show the joint
distribution between differentdatasets, along with the associated marginal distributions.

| : |

pearsonr = 0.68, p = 6.72.34

~

o

lip

10 A i 40 50
wtal_hit

Bar plots
Time series can be plotted with sns.factorplot.

EiR

150

1369 1987 202 207 012
e

Question Bank

UNIT-1

1. Define bigdata.
Big data is a term for any collection of data sets so large or complex that it becomes difficult to
process them using traditional data management techniques
e The characteristics of big data are often referred to as the three Vs:
o Volume—How much data is there?
o Variety—How diverse are different types of data?
o Velocity—At what speed is new data generated?
e Fourth V: Veracity: How accurate is the data?

2. Define Data Science.
Data science involves using methods to analyze massive amounts of data and extract the knowledge
it contains.

. List the Facets of data.

e Structured - resides in a fixed field within a record.
m Unstructured -It is data that isn’t easy to fit into a data model, Eg:Email
m Natural language - Natural language is a special type of unstructured data
m Machine-generated - automatically created by a computer, process, application, or without
human intervention
m Graph-based - data that focuses on the relationship of objects
m Audio, video, and images - pose specific challenges to a data scientist
m Streaming - data flows into the system when an event happens instead of being loaded into
a data store in a batch.

4. Steps in Data Science Process:

e The data science process typically consists of six steps:
o Setting the research goal

Retrieving data

Data preparation

Data exploration

Data modeling or model building

Presentation and automation

0 O O O O

5. What are the sources of retrieving data?

e Company data - data can be stored in official data repositories such as databases, data marts,
data warehouses, and data lakes

e Data mart: A data mart is a subset of the data warehouse and will be serving a specific
business unit.

e Data lakes: Data lakes contain data in its natural or raw format.

6. What is data Cleansing?
Data cleansing is a subprocess of the data science process.

It focuses on removing errors in the data.

DATA ENTRY ERRORS

REDUNDANT WHITESPACE

FIXING CAPITAL LETTER MISMATCHES

IMPOSSIBLE VALUES AND SANITY CHECKS

OUTLIERS - An outlier is an observation that seems to be distant from other observations.
DEALING WITH MISSING VALUES

DIFFERENT UNITS OF MEASUREMENT

DIFFERENT LEVELS OF AGGREGATION

Write about Combining data from different data sources

Two operations to combine information from different data.

joining: enriching an observation from one table with information from another table.

The second operation is appending or stacking: adding the observations of one table to those
of another table.

e o o \]

8. What is Transforming Data?
REDUCING THE NUMBER OF VARIABLES - Data scientists use special methods to reduce the
number of variables
TURNING VARIABLES INTO DUMMIES - « Variables can be turned into dummy variables.

9. What is Exploratory Data Analysis?
The graphical techniques to gain an understanding of your data and the interactions between
variables.

visualization techniques : simple line graphs or histograms

ﬂﬁﬁﬂ

201 2012 2013 2014 2018 2018
Year

20m 2012 2013 2014 2015 2016

Year

Density

(K]

0.5 00 (X 10 1.5

Figure 2.15 From top to bottom, a bar chart, a line plot, and a distribution
are some of the graphs used in exploratory analysis.

10. Define Brushing and Linking

With brushing and linking we combine and link different graphs and tables or views so changes in
one graph are automatically transferred to the other graphs.

11. What is Pareto Diagram?

A Pareto diagram is a combination of the values and a cumulative distribution.
The first 50% of the countries contain slightly less than 80% of the total amount.

12. How to do building a model?
Building a model is an iterative process.
most models consist of the following main steps:
1 Selection of a modeling technique and variables to enter in the model
2 Execution of the model
3 Diagnosis and model comparison

13. What is model fit?
Model fit—For this the R-squared or adjusted R-squared is used.
This measure is an indication of the amount of variation in the data that gets captured by the model.

14. Define Data Mining
Data mining turns a large collection of data into knowledge.
A search engine (e.g., Google) receives hundreds of millions of queries every day.

15. Define DataWarehouses.
A data warehouse is a repository of information collected from multiple sources, stored under a
unified schema, and usually residing at a single site.

16. What is Measuring the Central Tendency?
The arithmetic mean is found by adding the numbers and dividing the sum by the number of
numbers in the list. This is what is most often meant by an average. The median is the middle value
in a list ordered from smallest to largest. The mode is the most frequently occurring value on the
list.

The mean of this set of values is

N
X
i=1 x+xt+---+xN
N N '

x=

J.h'dT |'2 — i
median = Ly + (d {Eﬁﬂq}J) width,

fmqmr:.:fjﬂrl

The mode is another measure of central tendency.
The mode for a set of data is the value that occurs most frequently in the set.

17. What is Mid Range?
The midrange can also be used to assess the central tendency of a numeric data set.
It is the average of the largest and smallest values in the set

18. Define variance and SD.
Variance and standard deviation are measures of data dispersion. variance is a measure of
dispersion that takes into account the spread of all data points in a data set. The standard deviation,
is simply the square root of the variance.
19. Define different types of plots.
Quantile Plot
A quantile plot is a simple and effective way to have a first look at a univariate
data distribution.
Quantile—Quantile Plot
A gquantile—quantile plot, or g-q plot, graphs the quantiles of one univariate distribution against the

corresponding quantiles of another.

Histograms

“Histos” means pole or mast, and “gram” means chart, so a histogram is a chart of poles. Plotting
histograms is a graphical method for summarizing the distribution of a given attribute, X.

Scatter Plots and Data Correlation
A scatter plot is one of the most effective graphical methods for determining if there appears to be a
relationship, pattern, or trend between two numeric attributes.

PART B:

. DATA SCIENCE PROCESS DIAGRAM, ALL THE STEPS IN BRIEF
. DATA CLEANING

. EXPLORATORY DATA ANALYSIS

. DATA MINING

. DATA WAREHOUSING

. FACETS OF DATA

. MODEL BUILDING , STATISTICAL DESCRIPTION OF DATA

~No ok, owN -

UNIT-2

1. Define statistics.

Descriptive Statistics:

Descriptive statistics provides us with tools—tables, graphs, averages, ranges, correlations—
for organizing and summarizing the inevitable variability in collections of actual observations
or scores.

Eg: A tabular listing, ranked from most to least, A graph showing the annual change in global
temperature during the last 30 years

Inferential Statistics:

Statistics also provides tools—a variety of tests and estimates—for generalizing beyond
collections of actual observations.

This more advanced area is known as inferential statistics.

Eg: An assertion about the relationship between job satisfaction and overall happiness

2. Give the types of data.

Data is a collection of actual observations or scores in a survey or an experiment.

Types : qualitative, ranked, or quantitative.

Qualitative Data: Qualitative data consist of words (Yes or No), letters (Y or N), or numerical
codes (0 or 1)

Ranked data consist of numbers (1st, 2nd, . . . 40th place) that represent relative standing
within a group

Quantitative data consists of numbers (weights of 238, 170, . . . 185 Ibs)

3. Give the types of variables.

Discrete and Continuous Variables - A discrete variable consists of isolated numbers
separated by gaps.

Examples - the number of children in a family

A continuous variable consists of numbers whose values, at least in theory, have no
restrictions.

Examples - weights of male statistics students

Approximate Numbers - values for continuous variables can be carried out infinitely far
Independent and Dependent Variables - When a variable is believed to have been influenced
by the independent variable, it is called a dependent variable.

Observational Studies - Simply observe the relation between two variables.

Confounding Variable - An uncontrolled variable that compromises the interpretation of a
study is known as a confounding variable.

4. Define frequency distribution.

A frequency distribution is a collection of observations produced by sorting observations into
classes and showing their frequency (f) of occurrence in each class.

5. What is grouped frequency distribution?

Grouped Data - When observations are sorted into classes of more than one value, as in, the result is
referred to as a frequency distribution for grouped data.

6. What are the guidelines for frequency distribution?

1. Each observation should be included in one, and only one, class.

Example: 130-139, 140-149, 150-159, etc.

2. List all classes, even those with zero frequencies.

Example: Listed in Table 2.2 is the class 210-219 and its frequency of zero.

3. All classes should have equal intervals.

Example: 130-139, 140-149, 150-159, etc. It would be incorrect to use 130-139, 140-159, etc.,

7. Define outliers.

OUTLIERS
e The appearance of one or more very extreme scores are called outliers.
e Ex: AGPA of 0.06, an 1Q of 170, summer wages of $62,000

8. Define relative frequency distribution and cumulative distribution.
e Relative frequency distributions show the frequency of each class as a part or fraction of the
total frequency for the entire distribution.
e Cumulative frequency distributions show the total number of observations in each class and
in all lower-ranked classes.

9. What is percentile rank?
e The percentile rank of a score indicates the percentage of scores in the entire distribution with
similar or smaller values than that score.

10. What is histogram?
e Equal units along the horizontal axis (the X axis, or abscissa) reflect the various class intervals
of the frequency distribution.
e Equal units along the vertical axis (the Y axis, or ordinate) reflect increases in frequency.
e The adjacent bars in histograms have common boundaries that emphasize the continuity of
quantitative data for continuous variables.

20

FIGURE 2.1
Histogram.

11. Define frequency polygon.
e An important variation on a histogram is the frequency polygon, or line graph.
e Frequency polygons may be constructed directly from frequency distributions.
e Place dots at the midpoints of each bar top or, in the absence of bar tops, at midpoints for
classes on the horizontal axis, and connect them with straight lines.
¢ Anchor the frequency polygon to the horizontal axis.

12. Define stem leaf display.

e ldeal for summarizing distributions, such as that for weight data, without destroying the
identities of individual observations.

13. What are the shapes of distribution?

A. NORMAL BE. BIMODAL

C. POSITIVELY SKEWED D. NEGATIVELY SKEWED

Few extreme Few extreme
observations observations

X
Positive direction MNegative direction
—_— -

FIGURE 2.3
Typical shapes.
e The familiar bell-shaped silhouette of the normal curve
e Any distribution that approximates the bimodal shape is bimodal distribution.
e A lopsided distribution caused by a few extreme observations in the positive direction as in
panel C, is a positively skewed distribution
e A lopsided distribution caused by a few extreme observations in the negative direction as in
panel D, is a negatively skewed distribution.

14. What are misleading graph?

In statistics, a misleading graph, also known as a distorted graph, is a graph that misrepresents data,
constituting a misuse of statistics and with the result that an incorrect conclusion may be derived from
it.

15. Define mean, median and mode.

The mode reflects the value of the most frequently occurring score.

The median reflects the middle value when observations are ordered from least to most.
The mean is the most common average, calculated many times.

The mean is found by adding all scores and then dividing by the number of scores.

sumof all scores

Mean =
number of scores

16. Define sample and population mean.
e The population mean depending on whether the data are viewed as a population (a complete
set of scores)
e The sample mean—The data is viewed as a subset or as a sample (a subset of scores).

17. Define average and range.
e Anaverage can refer to the mode, median, or mean—or even geometric mean or the harmonic
mean.
e The range is the difference between the largest and smallest scores.

18. What is standard deviation and variance?
Variance and Standard Deviation are the two important measurements in statistics.
Variance is a measure of how data points vary from the mean.

The standard deviation is the measure of the distribution of statistical data.
The standard deviation, the square root of the mean of all squared deviations from the mean,

that is,
standard deviation = ~fvariance
19. Define degrees of freedom.

e Degrees of freedom (df) refers to the number of values that are free to vary, given one or more
mathematical restrictions, in a sample being used to estimate a population characteristic.

20. Define Interquartile range.
e The interquartile range (IQR), is simply the range for the middle 50 percent of the scores.

21. Define normal curve.
e A normal curve is a theoretical curve defined for a continuous variable, and noted for its
symmetrical bell-shaped form.

22. Define z-score.
e A z score is a unit-free, standardized score that, indicates how many standard deviations a
score is above or below the mean of its distribution.
A z score consists of two parts:
1. a positive or negative sign indicating whether it’s above or below the mean; and
2. a number indicating the size of its deviation from the mean in standard deviation units.

z SCORE
X=-u

o (5.1)

PART B:

1. Types of data

2. Types of variables

3. Explain Frequency distribution. (or) How will the data be described with tables and graphs?

4. Explain mean, median and mode? (or) How will the data be described with averages?
5. Explain about data variability with example. (or) Standard Deviation and Variance
6. Explain normal curve and z-score.

PROBLEMS :
1. Standard Deviation, Variance

2. Relative Frequency distribution, Cumulative Frequency distribution, Percentile rank
3. Normal curve problems

UNIT-3

1. Define correlation.

Correlation is a statistical measure that indicates the extent to which two or more variables fluctuate
in relation to each other. A positive correlation indicates the extent to which those variables increase
or decrease in parallel; a negative correlation indicates the extent to which one variable increases as
the other decreases.

2. Define positive and negative correlation.

Two variables are positively related if pairs of scores tend to occupy similar relative positions (high
with high and low with low) in their respective distributions.

They are negatively related if pairs of scores tend to occupy dissimilar relative positions (high with
low and vice versa) in their respective distributions.

3. Define scatterplot.
A scatterplot is a graph containing a cluster of dots that represents all pairs of scores.

20_
-
B
5 15— .
o
@ [T
[Jn
B Land rece
@ 10— .
O
B
z
.
E s
=
| | | |
0 5 T 10 15 20
Number of Cards Sent
FIGURE 6.1

Scatterplot for greeting card exchange.

4. List the types of relationships.

250 B 70 B 70
—_ -4 Ces¥ T o e @
£ 200 < i A 2 e
g g . g
= 150 s 60 g 60
= ° o
= 8 ol
@ 100 . x 55 . % o x 55
= o w ¢ w
Ty | | | & T | [| | & *[/, | | | I
0 60 65 70 75 — 0 5 10 15 20 -~ o” 60 65 70 75
Height (inches) Heavy Smoking (years) Height (inches)
FIGURE 6.2

Three types of relationships.

5. Define curvilinear relationship.
A dot cluster approximates a bent or curved line, as in Figure 6.4, and therefore reflects a
curvilinear relationship.

10—

Physical Strength (pounds)

0 20 40 60
Age (years)

6. Define r value.

A correlation coefficient is a number between —1 and 1 that describes the relationship between pairs
of variables.

The type of correlation coefficient, designated as r, that describes the linear relationship between
pairs of variables for quantitative data.

A number with a plus sign (or no sign) indicates a positive relationship, and a number with a minus
sign indicates a negative relationship.

CORRELATION COEFFICIENT (COMPUTATION FORMULA)
SP

.
[ss,Ss,

7. What is cause — effect relation and complex relation?
A direct relationship between a cause and its effect. Eg: calorie intake and increase in weight
A complex relationship. Eg: Cigarette smoking and cancer

r=

8. Define regression.
Regression is defined as a statistical method that helps us to analyze and understand the relationship
between two or more variables of interest.

9. Define Least Square Regression line.

The Least Squares Regression Line is the line that makes the vertical distance from the data points
to the regression line as small as possible.

LEAST SQUARES REGRESSION EQUATION
Y =bX +a

10. Define standard error of estimates.
The standard error of the estimate is the estimation of the accuracy of any predictions. It is denoted
as SEE.

11. What is Homoscedasticity?
It refers to a condition in which the variance of the residual, or error term, in a regression model is
constant. That is, the error term does not vary much as the value of the predictor variable changes.

12. Define regression fallacy.

The Regression Fallacy occurs when one mistakes regression to the mean, which is a statistical
phenomenon, for a causal relationship

The regression fallacy can be avoided by splitting the subset of extreme observations into two
groups.

13. Define multiple linear regression.
Multiple linear regression is a regression model that estimates the relationship between a quantitative
dependent variable and two or more independent variables using a straight line.

14. Define regression towards mean.

In statistics, regression toward the mean is that if one sample of a random variable is extreme, the
next sampling of the same random variable is likely to be closer to its mean.

15. What is interpretation of r??

The most common interpretation of r-squared is how well the regression model explains observed
data. For example, an r-squared of 60% reveals that 60% of the variability observed in the target
variable is explained by the regression model.

PART B:

1. Explain Scatter plots.
2. What is correlation? How is correlation used in statistics? Explain with an example.
3. Explain about regression , multiple regression.

PROBLEMS:

1. Correlation — r value

2. Regression

3. Standard error of estimate
4. Interpretation of r2

UNIT-4

1. What is NumPy? Why should we use it?

NumPy (also called Numerical Python) is a highly flexible, optimized, open-source package meant
for array processing. It provides tools for delivering high-end performance while dealing with N-
dimensional powerful array objects.

2. What are ways of creating 1D, 2D and 3D arrays in NumPy?

One-Dimensional array

import numpy as np

arr = [1,2,3,4] #python list
numpy arr = np.array(arr) #numpy array

Two-Dimensional array

import numpy as np

arr = [[1,2,3,4],04,5,6,7]]
numpy arr = np.array(arr)

Three-Dimensional array

import numpy as np

arr = [[[1,2,3,4],04,5,6,7],17,8,9,10]]]
numpy arr = np.arrayf(arr)

Using the np.array() function, we can create NumPy arrays of any dimensions.

3. How do you convert Pandas DataFrame to a NumPy array?
The to_numpy() method of the NumPy package can be used to convert Pandas DataFrame, Index and
Series objects.

4. List the array functions in numpy.

Syntax Description

array.shape Dimensions (Rows,Columns)
len(array) Length of Array

array.ndim Number of Array Dimensions
array.dtype Data Type

5. List the array operations. (PART B — short notes)

Array Manipulation
Adding or Removing Elements

Operator Description

np.append(a,b) Append items to array

np.insert(array, 1, 2, axis) Insert items into array at axis O or 1
np.resize((2,4)) Resize array to shape(2,4)
np.delete(array,1,axis) Deletes items from array

Combining Arrays

Operator Description
np.concatenate((a,b),axis=0) Concatenates 2 arrays, adds to end
np.vstack((a,b)) Stack array row-wise
np.hstack((a,b)) Stack array column wise

Splitting Arrays

Operator Description
numpy.split() Split an array into multiple sub-arrays.
np.array_split(array, 3) Split an array in sub-arrays of (nearly) identical size

6. Define broadcasting.
Broadcasting is simply a set of rules for applying binary ufuncs (addition, subtraction, multiplication,
etc.) on arrays of different sizes.

Rules of Broadcasting

Broadcasting in NumPy follows a strict set of rules to determine the interaction
between the two arrays:

« Rule 1: If the two arrays differ in their number of dimensions, the shape of the
one with fewer dimensions is padded with ones on its leading (left) side.

« Rule 2: If the shape of the two arrays does not match in any dimension, the array
with shape equal to 1 in that dimension is stretched to match the other shape.

« Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is
raised.

7. Define universal functions in numpy.
ufuncs are used to implement vectorization in NumPy which is way faster than iterating over
elements.

They also provide broadcasting and additional methods like reduce, accumulate etc. that are very
helpful for computation.

Eg: import numpy as np

x = [1, 2, 3, 4]
y = [4, 5, 6, 7]
z = np.add(x, y)
print(z)

Broadcasting example 3
Mow let's take a look at an example in which the two arrays are not compatible:

In[12]: M = np.ones{{3, 2})
a = np.arangefi)

This is just a slightly different situation than in the first example: the matrix M is
transposed. How does this affect the calculation? The shapes of the arrays are:

M.shape = (3, 2)
a.shape = (3,)

Apgain, rule 1 tells us that we must pad the shape of a with ones:

M.shape -= (3, 2)
a.shape -= (1, 3)

By rule 2, the first dimension of a is stretched to match that of M:

M.shape -= (3, 2)
a.shape -= (3, 3)

8. What is boolean masking on NumPy arrays in Python?

The NumPy library in Python is a popular library for working with arrays. Boolean masking, also
called boolean indexing, is a feature in Python NumPy that allows for the filtering of values in numpy
arrays.

There are two main ways to carry out boolean masking:

Method one: Returning the result array.
Method two: Returning a boolean array.

9. What is fancy indexing?
Fancy indexing is conceptually simple: it means passing an array of indices to access multiple array
elements at once. For example, consider the following array:

X =1[5192147160 208286 74 74]

Suppose we want to access three different elements. We could do it like this:
In [2]:

[x[3], x[7], x[2]]

Out[2]:

[71, 86, 14]

10. Define pandas
Pandas is a Python library used for working with data sets. It has functions for analyzing, cleaning,
exploring, and manipulating data.

11. Define structured arrays.

Numpy’s Structured Array is similar to Struct in C. It is used for grouping data of different types and
sizes. Structure array uses data containers called fields. Each data field can contain data of any type
and size.

import numpy as np

a = np.array([('Sana', 2, 21.0), ('Mansi', 7, 29.0)1,
dtype=[('name', (np.str , 10)), ('age', np.int32), ('weight',

np.float64d)])

print (a)

12. Define indexing in pandas.
Indexing in Pandas :
Indexing in pandas means simply selecting particular rows and columns of data from a DataFrame

Dataframe.[] ; This function also known as indexing operator
Dataframe.loc[] : This function is used for labels.

Dataframe.iloc[] : This function is used for positions or integer based
Dataframe.ix[] : This function is used for both label and integer based

Selection :

Selecting a single row using .ix[] as .loc[]

In order to select a single row, we put a single row label in a .ix function.

In order to select all rows and some columns, we use single colon [:] to select all of rows and for
columns we make a list of integer then pass to a .iloc[] function.

13. Write on missing data in pandas.

Missing Data can occur when no information is provided for one or more items or for a whole unit.
None: None is a Python singleton object that is often used for missing data in Python code.

NaN : NaN (an acronym for Not a Number), is a special floating-point value recognized by all systems
that use the standard IEEE floating-point representation

import pandas as pd

data = pd.read_csv("employees.csv")

bool_series = pd.isnull(data["Gender"])

data[bool_series]

14. Define hierarchical indexing in pandas.

Hierarchical Indexes are also known as multi-indexing is setting more than one column name as the
index.

To make the column an index, we use the Set_index() function of pandas.
df_ind3 = df.set_index(['region’, 'state’, 'individuals])
df_ind3.sort_index()

print(df_ind3.head(10))

15. How can the data set be combined using pandas?

merge() for combining data on common columns or indices
Join() for combining data on a key column or an index
concat() for combining DataFrames across rows or columns

16. Define pivot table in pandas.

The Pandas pivot_table() is used to calculate, aggregate, and summarize your data. It is defined as a
powerful tool that aggregates data with calculations such as Sum, Count, Average, Max, and Min. It
also allows the user to sort and filter your data when the pivot table has been created.

17. Define aggregation and grouping in pandas.

Aggregation in pandas provides various functions that perform a mathematical or logical operation
on our dataset and returns a summary of that function. Aggregation can be used to get a summary of
columns in our dataset like getting sum, minimum, maximum, etc. from a particular column of our
dataset.

Aggregation :
Function Description:
e sum() :Compute sum of column values
e min() :Compute min of column values
e max() :Compute max of column values
e mean() :Compute mean of column
e size() :Compute column sizes
o describe() :Generates descriptive statistics
o first() :Compute first of group values
e last() :Compute last of group values
e count() :Compute count of column values
e std() :Standard deviation of column
e var() :Compute variance of column
e sem() :Standard error of the mean of column
18. Grouping :

Grouping is used to group data using some criteria from our dataset. It is used as split-apply-combine
strategy.

Splitting the data into groups based on some criteria.
Applying a function to each group independently.

Combining the results into a data structure.

dataset.groupby([‘cut’, ‘color']).agg('min’)

PART B:

. NUMPY aggregation

. Comparision, mask, Boolean logic

. Fancy indexing

. structured array

. Indexing, selection in pandas

. Missing data — pandas

. Hierarchical indexing

. Combining dataset in pandas

. Aggregation and grouping in pandas
0. Pivot tables

P OO ~NOOITS, WN PR

Questions may come scenario based, eg: Counting Rainy Days — for comparison , mask and Boolean
expression

UNIT-5

1. Define matplotlib.
Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in
Python.

from matplotlib import pyplot as plt

x=15,29,4,7]
y =[10,5, 8, 4, 2]
plt.plot(x,y)
plt.show()

€ Hlal=

2. Define line plot.

The simplest of all plots is the visualization of a single function y=f(x)y=f(x).
%matplotlib inline

import matplotlib.pyplot as plt

plt.style.use('seaborn-whitegrid')

import numpy as np

In [2]:
fig = plt.figure()
ax = plt.axes()

fig = plt.figure()
ax = plt.axes()

x = np.linspace(0, 10, 1000)
ax.plot(x, np.sin(x));

05/
00
05
-1.0
0 2 4 6 El 0

3. Define scatter plot.
Scatter plots are used to observe relationship between variables and uses dots to represent the

relationship between them. The scatter() method in the matplotlib library is used to draw a scatter
plot.

x =[5,7,8,7,2, 17,209,
4,11, 12, 9, 6]

y =[99, 86, 87, 88, 100, 86,
103, 87, 94, 78, 77, 85, 86]

plt.scatter(x, y, ¢ ="blue™)

To show the plot
plt.show()

00 @

95 4

90

85

804

T T T T T T T
2 4 6 8 10 12 14 16

€>+Q=B

4. Write about visualizing errors.
In visualization of data and results, showing these errors effectively can make a plot convey much
more complete information

Basic error bars:

A basic errorbar can be created with a single Matplotlib function call

In[1]: %matplotlib inline
import matplotlib.pyplot as plt
plt.style.use(‘'seaborn-whitegrid’)
import numpy as np

In[2]: x = np.linspace(0, 10, 50)
dy=0.8

y = np.sin(x) + dy * np.random.randn(50)

plt.errorbar(x, y, yerr=dy, fmt="Kk');

Continuous Errors
In some situations it is desirable to show errorbars on continuous quantities

5. Define density and contour plots.

A contour plot is a graphical method to visualize the 3-D surface by plotting constant Z slices called
contours in a 2-D format.

Density Plots and Contour Plots represent events with a density gradient or contour gradient
depending on the number of events. Density Plots - In a density plot, the color of an area reflects
how many events are in that position of the plot.

6. Histograms
A histogram is a graphical representation of the distribution of data given by the user. Its
appearance is similar to Bar-Graph except it is continuous.

The towers or bars of a histogram are called bins. The height of each bin shows how many values
from that data fall into that range.

plt.hist2d(x, y, bins=30, cmap="Blues’)

cb = plt.colorbar()
ch.set_label('counts in bin")

7. Define types of color map.

Sequential colormaps
These consist of one continuous sequence of colors (e.g., binary or viridis).

Divergent colormaps

These usually contain two distinct colors, which show positive and negative deviations
from a mean (e.g., RdBu or PuOr).

Qualitative colormaps

These mix colors with no particular sequence (e.g., rainbow or jet).

8. Define subplots.

Sometimes it is helpful to compare different views of data side by side. To this end,
Matplotlib has the concept of subplots: groups of smaller axes that can exist together
within a single figure.

for i in range(1, 7):
plt.subplot(2, 3, i)
plt.text(0.5, 0.5, str((2, 3, 1)),
fontsize=18, ha='"center’)

9. Define annotation.

=
- ‘/
cal minimum

-
a 5 10 15 il

The annotate() function in pyplot module of matplotlib library is used to annotate the point xy with
text s.

10. Define seaborn.

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface
for drawing attractive and informative statistical graphics.

11. write down the difference between seaborn and matplotlib.

Features Matplotlib Seaborn

Functionality | It is utilized for making basic graphs. Seaborn contains a number of
Datasets are visualised with the help of | patterns and plots for data
bargraphs, histograms, piecharts, scatter | visualization. It helps in compiling

plots, lines and so on. whole data into a single plot. It also
provides distribution of data.
Syntax Lengthy syntax. Example: Syntax for Simple syntax. Example: Syntax for

bargraph- matplotlib.pyplot.bar(x_axis, | bargraph- seaborn.barplot(x_axis,
y_axis). y_axis).

Dealing We can open and use multiple figures Seaborn sets time for the creation of

Multiple simultaneously. each figure.

Figures

Visualization | Matplotlib is well connected with Seaborn is more comfortable in
Numpy and Pandas and acts as a handling Pandas data frames.
graphics package for data visualization
in python

Pliability Matplotlib is a highly customized and Seaborn avoids overlapping of plots
robust with the help of its default themes

12. What is geographic distribution with basemap in python?

One common type of visualization in data science is that of geographic data. Matplotlib's main tool
for this type of visualization is the Basemap toolkit, which is one of several Matplotlib toolkits
which lives under the mpl_toolkits namespace.

A base map is a layer with geographic information that serves as a background.
Basemap is a great tool for creating maps using python in a simple way

plt.figure(figsize=(8, 8))
m = Basemap(projection="ortho’, resolution=None, lat_0=50, lon_0=-100)
m.bluemarble(scale=0.5);

13. How will you plot multiple dimensions in a graph? (or) 3D plot

In order to plot 3D figures use matplotlib, we need to import the mplot3d toolkit, which adds the
simple 3D plotting capabilities to matplotlib.

import numpy as np

from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
plt.style.use(‘seaborn-poster')

Once we imported the mplot3d toolkit, we could create 3D axes and add data to the axes. create a
3D axes.

fig = plt.figure(figsize = (10,10))
ax = plt.axes(projection="3d")
plt.show()

14. What Is kernel density estimation?

Kernel density estimation (KDE) is in some senses an algorithm which takes the mixture-of-
Gaussians idea to its logical extreme: it uses a mixture consisting of one Gaussian component per
point, resulting in an essentially non-parametric estimator of density.

15. Mention some customization we can do on graphs.
Customizing Plot Legends, Customising color bars,
Giving a name for the plot:

x = np.linspace(0, 10, 1000)

fig, ax = plt.subplots()

ax.plot(x, np.sin(x), '-b', label="Sine")
ax.plot(x, np.cos(x), --r', label="Cosine")
ax.axis(‘equal’)

leg = ax.legend();

]
— Sineé
Cozine
&
1 ——— - ——
" H'\-\,\ a2t .-"-i- H""‘-\.\,

rd g . i ,

0 ™, ,
. F

1 e --"H
)
3k

0} 3 4 8 1]

16. What is simple grid of subplots?

The lowest level of the sub plot is plt.subplot(), which creates a single subplot within a grid.
for i in range(1, 7):
plt.subplot(2, 3, i)

plt.text(0.5, 0.5, str((2, 3, 1)),
fontsize=18, ha='center’)

(2,3, 1) | 2.3.2) ["| (2,3.3)

T 02 e OF 4B 0 @l 42 Od 08 OF 10 0f 02 04 0F 4B 18

(2,3, 4) " (2.3,3) ["] (23.8)

0o 10 L
AU L e Dl B 10 oud dd aq e LE 10 e U2 04 Uk dB 1E

PART B:

. Line plots

. SCATTER PLOTS

. DENSITY AND COUNTOR PLOTS

. BASIC AND CONTINUOUS ERRORS

.3D PLOTING

. GEOGRAPHICAL DATA WITH BASEMAP
. SEABORN

. HISTOGRAM (WITH ALL OPERATIONS)

CONO OIS~ WN B

Case study Example: Effect of Holidays on US Births (fo

