NGINg
e)

wY Us,,
0> O

5

<
£
Y OIS

ESTD. 2001

PRATHYUSHA
ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

REGULATION 2021 -V SEMESTER
CS3551 - DISTRIBUTED COMPUTING

CS3551 Distributed Computing
UNIT I INTRODUCTION

Introduction: Definition-Relation to Computer System Components — Motivation — Message -
Passing ystems versus Shared Memory Systems — Primitives for Distributed Communication
— Synchronous versus Asynchronous Executions — Design Issues and Challenges; A Model of
Distributed Computations: A Distributed Program — A Model of Distributed Executions —
Models of Communication Networks — Global State of a Distributed System.

UNIT Il LOGICAL TIME AND GLOBAL STATE

Logical Time: Physical Clock Synchronization: NTP — A Framework for a System of Logical
Clocks — Scalar Time — Vector Time; Message Ordering and Group Communication: Message
Ordering Paradigms — Asynchronous Execution with Synchronous Communication —
Synchronous Program Order on Asynchronous System — Group Communication — Causal
Order — Total Order; Global State and Snapshot Recording Algorithms: Introduction — System
Model and Definitions — Snapshot Algorithms for FIFO Channels.

UNIT 11l DISTRIBUTED MUTEX AND DEADLOCK

Distributed Mutual exclusion Algorithms: Introduction — Preliminaries — Lamport’s algorithm
— RicartAgrawala’s Algorithm — Token-Based Algorithms — Suzuki-Kasami’s Broadcast
Algorithm; Deadlock Detection in Distributed Systems: Introduction — System Model —
Preliminaries — Models of Deadlocks — Chandy-Misra-Haas Algorithm for the AND model and
OR Model.

UNIT IV CONSENSUS AND RECOVERY

Consensus and Agreement Algorithms: Problem Definition — Overview of Results —
Agreement in a Failure-Free System(Synchronous and Asynchronous) — Agreement in
Synchronous Systems with Failures; Checkpointing and Rollback Recovery: Introduction —
Background and Definitions — Issues in Failure Recovery — Checkpoint-based Recovery —
Coordinated Checkpointing Algorithm — — Algorithm for Asynchronous Checkpointing and
Recovery

UNIT V CLOUD COMPUTING

Definition of Cloud Computing — Characteristics of Cloud — Cloud Deployment Models —
Cloud Service Models — Driving Factors and Challenges of Cloud — Virtualization — Load
Balancing — Scalability and Elasticity — Replication — Monitoring — Cloud Services and
Platforms: Compute Services — Storage Services — Application Services

TEXT BOOKS

1. Kshemkalyani Ajay D, Mukesh Singhal, “Distributed Computing: Principles, Algorithms
and Systems”, Cambridge Press, 2011.

2. Mukesh Singhal, Niranjan G Shivaratri, “Advanced Concepts in Operating systems”,
McGraw Hill Publishers, 1994.

REFERENCES

1. George Coulouris, Jean Dollimore, Time Kindberg, “Distributed Systems Concepts and
Design”, Fifth Edition, Pearson Education, 2012.

2. Pradeep L Sinha, “Distributed Operating Systems: Concepts and Design”, Prentice Hall of
India, 2007.

3. Tanenbaum A S, Van Steen M, “Distributed Systems: Principles and Paradigms”, Pearson
Education, 2007.

4. Liu M L, “Distributed Computing: Principles and Applications”, Pearson Education, 2004.
5. Nancy A Lynch, “Distributed Algorithms”, Morgan Kaufman Publishers, 2003.

6. Arshdeep Bagga, Vijay Madisetti, “ Cloud Computing: A Hands-On Approach”,
Universities Press, 2014.

UNIT I Distributed systems CS3551

UNIT I
INTRODUCTION TO DISTRIBUTED SYSTEMS

1.1 INTRODUCTION

The process of computation was started from working on a single processor.
This uni-processor computing can be termed as centralized computing. As the
demand for the increased processing capability grew high, multiprocessor systems
came to existence. The advent of multiprocessor systems, led to the development of
distributed systems with high degree of scalability and resource sharing. The modern
day parallel computing is a subset of distributed computing

distributed system.

A distributed system is a collection of independent computers, interconnected via a network,
capable of collaborating on a task. Distributed computing is computing performed in a

A distributed system is a collection of independent entities that cooperate to solve a
problem that cannot be individually solved. Distributed computing is widely used due
to advancements in machines; faster and cheaper networks. In distributed systems, the
entire network will be viewed as a computer. The multiple systems connected to the
network will appear as a single system to the user. Thus the distributed systems hide
the complexity of the underlying architecture to the user. Distributed computing is a
special version of parallel computing where the processors are in different computers
and tasks are distributed to computers over a network.

The definition of distributed systems deals with two aspects that:

Deals with hardware: The machines linked in a distributed system are
autonomous.

Deals with software: A distributed system gives an impression to the users that
they are dealing with a single system.

Features of Distributed Systems:

No common physical clock - This is an important assumption because it introduces
the element of “distribution” in the system and gives rise to the inherent asynchrony
amongst the processors.

No shared memory - A key feature that requires message-passing for
communication. This feature implies the absence of the common physical clock.
Geographical separation — The geographically wider apart that the processors are,
the more representative is the system of a distributed system.

Autonomy and heterogeneity — Here the processors are “loosely coupled” in that
they have different speeds and each can be running a different operating system.

Issues in distributed systems
Heterogeneity

Openness

Security

Scalability

Failure handling

Dr. Gopikrishnan M 1

UNIT I Distributed systems CS3551

Concurrency
Transparency
Quality of service

QOS parameters

The distributed systems must offer the following QOS:

Performance
Reliability
Availability

vV V V V

Security

Differences between centralized and distributed systems

Centralized Systems

Distributed Systems

In Centralized Systems, several jobs are done
on a particular central processing unit(CPU)

In Distributed Systems, jobs are distributed
among several processors. The Processor are
interconnected by a computer network

They have shared memory and shared
variables.

They have no global state (i.e.) no shared memory
and no shared variables.

Clocking is present.

No global clock.

1.2 Relation to Computer System Components

P M

(WAN/LAN)

__'_,_,_;—'—'_'_'__‘_‘—\q

P M P M

Communication network

P processor(s)
M memory bank(s)

Fig 1.1: Example of a Distributed System

As shown in Fig 1.1, Each computer has a memory-processing unit and the computers
are connected by a communication network. Each system connected to the distributed
networks hosts distributed software which is a middleware technology. This drives the
Distributed System (DS) at the same time preserves the heterogeneity of the DS. The
term computation or run in a distributed system is the execution of processes to
achieve a common goal.

Dr. Gopikrishnan M 2

UNIT I Distributed systems CS3551

Extent of
distributed
protocols

| Distributed application |

l l

Distributed software
(middleware libraries)

Application layer

Operating Transport layer
system

Network layer

Network protocol stack

Data link layer

Fig 1.2: Interaction of layers of network

The interaction of the layers of the network with the operating system and
middleware is shown in Fig 1.2. The middleware contains important library functions
for facilitating the operations of DS.

The distributed system uses a layered architecture to break down the complexity of
system design. The middleware is the distributed software that drives the distributed
system, while providing transparency of heterogeneity at the platform level

Examples of middleware:Object Management Group’s (OMG), Common Object
Request Broker Architecture (CORBA) [36], Remote Procedure Call (RPC), Message
Passing Interface (MPI)

1.3 Motivation
The following are the keypoints that acts as a driving force behind DS:

e Inherently distributed computations: DS can process the computations at
geographically remote locations.

e Resource sharing: The hardware, databases, special libraries can be shared between
systems without owning a dedicated copy or a replica. This is cost effective and
reliable.

e Access to geographically remote data and resources: As mentioned previously,
computations may happen at remote locations. Resources such as centralized servers
can also be accessed from distant locations.

e Enhanced reliability: DS provides enhanced reliability, since they run on multiple
copies of resources. The distribution of resources at distant locations makes them less
susceptible for faults. The term reliability comprises of:

1. Availability:the resource/ service provided by the resource should be accessible
at all times

2. Integrity: the value/state of the resource should be correct and consistent.

3. Fault-Tolerance:the ability to recover from system failures

Dr. Gopikrishnan M 3

UNIT I Distributed systems CS3551

Increased performance/cost ratio: The resource sharing and remote access features

of DS naturally increase the performance / cost ratio.
Scalable: The number of systems operating in a distributed environment can be

increased as the demand increases.

Dr. Gopikrishnan M

UNIT I Distributed systems CS3551

1.5 MESSAGE-PASSING SYSTEMS VERSUS SHARED MEMORY SYSTEMS

Communication among processors takes place via shared data variables,
and control variables for synchronization among the processors. The
communications between the tasks in multiprocessor systems take place through two
main modes:

Message passing systems:

This allows multiple processes to read and write data to the message queue without
being connected to each other.

Messages are stored on the queue until their recipient retrieves them. Message queues
are quite useful for interprocess communication and are used by most operating
systems.

Shared memory systems:

The shared memory is the memory that can be simultaneously accessed by multiple
processes. This is done so that the processes can communicate with each other.
Communication among processors takes place through shared data variables, and
control variables for synchronization among the processors.

Semaphores and monitors are common synchronization mechanisms on shared
memory systems.

When shared memory model is implemented in a distributed environment, it is termed
as distributed shared memory.

process A o process A
] process B — shared memory
' process B
message queue
= Mg | My | Mo My, (=
kernel
kernel
a) Message Passing Model b) Shared Memory Model

Fig 1.11: Inter-process communication models

Dr. Gopikrishnan M 12

UNIT I Distributed systems CS3551

Differences between message passing and shared memory models

Message Passing

Distributed Shared Memory

Services Offered:

Variables have to be marshalled

from one process, transmitted and
unmarshalled into other variables at the
receiving process.

The processes share variables directly, so no
marshalling and unmarshalling. Shared
variables can be named, stored and accessed in
DSM.

Processes can communicate with other
processes. They can be protected from one
another by having private address spaces.

Here, a process does not have private address
space. So one process can alter the execution of
other.

This technique can be used in heterogeneous
computers.

This cannot be used to heterogeneous
computers.

Synchronization between processes is through
message passing primitives.

Synchronization is through locks and
semaphores.

Processes communicating via message passing
must execute at the same time.

Processes communicating through DSM
may execute with non-overlapping lifetimes.

Efficiency:

All remote data accesses are explicit and
therefore the programmer is always aware of
whether a particular operation is in-process or
involves the expense of communication.

Any particular read or update may or may not
involve communication by the underlying
runtime support.

1.5.1 Emulating message-passing on a shared memory system (MP — SM)
The shared memory system can be made to act as message passing system. The
shared address space can be partitioned into disjoint parts, one part being assigned to

each processor.

Send and receive operations care implemented by writing to and reading from the
destination/sender processor’s address space. The read and write operations are

synchronized.

Specifically, a separate location can be reserved as the mailbox for each

ordered pair of processes.

1.5.2 Emulating shared memory on a message-passing system (SM — MP)
This is also implemented through read and write operations. Each shared
location can be modeled as a separate process. Write to a shared location is emulated
by sending an update message tothe corresponding owner process and read operation
to a shared location is emulatedby sending a query message to the owner process.
This emulation is expensive as the processes has to gain access to other

process memory location. The latencies involvedin read and write operations may be
high even when using shared memoryemulation because the read and write operations

are implemented by using network-wide communication.

1.6 PRIMITIVES FOR DISTRIBUTED COMMUNICATION
1.6.1 Blocking / Non blocking / Synchronous / Asynchronous

Message send and message receive communication primitives are done
through Send() and Receive(), respectively.

Dr. Gopikrishnan M

13

UNIT I Distributed systems CS3551

A Send primitive has two parameters: the destination, and the buffer in the
user space that holds the data to be sent.

The Receive primitive also has two parameters: the source from which the
data is to be received and the user buffer into which the data is to be received.

There are two ways of sending data when the Send primitive is called:
Buffered: The standard option copies the data from the user buffer to the kernel
buffer. The data later gets copied from the kernel buffer onto the network. For the
Receive primitive, the buffered option is usually required because the data may
already have arrived when the primitive is invoked, and needs a storage place in the
kernel.

Unbuffered: The data gets copied directly from the user buffer onto thenetwork.

Blocking primitives

The primitive commands wait for the message to be delivered. The execution of the
processes is blocked.

The sending process must wait after a senduntil an acknowledgement is made by the
receiver.

The receiving process must wait for the expected message from the sending process
The receipt is determined by polling common buffer or interrupt

This is a form of synchronization or synchronous communication.

A primitive is blocking if control returns to the invoking process after the processing
for the primitive completes.

Non Blocking primitives

If send is nonblocking, it returns control to the caller immediately, before the message
is sent.

The advantage of this scheme is that the sending process can continue computing in
parallel with the message transmission, instead of having the CPU go idle.

This is a form of asynchronous communication.

A primitive is non-blocking if control returnsback to the invoking process
immediately after invocation, even thoughthe operation has not completed.

For a non-blocking Send, control returnsto the process even before the data is copied
out of the user buffer.

For anon-blocking Receive, control returns to the process even before the datamay
have arrived from the sender.

Synchronous

A Send or a Receive primitive is synchronous if both the Send() and Receive()
handshake with each other.

The processing for the Send primitive completes only after the invoking processor
learns

that the other corresponding Receive primitive has also been invoked andthat the
receive operation has been completed.

The processing for theReceive primitive completes when the data to be received is
copied intothe receiver’s user buffer.

Asynchronous

A Send primitive is said to be asynchronous, if control returns back to the invoking
process after the data item to be sent has been copied out of the user-specified buffer.
It does not make sense to define asynchronous Receive primitives.

Dr. Gopikrishnan M 14

UNIT I Distributed systems CS3551

Implementing non -blocking operations are tricky.

For non-blocking primitives, a return parameter on the primitive call returns a system-
generated handle which can be later used to check the status of completion of the call.
The process can check for the completion:

checking if the handle has been flagged or posted

issue a Wait with a list of handles as parameters: usually blocks until one of the
parameter handles is posted.

The send and receive primitives can be implemented in four modes:
Blocking synchronous

Non- blocking synchronous

Blocking asynchronous

Non- blocking asynchronous

Four modes of send operation

Blocking synchronous Send:

The data gets copied from the user buffer to the kernel buffer and is then sent over the
network.

After the data is copied to the receiver’s system buffer and a Receive call has been
issued, an acknowledgement back to the sender causes control to return to the process
that invoked the Send operation and completes the Send.

Non-blocking synchronous Send:

Control returns back to the invoking process as soon as the copy of data from the user
buffer to the kernel buffer is initiated.

A parameter in the non-blocking call also gets set with the handle of a location that
the user process can later check for the completion of the synchronous send operation.
The location gets posted after an acknowledgement returns from the receiver.

The user process can keep checking for the completion of the non-blocking
synchronous Send by testing the returned handle, or it can invoke the blocking Wait
operation on the returned handle

Blocking asynchronous Send:
The user process that invokes the Send is blocked until the data is copied from the
user’s buffer to the kernel buffer.

Non-blocking asynchronous Send:

The user process that invokes the Send is blocked until the transfer of the data from
the user’s buffer to the kernel buffer is initiated.

Control returns to the user process as soon as this transfer is initiated, and a parameter
in the non-blocking call also gets set with the handle of a location that the user
process can check later using the Wait operation for the completion of the
asynchronous Send.

Dr. Gopikrishnan M 15

UNIT I Distributed systems CS3551

e The asynchronous Send completes when the data has been copied out of the user’s

process i

buffer_i

kemel i ---

kernel_j
buffer_j

process j

Y 1 5_C 5 o W W

REe———p R = W W

Fig 1.12 a) Blocking synchronous send and blocking Fig 1.12 b) Non-blocking synchronous send and

receive blocking receive
S—— §.C

process i So W W
buffer_i v P s_c
L T B "n,ﬂ'
-\ @4 o \ _________________
Fig 1.12 c) Blocking asynchronous send Fig 1.12 d) Non-blocking asynchronous send

buffer. The checking for the completion may be necessary if the user wants to reuse
the buffer from which the data was sent.

Modes of receive operation
Blocking Receive:

e The Receive call blocks until the data expected arrives and is written in the specified
user buffer. Then control is returned to the user process.

Non-blocking Receive:

e The Receive call will cause the kernel to register the call and return the handle of a
location that the user process can later check for the completion of the non-blocking
Receive operation.

e This location gets posted by the kernel after the expected data arrives and is copied to
the user-specified buffer. The user process can check for the completion of the non-
blocking Receive by invoking the Wait operation on the returned handle.

1.6.2 Processor Synchrony

Processor synchrony indicates that all the processors execute in lock-step with their clocks
synchronized.

Since distributed systems do not follow a common clock, this abstraction is
implemented using some form of barrier synchronization to ensure that no processor

Dr. Gopikrishnan M 16

UNIT I Distributed systems CS3551

begins executing the next step of code until all the processors have completed
executing the previous steps of code assigned to each of the processors.

1.6.3 Libraries and standards

There exists a wide range of primitives for message-passing. The message-passing
interface (MPI) library and the PVVM (parallel virtual machine) library are used largely
by the scientific community

Message Passing Interface (MPI): This is a standardized and portable message-
passing system to function on a wide variety of parallel computers. MPI primarily
addresses the message-passing parallel programming model: data is moved from the
address space of one process to that of another process through cooperative operations
on each process.

The primary goal of the Message Passing Interface is to provide a widely used
standard for writing message passing programs.

Parallel Virtual Machine (PVM): It is a software tool for parallel networking of
computers. It is designed to allow a network of heterogeneous Unix and/or Windows
machines to be used as a single distributed parallel processor.

Remote Procedure Call (RPC): The Remote Procedure Call (RPC) is a common
model of request reply protocol. In RPC, the procedure need not exist in the same
address space as the calling procedure. The two processes may be on the same system,
or they may be on different systems with a network connecting them.

Remote Method Invocation (RMI): RMI (Remote Method Invocation) is a way that
a programmer can write object-oriented programming in which objects on different
computers can interact in a distributed network. It is a set of protocols being
developed by Sun's JavaSoft division that enables Java objects to communicate
remotely with other Java objects.

Remote Procedure Call (RPC): RPC is a powerful technique for constructing
distributed, client-server based applications. In RPC, the procedure need not exist in
the same address space as the calling procedure. The two processes may be on the
same system, or they may be on different systems with a network connecting them.
By using RPC, programmers of distributed applications avoid the details of the
interface with the network. RPC makes the client/server model of computing more
powerful and easier to program.

Differences between RMI and RPC

RMI

RPC

RMI uses an object oriented paradigm
where the user needs to know the object
and the method of the object he needs to
invoke.

RPC is not object oriented and does not
deal with objects. Rather, it calls specific
subroutines that are already established

With RPC looks like a local call. RPC
handles the complexities involved with
passing the call from the local to the
remote computer.

RMI handles the complexities of passing
along the invocation from the local to the
remote computer. But instead of passing a
procedural call, RMI passes a reference to
the object and the method that is being
called.

The commonalities between RMI and RPC are as follows:

Dr. Gopikrishnan M

17

UNIT I Distributed systems CS3551

v They both support programming with interfaces.
v They are constructed on top of request-reply protocols.
v They both offer a similar level of transparency.

e Common Object Request Broker Architecture (CORBA): CORBA describes a
messaging mechanism by which objects distributed over a network can communicate
with each other irrespective of the platform and language used to develop those
objects. The data representation is concerned with an external representation for the
structured and primitive types that can be passed as the arguments and results of
remote method invocations in CORBA. It can be used by a variety of programming
languages.

1.7 SYNCHRONOUS VS ASYNCHRONOUS EXECUTIONS
The execution of process in distributed systems may be synchronous or
asynchronous.

Asynchronous Execution:

A communication among processes is considered asynchronous, when every
communicating process can have a different observation of the order of the messages
being exchanged. In an asynchronous execution:

e there is no processor synchrony and there is no bound on the drift rate of processor
clocks

e message delays are finite but unbounded

e no upper bound on the time taken by a process

Py = = L @ @
“\L N
PI S | ‘ o . |
m2
md
P, |

®

HN

@ internal event O send event | receive event

Fig 1.13: Asynchronous execution in message passing system

Synchronous Execution:

A communication among processes is considered synchronous when every
process observes the same order of messages within the system. In the same manner,
the execution is considered synchronous, when every individual process in the system
observes the same total order of all the processes which happen within it. In an
synchronous execution:

e processors are synchronized and the clock drift rate between any two processors is
bounded

e message delivery times are such that theyoccur in one logical step or round

e upper boundon the time taken by a process to execute a step.

Dr. Gopikrishnan M 18

UNIT I Distributed systems CS3551

XTI X X7
DY NN
A0

Fig 1.14: Synchronous execution
Emulating an asynchronous system by a synchronous system (A — S)
An asynchronous program can be emulated on a synchronous system fairly trivially as
the synchronous system is a special case of an asynchronous system — all
communication finishes within the same round in which it is initiated.

Emulating a synchronous system by an asynchronous system (S — A)
A synchronous program can be emulated on an asynchronous system using a
tool called synchronizer.

Emulation for a fault free system

A=>S
Asynchronous Synchronous
message—passing (AMP) message—passing (SMP)
S—>A
MP->SM SM->MP MP->SM SM—>MP
A->8
Asynchronous Synchronous
shared memory (ASM) shared memory (SSM)
S—>A

Fig 1.15: Emulations in a failure free message passing system
If system A can be emulated by system B, denoted A/B, and if a problem is
not solvable in B, then it is also not solvable in A. If a problem is solvable in A, it is
also solvable in B. Hence, in a sense, all four classes are equivalent in terms of
computability in failure-free systems.

1.8 DESIGN ISSUES AND CHALLENGES IN DISTRIBUTED SYSTEMS
The design of distributed systems has numerous challenges. They can be

categorized into:

Issues related to system and operating systems design

Issues related to algorithm design

Issues arising due to emerging technologies

The above three classes are not mutually exclusive.

1.8.1 Issues related to system and operating systems design
The following are some of the common challenges to be addressed in
designing a distributed system from system perspective:

Dr. Gopikrishnan M 19

UNIT I Distributed systems CS3551

Communication: This task involves designing suitable communication mechanisms
among the various processes in the networks.
Examples: RPC, RMI
Processes: The main challenges involved are:process and thread management at both
client and server environments, migration of code between systems, design of
software and mobile agents.
Naming: Devising easy to use and robust schemes for names, identifiers,and
addresses is essential for locating resources and processes in a transparent and
scalable manner. The remote and highly varied geographical locations make this task
difficult.
Synchronization: Mutual exclusion, leader election, deploying physical clocks,
global state recording are some synchronization mechanisms.
Data storage and access Schemes: Designing file systems for easy and efficient data
storage with implicit accessing mechanism is very much essential for distributed
operation
Consistency and replication: The notion of Distributed systems goes hand in hand
with replication of data, to provide high degree of scalability. The replicas should be
handed with care since data consistency is prime issue.
Fault tolerance:This requires maintenance of fail proof links, nodes, and processes.
Some of the common fault tolerant techniques are resilience, reliable communication,
distributed commit, checkpointing andrecovery, agreement and consensus, failure
detection, and self-stabilization.
Security:Cryptography, secure channels, access control, key management —
generation and distribution, authorization, and secure group management are some of
the security measure that is imposed on distributed systems.
Applications Programming Interface (API) and transparency:The user
friendliness and ease of use is very important to make the distributed services to be
used by wide community. Transparency, which is hiding inner implementation policy
from users, is of the following types:
= Access transparency: hides differences in data representation
= Location transparency: hides differences in locations y providing uniform
access to data located at remote locations.
= Migration transparency: allows relocating resources without changing
names.
= Replication transparency: Makes the user unaware whether he is working on
original or replicated data.
= Concurrency transparency: Masks the concurrent use of shared resources
for the user.
= Failure transparency: system being reliable and fault-tolerant.
Scalability and modularity: The algorithms, data and servicesmust be as distributed
as possible. Various techniques such as replication,caching and cache management,
and asynchronous processing help toachieve scalability.

1.8.2 Algorithmic challenges in distributed computing

Designing useful execution models and frameworks

The interleaving model, partial order model, input/output automata model and the
Temporal Logic of Actions (TLA) are some examples of models that provide different
degrees of infrastructure.

Dynamic distributed graph algorithms and distributed routingalgorithms

The distributed system is generally modeled as a distributed graph.

Dr. Gopikrishnan M 20

UNIT I Distributed systems CS3551

Hence graphalgorithms are the base for large number of higher level communication,

data dissemination, object location, and object search functions.

These algorithms must have the capacity to deal with highly dynamic graph

characteristics. They are expected to function like routing algorithms.

The performance of these algorithms has direct impact on user-perceived latency, data

traffic and load in the network.

Time and global state in a distributed system

The geographically remote resources demands the synchronization based on logical

time.

Logical time is relative and eliminates the overheads of providing physical time for

applications.Logical time can

(1) capturethe logic and inter-process dependencies

(ii) track the relative progress at each process

Maintaining the global state of the system across space involves the role of time

dimension for consistency. This can be done with extra effort in a coordinated

manner.

Deriving appropriate measures of concurrency also involves the timedimension, as the

execution and communication speed of threads may vary a lot.

Synchronization/coordination mechanisms

Synchronization is essential for the distributed processes to facilitate concurrent

execution without affecting other processes.

The synchronization mechanisms also involveresource management and concurrency

managementmechanisms.

Some techniques for providing synchronization are:

v Physical clock synchronization: Physical clocks usually diverge in theirvalues
due to hardware limitations. Keeping them synchronized is a fundamental
challenge to maintain common time.

v" Leader election: All the processes need to agree on which process willplay the

role of a distinguished process or a leader process. A leaderis necessary even for

many distributed algorithms because there is often some asymmetry.

Mutual exclusion:Access to the critical resource(s) has to be coordinated.

Deadlock detection and resolution:This is done to avoid duplicate work, and

deadlock resolution shouldbe coordinated to avoid unnecessary aborts of

processes.

v' Termination detection: cooperation among the processesto detect the specific
global state of quiescence.

v Garbage collection: Detecting garbage requirescoordination among the
processes.

Group communication, multicast, and ordered message delivery

A group is a collection of processes that share a common context and collaborate on a

common task within an application domain. Group management protocols are needed

for group communication wherein processes can join and leave groups dynamically,
or fail.

The concurrent execution of remote processes may sometimes violate the semantics

and order of the distributed program. Hence, a formal specification of the semantics

ofordered delivery need to be formulated, and then implemented.

Monitoring distributed events and predicates

Predicates defined on program variables that are local to different processesare used

for specifying conditions on the global system state.

AN

Dr. Gopikrishnan M 21

UNIT I Distributed systems CS3551

e o o \74

Y

On-line algorithms for monitoring such predicates are henceimportant.

An important paradigm for monitoring distributed events is thatof event streaming,

wherein streams of relevant events reported from different processes are examined

collectively to detect predicates.

Thespecification of such predicates uses physical or logical time relationships.

Distributed program design and verification tools

Methodically designed and verifiably correct programs can greatly reduce

theoverhead of software design, debugging, and engineering.Designing these is a big

challenge.

Debugging distributed programs

Debugging distributed programs is much harder because of the concurrency and

replications. Adequate debugging mechanisms and tools are need of the hour.

Data replication, consistency models, and caching

Fast access to data and other resources is important in distributed systems.

Managing replicas and their updates faces concurrency problems.

Placement of the replicas in the systems is also a challengebecause resources usually

cannot be freely replicated.

World Wide Web design — caching, searching, scheduling

WWWis a commonly known distributed system.

The issues of object replication and caching, prefetching of objects have to be done on

WWW also.

Object search and navigationon the web are important functions in the operation of

the web.

Distributed shared memory abstraction

A shared memory is easier to implement since it does not involve managing the

communication tasks.

The communication is done by the middleware by message passing.

The overhead of shared memory is to be dealt by the middleware technology.

Some of the methodologies that does the task of communication in shared memory

distributed systems are:

v' Wait-free algorithms: The ability of a process to complete its execution
irrespective of theactions of other processes is wait free algorithm. They control
the access to shared resources in the shared memory abstraction. They are
expensive.

v" Mutual exclusion: Concurrent access of processes to a shared resource or data is
executed in mutually exclusive manner. Only one process is allowed to execute
the critical section at any given time. In a distributed system, shared variables or a
local kernel cannot be used to implement mutual exclusion. Message passing is
the sole means for implementing distributed mutual exclusion.

v Register constructions:Architectures must be designed in such a way that,
registers allows concurrent access without any restrictions on the concurrency
permitted.

Reliable and fault-tolerant distributed systems

The following are some of the fault tolerant strategies:

v' Consensus algorithms: Consensus algorithms allow correctly functioning
processes to reach agreement among themselves in spite of the existence of
malicious processes. The goal of the malicious processesis to prevent the correctly
functioning processes from reaching agreement.The malicious processes operate

Dr. Gopikrishnan M 22

UNIT I Distributed systems CS3551

by sending messages with misleadinginformation, to confuse the correctly
functioning processes.

v" Replication and replica management: The Triple Modular Redundancy (TMR)
technique is used in software and hardware implementation. TMR is a fault-
tolerant form of N-modular redundancy, in which three systems perform a process
and that result is processed by a majority-voting system to produce a single
output.

v" Voting and quorum systems: Providing redundancy in the active or passive
components in the systemand then performing voting based on some quorum
criterion is a classicalway of dealing with fault-tolerance. Designing efficient
algorithms for thispurpose is the challenge.

v' Distributed databases and distributed commit: The distributeddatabases
should also follow atomicity, consistency, isolation and durability (ACID)
properties.

v Self-stabilizing systems: All system executions have associated good(or legal)
states and bad (or illegal) states; during correct functioning,the system makes
transitions among the good states. A self-stabilizing algorithm guarantee to take
the system to a good state even if a bad state were toarise due to some error. Self-
stabilizing algorithms require some in-builtredundancy to track additional
variables of the state and do extra work.

v" Checkpointing and recovery algorithms:Checkpointing is periodically
recording the current state on secondary storage so that, in case ofa failure. The
entire computation is not lost but can be recovered from oneof the recently taken
checkpoints. Checkpointing in a distributed environment is difficult because if the
checkpoints at the different processes arenot coordinated, the local checkpoints
may become useless because theyare inconsistent with the checkpoints at other
processes.

v Failure detectors:The asynchronous distributed do not have a bound on the
message transmission time. This makes the message passing very difficult, since
the receiver do not know the waiting time. Failure detectors probabilistically
suspect another process as havingfailed and then converge on a determination of
the up/down status of thesuspected process.

Load balancing
The objective of load balancing is to gain higher throughput, and reduce the

userperceived latency. Load balancing may be necessary because of a variety

offactors such as high network traffic or high request rate causing the
networkconnection to be a bottleneck, or high computational load. The following
aresome forms of load balancing:

v/ Data migration: The ability to move data around in the system, based on the
access pattern of the users

v/ Computation migration: The ability to relocate processes in order toperform a

redistribution of the workload.

v’ Distributed scheduling: This achieves a better turnaround time for theusers by

using idle processing power in the system more efficiently.

Real-time scheduling

Real-time scheduling becomes more challenging when a global view of the system
state is absent with more frequent on-line or dynamic changes. The message
propagation delays which are network-dependentare hard to control or predict. This is
an hindrance to meet the QoS requirements of the network.

Dr. Gopikrishnan M 23

UNIT I Distributed systems CS3551

» Performance

User perceived latency in distributed systems must be reduced. The common issues in

performance:

v' Metrics: Appropriate metrics must be defined for measuring the performance of
theoretical distributed algorithms and its implementation.

v' Measurement methods/tools:The distributed system is a complexentity
appropriate methodology andtools must be developed for measuring the
performance metrics.

1.8.3 Applications of distributed computing and newer challenges
The deployment environment of distributed systems ranges from mobile
systems to cloud storage. All the environments have their own challenges:

» Mobile systems

e Mobile systems which use wireless communication in shared broadcast mediumhave
issues related to physical layer such as transmission range, power, battery power
consumption, interfacing with wired internet, signal processing and interference.

e The issues pertaining to other higher layers includerouting, location management,
channel allocation, localization and position estimation, and mobility management.

e Apart from the above mentioned common challenges, the architectural differences of
the mobile network demands varied treatment. The two architectures are:

v Base-station approach (cellular approach): The geographical region is divided
into hexagonal physical locations called cells. The powerful base station transmits
signals to all other nodes in its range

v" Ad-hoc network approach:This is an infrastructure-less approach which do not
have any base station to transmit signals. Instead all the responsibilityis distributed
among the mobile nodes.

v' It is evident that both the approaches work in different environment with different
principles of communication. Designing a distributed system to cater the varied
need is a great challenge.

» Sensor networks

e A sensor is a processor with an electro-mechanical interface that is capable ofsensing
physical parameters.

e They are low cost equipment with limited computational power and battery life. They
are designed to handle streaming data and route it to external computer network and
processes.

e They are susceptible to faults and have to reconfigure themselves.

e These features introduces a whole newset of challenges, such as position estimation
and time estimation when designing a distributed system .

» Ubiquitous or pervasive computing

e In Ubiquitous systems the processors are embedded in the environment to
performapplication functions in the background.

e Examples: Intelligent devices, smart homes etc.

e They are distributed systems with recent advancements operating in wireless
environments through actuator mechanisms.

e They can be self-organizing and network-centricwith limited resources.

» Peer-to-peer computing

e Peer-to-peer (P2P) computing is computing over an application layernetwork where
all interactions among the processors are at a same level.

Dr. Gopikrishnan M 24

UNIT I Distributed systems CS3551

OV..

This is a form of symmetric computation against the client sever paradigm.

They are self-organizing with or without regular structure to the network.

Some of the key challenges include: object storage mechanisms, efficient object
lookup, and retrieval in a scalable manner; dynamic reconfiguration with nodes as
well as objects joining and leaving the networkrandomly; replication strategies to
expedite object search; tradeoffs betweenobject size latency and table sizes;
anonymity, privacy, and security.

Publish-subscribe, content distribution, and multimedia

The users in present day require only the information of interest.

In a dynamic environment where the informationconstantly fluctuates there is great
demand for

(1) Publish:an efficient mechanism for distributing this information

(if)Subscribe: an efficient mechanism to allow end users to indicate interest in
receiving specific kinds of information

(iii)An efficient mechanism foraggregating large volumes of published information
and filtering it as per theuser’s subscription filter.

Content distribution refers to a mechanism that categorizes the information based on
parameters.

The publish subscribe and content distribution overlap each other.

Multimedia data introduces special issue because of its large size.

Distributed agents

Agents are software processes or sometimes robots that move around the systemto do
specific tasks for which they are programmed.

Agents collect and process information and can exchangesuch information with other
agents.

Challenges in distributed agent systems include coordination mechanisms among the
agents, controlling the mobility of the agents,their software design and interfaces.
Distributed data mining

Data mining algorithms process large amount of data to detect patternsand trends in
the data, to mine or extract useful information.

Themining can be done by applying database and artificial intelligence techniquesto a
data repository.

Grid computing

Grid computing is deployed to manage resources. For instance, idle CPU cycles of
machines connected to the network will be available to others.

The challenges includes:scheduling jobs, framework for implementing quality of
service, real-time guarantees,security.

Security in distributed systems

The challenges of security in a distributed setting include: confidentiality,
authentication and availability. This can be addressed usingefficient and scalable
solutions.

19 A MODEL OF DISTRIBUTED COMPUTATIONS: DISTRIBUTED
PROGRAM

A distributed program is composed of a set of asynchronous processes that
communicate by message passing over thecommunication network. Each process may
run on different processor.

Dr. Gopikrishnan M 25

UNIT I Distributed systems CS3551

The processes do not share a global memory and communicate solely by passing
messages. These processes do not share a global clock that is instantaneously
accessible tothese processes.

Process execution and message transfer are asynchronous — aprocess may execute an
action spontaneously and a process sending a message does not wait for the delivery
of the message to be complete.

The global state of a distributed computation is composed of the states of the
processes and the communication channels. The state of a process ischaracterized by
the state of its local memory and depends upon the context.

The state of a channel is characterized by the set of messages in transit in thechannel.

1.9.1 AMODEL OF DISTRIBUTED EXECUTIONS

The execution of a process consists of a sequential execution of its actions.

The actions are atomic and the actions of a process are modeled as three types of
events: internal events, message send events, and message receive events.

The occurrence of events changes the states of respective processes and channels, thus
causing transitions in the global system state.

An internal event changes the state of the process at which it occurs.

A send event changes the state of the process that sends the message and the state of
the channel on which the message is sent.

The execution of process pi produces a sequence of events el, e2, €3, ..., and it is
denoted by Hi: Hi =(hi=i). Here hiare states produced by pi and —are the casual
dependencies among events pi.

—>msgindicates the dependency that exists due to message passing between two events.
send(m) —

nisg FE’C{J"H)

Py &

Y

e

-
. f'-_.1
3 3

Fig 1.16: Space time distribution of distributed systems

An internal event changes the state of the process at which it occurs.A send event
changes the state of the process that sends the message andthe state of the channel on
which the message is sent.

A receive event changes the state of the process that receives the messageand the state
of the channel on which the message is received.

1.9.2 Casual Precedence Relations

Causal message ordering is a partial ordering of messages in a distributed
computing environment. It is the delivery of messages to a process in the order in
which they were transmitted to that process.

Dr. Gopikrishnan M 26

UNIT I Distributed systems CS3551

It places a restriction on communication between processes by requiring that if the transmission of
message m; to process px necessarily preceded the transmission of message m; to the same process,
then the delivery of these messages to that process must be ordered such that m; is delivered before
m;.

Happen Before Relation

The partial ordering obtained by generalizing the relationship between two
process is called as happened-before relation or causal ordering or potential causal
ordering. This term was coined by Lamport. Happens-before defines a partial order
of events in a distributed system. Some events can’t be placed in the order. If say A
—B if A happens before B. A->B is defined using the following rules:

v Local ordering:A and B occur on same process and A occurs before B.

v' Messages: send(m) — receive(m) for any message m

v' Transitivity: e > ¢ ife > e’ ande’ —>¢”’
Ordering can be based on two situations:
1. If two events occur in same process then they occurred in the order observed.
2. During message passing, the event of sending message occurred before the event of

receiving it.

Lamports ordering is happen before relation denoted by -
a—>b, if aand b are events in the same process and a occurred before b.

a—>b, if a is the vent of sending a message m in a process and b is the event of the
same message m being received by another process.
If a>b and b—>c, then a->c. Lamports law follow transitivity property.

When all the above conditions are satisfied, then it can be concluded that a->b is
casually related. Consider two events ¢ and d; c=>d and d->c is false (i.e) they are not
casually related, then ¢ and d are said to be concurrent events denoted as c||d.

. - -

Fig 1.17: Communication between processes

Fig 1.22 shows the communication of messages m1 and m2 between three
processes pl, p2 and p3. a, b, ¢, d, e and f are events. It can be inferred from the
diagram that, a->b; c>d; e>f; b->c; d>f; a>d; a>f; b>d; b>f. Also a|le and c|le.

1.9.3 Logical vs physical concurrency

Physical as well as logical concurrency is two events that creates confusion in
distributed systems.
Physical concurrency: Several program units from the same program that execute
simultaneously.
Logical concurrency: Multiple processors providing actual concurrency. The actual
execution of programs is taking place in interleaved fashion on a single processor.

Differences between logical and physical concurrency

Dr. Gopikrishnan M 27

UNIT I Distributed systems CS3551

Logical concurrency Physical concurrency

illusion to the programmer that they are executing
on multiple processors.

Several units of the same program execute | Several program units of the same program
simultaneously on same processor, giving an | execute at the same time on different processors.

CPU machines.

They are implemented through interleaving. They are implemented as uni-processor with 1/0
channels, multiple CPUs, network of uni or multi

1.10 MODELS OF COMMUNICATION NETWORK
The three main types of communication models in distributed systems are:
= FIFO (first-in, first-out): each channel acts as a FIFO message queue.

= Non-FIFO (N-FIFO): a channel acts like a set in which a sender process adds
messages and receiver removes messages in random order.
= Causal Ordering (CO): It follows Lamport’s law.
o The relation between the three models is given by CO < FIFO < N-FIFO.

A system that supports the causal ordering model satisfies the following property:
CO: For any two messages m;; and my;, if send(m;) — send(m,;),

then rec(m,,) — rec(m,,).

1.11 GLOBAL STATE

snapshot of the system is a single configuration of the system.

Distributed Snapshot represents a state in which the distributed system might have been in. A

= The global state of a distributed system is a collection of the local states of its
components, namely, the processes and the communication channels.

= The state of a process at any time is defined by the contents of processor registers,
stacks, local memory, etc. and depends on the local context of the distributed
application.

= The state of a channel is given by the set of messages in transit in the channel.

The state of a channel is difficult to state formally because a channel is a distributed entity
and its state depends upon the states of the processes it connects. Let
=
SC:; denote the state of a channel Cij defined as follows:
SC;* ={my;| send(m;;) < LS N\ rec(m;) £ LS}).

A distributed snapshot should reflect a consistent state. A global state is consistent if it could
have been observed by an external observer. For a successful Global State, all states must be
consistent:

o If we have recorded that a process P has received a message from a process Q, then
we should have also recorded that process Q had actually send that message.

Dr. Gopikrishnan M 28

UNIT I Distributed systems CS3551

o Otherwise, a snapshot will contain the recording of messages that have been received
but never sent.
o The reverse condition (Q has sent a message that P has not received) is allowed.

The notion of a global state can be graphically represented by what is called a cut. A cut
represents the last event that has been recorded for each process.

The history of each process if given by:

history(p;) = h; = <e;,e;,e;,...>

Each event either is an internal action of the process. We denote by si¥ the state of process pi
immediately before the k™ event occurs. The state s; in the global state S corresponding to the
cut C is that of pi immediately after the last event processed by pi in the cut — ei® . The set of
events ei¢ is called the frontier of the cut.

&4 él é &
\\ \ék

o Physical

Pz ;g\ ;12 ;22 T time

Inconsistent cut
Consistent cut

Fig 1.18: Types of cuts

Consistent states: The states should not violate causality. Such states are called consistent
global states and are meaningful global states.

Inconsistent global states: They are not meaningful in the sense that a distributed system
can never be in an inconsistent state.

Dr. Gopikrishnan M 29

UNIT I

This technique results in considerable saving in the cost; only one scalar is
piggybacked on every message.

1.18 PHYSICAL CLOCK SYNCHRONIZATION: NEWTWORK TIME PROTOCOL
(NTP)

Centralized systems do not need clock synchronization, as they work under a common
clock. But the distributed systems do not follow common clock: each system functions based
on its own internal clock and its own notion of time.The time in distributed systems is
measured in the following contexts:

The time of the day at which an event happened on a specific machine in the network.

The time interval between two events that happened on different machines in the network.
The relative ordering of events that happened on different machines in the network.

UNIT II Distributed systems CS3551

Clock synchronization is the process of ensuring that physically distributed processors have a
common notion of time.

Due to different clocks rates, the clocks at various sites may diverge with time, and
periodically a clock synchrinization must be performed to correct this clock skew in
distributed systems. Clocks are synchronized to an accurate real-time standard like UTC
(Universal Coordinated Time). Clocks that must not only be synchronized with each other but
also have to adhere to physical time are termed physical clocks. This degree of
synchronization additionally enables to coordinate and schedule actions between multiple
computers connected to a common network.

1.18.1 Basic terminologies:

If Ca and Cy are two different clocks, then:

Time: The time of a clock in a machine p is given by the function Cp(t),where Cp(t)=t for a
perfect clock.

Frequency: Frequency is the rate at which a clock progresses. The frequency at time t of
clock CaisCa (t).

Offset:Clock offset is the difference between the time reported by a clockand the real time.
The offset of the clock Ca is given by Ca(t)— t. Theoffset of clock C a relative to Cp at time t >
0 is given by Ca(t)- Chn(t)

Skew: The skew of a clock is the difference in the frequencies of the clockand the perfect
clock. The skew of a clock Cj relative to clock Cy at timet is Ca (t)- Co (t).

Drift (rate): The drift of clock Ca the second derivative of the clockvalue with respect to
time. The drift is calculated as:

Cl(t) - €y @),

i

1.18.2 Clocking Inaccuracies

Physical clocks are synchronized to an accurate real-time standard like UTC
(Universal Coordinated Time). Due to the clock inaccuracy discussed above, a timer (clock)
is said to be working within its specification if:

< 9C
P=g =""#F

p- maximum skew rate.

1. Offset delay estimation

A time service for the Internet - synchronizes clients to UTC Reliability from
redundant paths, scalable, authenticates time sources Architecture. Thedesign of NTP
involves a hierarchical tree of time servers with primary serverat the root synchronizes with
the UTC. The next level contains secondaryservers, which act as a backup to the primary
server. At the lowest level isthe synchronization subnet which has the clients.

2. Clock offset and delay estimation

A source node cannot accurately estimate the local time on thetarget node due to varying
message or network delays between the nodes.This protocol employs a very common practice
of performing several trialsand chooses the trial with the minimum delay.

Dr. Gopikrishnan M 37

UNIT II Distributed systems CS3551

Fast clock
dC/dr=1
Perfect clock
dC/dr=1
e
:é Slow clock
= dC/dr<1
2
o
UTC, ¢
Fig 1.24: Behavior of clocks
B h I S eru\ Ti» T; \ /
A » Server B Tis T; i
TJ T:l
Fig 1.30 a) Offset and delay estimation Fig 1.30 b) Offset and delay estimation
between processes from same server between processes from different servers

Let T1, T2, T3, T4 be the values of the four mostrecent timestamps. The clocks A and
B are stable andrunning at the same speed. Leta=T1 — T3 and b= T2 — T4. If the
networkdelay difference from A to B and from B to A, called differential delay, is
small, the clock offset 6and roundtrip delayd of B relative to A at time T4are approximately
given by the following:

b
ﬁ:f‘:; ., o=a-—b

Each NTP message includes the latest three timestamps T1, T2, andT3, while T4 is
determined upon arrival.

Dr. Gopikrishnan M 38

UNIT II Distributed systems CS3551

UNIT I

1.14 MODELS OF PROCESS COMMUNICATIONS

There are two basic models of process communications
Synchronous: The sender process blocks until the message has been received by the receiver

process. The sender process resumes executiononly after it learns that the receiver process
has accepted the message. The sender and the receiver processes must synchronize to
exchange a message.

Asynchronous: It is non- blocking communication where the sender and the receiver do not
synchronize to exchange a message. The sender process does not wait for the message to be
delivered to the receiver process. The message is buffered by the system and is delivered to
the receiver process when it is ready to accept the message. A buffer overflow may occur if a
process sends a large number of messages in a burst to another process, thus causing a
message burst.

Asynchronous communication achieves high degree of parallelism and non-
determinism at the cost of implementation complexity with buffers. On the other hand,
synchronization is simpler with low performance. The occurrence of deadlocks and frequent
blocking of events prevents it from reaching higher performance levels.

1.15 LOGICAL TIME

Logical clocks are based on capturing chronological and causal relationships of processes and
ordering events based on these relationships.

Dr. Gopikrishnan M 30

UNIT II Distributed systems CS3551

Precise physical clocking is not possible in distributed systems. The asynchronous
distributed systems spans logical clock for coordinating the events.Three types of logical
clock are maintained in distributed systems:

Scalar clock
Vector clock

Matrix clock

In a system of logical clocks, every process has a logical clock that is advanced using
a set of rules. Every event is assigned a timestamp and the causality relation between events
can be generally inferred from their timestamps.

The timestamps assigned to events obey the fundamental monotonicity property; that
is, if an event a causally affects an event b, then the timestamp of a is smaller than the
timestamp of b.

Differences between physical and logical clock

Physical Clock Logical Clock
A physical clock is a physical procedure A logical clock is a component for catching
combined with a strategy for measuring that sequential and causal connections in a dispersed
procedure to record the progression of time. framework.
The physical clocks are based on cyclic processes | A logical clock allows global ordering on
such as a events from different processes.
celestial rotation.

1.15.1 A Framework for a system of logical clocks

A system of logical clocks consists of a time domain T and a logical clock C. Elements of T form a
partially ordered set over a relation <. This relation is usually called the happened before or causal
precedence.

The logical clock C is a function that maps an event e in a distributed system to an element in
the time domain T denoted as C(e).
C : H — Tsuch that
for any two events ej and ej,. ei>ej= C(ei)< C(gj).
This monotonicity property is called the clock consistency condition.When T and C satisfy
the following condition,
¢, — ¢; < Cle) < Cle))

Then the system of clocks is strongly consistent.

1.15.2 Implementing logical clocks
The two major issues in implanting logical clocks are:
= Data structures: representation of each process

= Protocols: rules for updating the data structures to ensure consistent conditions.

Data structures:
Each process pimaintains data structures with the given capabilities:
* A local logical clock (lci), that helps process pi measure itsown progress.
* A logical global clock (gci), that is a representation of process pi’s local view of the logical
global time. It allows this process to assignconsistent timestamps to its local events.

Dr. Gopikrishnan M 31

UNIT II Distributed systems CS3551

Protocol:

The protocol ensures that a process’s logical clock, and thus its view of theglobal
time, is managed consistently with the following rules:
Rule 1: Decides the updates of the logical clock by a process. It controls send, receive and
other operations.
Rule 2: Decides how a process updates its global logical clock to update its view of the
global time and global progress. It dictates what information about the logical time is
piggybacked in a message and how this information is used by the receiving process to
update its view of the global time.

1.16 Scalar Time

Scalar time is designed by Lamport to synchronize all the events in distributed
systems. A Lamport logical clock is an incrementing counter maintained in each process.
This logical clock has meaning only in relation to messages moving between processes.
When a process receives a message, it resynchronizes its logical clock with that sender
maintainingcausal relationship.

The Lamport’s algorithm is governed using the following rules:
The algorithm of Lamport Timestamps can be captured in a few rules:
All the process counters start with value 0.
A process increments its counter for each event (internal event, message sending, message
receiving) in that process.
When a process sends a message, it includes its (incremented) counter value with the
message.
On receiving a message, the counter of the recipient is updated to the greater of its current
counter and the timestamp in the received message, and then incremented by one.

If Ci is the local clock for process Pithen,
if a and b are two successive events in Pj, then Ci(b) = Ci(a) + d1, where d1 >0

if a is the sending of message m by Pi, then m is assigned timestamp tm = Ci(a)
if b is the receipt of m by Pj, then Cj(b) = max{Cj(b), tm + d2}, where d2 > 0

Rules of Lamport’s clock

Rule 1: Ci(b) = Ci(a) + d1, where d1 >0

a) Ci= max(Ci, Cm)
b) Execute Rule 1
c) deliver the message

Rule 2: The following actions are implemented when p; receives a message m with timestamp Cp:

1 2 3 8 9
P ® *
5 9

1 4 5 7 11

Py ® ®
3 10
4
1 b
P3 @
5 6 7

Fig 1.20: Evolution of scalar time

Basic properties of scalar time:

Dr. Gopikrishnan M 32

UNIT II Distributed systems CS3551

1. Consistency property: Scalar clock always satisfies monotonicity. A monotonic clock
only increments its timestamp and never jump.Hence it is consistent.
Cle;) < C(ej].

2. Total Reordering:Scalar clocks order the events in distributed systems.But all the events
do not follow a common identical timestamp. Hence a tie breaking mechanism is essential to
order the events. The tie breaking is done through:

Linearly order process identifiers.

Process with low identifier value will be given higher priority.

The term (t, i) indicates timestamp of an event, where t is its time of occurrence and i is the
identity of the process where it occurred.

The total order relation (=) over two events x and y with timestamp (h, i) and (k, j) is given by:
x < y& (h<kor (h=kandi < j))

A total order is generally used to ensure liveness properties in distributed algorithms.

3. Event Counting

If event e has a timestamp h, then h—1 represents the minimum logical duration,
counted in units of events, required before producing the event e. This is called height of the
event e. h-1 events have been produced sequentially before the event e regardless of the
processes that produced these events.

4. No strong consistency

The scalar clocks are not strongly consistent is that the logical local clock and logical
global clock of a process are squashed into one, resulting in the loss causal dependency
information among events at different processes.

1.17 Vector Time

The ordering from Lamport's clocks is not enough to guarantee that if two events
precede one another in the ordering relation they are also causally related. Vector Clocks use
a vector counter instead of an integer counter. The vector clock of a system with N processes
is a vector of N counters, one counter per process. Vector counters have to follow the
following update rules:
Initially, all counters are zero.
Each time a process experiences an event, it increments its own counter in the vector by one.
Each time a process sends a message, it includes a copy of its own (incremented) vector in
the message.
Each time a process receives a message, it increments its own counter in the vector by one
and updates each element in its vector by taking the maximum of the value in its own vector
counter and the value in the vector in the received message.

The time domain is represented by a set of n-dimensional non-negative integer vectors in vector
time.

Rules of VVector Time

Rule 1: Before executing an event, process pi updates its local logical time
as follows:

vr,[i] :== vt[i] +d (d=>0)

Dr. Gopikrishnan M 33

UNIT II Distributed systems CS3551

Rule 2: Each message m is piggybacked with the vector clock vt of the sender
process at sending time. On the receipt of such a message (m,vt), process

pi executes the following sequence of actions:

1. update its global logical time

1l <k <n : vt[k] := max(vt;| k], vt[k])
2. execute R1
3. deliver the message m

i i

P

Py J

Fig 1.21: Evolution of vector scale
1.17.1 Basic properties of vector time
1. Isomorphism:
“—” induces a partial order on the set of events that are produced by a distributed execution.

If events x and y are timestamped as vh and vk then,

x—y <& vh<vk

x|y & vh| vk.
There is an isomorphism between the set of partially ordered events produced by a distributed
computation and their vector timestamps.
If the process at which an event occurred is known, the test to compare two timestamps can
be simplified as:
x — y < vhli] < vk[i]

x|y < vhli] > vk[i] A vh[j] < vk[]].

2. Strong consistency
The system of vector clocks is strongly consistent; thus, by examining the vector
timestamp of two events, we can determine if the events are causally related.

3. Event counting
If an event e has timestamp vh, vh[j] denotes the number of events executed by
process pj that causally precede e.

Vector clock ordering relation
t=r=Yii]l =7

t= redi fi] =[]

t= =Vl =0
t=r(t=tandt=1)

t | f=net(t=<rtfort <)

t[i]- timestamp of process i.

Dr. Gopikrishnan M 34

UNIT II Distributed systems CS3551

1.17.2 Implementation of vector clock

If the number of processes in a distributed computation is large, then vector clocks
will require piggybacking of huge amount of information in messages for the purpose of
disseminating time progress and updating clocks. There are two implementation techniques:
Singhal-Kshemkalyani’s differential technique:
This approach improves the message passing mechanism by only sending updates to the
vector clock that have occurred since the last message sent from Process(i) — Process(j).
This drastically reduces the message size being sent, but does require O(n2) storage. This is
due to each node now needing to remember, for each other process, the state of the vector at
the last message sent.
This also requires FIFO message passing between processes, as it relies upon the guarantee of
knowing what the last message sent is, and if messages arrive out of order this would not be
possible.
If entries i1, I, ..., in Of the vector clock at pi have changed to vi, va, .., v respectively, since
the last message sentto pj, then process pi piggybacks a compressed timestamp of the form.

{(".I'rvl)'| (EIZ" UE] """ Unpvm)}
When pj receives this message, it updates its vector clock as follows:

vt[iy] = max(v[i,], v,) fork=1,2,..., n,.

This cuts down the message size, communication bandwidth and buffer (to store messages)
requirements.
The storage overhead is resolved by maintaining two vectors by process pi :

e LS[1...n] (‘Last Sent’):
LS,[j] indicates the value of vr;[i] when process p; last sent a message to
process p;.

e LU]1...n] (‘Last Update’):
LU;[j] indicates the value of vr;[i] when process p; last updated the entry

NN :

00— -
(=N S
— -

Py

Fig 1.22: Vector clocks progress in Singhal-Kshemkalyani technique
Fowler-Zwaenepoel direct-dependency technique:

This technique further reduces the message size by only sending the single clock value of the
sending process with a message.

Dr. Gopikrishnan M 35

UNIT II Distributed systems CS3551

However, this means processes cannot know their transitive dependencies when looking at
the causality of events.

In order to gain a full view of all dependencies that lead to a specific event, an offline search
must be made across processes.

Each process pimaintains a dependency vector Di. Initially,

D|jl=0forj=1,..., n.
i is updated as follows:
1. Whenever an event occurs at pi such that,
D,[i] := D,[i] + 1

2. When a process pi sends a message to process pj, it piggybacks the updatedvalue of Di[i] in
the message.

3. When pi receives a message from p; with piggybacked value d, piupdates its dependency
vector as follows: Di[j]:= max{Di[j], d}.

Fig 1.23: Vector clock progress in Fowler—Zwaenepoel technique

Process p4 sends a message to process p3, it piggybacks a scalar that indicates the direct
dependency of p3 on p4 because of this message.

Process p3 sends a message to process p2 piggybacking a scalar to indicate the direct
dependency of p2 on p3 because of this message.

Process p2 is in fact indirectly dependent on process p4 since process p3 is dependent on
process p4. However, process p2 is never informed about its indirect dependency on p4.

Dr. Gopikrishnan M 36

CS3551 Distributed Systems — UNIT 11

MESSAGE ORDERING & SNAPSHOTS
2.1 MESSAGE ORDERING AND GROUP COMMUNICATION
As the distributed systems are a network of systems at various physical locations, the
coordination between them should always be preserved. The message ordering means the
order of delivering the messages to the intended recipients. The common message order
schemes are First in First out (FIFO), non FIFO, causal order and synchronous order. In case
of group communication with multicasting, the causal and total ordering scheme is followed.
It is also essential to define the behaviour of the system in case of failures. The following
are the notations that are widely used in this chapter:
e Distributed systems are denoted by a graph (N, L).
e The set of events are represented by event set {E,= }
e Message is denoted as m': send and receive events as s' and r' respectively.
e Send (M) and receive (M) indicates the message M send and received.
e a~b denotes a and b occurs at the same process
e The send receive pairs T={(s, r) €Ei x Ejcorresponds to r}

2.1.1 Message Ordering Paradigms
The message orderings are
(i) non-FIFO
(i) FIFO
(iii) causal order
(iv) synchronous order
There is always a trade-off between concurrency and ease of use and implementation.

Asynchronous Executions

An asynchronous execution (or A-execution) is an execution (E, <) for which the causality relation
is a partial order.

e There cannot be any causal relationship between events in asynchronous execution.

e The messages can be delivered in any order even in non FIFO.

e Though there is a physical link that delivers the messages sent on it in FIFO order due
to the physical properties of the medium, a logicallink may be formed as a composite
of physical links and multiple paths mayexist between the two end points of the

logical link.
r? rl ri 2
I
W //; °
sls2 §3 s 52
(a) (b)

Fig 2.1: a) FIFO executions b) non FIFO executions

Dr. Gopikrishnan M 1

CS3551 Distributed Systems — UNIT 11

FIFO executions

A FIFO execution is an A-execution in which, for all
(s,r)and (s, F)eT.(s~s' and r~r and s <s') =— r<r.

e The logical link is non-FIFO.

e FIFO logical channels can be realistically assumed when designing distributed
algorithms since most of the transport layer protocols follow connection oriented
service.

e AFIFO logical channel can be created over a non-FIFO channel by using a
separate numbering scheme to sequence the messages on each logical channel.

e The sender assigns and appends a <sequence_num, connection_id> tuple to each
message.

e The receiver uses a buffer to order the incoming messages as per the sender’s
sequence numbers, and accepts only the “next” message in sequence.

Causally Ordered (CO) executions

CO execution is an A-execution in which, for all,
(s,r)and (s',F)eT,.(r~rands<s)=r=<r

e Two send events s and s’ are related by causality ordering (not physical time
ordering), then a causally ordered execution requires that their corresponding receive
events r and r’ occur in the same order at all common destinations.

e Ifsands’ are not related by causality, then CO is vacuously satisfied.

e Causal order is used in applications that update shared data, distributed shared
memory, or fair resource allocation.

e A message m that arrives in the local OS buffer at P; may have to be delayed until the
messages that were sent to P; causally before m was sent have arrived and are
processed by the application.

e The delayed message m is then given to the application for processing. The event of
an application processing an arrived message is referred to as a delivery event.

e No message overtaken by a chain of messages between the same (sender, receiver)
pair.

If send(m*) < send(m?) then for each common destination d of messages m* and m?,
deliverd(m®) <deliverd(m? must be satisfied.

Other properties of causal ordering
1. Message Order (MO): A MO execution is an A-execution in which, for all

(.’5’, F) and {-s'"a -rj) eT.s<s— —u(r' ~ _r].

2. Empty Interval Execution: An execution (E <) is an empty-interval (El)
execution if for each pair of events (s, r) € T, the open interval set

{xeE|s<x=<r}

Dr. Gopikrishnan M 2

CS3551 Distributed Systems — UNIT 11

in the partial order is empty.
3. An execution (E, <) is CO if and only if for each pair of events (s, r) € T and each
evente € E,
e weak common past:
e<r==(s<e)
e weak common future:

s<e=—= —(e=<r).

Synchronous Execution

e\When all the communication between pairs of processes uses synchronous send and receives
primitives, the resulting order is the synchronous order.

¢ The synchronous communication always involves a handshake between the receiver and the
sender, the handshake events may appear to be occurring instantaneously and atomically.

¢ The instantaneous communication property of synchronous executions requires a modified
definition of the causality relation because for each (s, r) € T, the send event is not causally
ordered before the receive event.

e The two events are viewed as being atomic and simultaneous, and neither event precedes the
other.

52 st 5 52 53 54 P
3
n 5 .Fil'!3 HES
m2 /1 m §6 m ,l 6
P, : —
} r3o5 3 5
1 H'!ﬁ m L m 2 Hi-l' H'!ﬁ
m \
P; L
Sl r.l j.-l- rﬁ _,;.l rl _,.4 J.ﬁ
Fig 2.2 a) Execution in an asynchronous Fig 2.2 b) Equivalent synchronous
system communication

Causality in a synchronous execution: The synchronous causality relation << on E is the
smallest transitive relation that satisfies the following:
S1: If x occurs before y at the same process, then x <<y.
S2: If (s, r €T, then) for all X €E, [(X<<s &= x<<r) and (S<< X &=>r<<x)].
S3: If x<<y and y<<z, then x<<z.

Synchronous execution: A synchronous execution or S-execution is an execution (E, <<) for
which the causality relation << is a partial order.

Timestamping a synchronous execution: An execution (E, <) is synchronous if and only if
there exists a mapping from E to T (scalar timestamps) such that

e for any message M, T(s(M)) = T(r(M))

e for each process Pi, if ei<ei’, then T(ei) <T(ei’).

Dr. Gopikrishnan M 3

CS3551 Distributed Systems — UNIT 11

2.2 Asynchronous execution with synchronous communication

When all the communication between pairs of processes is by using synchronous send
and receive primitives, the resulting order is synchronous order. The algorithms run on
asynchronous systems will not work in synchronous system and vice versa is also true.

Realizable Synchronous Communication (RSC)

A-execution can be realized under synchronous communication is called a realizable with
synchronous communication (RSC).

e An execution can be modeled to give a total order that extends the partial order
(E, <).

e Inan A-execution, the messages can be made to appear instantaneous if there exist a
linear extension of the execution, such that each send event is immediately followed
by its corresponding receive event in this linear extension.

Non-separated linear extension is an extension of (E, <) is a linear extension of (E, <) such that
for each pair (s, r) €T, the interval { XEE s <X <r} isempty.

A A-execution (E, <) is an RSC execution if and only if there exists a non-separated linear
extension of the partial order (E, <).

e Inthe non-separated linear extension, if the adjacent send event and its corresponding
receive event are viewed atomically, then that pair of events shares a common past
and a common future with each other.

Crown

Let E be an execution. A crown of size k in E is a sequence <(s', '), i &@0,..., k-1}> of pairs of
corresponding send and receive events such that: s° <r, s <r? s* 2 <r*/ s/ <"

The crown is <(s?, r1) (s?, r¥)> as we have s' < r? and s? < r'. Cyclic dependencies
may exist in a crown. The crown criterion states that an A-computation is RSC, i.e., it can be
realized on a system with synchronous communication, if and only if it contains no crown.

Timestamp criterion for RSC execution
An execution (E, <) is RSC if and only if there exists a mapping from E to T (scalar

timestamps) such that
e for any message M, T(s(M)) = T(r(M));

e foreach (a,b) in (ExE)\T,a< b= T(a) < T(h)
2.2.1 Hierarchy of ordering paradigms

The orders of executions are:
e Synchronous order (SYNC)

e Causal order (CO)
e FIFO order (FIFO)
e Non FIFO order (non-FIFO)
The Execution order have the following results
— For an A-execution, A is RSC if and only if A is an S-execution.

Dr. Gopikrishnan M 4

CS3551 Distributed Systems — UNIT 11

RSCcCOcCcFIFOcA
This hierarchy is illustrated in Figure 2.3(a), and example executions of each class are

shown side-by-side in Figure 2.3(b)

The above hierarchy implies that some executions belonging to a class X will not
belong to any of the classes included in X. The degree of concurrency is most in A
and least in SYNC.

A program using synchronous communication is easiest to develop and verify.

A program using non-FIFO communication, resulting in an A execution, is hardest to

design and verify.
E |I f."llll.’ I'. | J'f

FIFO -, [

“SYNE

Fig (a) Fig (b)

Fig 2.3: Hierarchy of execution classes

2.2.3 Simulations

The events in the RSC execution are scheduled as per some non-separated linear
extension, and adjacent (s, r) events in this linear extension are executed sequentially
in the synchronous system.

The partial order of the asynchronous execution remains unchanged.

If an A-execution is not RSC, then there is no way to schedule the events to make
them RSC, without actually altering the partial order of the given A-execution.
However, the following indirect strategy that does not alter the partial order can be
used.

Each channel Ci; is modeled by a control process P;; that simulates the channel buffer.
An asynchronous communication from i to j becomes a synchronous communication
from i to P;j; followed by a synchronous communication from Pj; to j.

This enables the decoupling of the sender from the receiver, a feature that is essential
in asynchronous systems.

D

Dr. Gopikrishnan M 5

CS3551 Distributed Systems — UNIT 11

Fig 2.4: Modeling channels as processes to simulate an execution using
asynchronous primitives on synchronous system

Synchronous programs on asynchronous systems
— A (valid) S-execution can be trivially realized on an asynchronous system by
scheduling the messages in the order in which they appear in the S-execution.
— The partial order of the S-execution remains unchanged but the communication
occurs on an asynchronous system that uses asynchronous communication primitives.
— Once a message send event is scheduled, the middleware layer waits for
acknowledgment; after the ack is received, the synchronous send primitive completes.

2.3 SYNCHRONOUS PROGRAM ORDER ON AN ASYNCHRONOUS SYSTEM

Non deterministic programs
The partial ordering of messages in the distributed systems makes the repeated runs of
the same program will produce the same partial order, thus preserving deterministic nature.
But sometimes the distributed systems exhibit non determinism:
e A rreceive call can receive a message from any sender who has sent a message, if the
expected sender is not specified.
e Multiple send and receive calls which are enabled at a process can be executed in an
interchangeable order.
e Ifisendstoj, and j sends to i concurrently using blocking synchronous calls, there
results a deadlock.
e There is no semantic dependency between the send and the immediately following
receive at each of the processes. If the receive call at one of the processes can be
scheduled before the send call, then there is no deadlock.

2.3.1 Rendezvous
Rendezvous systems are a form of synchronous communication among an arbitrary
number of asynchronous processes. All the processes involved meet with each other, i.e.,
communicate synchronously with each other at one time. Two types of rendezvous systems
are possible:
e Binary rendezvous: When two processes agree to synchronize.

e Multi-way rendezvous: When more than two processes agree to synchronize.

Features of binary rendezvous:

e For the receive command, the sender must be specified. However, multiple recieve
commands can exist. A type check on the data is implicitly performed.

e Send and received commands may be individually disabled or enabled. A command is
disabled if it is guarded and the guard evaluates to false. The guard would likely
contain an expression on some local variables.

e Synchronous communication is implemented by scheduling messages under the
covers using asynchronous communication.

Dr. Gopikrishnan M 6

CS3551 Distributed Systems — UNIT 11

e Scheduling involves pairing of matching send and receives commands that are both
enabled. The communication events for the control messages under the covers do not
alter the partial order of the execution.

2.3.2 Binary rendezvous algorithm
If multiple interactions are enabled, a process chooses one of them and tries to
synchronize with the partner process. The problem reduces to one of scheduling messages
satisfying the following constraints:
e Schedule on-line, atomically, and in a distributed manner.
e Schedule in a deadlock-free manner (i.e., crown-free).

e Schedule to satisfy the progress property in addition to the safety property.

Steps in Bagrodia algorithm
1. Receive commands are forever enabled from all processes.

2. A send command, once enabled, remains enabled until it completes, i.e., it is not
possible that a send command gets before the send is executed.

3. To prevent deadlock, process identifiers are used to introduce asymmetry to break
potential crowns that arise.

4. Each process attempts to schedule only one send event at any time.

The message (M) types used are: M, ack(M), request(M), and permission(M). Execution
events in the synchronous execution are only the send of the message M and receive of the
message M. The send and receive events for the other message types — ack(M), request(M),
and permission(M) which are control messages. The messages request(M), ack(M), and
permission(M) use M’s unique tag; the message M is not included in these messages.

(message types)
M, ack(M), request(M), permission(M)
(1) Piwants to execute SEND(M) to a lower priority process P;:

Pi executes send(M) and blocks until it receives ack(M) from P; . The send event SEND(M) now
completes.

Any M message (from a higher priority processes) and request(M’) request for synchronization (from
a lower priority processes) received during the blocking period are queued.

(2) P;wants to execute SEND(M) to a higher priority process Pj:

(2a) Pi seeks permission from Pj by executing send(request(M)).

/I to avoid deadlock in which cyclically blocked processes queue // messages.
(2b) While P; is waiting for permission, it remains unblocked.

(i) If a message M’ arrives from a higher priority process Pk, Pi accepts M by scheduling a
RECEIVE(M’) event and then executes send(ack(M’)) to Px.

Dr. Gopikrishnan M 7

CS3551 Distributed Systems — UNIT 11

(i) If a request(M’) arrives from a lower priority process Pk, Pi executes send(permission(M’)) to Pk
and blocks waiting for the messageM’. WhenM’ arrives, the RECEIVE(M’) event is executed.

(2c) When the permission(M) arrives, Pi knows partner P; is synchronized and P; executes send(M).
The SEND(M) now completes.

(3) request(M) arrival at P; from a lower priority process P;:

At the time a request(M) is processed by Pi, process P; executes send(permission(M)) to Pj and blocks
waiting for the message M. When M arrives, the RECEIVE(M) event is executed and the process
unblocks.

(4) Message M arrival at P;from a higher priority process P;:

At the time a message M is processed by P;, process P; executes RECEIVE(M) (which is assumed to
be always enabled) and then send(ack(M)) to P; .

(5) Processing when P;is unblocked:

When P; is unblocked, it dequeues the next (if any) message from the queue and processes it as a
message arrival (as per rules 3 or 4).

Fig 2.5: Bagrodia Algorithm

2.4 GROUP COMMUNICATION
Group communication is done by broadcasting of messages. A message broadcast is
the sending of a message to all members in the distributed system. The communication may
be
e Multicast: A message is sent to a certain subset or a group.

e Unicasting: A point-to-point message communication.

The network layer protocol cannot provide the following functionalities:
= Application-specific ordering semantics on the order of delivery of messages.

= Adapting groups to dynamically changing membership.

= Sending multicasts to an arbitrary set of processes at each send event.
= Providing various fault-tolerance semantics.

= The multicast algorithms can be open or closed group.

Differences between closed and open group algorithms:

Closed group algorithms Open group algorithms
If sender is also one of the receiver in the If sender is not a part of the communication
multicast algorithm, then it is closed group group, then it is open group algorithm.
algorithm.
They are specific and easy to implement. They are more general, difficult to design and

expensive.

It does not support large systems where client It can support large systems.
processes have short life.

Dr. Gopikrishnan M 8

CS3551 Distributed Systems — UNIT 11

2.5 CAUSAL ORDER (CO)

In the context of group communication, there are two modes of communication:

causal order and total order. Given a system with FIFO channels, causal order needs to be
explicitly enforced by a protocol. The following two criteria must be met by a causal
ordering protocol:

Safety: In order to prevent causal order from being violated, a message M that
arrives at a process may need to be buffered until all system wide messages sent in the
causal past of the send (M) event to that same destination have already arrived. The
arrival of a message is transparent to the application process. The delivery event
corresponds to the receive event in the execution model.

Liveness: A message that arrives at a process must eventually be delivered to the
process.

2.5.1 The Raynal-Schiper—-Toueg algorithm

Each message M should carry a log of all other messages sent causally before M’s
send event, and sent to the same destination dest(M).
The Raynal-Schiper-Toueg algorithm canonical algorithm is a representative of
several algorithms that reduces the size of the local space and message space
overhead by various techniques.
This log can then be examined to ensure whether it is safe to deliver a message.
All algorithms aim to reduce this log overhead, and the space and time overhead of
maintaining the log information at the processes.
To distribute this log information, broadcast and multicast communication is used.
The hardware-assisted or network layer protocol assisted multicast cannot efficiently
provide features:
» Application-specific ordering semantics on the order of delivery of messages.
» Adapting groups to dynamically changing membership.
» Sending multicasts to an arbitrary set of processes at each send event.
» Providing various fault-tolerance semantics

2.6 Causal Order (CO)

An optimal CO algorithm stores in local message logs and propagates on messages,
information of the form d is a destination of M about a messageM sent in the causal past, as
long as and only as long as:

Propagation Constraint I: it is not known that the message M is delivered to d.

Propagation Constraint Il: it is not known that a message has been sent to d in the causal
future of Send(M), and hence it is not guaranteed using a reasoning based on transitivity that
the message M will be delivered to d in CO.

Dr. Gopikrishnan M 9

CS3551 Distributed Systems — UNIT 11

= Messagesenttod

Border of causal future of corresponding event

o} Event at which message is sent to d, and there is no such
event on any causal path between event e and this event

<> Info "d is a dest. of M" must exist for correctness

>< Info "d is a dest. of M" must not exist for optimality

Fig 2.6: Conditions for causal ordering

The Propagation Constraints also imply that if either (1) or (I1) is false, the information
“d € M.Dests” must not be stored or propagated, even to remember that (I) or (1) has been
falsified:
= not in the causal future of Deliverq(M1, a)

= not in the causal future of e ¢ where d €My Dests and there is no other
message sent causally between Mja and M, ¢ to the same destination d.

Information about messages:

(1) not known to be delivered

(i) not guaranteed to be delivered in CO, is explicitly tracked by the algorithm using (source,
timestamp, destination) information.

Information about messages already delivered and messages guaranteed to be delivered in
CO is implicitly tracked without storing or propagating it, and is derived from the explicit
information. The algorithm for the send and receive operations is given in Fig. 2.7 a) and b).
Procedure SND is executed atomically. Procedure RCV is executed atomically except for a
possible interruptionin line 2a where a non-blocking wait is required to meet the Delivery
Condition.

Dr. Gopikrishnan M 10

CS3551 Distributed Systems — UNIT 11

(1) SND: j sends a message M to Dests:

(la) clock; «— clock; +1:
(1b) for all d € M.Dests do:
Oy <— LOG; Il 0, denotes Oﬂjldmj
for all o € O, modify o.Dests as follows:
if d & o0.Dests then o.Dests «<— (0.Dests\ M.Dests):
if d € o0.Dests then o.Dests «<— (0.Dests\ M.Dests) | {d};
/' Do not propagate information about indirect dependencies that are
// guaranteed to be transitively satisfied when dependencies of M are satisfied.
for all o, , € Oy do
ifo,,Dests=W A\ (30 , € Oy | t <) then Oy «— O\ {o,,}:
/! do not propagate older entries for which Dests field is @
send (f, clock ;, M, Dests, Oy) to d;
(lc) forall / € LOG; do [.Dests «— [.Dests \ Dests;
/' Do not store information about indirect dependencies that are guaranteed
/I to be transitively satisfied when dependencies of M are satisfied.
Execute PURGE_NULL_ENTRIES(LGGJ;); /I purge l € LOG, if [.Dests =W
(1d) LOG; «— LOG;|J{(j, clock;, Dests)}.

Fig 2.7 a) Send algorithm by Kshemkalyani-Singhal to optimally implement causal

ordering
(2) RCYV: j receives a message (k, 1,. M, Dests, O,,) from k:

(2a) // Delivery Condition: ensure that messages sent causally before M are delivered.
forallo, , € O, do
if je ’;),,,_, .Dests wait until 7,, < SR;[m]:
(2b) Deliver M; SR {k] «— 1,
(2¢c) Oy «— {(k.t,, Dests)} |J O,
forall o, , € Oy do o, , .Dests <—o, .Dests\|{j}:
/I delete the now redundant dependency of message represented by o
(2d) // Merge Oy, and LOG; by eliminating all redundant entries.
// Implicitly track “already delivered” & “guaranteed to be delivered in CO”
/I messages.
for all 0, , € Oy and [, » € LOG; such that s = m do
ift<t A\ I, ¢LOG; then mark o, ;
/I 1, , had been deleted or never inserted, as /_,.Dests =) in the causal past
ift' <t \ o, &0, then mark [_,.:
I 0, & O, because [, had become # at another process in the causal past
Delete all marked elements in O,, and LOG; :
/I delete entries about redundant information
forall/, , € LOG;and 0, , € Oy, such that s=m A ' =t do
I, y.Dests «—1_s.Dests()o,, ,.Dests;
/I delete destinations for which Delivery
/I Condition is satisfied or guaranteed to be satisfied as per o, ,
Delete o,, , from Oy // information has been incorporated in [
LOG; «— LOG;|JOy: /I merge non-redundant information of O, into LOG;
(2¢) PURGE_NULL_ENTRIES(LOG;). /I Purge older entries / for which [.Dests =

.ty SENLLO]

nm.t

PURGE_NULL_ENTRIES(Log;): // Purge older entries [for which I.Dests =} is
// implicitly inferred

Fig 2.7 b) Receive algorithm by Kshemkalyani-Singhal to optimally implement causal
ordering

The data structures maintained are sorted row—major and then column—-major:

Dr. Gopikrishnan M 11

CS3551 Distributed Systems — UNIT 11

[

. Explicit tracking:

= Tracking of (source, timestamp, destination) information for messages (i) not known to be
delivered and (ii) not guaranteed tobe delivered in CO, is done explicitly using the I.Dests
field of entries inlocal logs at nodes and o.Dests field of entries in messages.

= Sets liaDestsand 0j . Dests contain explicit information of destinations to which Miais not
guaranteed to be delivered in CO and is not known to be delivered.

= The information about d M. Destsis propagated up to the earliestevents on all causal
paths from (i, a) at which it is known that Mi. isdelivered to d or is guaranteed to be
delivered to d in CO.

N

. Implicit tracking:

Tracking of messages that are either (i) already delivered, or (ii) guaranteed to be
delivered in CO, is performed implicitly.

The information about messages (i) already delivered or (ii) guaranteed tobe delivered
in CO is deleted and not propagated because it is redundantas far as enforcing CO is
concerned.

It is useful in determiningwhat information that is being carried in other messages and
is being storedin logs at other nodes has become redundant and thus can be purged.
Thesemantics are implicitly stored and propagated. This information about messages
that are (i) already delivered or (ii) guaranteed to be delivered in CO is tracked
without explicitly storing it.

The algorithm derives it from the existing explicit information about messages (i) not
known to be delivered and (ii) not guaranteed to be delivered in CO, by examining
only oi.Dests or li.Dests, which is a part of the explicit information.

P L _3__ Message to dest. Piggybacked
1 7 "
M:.:/‘ K /‘Mli Ms ;. Dests
p !) 4 Mg to Py P (Py.Pg)
2 2 /3 74 M, 5to Py P, {Ps}
M., 12 ;3 M, M yto P {Pe}
Py P Mg to Py {Ps}
1 / M,, }%\ ; M, sto Pg {Ps}
¥ My sto Py

P, - {1
M, / 2 3\/, R M, M;5to Pg {Py.Pg)

P P - M, sto P, {Ps}
CON Mo, \M \Ms HaoP 0

Py

———————— Causal past contains event (6,1)
Information about Py as a destination

——— — of multicast at event (5.1) propagates
as piggybacked information and in logs

Fig 2.8: Illustration of propagation constraints

Multicasts Ms1and Ma,1

Message Ms 1 sent to processes P4 and P6 contains the piggybacked information Ms 1,

Dest= {P4, P6}. Additionally, at the send event (5, 1), the information Ms 1 Dests = {P4,P6}
is also inserted in the local log Logs. When Ms is delivered to P6, the (new) piggybacked
information P4 € Ms Dests is stored in Loge as Ms1.Dests ={P4} information about P6 €

Dr. Gopikrishnan M 12

CS3551 Distributed Systems — UNIT 11

Ms 1. Dests which was needed for routing, must not be stored in Loge because of constraint I.
In the same way when Ms 1 is delivered to process P4

at event (4, 1), only the new piggybacked information P6 € Ms .Dests is inserted in Logs as
Ms,1. Dests =P6which is later propagated duringmulticast Ma,.,

Multicast M43

At event (4, 3), the information P6 €Ms 1 Dests in Log4 is propagated onmulticast Mazonly to
process P6 to ensure causal delivery using the DeliveryCondition. The piggybacked
information on message Ma3ssent to process P3must not contain this information because of
constraint 1. As long as any future message sent to P6 is delivered in causal order w.r.t.
Mazsent to P6, it will also be delivered in causal order w.r.t. Ms1, And as Ms is already
delivered to P4, the information Ms1Dests = @ is piggybacked on M3 sent to P 3. Similarly,
the information P6 € Ms1Dests must be deleted from Log4 as it will no longer be needed,
because of constraint Il. Ms1Dests = @ is stored in Log4 to remember that Ms1 has been
delivered or is guaranteed to be delivered in causal order to all its destinations.

Learning implicit information at P2 and P3
When message Mais received by processes P2 and P3, they insert the (new) piggybacked
information in their local logs, as information Ms 1 Dests = P6. They both continue to store
this in Log2 and Log3 and propagate this information on multicasts until they learn at events
(2, 4) and (3, 2) on receipt of messages Mz zand Ma 3, respectively, that any future message is
expected to be delivered in causal order to process P6, w.r.t. Msisent toP6. Hence by
constraint Il, this information must be deleted from Log2 andLog3. The flow of events is
given by;
e When Mgz with piggybacked information Ms1Dests = @ is received byP3at (3, 2), this
is inferred to be valid current implicit information aboutmulticast Ms 1because the log
Log3 already contains explicit informationP6 €MsDests about that multicast.
Therefore, the explicit informationin Log3 is inferred to be old and must be deleted to
achieve optimality. Ms1Dests is set to @ in Log3.
e The logic by which P2 learns this implicit knowledge on the arrival of Msais
identical.

Processing at P6
When message Ms 1 is delivered to P6, only Ms 1 Dests = P4 is added to Log6. Further, P6
propagates only Ms 1 Dests = P4 on message Ms 2, and this conveys the current implicit
information Ms 1 has been delivered to P6 by its very absence in the explicit information.
e When the information P6 € Ms 1Dests arrives on Ma 3, piggybacked as Ms 1 Dests
= P6 it is used only to ensure causal delivery of Ma 3 using the Delivery Condition,
and is not inserted in Log6 (constraint 1) — further, the presence of Ms 1 Dests = P4
in Log6 implies the implicit information that Ms 1 has already been delivered to
P6. Also, the absence of P4 in Ms 1 Dests in the explicit piggybacked information
implies the implicit information that Ms 1 has been delivered or is guaranteed to be
delivered in causal order to P4, and, therefore, Ms 1. Dests is set to @ in Log6.
e When the information P6 € Ms 1 Dests arrives on Ms, piggybacked as Ms 1. Dests
= {P4, P6} it is used only to ensure causal delivery of M43 using the Delivery
Condition, and is not inserted in Log6 because Log6 contains Ms 1 Dests = @,

Dr. Gopikrishnan M 13

CS3551 Distributed Systems — UNIT 11

which gives the implicit information that Ms 1 has been delivered or is guaranteed
to be delivered in causal order to both P4 and P6.

Processing at P1

e When My arrives carrying piggybacked information Ms 1 Dests = P6 this (new)
information is inserted in Logl.

e When Mg arrives with piggybacked information Ms 1 Dests ={P4}, P1learns implicit
information Ms 1has been delivered to P6 by the very absence of explicit information
P6 € Ms1.Dests in the piggybacked information, and hence marks information P6 €
Ms 1Dests for deletion from Logl. Simultaneously, Ms1Dests = P6 in Logl implies
the implicit information that Ms 1has been delivered or is guaranteed to be delivered in
causal order to P4.Thus, P1 also learns that the explicit piggybacked information
Ms,1.Dests = P4 is outdated. Ms 1 Dests in Logl is set to @.

e The information “P6 €Ms 1 Dests piggybacked on Mz 3,which arrives at P 1, is
inferred to be outdated usingthe implicit knowledge derived from Ms 1 Dest= @ in
Logl.

2.7 TOTAL ORDER

For each pair of processes P; and Pj and for each pair of messages My and My that are delivered to
both the processes, Pi is delivered My before My if and only if Pj is delivered Mybefore M.

Centralized Algorithm for total ordering
Each process sends the message it wants to broadcast to a centralized process, which
relays all the messages it receives to every other process over FIFO channels.
(1) When process P; wants to multicast a message M to group G:
(la) send M(i. () to central coordinator.

(2) When M(i, G) arrives from P, at the central coordinator:
(2a) send M(i.) to all members of the group G.

(3) When M(i, G) arrives at P; from the central coordinator:
(3a) deliver M(i. G) to the application.

Complexity: Each message transmission takes two message hops and exactly n messages
in a system of n processes.

Drawbacks: A centralized algorithm has a single point of failure and congestion, and is
not an elegant solution.

Three phase distributed algorithm
Three phases can be seen in both sender and receiver side.
Sender side
Phase 1
¢ In the first phase, a process multicasts the message M with a locally unique tag and

the local timestamp to the group members.

Phase 2
e The sender process awaits a reply from all the group members who respond with a
tentative proposal for a revised timestamp for that message M.

Dr. Gopikrishnan M 14

CS3551 Distributed Systems — UNIT 11

The await call is non-blocking.

Phase 3

The process multicasts the final timestamp to the group.

record Q_entry

M: int; /I the application message
tag: int; /f unique message identifier
sender_id: int; {f sender of the message
timestamp: int; // tentative timestamp assigned to message
deliverable: boolean; / whether message is ready for delivery

(local variables)
queue of Q_entry: temp_Q, delivery_Q
int: clock / Used as a variant of Lamport’s scalar clock
int: prierity /f Used to track the highest proposed timestamp
(message types)
REVISE_TS(M, i, tag, ts)
// Phase 1 message sent by P,, with initial timestamp fs

PROPOSED_T5(j, i, tag, ts)

{// Phase 2 message sent by P;, with revised timestamp, to F;
FINAL_TS(i, tag,ts) [/ Phase 3 message sent by P, with final timestamp

(1) When process P, wants to multicast a message M with a tag rag:
(la) clock < elock+1;

(Ib) send REVISE_TS(M, i, tag, clock) to all processes;

(lc) temp_ts <« 0;

(1d) await PROPOSED_TS(}, i, tag, ts;) from each process P;;

(le) Vje N, do temp_ts < max(temp_ts, r.\'j);

(1f) send FINAL_TS(i, tag, temp_ts) to all processes;

(1g) clock < max(clock, temp_ts).

Fig 2.9: Sender side of three phase distributed algorithm

Receiver Side
Phase 1

The receiver receives the message with a tentative timestamp. It updates the variable
priority that tracks the highest proposed timestamp, then revises the proposed
timestamp to the priority, and places the message with its tag and the revised
timestamp at the tail of the queue temp_Q. In the queue, the entry is marked as
undeliverable.

Phase 2

The receiver sends the revised timestamp back to the sender. The receiver then waits
in a non-blocking manner for the final timestamp.

Phase 3

The final timestamp is received from the multicaster. The corresponding message
entry in temp_Q is identified using the tag, and is marked as deliverable after the
revised timestamp is overwritten by the final timestamp.

The queue is then resorted using the timestamp field of the entries as the key. As the
queue is already sorted except for the modified entry for the message under
consideration, that message entry has to be placed in its sorted position in the queue.

Dr. Gopikrishnan M 15

CS3551 Distributed Systems — UNIT 11

If the message entry is at the head of the temp_Q, that entry, and all consecutive
subsequent entries that are also marked as deliverable, are dequeued from temp_Q,
and enqueued in deliver_Q.

Complexity
This algorithm uses three phases, and, to send a message to n — 1 processes, it uses 3(n — 1)
messages and incurs a delay of three message hops

2.8 GLOBAL STATE AND SNAPSHOT RECORDING ALGORITHMS

A distributed computing system consists of processes that do not share a common
memory and communicate asynchronously with eachother by message passing.

Each component ofhas a local state. The state of the process is the local memory and a
history of its activity.

The state of achannel is characterized by the set of messages sent along the channel
lessthe messages received along the channel. The global state of a distributedsystem is
a collection of the local states of its components.

If shared memory were available, an up-to-date state of the entire systemwould be
available to the processes sharing the memory.

The absence ofshared memory necessitates ways of getting a coherent and complete
view ofthe system based on the local states of individual processes.

A meaningfulglobal snapshot can be obtained if the components of the distributed
systemrecord their local states at the same time.

This would be possible if thelocal clocks at processes were perfectly synchronized or
if there were aglobal system clock that could be instantaneously read by the processes.
If processes read time froma single common clock, various indeterminatetransmission
delays during the read operation will cause the processes toidentify various physical
instants as the same time.

2.8.1 System Model

e The system consists of a collection of n processes, p1, p2,...,pn that are connected
by channels.

e Let Cjj denote the channel from process pi to process p;.

e Processes and channels have states associated with them.

e The state of a process at any time is defined by the contents of processor registers,
stacks, local memory, etc., and may be highly dependent on the local context of
the distributed application.

e The state of channel Cj;, denoted by SCij, is given by the set of messages in transit
in the channel.

e The events that may happen are: internal event, send (send (mij)) and receive
(rec(mij)) events.

e The occurrences of events cause changes in the processstate.

e A channel is a distributed entity and its state depends on the local states of the
processes on which it is incident.

Transit: transit(LS,;, LS;) = {m,; |send(m,;) € LS, 1A\ rec(m;;) €LS;}

Dr. Gopikrishnan M 16

CS3551 Distributed Systems — UNIT 11

e The transit function records the state of the channel Cij;.

e In the FIFO model, each channel acts as a first-in first-out message queue and,
thus, message ordering is preserved by a channel.

e In the non-FIFO model, achannel acts like a set in which the sender process adds
messages and thereceiver process removes messages from it in a random order.

2.8.2 A consistent global state
The global state of a distributed system is a collection of the local states ofthe
processes and the channels. The global state is given by:
GS={U,LS,. U, ;5C;}.
The two conditions for global state are:
C1: send(m;)eLS; = m,;€SC,; @ rec(m;;)€LS,
C2: send(m;;)¢LS; = m;;gSC;; A rec(my;)¢LS;.

Condition 1 preserves law of conservation of messages.Condition C2 states that in the
collected global state, for everyeffect, its cause must be present.

Law of conservation of messages: Every messagem;that is recorded as sent in the local state of a
process pi must be capturedin the state of the channel Cjj or in the collected local state of the
receiver process p;.

> In a consistent global state, every message that is recorded as received isalso recorded
as sent. Such a global state captures the notion of causalitythat a message cannot be
received if it was not sent.

» Consistent global statesare meaningful global states and inconsistent global states are
not meaningful in the sense that a distributed system can never be in an
inconsistentstate.

2.8.3 Interpretation of cuts

e Cuts in a space-time diagram provide a powerful graphical aid in representingand
reasoning about the global states of a computation. A cut is a line joiningan arbitrary
point on each process line that slices the space-time diagraminto a PAST and a
FUTURE.

e A consistent global state corresponds to a cut in which every messagereceived in the
PAST of the cut has been sent in the PAST of that cut. Sucha cut is known as a
consistent cut.

e In a consistent snapshot, all the recorded local states of processes are concurrent; that
is, the recorded local state of no process casuallyaffects the recorded local state of any
other process.

2.8.4 Issues in recording global state
The non-availability of global clock in distributed system, raises the following issues:
Issue 1:
How to distinguish between the messages to be recorded in the snapshot from those
not to be recorded?
Answer:
e Any message that is sent by a process before recording its snapshot,must be

recorded in the global snapshot (from C1).

Dr. Gopikrishnan M 17

CS3551 Distributed Systems — UNIT 11

e Any message that is sent by a process after recording its snapshot, mustnot be
recorded in the global snapshot (from C2).

Issue 2:

How to determine the instant when a process takes its snapshot?
The answer

Answer:

A process p; must record its snapshot before processing a message mij that was sent by

process pi after recording its snapshot.

2.9 SNAPSHOT ALGORITHMS FOR FIFO CHANNELS

Each distributed application has number of processes running on different physical

servers. These processes communicate with each other through messaging channels.

A snhapshot captures the local states of each process along with the state of each communication channel.

Snapshots are required to:

Checkpointing
Collecting garbage
Detecting deadlocks
Debugging

2.9.1Chandy-Lamport algorithm

The algorithm will record a global snapshot for each process channel.

The Chandy-Lamport algorithm uses a control message, called a marker.

Aftera site has recorded its snapshot, it sends a marker along all of its
outgoingchannels before sending out any more messages.

Since channels are FIFO, amarker separates the messages in the channel into those to
be included in the snapshot from those not to be recorded inthe snapshot.

This addresses issue 11. The role of markers in a FIFO systemis to act as delimiters
for the messages in the channels so that the channelstate recorded by the process at
the receiving end of the channel satisfies thecondition C2.

Dr. Gopikrishnan M 18

CS3551 Distributed Systems — UNIT 11

Marker sending rule for process p;

(1) Process p; records its state.

(2) For each outgoing channel C on which a marker
has not been sent, p, sends a marker along C
before p, sends further messages along C.

Marker receiving rule for process p;
On receiving a marker along channel C:
if p; has not recorded its state then
Record the state of C as the empty set
Execute the “marker sending rule”
else
Record the state of C as the set of messages
received along C after p;, state was recorded
and before p; received the marker along C

Fig 2.10: Chandy-Lamport algorithm

Initiating a snapshot

Process P; initiates the snapshot

Pirecords its own state and prepares a special marker message.

Send the marker message to all other processes.

Start recording all incoming messages from channels C;; for j not equal to i.

Propagating a snapshot

For all processes Pjconsider a message on channel C;.
If marker message is seen for the first time:
— Pjrecords own sate and marks Cy; as empty
— Send the marker message to all other processes.
— Record all incoming messages from channels Cj; for 1 not equal to j or k.
— Else add all messages from inbound channels.

Terminating a snapshot

All processes have received a marker.
All process have received a marker on all the N-1 incoming channels.
A central server can gather the partial state to build a global snapshot.

Correctness of the algorithm

Since a process records its snapshot when itreceives the first marker on any incoming
channel, no messages that followmarkers on the channels incoming to it are recorded in the
process’s snapshot.

A process stops recording the state of an incoming channel whena marker is received on that
channel.

Due to FIFO property of channels, itfollows that no message sent after the marker on that
channel is recorded inthe channel state. Thus, condition C2 is satisfied.

When a process pj receives message m;j that precedes the marker on channel Cj, it acts as
follows: ifprocess p;j has not taken its snapshot yet, then it includes m;; in its recorded
snapshot. Otherwise, it records mj in the state of the channel Cj. Thus,condition C1 is
satisfied.

Dr. Gopikrishnan M 19

CS3551 Distributed Systems — UNIT 11

Complexity
The recording part of a single instance of the algorithm requires O(e) messages
and O(d) time, where e is the number of edges in the network and d is thediameter of the
network.

2.9.2 Properties of the recorded global state

The recorded global state may not correspond to any of the global states that occurred during
the computation.

This happens because a process can change its state asynchronously before the markers it sent
are received by other sites and the other sites record their states.

But the system could have passed through the recorded global states in some equivalent
executions.

The recorded global state is a valid state in an equivalent execution and if a stable property
(i.e., a property that persists) holds in the system before the snapshot algorithm begins, it holds in the
recorded global snapshot.

Therefore, a recorded global state is useful in detecting stable properties.

Dr. Gopikrishnan M 20

Distributed systems UNIT III

UNIT 111

DISTRIBUTED MUTEX & DEADLOCK

3.1 DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS
e Mutual exclusion is a concurrency control property which is introduced to prevent

race conditions.
e |t is the requirement that a process cannot access a shared resource while another
concurrent process is currently present or executing the same resource.

Mutual exclusion in a distributed system states that only one process is allowed to execute the

critical section (CS) at any given time.

e Message passing is the sole means for implementing distributed mutual exclusion.

e The decision as to which process is allowed access to the CS next is arrived at by
message passing, in which each process learns about the state of all other processes in
some consistent way.

e There are three basic approaches for implementing distributed mutual exclusion:

1. Token-based approach:

A unique token is shared among all the sites.

If a site possesses the unique token, it is allowed to enter its critical section
This approach uses sequence number to order requests for the critical section.
Each requests for critical section contains a sequence number. This sequence
number is used to distinguish old and current requests.

This approach insures Mutual exclusion as the token is unique.

Eg: Suzuki-Kasami’s Broadcast Algorithm

2. Non-token-based approach:

A site communicates with other sites in order to determine which sites should
execute critical section next. This requires exchange of two or more successive
round of messages among sites.

This approach use timestamps instead of sequence number to order requests
for the critical section.

When ever a site make request for critical section, it gets a timestamp.
Timestamp is also used to resolve any conflict between critical section
requests.

All algorithm which follows non-token based approach maintains a logical
clock. Logical clocks get updated according to Lamport’s scheme.

Eg: Lamport's algorithm, Ricart—-Agrawala algorithm

3. Quorum-based approach:

Instead of requesting permission to execute the critical section from all other
sites, Each site requests only a subset of sites which is called a quorum.

Any two subsets of sites or Quorum contains a common site.

This common site is responsible to ensure mutual exclusion.

EQ: Maekawa’s Algorithm

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

Distributed systems UNIT III

3.1.1 Preliminaries

The system consists of N sites, Sy, So, Sa, ..., SN.

Assume that a single process is running on each site.

The process at site S; is denoted by pi. All these processes communicate
asynchronously over an underlying communication network.

A process wishing to enter the CS requests all other or a subset of processes by
sending REQUEST messages, and waits for appropriate replies before entering the
CS.

While waiting the process is not allowed to make further requests to enter the CS.

A site can be in one of the following three states: requesting the CS, executing the CS,
or neither requesting nor executing the CS.

In the requesting the CS state, the site is blocked and cannot make further requests for
the CS.

In the idle state, the site is executing outside the CS.

In the token-based algorithms, a site can also be in a state where a site holding the
token is executing outside the CS. Such state is referred to as the idle token state.

At any instant, a site may have several pending requests for CS. A site queues up
these requests and serves them one at a time.

N denotes the number of processes or sites involved in invoking the critical section, T
denotes the average message delay, and E denotes the average critical section
execution time.

3.1.2 Requirements of mutual exclusion algorithms

Safety property:

The safety property states that at any instant, only one process can execute the

critical section. This is an essential property of a mutual exclusion algorithm.

Liveness property:

This property states the absence of deadlock and starvation. Two or more sites
should not endlessly wait for messages that will never arrive. In addition, a site must
not wait indefinitely to execute the CS while other sites are repeatedly executing the
CS. That is, every requesting site should get an opportunity to execute the CS in finite
time.

Fairness:

Fairness in the context of mutual exclusion means that each process gets a fair
chance to execute the CS. In mutual exclusion algorithms, the fairness property
generally means that the CS execution requests are executed in order of their arrival in
the system.

3.1.3 Performance metrics
» Message complexity: This is the number of messages that are required per CS

execution by a site.

» Synchronization delay: After a site leaves the CS, it is the time required and before

the next site enters the CS. (Figure 3.1)

» Response time: This is the time interval a request waits for its CS execution to be

over after its request messages have been sent out. Thus, response time does not

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

Distributed systems UNIT III

include the time a request waits at a site before its request messages have been sent
out. (Figure 3.2)

» System throughput: This is the rate at which the system executes requests for the
CS. If SD is the synchronization delay and E is the average critical section execution
time.

1
System throughput = m

Last site exits the CS

Next site enters the CS

Time
f«=——— Synchronization delay -
Figure 3.1 Synchronization delay
S request arrives)
The site enters
| Request the €8
| messages sent out ’ The site exits the C3
| \ Y
N \
|II II.I '||I
A \
1

i (.

CS execution time e Time

Response time -

Figure 3.2 Response Time
Low and High Load Performance:

The performance of mutual exclusion algorithms is classified as two special loading
conditions, viz., “low load” and “high load”.

The load is determined by the arrival rate of CS execution requests.

Under low load conditions, there is seldom more than one request for the critical
section present in the system simultaneously.

Under heavy load conditions, there is always a pending request for critical section at a
site.

Best and worst case performance

In the best case, prevailing conditions are such that a performance metric attains the

best possible value. For example, the best value of the response time is a roundtrip
message delay plus the CS execution time, 2T +E.

For examples, the best and worst values of the response time are achieved when load
is, respectively, low and high;

The best and the worse message traffic is generated at low and heavy load conditions,
respectively.

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

Distributed systems UNIT III

3.2 LAMPORT’S ALGORITHM

Lamport’s Distributed Mutual Exclusion Algorithm is a permission based algorithm
proposed by Lamport as an illustration of his synchronization scheme for distributed
systems.

In permission based timestamp is used to order critical section requests and to resolve
any conflict between requests.

In Lamport’s Algorithm critical section requests are executed in the increasing order
of timestamps i.e a request with smaller timestamp will be given permission to
execute critical section first than a request with larger timestamp.

Three type of messages (REQUEST, REPLY and RELEASE) are used and
communication channels are assumed to follow FIFO order.

A site send a REQUEST message to all other site to get their permission to enter
critical section.

A site send a REPLY message to requesting site to give its permission to enter the
critical section.

A site send a RELEASE message to all other site upon exiting the critical section.
Every site Si, keeps a queue to store critical section requests ordered by their
timestamps.

request_queuei denotes the queue of site Si.

A timestamp is given to each critical section request using Lamport’s logical clock.
Timestamp is used to determine priority of critical section requests. Smaller
timestamp gets high priority over larger timestamp. The execution of critical section
request is always in the order of their timestamp.

Requesting the critical section

¢ When a site §; wants to enter the CS, it broadcasts a REQUEST(1s,, i)
message to all other sites and places the request on request_gueue;. ((1s;,
i) denotes the timestamp of the request.)

e When a site §; receives the REQUEST(ts;, i) message from site §;, it places
site §;'s request on request_queue; and returns a timestamped REPLY
message to §,.

Executing the critical section
Site 5, enters the CS when the following two conditions hold:

L1: §; has received a message with timestamp larger than (ts;, {) from all
other sites.
L2: §;'s request is at the top of request_qguene;.

Releasing the critical section

e Site §;, upon exiting the CS, removes its request from the top of its request
queue and broadcasts a timestamped RELEASE message to all other sites.

e When a site §; receives a RELEASE message from site S, it removes 5,'s
request from ils request queue.

Fig 3.1: Lamport’s distributed mutual exclusion algorithm

To enter Critical section:

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

Distributed systems UNIT III

When a site S; wants to enter the critical section, it sends a request message
Request(tsi, 1) to all other sites and places the request on request_queuei. Here, Ts;
denotes the timestamp of Site S;.

When a site S; receives the request message REQUEST(ts;, i) from site Si, it returns a
timestamped REPLY message to site Si and places the request of site Si on
request_queue;

To execute the critical section:
e A site Si can enter the critical section if it has received the message with timestamp
larger than (tsi, i) from all other sites and its own request is at the top of
request_queue;

To release the critical section:
= When a site Sj exits the critical section, it removes its own request from the top of its
request queue and sends a timestamped RELEASE message to all other sites. When a
site S;j receives the timestamped RELEASE message from site S;, it removes the
request of Sia from its request queue.

Correctness
Theorem: Lamport’s algorithm achieves mutual exclusion.
Proof: Proof is by contradiction.
= Suppose two sites Si and S; are executing the CS concurrently. For this to happen
conditions L1 and L2 must hold at both the sites concurrently.
= This implies that at some instant in time, say t, both S; and S; have their own requests
at the top of their request queues and condition L1 holds at them. Without loss of
generality, assume that Sj ’s request has smaller timestamp than the request of S;.
= From condition L1 and FIFO property of the communication channels, it is clear that
at instant t the request of S; must be present in request queue; when S; was executing
its CS. This implies that Sj ’s own request is at the top of its own request queue when
a smaller timestamp request, Si ’s request, is present in the request queuej — a
contradiction!

Theorem: Lamport’s algorithm is fair.
Proof: The proof is by contradiction.
= Suppose a site Si ’s request has a smaller timestamp than the request of another site S;j
and S; is able to execute the CS before S; .
= For Sjto execute the CS, it has to satisfy the conditions L1 and L2. This implies that
at some instant in time say t, S has its own request at the top of its queue and it has
also received a message with timestamp larger than the timestamp of its request from
all other sites.
= But request queue at a site is ordered by timestamp, and according to our assumption
Si has lower timestamp. So S; ’s request must be placed ahead of the Sj ’s request in
the request queue;j . This is a contradiction!

Message Complexity:
Lamport’s Algorithm requires invocation of 3(N — 1) messages per critical section execution.
These 3(N — 1) messages involves

e (N -1) request messages

e (N-1)reply messages

e (N -1) release messages

Distributed systems UNIT III

Drawbacks of Lamport’s Algorithm:
e Unreliable approach: failure of any one of the processes will halt the progress of
entire system.
e High message complexity: Algorithm requires 3(N-1) messages per critical section
invocation.

Performance:

Synchronization delay is equal to maximum message transmission time. It requires 3(N — 1)
messages per CS execution. Algorithm can be optimized to 2(N — 1) messages by omitting
the REPLY message in some situations.

3.3 RICART-AGRAWALA ALGORITHM

e Ricart-Agrawala algorithm is an algorithm to for mutual exclusion in a distributed
system proposed by Glenn Ricart and Ashok Agrawala.

e This algorithm is an extension and optimization of Lamport’s Distributed Mutual
Exclusion Algorithm.

e |t follows permission based approach to ensure mutual exclusion.

e Two type of messages (REQUEST and REPLY) are used and communication
channels are assumed to follow FIFO order.

e A site send a REQUEST message to all other site to get their permission to enter
critical section.

e Asite send a REPLY message to other site to give its permission to enter the critical
section.

e A timestamp is given to each critical section request using Lamport’s logical clock.

e Timestamp is used to determine priority of critical section requests.

e Smaller timestamp gets high priority over larger timestamp.

e The execution of critical section request is always in the order of their timestamp.

Requesting the critical section

(a) When a site §, wants to enter the CS, it broadcasts a timestamped
REQUEST message to all other sites.

(b) When site §; receives a REQUEST message from site S, it sends a
REPLY message to site §; if site §; is neither requesting nor executing
the CS, or if the site §; is requesting and §;'s request’s timestamp is
smaller than site §;"s own request’s timestamp. Otherwise, the reply is
deferred and §; sets RD [i] := 1.

Executing the critical section

(c) Site S; enters the CS after it has received a REPLY message from every
site it sent a REQUEST message to.

Releasing the critical section

(d) When site S; exits the CS, it sends all the deferred REPLY mes-
sages: ¥j if RD,[j] =1, then sends a REPLY message to S; and sets
RD[j]:=0.

Fig 3.2: Ricart-Agrawala algorithm

To enter Critical section:
e When a site S; wants to enter the critical section, it send a timestamped REQUEST
message to all other sites.

Distributed systems UNIT III

e When asite Sj receives a REQUEST message from site S;, It sends a REPLY message
to site S; if and only if Site S; is neither requesting nor currently executing the critical
section.

e In case Site Sj is requesting, the timestamp of Site Si‘s request is smaller than its own
request.

e Otherwise the request is deferred by site S;.

To execute the critical section:
Site S; enters the critical section if it has received the REPLY message from all other
sites.

To release the critical section:
Upon exiting site Sj sends REPLY message to all the deferred requests.

Theorem: Ricart-Agrawala algorithm achieves mutual exclusion.
Proof: Proof is by contradiction.
= Suppose two sites Sjand S; ‘ are executing the CS concurrently and S; ’s request has
higher priority than the request of S; . Clearly, Si received S; ’s request after it has
made its own request.
= Thus, Sj can concurrently execute the CS with S; only if Si returns a REPLY to Sj (in
response to Sj ’s request) before Si exits the CS.
= However, this is impossible because S;j ’s request has lower priority. Therefore,
Ricart-Agrawala algorithm achieves mutual exclusion.

Message Complexity:
Ricart-Agrawala algorithm requires invocation of 2(N — 1) messages per critical section
execution. These 2(N — 1) messages involve:

e (N -1) request messages

e (N-1)reply messages

Drawbacks of Ricart-Agrawala algorithm:
e Unreliable approach: failure of any one of node in the system can halt the progress
of the system. In this situation, the process will starve forever. The problem of failure
of node can be solved by detecting failure after some timeout.

Performance:
Synchronization delay is equal to maximum message transmission time It requires
2(N — 1) messages per Critical section execution.

3.4 MAEKAWA‘s ALGORITHM

e Mackawa’s Algorithm is quorum based approach to ensure mutual exclusion in
distributed systems.

e In permission based algorithms like Lamport’s Algorithm, Ricart-Agrawala
Algorithm etc. a site request permission from every other site but in quorum based
approach, a site does not request permission from every other site but from a subset of
sites which is called quorum.

e Three type of messages (REQUEST, REPLY and RELEASE) are used.

Distributed systems UNIT III

e A ssite send a REQUEST message to all other site in its request set or quorum to get
their permission to enter critical section.

e A site send a REPLY message to requesting site to give its permission to enter the
critical section.

e A site send a RELEASE message to all other site in its request set or quorum upon
exiting the critical section.

Requesting the critical section:

(a) A site §; requests access to the CS by sending REQUEST({) messages
to all sites in its request set R,.

(b) When a site §; receives the REQUEST(i) message, it sends a REPLY()
message to §; provided it hasn’t sent a REPLY message to a site since
its receipt of the last RELEASE message. Otherwise, it queues up the
REQUEST(/) for later consideration.

Executing the critical section:

(c) Site S; executes the CS only after it has received a REPLY message from
every site in R;.
Releasing the critical section:

(d) After the execution of the CS is over, site §; sends a RELEASE(i)
message o every site in R,.

(e) When a site §; receives a RELEASE(i) message from site S, it sends
a REPLY message to the next site waiting in the queue and deletes that
entry from the queue. If the queue is empty, then the site updates its state
to reflect that it has not sent out any REPLY message since the receipt
of the last RELEASE message.

Fig 3.3: Maekawa‘s Algorithm

The following are the conditions for Maekawa’s algorithm:
ML (ViVj:i#j, 1<ij<N:=R;NR;F#d).
M2 (Mi:1=i=<N:S§ €R)
M3 (Mi:1<i=N:|R|=K)
M4 Any site §; is contained in K number of R;s, 1 =i, j =N

Maekawa used the theory of projective planes and showed that N = K(K — 1)+ 1. This
relation gives [Rij=VN.

To enter Critical section:
e When a site Si wants to enter the critical section, it sends a request message
REQUEST(i) to all other sites in the request set Ri.
e When a site Sj receives the request message REQUEST(i) from site S;, it returns a
REPLY message to site S; if it has not sent a REPLY message to the site from the
time it received the last RELEASE message. Otherwise, it queues up the request.

To execute the critical section:
e A site Sj can enter the critical section if it has received the REPLY message from all
the site in request set R;

To release the critical section:
. When a site S; exits the critical section, it sends RELEASE(i) message to all other
sites in request set R;
. When a site S; receives the RELEASE(i) message from site S;, it send REPLY
message to the next site waiting in the queue and deletes that entry from the queue

Distributed systems UNIT III

. In case queue is empty, site S;j update its status to show that it has not sent any
REPLY message since the receipt of the last RELEASE message.

Correctness
Theorem: Maekawa’s algorithm achieves mutual exclusion.
Proof: Proof is by contradiction.
= Suppose two sites Si and Sj are concurrently executing the CS.
= This means site Si received a REPLY message from all sites in Ri and concurrently
site Sj was able to receive a REPLY message from all sites in Rj .
= [IfRi N Rj= {Sk }, then site Sk must have sent REPLY messages to both Si and Sj
concurrently, which is a contradiction

Message Complexity:
Maekawa’s Algorithm requires invocation of 3VN messages per critical section execution as
the size of a request set is VN. These 3VN messages involves.

o N request messages

e N reply messages

e N release messages

Drawbacks of Maekawa’s Algorithm:
This algorithm is deadlock prone because a site is exclusively locked by other sites
and requests are not prioritized by their timestamp.

Performance:
Synchronization delay is equal to twice the message propagation delay time. It requires 3Vn
messages per critical section execution.

3.5 SUZUKI-KASAMI‘s BROADCAST ALGORITHM

e Suzuki-Kasami algorithm is a token-based algorithm for achieving mutual exclusion
in distributed systems.

e This is modification of Ricart—Agrawala algorithm, a permission based (Non-token
based) algorithm which uses REQUEST and REPLY messages to ensure mutual
exclusion.

e In token-based algorithms, A site is allowed to enter its critical section if it possesses
the unique token.

e Non-token based algorithms uses timestamp to order requests for the critical section
where as sequence number is used in token based algorithms.

e Each requests for critical section contains a sequence number. This sequence number
is used to distinguish old and current requests.

Distributed systems UNIT III

Requesting the critical section:

(a) If requesting site S; does not have the token, then it increments its
sequence number, RN,[i], and sends a REQUEST(i, sn) message to all
other sites. (“sn” is the updated value of RN;[i].)

(b) When a site S; receives this message, it sets RN;[i] to max(RN;[i], sn).
If §; has the idle token, then it sends the token to S if RNJ[J} =LN[i]+1.

Executing the critical section:

(c) Site S; executes the CS after it has received the token.

Releasing the critical section: Having finished the execution of the CS, site
S, takes the following actions:

(d) It sets LN[i] element of the token array equal to RN;[i].

(e) For every site §; whose i.d. is not in the token queue, it appends its i.d.
to the token queue if RN,[j] = LN[j]+ 1.

(f) If the token queue is nonempty after the above update, S, deletes the top
site 1.d. from the token queue and sends the token to the site indicated
by the i.d.

Fig 3.4: Suzuki-Kasami‘s broadcast algorithm

To enter Critical section:

e When a site S; wants to enter the critical section and it does not have the token then it
increments its sequence number RN;[i] and sends a request message REQUEST(i, Sn)
to all other sites in order to request the token.

e Here sy is update value of RN[i]

e When a site S; receives the request message REQUEST(i, sn) from site S, it sets
RN;j[i] to maximum of RN;j[i] and sni.eRN;j[i] = max(RN;[i], sn).

After updating RN;j[i], Site S;j sends the token to site S; if it has token and RNj[i] =
LN[i] + 1

To execute the critical section:
e Site Sj executes the critical section if it has acquired the token.

To release the critical section:
After finishing the execution Site Si exits the critical section and does following:
e sets LN[i] = RNi[i] to indicate that its critical section request RNi[i] has been executed
e Forevery site Sj, whose ID is not prsent in the token queue Q, it appends its ID to Q if
RN;[j] = LN[j] + 1 to indicate that site S;j has an outstanding request.
e After above updation, if the Queue Q is non-empty, it pops a site ID from the Q and
sends the token to site indicated by popped ID.
e If the queue Q is empty, it keeps the token

Correctness

Mutual exclusion is guaranteed because there is only one token in the system and a site holds
the token during the CS execution.

Theorem: A requesting site enters the CS in finite time.

Proof: Token request messages of a site Si reach other sites in finite time.

Since one of these sites will have token in finite time, site S;i ’s request will be placed in the
token queue in finite time.

Since there can be at most N — 1 requests in front of this request in the token queue, site Si
will get the token and execute the CS in finite time.

10

Distributed systems UNIT III

Message Complexity:
The algorithm requires 0 message invocation if the site already holds the idle token at the
time of critical section request or maximum of N message per critical section execution. This
N messages involves

e (N -—1) request messages

e 1 reply message

Drawbacks of Suzuki—Kasami Algorithm:
e Non-symmetric Algorithm: A site retains the token even if it does not have requested

for critical section.

Performance:

Synchronization delay is 0 and no message is needed if the site holds the idle token at the
time of its request. In case site does not holds the idle token, the maximum synchronization
delay is equal to maximum message transmission time and a maximum of N message is
required per critical section invocation.

3.6 DEADLOCK DETECTION IN DISTRIBUTED SYSTEMS
Deadlock can neither be prevented nor avoided in distributed system as the system is
so vast that it is impossible to do so. Therefore, only deadlock detection can be implemented.
The techniques of deadlock detection in the distributed system require the following:
e Progress:The method should be able to detect all the deadlocks in the system.

e Safety: The method should not detect false of phantom deadlocks.

There are three approaches to detect deadlocks in distributed systems.
Centralized approach:
e Here there is only one responsible resource to detect deadlock.
e The advantage of this approach is that it is simple and easy to implement, while the
drawbacks include excessive workload at one node, single point failure which in turns
makes the system less reliable.

Distributed approach:
e In the distributed approach different nodes work together to detect deadlocks. No

single point failure as workload is equally divided among all nodes.
e The speed of deadlock detection also increases.

Hierarchical approach:
e This approach is the most advantageous approach.
e Itisthe combination of both centralized and distributed approaches of deadlock
detection in a distributed system.
e In this approach, some selected nodes or cluster of nodes are responsible for deadlock
detection and these selected nodes are controlled by a single node.

Wait for graph

This is used for deadlock deduction. A graph is drawn based on the request and
acquirement of the resource. If the graph created has a closed loop or a cycle, then there is a
deadlock.

11

Distributed systems | UNIT III

site 1 site 2

site 4
) ©
Py
Py
&) site 3

Fig 3.5: Wait for graph

3.6.1 Deadlock Handling Strategies
Handling of deadlock becomes highly complicated in distributed systems because no
site has accurate knowledge of the current state of the system and because every inter-site
communication involves a finite and unpredictable delay. There are three strategies for
handling deadlocks:
e Deadlock prevention:

— This is achieved either by having a process acquire all the needed resources
simultaneously before it begins executing or by preempting a process which
holds the needed resource.

— This approach is highly inefficient and impractical in distributed systems.

e Deadlock avoidance:

— Arresource is granted to a process if the resulting global system state is safe.

This is impractical in distributed systems.
e Deadlock detection:

— This requires examination of the status of process-resource interactions for
presence of cyclic wait.

— Deadlock detection in distributed systems seems to be the best approach to
handle deadlocks in distributed systems.

3.6.2 Issues in deadlock Detection
Deadlock handling faces two major issues
1. Detection of existing deadlocks
2. Resolutionof detected deadlocks
Deadlock Detection
— Detection of deadlocks involves addressing two issues namely maintenance of the
WFG and searching of the WFG for the presence of cycles or knots.
— Indistributed systems, a cycle or knot may involve several sites, the search for cycles
greatly depends upon how the WFG of the system is represented across the system.
— Depending upon the way WFG information is maintained and the search for cycles is
carried out, there are centralized, distributed, and hierarchical algorithms for deadlock
detection in distributed systems.

Correctness criteria
A deadlock detection algorithm must satisfy the following two conditions:

12

Distributed systems UNIT III

1. Progress-No undetected deadlocks:

The algorithm must detect all existing deadlocks in finite time. In other words, after all
wait-for dependencies for a deadlock have formed, the algorithm should not wait for any
more events to occur to detect the deadlock.

2. Safety -No false deadlocks:
The algorithm should not report deadlocks which do not exist. This is also called as
called phantom or false deadlocks.

Resolution of a Detected Deadlock

e Deadlock resolution involves breaking existing wait-for dependencies between the
processes to resolve the deadlock.

e Itinvolves rolling back one or more deadlocked processes and assigning their
resources to blocked processes so that they can resume execution.

e The deadlock detection algorithms propagate information regarding wait-for
dependencies along the edges of the wait-for graph.

e When a wait-for dependency is broken, the corresponding information should be
immediately cleaned from the system.

e If this information is not cleaned in a timely manner, it may result in detection of
phantom deadlocks.

3.7 MODELS OF DEADLOCKS

The models of deadlocks are explained based on their hierarchy. The diagrams illustrate
the working of the deadlock models. Pa, Pp, Pc, Pqare passive processes that had already
acquired the resources. Peis active process that is requesting the resource.

3.7.1 Single Resource Model
e A process can have at most one outstanding request for only one unit of a resource.
e The maximum out-degree of a node in a WFG for the single resource model can be 1,

the presence of a cycle in the WFG shall indicate that there is a deadlock.
B, E

Fig 3.6: Deadlock in single resource model

3.7.2 AND Model

¢ In the AND model, a passive process becomes active (i.e., its activation condition is
fulfilled) only after a message from each process in its dependent set has arrived.

In the AND model, a process can request more than one resource simultaneously and the
request is satisfied only after all the requested resources are granted to the process.

The requested resources may exist at different locations.

The out degree of a node in the WFG for AND model can be more than 1.

The presence of a cycle in the WFG indicates a deadlock in the AND model.

Each node of the WFG in such a model is called an AND node.

13

Distributed systems UNIT III

e Inthe AND model, if a cycle is detected in the WFG, it implies a deadlock but not vice
versa. That is, a process may not be a part of a cycle, it can still be deadlocked.
P R

a i

o

d fe

Fig 3.7: Deadlock in AND model

3.7.3 OR Model

e Inthe OR model, a passive process becomes active only after a message from any
process in its dependent set has arrived.

e This models classical nondeterministic choices of receive statements.

e A process can make a request for numerous resources simultaneously and the request
is satisfied if any one of the requested resources is granted.

e The requested resources may exist at different locations.

e If all requests in the WFG are OR requests, then the nodes are called OR nodes.

e Presence of a cycle in the WFG of an OR model does not imply a deadlock
in the OR model.

e Inthe OR model, the presence of a knot indicates a deadlock.

| Deadlock in OR model: a process Pi is blocked if it has a pending OR request to be satisfied. |

e With every blocked process, there is an associated set of processes called dependent
set.

e A process shall move from an idle to an active state on receiving agrant message from
any of the processes in its dependent set.

e A process ispermanently blocked if it never receives a grant message from any of the
processes in its dependent set.

e A setof processes S is deadlockedif all the processes in S are permanently blocked.

e Inshort, a processis deadlocked or permanently blocked, if the following conditions
are met:
1. Each of the process is the set S is blocked.
2. The dependent set for each process in S is a subset of S.
3. No grant message is in transit between any two processes in set S.

e A blocked process P is the set S becomes active only after receiving a grant message
from a process in its dependent set, which is a subset of S.

14

Distributed systems UNIT III

Fig 3.8: OR Model

P
3.74 ('F) Model (p out of g model)
e This is a variation of AND-OR model.

e This allows a request to obtain any k available resources from a pool of n resources.
Both the models are the same in expressive power.

e This favours more compact formation of a request.

e Every request in this model can be expressed in the AND-OR model and vice-versa.

(o)

e Note that AND requests for p resources can be stated as

(1)

and OR requests for p

resources can be stated as

E P

Pd PC
Fig 3.9: p out of g Model

3.7.5 Unrestricted model

e No assumptions are made regarding the underlying structure of resource requests.

e In this model, only one assumption that the deadlock is stable is made and hence it is
the most general model.

e This way of looking at the deadlock problem helps in separation of concerns:
concerns about properties of the problem are separated from underlying distributed
systems computations. Hence, these algorithms can be used to detect other stable
properties as they deal with this general model.

e These algorithms are of more theoretical value for distributed systems since no further
assumptions are made about the underlying distributed systems computations which
leads to a great deal of overhead.

3.8 KNAPP’S CLASSIFICATION OF DISTRIBUTED DEADLOCK DETECTION
ALGORITHMS
The four classes of distributed deadlock detection algorithm are:
1. Path-pushing

15

Distributed systems UNIT III

2. Edge-chasing
3. Diffusion computation
4. Global state detection

3.8.1 Path Pushing algorithms

e In path pushing algorithm, the distributed deadlock detection are detected by
maintaining an explicit global wait for graph.

e The basic idea is to build a global WFG (Wait For Graph) for each site of the
distributed system.

e At each site whenever deadlock computation is performed, it sends its local WFG to
all the neighbouring sites.

e After the local data structure of each site is updated, this updated WFG is then passed
along to other sites, and the procedure is repeated until some site has a sufficiently
complete picture of the global state to announce deadlock or to establish that no
deadlocks are present.

e This feature of sending around the paths of global WFGhas led to the term path-
pushing algorithms.

Examples:Menasce-Muntz , Gligor and Shattuck, Ho and Ramamoorthy, Obermarck

3.8.2 Edge Chasing Algorithms

e The presence of a cycle in a distributed graph structure is be verified by propagating
special messages called probes, along the edges of the graph.

e These probe messages are different than the request and reply messages.

e The formation of cycle can be deleted by a site if it receives the matching probe sent
by it previously.

e Whenever a process that is executing receives a probe message, it discards this
message and continues.

e Only blocked processes propagate probe messages along their outgoing edges.

e Main advantage of edge-chasing algorithms is that probes are fixed size messages
which is normally very short.
Examples:Chandy et al., Choudhary et al., Kshemkalyani—Singhal, Sinha—Natarajan
algorithms.

3.8.3 Diffusing Computation Based Algorithms

In diffusion computation based distributed deadlock detection algorithms, deadlock
detection computation is diffused through the WFG of the system.

These algorithms make use of echo algorithms to detect deadlocks.

This computation is superimposed on the underlying distributed computation.

If this computation terminates, the initiator declares a deadlock.

To detect a deadlock, a process sends out query messages along all the outgoing edges in
the WFG.

These queries are successively propagated (i.e., diffused) through the edges of the WFG.
When a blocked process receives first query message for a particular deadlock detection
initiation, it does not send a reply message until it has received a reply message for

every query it sent.

16

Distributed systems UNIT III

e For all subsequent queries for this deadlock detection initiation, it immediately sends
back a reply message.

e The initiator of a deadlock detection detects a deadlock when it receives reply for every
query it had sent out.
Examples:Chandy—Misra—Haas algorithm for one OR model, Chandy—Herman algorithm

3.8.4 Global state detection-based algorithms
Global state detection based deadlock detection algorithms exploit the following facts:
1. A consistent snapshot of a distributed system can be obtained without freezing the

underlying computation.
2. If a stable property holds in the system before the snapshot collection is initiated, this
property will still hold in the snapshot.

Therefore, distributed deadlocks can be detected by taking a snapshot of the system and
examining it for the condition of a deadlock

3.9 MITCHELL AND MERRITT’S ALGORITHM FOR THE SINGLE-RESOURCE
MODEL

e This deadlock detection algorithm assumes a single resource model.

e This detects the local and global deadlocks each process has assumed two different
labels namely private and public each label is accountant the process id guarantees
only one process will detect a deadlock.

e Probes are sent in the opposite direction to the edges of the WFG.

e When a probe initiated by a process comes back to it, the process declares deadlock.

Features:

1. Only one process in a cycle detects the deadlock. This simplifies the deadlock
resolution — this process can abort itself to resolve the deadlock. This algorithm can
be improvised by including priorities, and the lowest priority process in a cycle
detects deadlock and aborts.

2. Inthis algorithm, a process that is detected in deadlock is aborted spontaneously, even
though under this assumption phantom deadlocks cannot be excluded. It can be
shown, however, that only genuine deadlocks will be detected in the absence of
spontaneous aborts.

Each node of the WFG has two local variables, called labels:
1. aprivate label, which is unique to the node at all times, though it is not constant.

2. apublic label, which can be read by other processes and which may not be unique.

Each process is represented as u/v where u and u are the public and private labels,
respectively. Initially, private and public labels are equal for each process. A global WFG
is maintained and it defines the entire state sof the system.

e The algorithm is defined by the four state transitions as shown in Fig.3.10, where z =
inc(u, v), and inc(u, v) yields aunique label greater than both u and v labels that are
notshown do not change.

17

Distributed systems UNIT III

The transitions in the defined by the algorithm are block, activate , transmit and
detect.

Block creates an edge in the WFG.

Two messages are needed, one resource request and onemessage back to the blocked
process to inform it of thepublic label of the process it is waiting for.

Activate denotes that a process has acquired the resourcefrom the process it was
waiting for.

Transmit propagates larger labels in the opposite directionof the edges by sending a
probe message.

Block

Activate

Vo9

OO Od

OO OO

Transmit

v

A

VooV

Detect

|

OO OO

OO O

Fig 3.10: Four possible state transitions
Detect means that the probe with the private label of some process has returned to it,
indicating a deadlock.
This algorithm can easily be extended to include priorities, so that whenever a
deadlock occurs, the lowest priority process gets aborted.
This priority based algorithm has two phases.
1. The first phase is almost identical to the algorithm.
2. The second phase the smallest priority is propagated around the circle. The
propagation stops when one process recognizes the propagated priority as its
own.

=

Message Complexity:
If we assume that a deadlock persists long enough to be detected, the worst-case complexity
of the algorithm is s(s - 1)/2 Transmit steps, where s is the number of processes in the cycle.

3.10 CHANDY-MISRA-HAAS ALGORITHM FOR THE AND MODEL

This is considered an edge-chasing, probe-based algorithm.

It is also considered one of the best deadlock detection algorithms for distributed
systems.

If a process makes a request for a resource which fails or times out, the process
generates a probe message and sends it to each of the processes holding one or more
of its requested resources.

18

Distributed systems UNIT III

e This algorithm uses a special message called probe, which is a triplet (i, j,k), denoting
that it belongs to a deadlock detection initiated for process Pi andit is being sent by
the home site of process Pj to the home site of process Pk.

e Each probe message contains the following information:

> the id of the process that is blocked (the one that initiates the probe message);
> the id of the process is sending this particular version of the probe message;
> the id of the process that should receive this probe message.

e A probe message travels along the edges of the global WFG graph, and a deadlock is
detected when a probe message returns to the process that initiated it.

e A process Pj is said to be dependent on another process Pk if there exists a sequence of
processes Pj, Pi1, Pi2, . . ., Pim, PkSuch that each process except Pxin the sequence is
blocked and each process, except the Pj, holds a resource for which the previous
process in the sequence is waiting.

e Process Pj is said to be locally dependent upon process Pk if Pj is dependent upon
Pxand both the processes are on the same site.

e When a process receives a probe message,it checks to see if it is also waiting for
resources

e If not, it is currently using the needed resource and will eventually finish and release
the resource.

e If it is waiting for resources, it passes on the probe message to all processes it knows
to be holding resources it has itself requested.

e The process first modifies the probe message, changing the sender and receiver ids.

e |If aprocess receives a probe message that it recognizes as having initiated,it knows
there is a cycle in the system and thus, deadlock.

Data structures
Each process Pi maintains a boolean array, dependenti, where dependent(j) is true only if Pi
knows that Pj is dependent on it. Initially, dependenti (j) is false for all i and j.

19

Distributed systems UNIT III

if P; is locally dependent on itself
then declare a deadlock
else for all P; and P, such that
(a) F; is locally dependent upon F;. and

(b) P; is waiting on F,. and
(c) .F:l and P, are on different sites,

send a probe (i, j. k) to the home site of P

On the receipt of a probe (i, j, k). the site takes
the following actions:
if
(d)y P, is blocked, and

(e) dependent (i) is false, and
(f) £, has not replied to all requests P,

then
begin
dependent, (i) = true;
ifk=i

then declare that P; is deadlocked
else for all P and P_ such that
(a") P, is locally dependent upon F,,. and
(b') P is waiting on P,_, and
(c) P, and P, are on different sites,

"

send a probe (i, m. n) to the home site of P,
end.

Fig 3.11: Chandy—Misra—Haas algorithm for the AND model

Performance analysis

In the algorithm, one probe message is sent on every edge of the WFG which
connects processes on two sites.

The algorithm exchanges at most m(n — 1)/2 messages to detect a deadlock that
involves m processes and spans over n sites.

The size of messages is fixed and is very small (only three integer words).

The delay in detecting a deadlock is O(n).

Advantages:

It is easy to implement.

Each probe message is of fixed length.

There is very little computation.

There is very little overhead.

There is no need to construct a graph, nor to pass graph information to other sites.
This algorithm does not find false (phantom) deadlock.

There is no need for special data structures.

3.11 CHANDY-MISRA-HAAS ALGORITHM FOR THE OR MODEL

A blocked process determines if it is deadlocked by initiating a diffusion computation.
Two types of messages are used in a diffusion computation:

> query(i, j, k)

> reply(i, j, k)

B. Shanmuga Sundari csenotescorner.blogspot.com 20

Distributed systems UNIT III

denoting that they belong to a diffusion computation initiated by a process pi and are being
sent from process pj to process pk.
e A blocked process initiates deadlock detection by sending query messages to all

processes in its dependent set.

e |If an active process receives a query or reply message, it discards it.

e When a blocked process Pk receives a query(i, j, k) message, it takes the following
actions:

1. If this is the first query message received by Pk for the deadlock detection
initiated by Pi, then it propagates the query to all the processes in its dependent
set and sets a local variable num (i) to the number of query messages sent.

2. If this is not the engaging query, then Pk returns a reply message to it
immediately provided Pk has been continuously blocked since it received the
corresponding engaging query. Otherwise, it discards the query.

e Process Pk maintains a boolean variable waitk(i) that denotes the fact that it
has been continuously blocked since it received the last engaging query from
process Pi.

e When a blocked process Pk receives a reply(i, j, k) message, it decrements
num(i) only if waitk(i) holds.

e A process sends a reply message in response to an engaging query only after it
has received a reply to every query message it has sent out for this engaging
query.

e The initiator process detects a deadlock when it has received reply messages to
all the query messages it has sent out.

Initiate a diffusion computation for a blocked process P;:
send query(i, i, j) to all processes P; in the dependent set DS; of P;;

num;(i) := |DS;|; wait;(i) = true;

When a blocked process P, receives a query(i, j, k):
if this is the engaging query for process P, then
send query(i, k, m) to all P, in its dependent set DS,;
num, (i) := |DS,|; wait, (i) :=true
else if wait, (i) then send a reply(i, k, j) to P;.

When a process P, receives a reply(i, j, k):
if wait, (i) then
num(i) = numg(i) —1;
if num, (i) =0 then
if i = k then declare a deadlock
else send reply(i, k, m) to the process P,
which sent the engaging query.

Fig 3.12: Chandy—Misra—Haas algorithm for the OR model

Performance analysis
e For every deadlock detection, the algorithm exchanges e query messages ande reply
messages, where e = n(n — 1) is the number of edges.

21

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NAME OF THE SUBJECT : DISTRIBUTED SYSTEMS

UNIT IV RECOVERY & CONSENSUS

CS8603 DS

CS8603 UNIT IV RECOVERY & CONSENSUS

Check pointing and rollback recovery: Introduction — Background and definitions — Issues in
failure recovery — Checkpoint-based recovery — Log-based rollback recovery — Coordinated
check pointing algorithm — Algorithm for asynchronous check pointing and recovery. Consensus
and agreement algorithms: Problem definition — Overview of results — Agreement in a failure —

free system — Agreement in synchronous systems with failures.

4.1 Check pointing and rollback recovery: Introduction
e Rollback recovery protocols restore the system back to a consistent state after a failure,
e It achieves fault tolerance by periodically saving the state of a process during the failure-
free execution
e |t treats a distributed system application as a collection of processes that communicate
over a network
Checkpoints
The saved state is called a checkpoint, and the procedure of restarting from a previously check
pointed state is called rollback recovery. A checkpoint can be saved on either the stable storage
or the volatile storage
Why is rollback recovery of distributed systems complicated?
Messages induce inter-process dependencies during failure-free operation
Rollback propagation
The dependencies among messages may force some of the processes that did not fail to roll back.
This phenomenon of cascaded rollback is called the domino effect.
Uncoordinated check pointing
If each process takes its checkpoints independently, then the system cannot avoid the domino
effect — this scheme is called independent or uncoordinated check pointing
Techniques that avoid domino effect
1. Coordinated check pointing rollback recovery - Processes coordinate their checkpoints to
form a system-wide consistent state
2. Communication-induced check pointing rollback recovery - Forces each process to take

checkpoints based on information piggybacked on the application.

Page 1 of 32

CS8603 DS

3. Log-based rollback recovery - Combines check pointing with logging of non-

deterministic events relies on piecewise deterministic (PWD) assumption.
4.2 Background and definitions
4.2.1 System model

e A distributed system consists of a fixed number of processes, P1, P2,... PN , which
communicate only through messages.

e Processes cooperate to execute a distributed application and interact with the outside
world by receiving and sending input and output messages, respectively.

e Rollback-recovery protocols generally make assumptions about the reliability of the
inter-process communication.

e Some protocols assume that the communication uses first-in-first-out (FIFO) order, while
other protocols assume that the communication subsystem can lose, duplicate, or reorder
messages.

e Rollback-recovery protocols therefore must maintain information about the internal

interactions among processes and also the external interactions with the outside world.
Cutput message
Input message

Owitside world

7N
7 A

An example of a distributed system with three processes.

Distributed system

4.2.2 A local checkpoint
e All processes save their local states at certain instants of time
e A local check point is a snapshot of the state of the process at a given instance
e Assumption
— A process stores all local checkpoints on the stable storage

— A process is able to roll back to any of its existing local checkpoints

Page 2 of 32

CS8603 DS

e (i,k—The kth local checkpoint at process Pi
e (i,0— A process Pi takes a checkpoint Ci,0 before it starts execution
4.2.3 Consistent states
e A global state of a distributed system is a collection of the individual states of all
participating processes and the states of the communication channels
e Consistent global state
— a global state that may occur during a failure-free execution of distribution of
distributed computation
— if a process“s state reflects a message receipt, then the state of the
corresponding sender must reflect the sending of the message
e A global checkpoint is a set of local checkpoints, one from each process
e A consistent global checkpoint is a global checkpoint such that no message is sent by a

process after taking its local point that is received by another process before taking its

checkpoint.
Consistent states - examples
Consistent state . Inconsistent state
Pﬂ 1pU |l
‘\ my

p P]

1 1 |
f}:j S !’2 - I\

(a) (b)

Page 3 of 32

CS8603 DS

For instance, Figure shows two examples of global states.

The state in fig (a) is consistent and the state in Figure (b) is inconsistent.

Note that the consistent state in Figure (a) shows message ml to have been sent but not
yet received, but that is alright.

The state in Figure (a) is consistent because it represents a situation in which every
message that has been received, there is a corresponding message send event.

The state in Figure (b) is inconsistent because process P2 is shown to have received m2
but the state of process P1 does not reflect having sent it.

Such a state is impossible in any failure-free, correct computation. Inconsistent states

occur because of failures.

4.2 .4 Interactions with outside world

A distributed system often interacts with the outside world to receive input data or deliver the

outcome of a computation. If a failure occurs, the outside world cannot be expected to roll back.

For example, a printer cannot roll back the effects of printing a character
Outside World Process (OWP)

It is a special process that interacts with the rest of the system through message passing.

It is therefore necessary that the outside world see a consistent behavior of the system
despite failures.

Thus, before sending output to the OWP, the system must ensure that the state from

which the output is sent will be recovered despite any future failure.

A common approach is to save each input message on the stable storage before allowing the

application program to process it.

An interaction with the outside world to deliver the outcome of a computation is shown on the

process-line by the symbol “||”.

4.2.5 Different types of Messages

1.

In-transit message

e messages that have been sent but not yet received

2. Lost messages

e messages whose “send™ is done but “receive™ is undone due to rollback

Page 4 of 32

CS8603 DS

3. Delayed messages
e messages whose “receive” is not recorded because the receiving process was
either down or the message arrived after rollback
4. Orphan messages
e messages with “receive” recorded but message ‘“send” not recorded
e do not arise if processes roll back to a consistent global state
5. Duplicate messages

e arise due to message logging and replaying during process recovery

Messages — example

)] !
' ' Failurs * In-transi
r '_ J 3 § f L3 -
My, M-
- 1 2
1 * Lost
1] (3]]
m
Py | : ! | y p { \ - 1
-
., g * Delayed
| .
) | _ I my. Me
P, | | —L .z ~ * Orphan
- none
0 > 3 4 5 6 T 8\ * Duplicated
/7% WS S [N N SN S S—— - - my. Ms
H\.-\.""-x:" 1

In-transit messages
In Figure , the global state {C1,8, C2, 9, C3,8, C4,8} shows that message m1 has been sent but
not yet received. We call such a message an in-transit message. Message m2 is also an in-transit

message.

Page 5 of 32

CS8603 DS

Delayed messages
Messages whose receive is not recorded because the receiving process was either down or the
message arrived after the rollback of the receiving process, are called delayed messages. For

example, messages m2 and m5 in Figure are delayed messages.

Lost messages
Messages whose send is not undone but receive is undone due to rollback are called lost
messages. This type of messages occurs when the process rolls back to a checkpoint prior to
reception of the message while the sender does not rollback beyond the send operation of the
message. In Figure , message m1 is a lost message.
Duplicate messages
e Duplicate messages arise due to message logging and replaying during process
recovery. For example, in Figure, message m4 was sent and received before the
rollback. However, due to the rollback of process P4 to C4,8 and process P3 to C3,8,
both send and receipt of message m4 are undone.
e When process P3 restarts from C3,8, it will resend message m4.
e Therefore, P4 should not replay message m4 from its log.
e If P4 replays message m4, then message m4 is called a duplicate message.
4.3 Issues in failure recovery
In a failure recovery, we must not only restore the system to a consistent state, but also

appropriately handle messages that are left in an abnormal state due to the failure and recovery

Ca':l'.‘! Ci, 1 Failure
P _| |
i i | g
ﬁ; _,/ H \ .
F\ |
{ . / //,)('
CII':O |'ll i, /,/ \ C j2
| [f -~
r Fi | Ilu' ;.r T =
lli l,rf N ‘ /
f
I F
Cip / \‘ / \\ /
Py L/ - /
C& 3

Page 6 of 32

CS8603 DS

The computation comprises of three processes Pi, Pj , and Pk, connected through a

communication network. The processes communicate solely by exchanging messages over fault-

free, FIFO communication channels.

Processes Pi, Pj , and Pk have taken checkpoints
* Checkpoints : {Cio, Ciq}. -{:C:,-JU, Cin ijz}._ and {Ck . Cx1, Cx 2}
* Messages:A-1J
* The restored global consistent state : {C; 1. Cj 1. Ci,1}

e The rollback of process Pi to checkpoint Ci,1 created an orphan message H

e Orphan message | is created due to the roll back of process Pj to checkpoint Cj,1

e Messages C, D, E, and F are potentially problematic

Message C: a delayed message

Message D: a lost message since the send event for D is recorded in the
restored state for Pj, but the receive event has been undone at process Pi.
Lost messages can be handled by having processes keep a message log of all
the sent messages

Messages E, F: delayed orphan messages. After resuming execution from their
checkpoints, processes will generate both of these messages

4.4 Checkpoint-based recovery

Checkpoint-based rollback-recovery techniques can be classified into three categories:

1. Uncoordinated checkpointing

2. Coordinated checkpointing

3. Communication-induced checkpointing

1. Uncoordinated Checkpointing

e Each process has autonomy in deciding when to take checkpoints

e Advantages

The lower runtime overhead during normal execution

Page 7 of 32

MGK-IQAC
Highlight

CS8603 DS

e Disadvantages

1. Domino effect during a recovery

2. Recovery from a failure is slow because processes need to iterate to find a
consistent set of checkpoints

3. Each process maintains multiple checkpoints and periodically invoke a
garbage collection algorithm

4. Not suitable for application with frequent output commits

e The processes record the dependencies among their checkpoints caused by message

exchange during failure-free operation

e The following direct dependency tracking technique is commonly used in uncoordinated

checkpointing.

Direct dependency tracking technique
e Assume each process Pi starts its execution with an initial checkpoint Ci,0
e [i,x : checkpoint interval, interval between Ci,x—1 and Ci,x
e When Pj receives a message m during Ij,y , it records the dependency from Ii,x to Ij,y,

which is later saved onto stable storage when Pj takes Cj,y

e When a failure occurs, the recovering process initiates rollback by broadcasting a
dependency request message to collect all the dependency information maintained by

each process.

Page 8 of 32

CS8603 DS

e When a process receives this message, it stops its execution and replies with the
dependency information saved on the stable storage as well as with the dependency
information, if any, which is associated with its current state.

e The initiator then calculates the recovery line based on the global dependency

information and broadcasts a rollback request message containing the recovery line.

® Upon receiving this message, a process whose current state belongs to the recovery line
simply resumes execution; otherwise, it rolls back to an earlier checkpoint as indicated by
the recovery line.
2. Coordinated Checkpointing
In coordinated checkpointing, processes orchestrate their checkpointing activities so that all
local checkpoints form a consistent global state
Types
1. Blocking Checkpointing: After a process takes a local checkpoint, to prevent orphan
messages, it remains blocked until the entire checkpointing activity is complete
Disadvantages: The computation is blocked during the checkpointing
2. Non-blocking Checkpointing: The processes need not stop their execution while taking
checkpoints. A fundamental problem in coordinated checkpointing is to prevent a process
from receiving application messages that could make the checkpoint inconsistent.
Example (a) : Checkpoint inconsistency
e Message m is sent by PO after receiving a checkpoint request from the checkpoint
coordinator
e Assume m reaches P1 before the checkpoint request
e This situation results in an inconsistent checkpoint since checkpoint C1,x shows the
receipt of message m from PO, while checkpoint €0,x does not show m being sent from
PO
Example (b) : A solution with FIFO channels
e If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint
message on each channel by a checkpoint request, forcing each process to take a
checkpoint before receiving the first post-checkpoint message

Page 9 of 32

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

CS8603 DS
Coordmated Checkpomting

Initiator Initiator

| |

[I

Checkpoint request Checkpoint request

"

(a) (b)

Impossibility of min-process non-blocking checkpointing
e A min-process, non-blocking checkpointing algorithm is one that forces only a minimum
number of processes to take a new checkpoint, and at the same time it does not force any

process to suspend its computation.

Algorithm

e The algorithm consists of two phases. During the first phase, the checkpoint initiator
identifies all processes with which it has communicated since the last checkpoint and
sends them a request.

e Upon receiving the request, each process in turn identifies all processes it has
communicated with since the last checkpoint and sends them a request, and so on, until
no more processes can be identified.

e During the second phase, all processes identified in the first phase take a checkpoint. The

result is a consistent checkpoint that involves only the participating processes.

Page 10 of 32

CS8603 DS

¢ In this protocol, after a process takes a checkpoint, it cannot send any message until the
second phase terminates successfully, although receiving a message after the checkpoint
has been taken is allowable.
3. Communication-induced Checkpointing
Communication-induced checkpointing is another way to avoid the domino effect, while
allowing processes to take some of their checkpoints independently. Processes may be forced to
take additional checkpoints
Two types of checkpoints
1. Autonomous checkpoints
2. Forced checkpoints
The checkpoints that a process takes independently are called local checkpoints, while those that
a process is forced to take are called forced checkpoints.
e Communication-induced check pointing piggybacks protocol- related information on
each application message
e The receiver of each application message uses the piggybacked information to determine
if it has to take a forced checkpoint to advance the global recovery line
e The forced checkpoint must be taken before the application may process the contents of
the message
e In contrast with coordinated check pointing, no special coordination messages are

exchanged

Two types of communication-induced checkpointing
1. Model-based checkpointing
2. Index-based checkpointing.
Model-based checkpointing
e Model-based checkpointing prevents patterns of communications and checkpoints
that could result in inconsistent states among the existing checkpoints.
e No control messages are exchanged among the processes during normal operation.
All information necessary to execute the protocol is piggybacked on application

messages

Page 11 of 32

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

CS8603 DS

There are several domino-effect-free checkpoint and communication model.
The MRS (mark, send, and receive) model of Russell avoids the domino effect by
ensuring that within every checkpoint interval all message receiving events precede

all message-sending events.

Index-based checkpointing.

Index-based communication-induced checkpointing assigns monotonically increasing
indexes to checkpoints, such that the checkpoints having the same index at different

processes form a consistent state.

4.5 Log-based rollback recovery

A log-based rollback recovery makes use of deterministic and nondeterministic events in a

computation.

Deterministic and non-deterministic events

Log-based rollback recovery exploits the fact that a process execution can be modeled
as a sequence of deterministic state intervals, each starting with the execution of a
non-deterministic event.

A non-deterministic event can be the receipt of a message from another process or an
event internal to the process.

Note that a message send event is not a non-deterministic event.

For example, in Figure, the execution of process PO is a sequence of four
deterministic intervals. The first one starts with the creation of the process, while the
remaining three start with the receipt of messages m0, m3, and m7, respectively.

Send event of message m2 is uniquely determined by the initial state of PO and by the
receipt of message m0, and is therefore not a non-deterministic event.

Log-based rollback recovery assumes that all non-deterministic events can be
identified and their corresponding determinants can be logged into the stable storage.
Determinant: the information need to “replay” the occurrence of a non-deterministic
event (e.g., message reception).

During failure-free operation, each process logs the determinants of all non-
deterministic events that it observes onto the stable storage. Additionally, each

process also takes checkpoints to reduce the extent of rollback during recovery.

Page 12 of 32

MGK-IQAC
Highlight

MGK-IQAC
Highlight

MGK-IQAC
Highlight

CS8603 DS

Log-based Rollback Recovery

mg Ny M4 Mg ms

.'”1 }”_‘_ ”?6

P,

The no-orphans consistency condition

Let e be a non-deterministic event that occurs at process p. We define the following:

« Depend(e): the set of processes that are affected by a non-deterministic event e.

» Log(e): the set of processes that have logged a copy of e’s determinant in their volatile
memory.

« Stable(e): a predicate that is true if e’s determinant is logged on the stable storage.

Suppose a set of processes W crashes. A process p in ¥ becomes an orphan when p itself does
not fail and p’s state depends on the execution of a nondeterministic event e whose determinant
cannot be recovered from the stable storage or from the volatile memory of a surviving process.

storage or from the volatile memory of a surviving process. Formally, it can be stated as follows

always-no-orphans condition
— VY(e): 'Stable(e) = Depend(e) € Log(e)

Page 13 of 32

Types

CS8603 DS

Rollback-Recovery

\

logging

pessimistic optimustic causal

1. Pessimistic Logging

Pessimistic logging protocols assume that a failure can occur after any non-deterministic
event in the computation. However, in reality failures are rare

Pessimistic protocols implement the following property, often referred to as synchronous logging,

which is a stronger than the always-no-orphans condition
Synchronous logging
—Vve: —Stable(e) = |Depend(e)| =0
Thai is,if an event has not been logged on the stable storage, then no process can depend

on it.

Example:

Suppose processes P1 and P2 fail as shown, restart from checkpoints B and C, and roll
forward using their determinant logs to deliver again the same sequence of messages as in
the pre-failure execution

Once the recovery is complete, both processes will be consistent with the state of PO

that includes the receipt of message m7 from P1

Page 14 of 32

Maximum recoverable state

IIrJII|

| ;-I / 7

i !
1 mo h
my ity :

=

Failure
P

"y
niy Mg

Failure

X

Py 1

» Disadvantage: performance penalty for synchronous logging
» Advantages:

« immediate output commit

« restart from most recent checkpoint

« recovery limited to failed process(es)

« simple garbage collection

CS8603 DS

« Some pessimistic logging systems reduce the overhead of synchronous logging without

relying on hardware. For example, the sender-based message logging (SBML) protocol

keeps the determinants corresponding to the delivery of each message m in the volatile

memory of its sender.
» The sender-based message logging (SBML) protocol
Two steps.

1. First, before sending m, the sender logs its content in volatile memory.

2. Then, when the receiver of m responds with an acknowledgment that includes the

order in which the message was delivered, the sender adds to the determinant the

ordering information.

2. Optimistic Logging

» Processes log determinants asynchronously to the stable storage
« Optimistically assume that logging will be complete before a failure occurs

« Do not implement the always-no-orphans condition

Page 15 of 32

CS8603 DS

To perform rollbacks correctly, optimistic logging protocols track causal dependencies
during failure free execution

Optimistic logging protocols require a non-trivial garbage collection scheme

Pessimistic protocols need only keep the most recent checkpoint of each process, whereas

optimistic protocols may need to keep multiple checkpoints for each process

Po |

J?I]
my my ny

}J?E iy JFIS J}?G

I
C

Consider the example shown in Figure Suppose process P2 fails before the determinant
for m5 is logged to the stable storage. Process P1 then becomes an orphan process and
must roll back to undo the effects of receiving the orphan message m6. The rollback of
P1 further forces PO to roll back to undo the effects of receiving message m7.
Advantage: better performance in failure-free execution
Disadvantages:

« coordination required on output commit

« more complex garbage collection
Since determinants are logged asynchronously, output commit in optimistic logging
protocols requires a guarantee that no failure scenario can revoke the output. For
example, if process PO needs to commit output at state X, it must log messages m4 and
m7 to the stable storage and ask P2 to log m2 and m5. In this case, if any process fails,

the computation can be reconstructed up to state X.

Page 16 of 32

CS8603 DS

3. Causal Logging

« Combines the advantages of both pessimistic and optimistic logging at the expense of a more
complex recovery protocol

» Like optimistic logging, it does not require synchronous access to the stable storage except
during output commit

« Like pessimistic logging, it allows each process to commit output independently and never
creates orphans, thus isolating processes from the effects of failures at other processes

» Make sure that the always-no-orphans property holds

Each process maintains information about all the events that have causally affected its state

Maximum recoverable state

P, | | V
O] | K
_’"\ -"‘ z\.
’
g iy my N
i’ .
‘ Failure
Py | ’
rf
B N
Mo iy g mg |
!
, Failure
P, | | '
2 |)
i
C '

» Consider the example in Figure Messages m5 and m6 are likely to be lost on the failures
of P1 and P2 at the indicated instants. Process

« PO at state X will have logged the determinants of the nondeterministic events that
causally precede its state according to Lamport’s happened-before relation.

» These events consist of the delivery of messages m0, m1, m2, m3, and m4.

« The determinant of each of these non-deterministic events is either logged on the stable
storage or is available in the volatile log of process PO.

« The determinant of each of these events contains the order in which its original receiver

delivered the corresponding message.

Page 17 of 32

CS8603 DS

The message sender, as in sender-based message logging, logs the message content.
Thus, process PO will be able to “guide” the recovery of P1 and P2 since it knows the
order in which P1 should replay messages m1 and m3 to reach the state from which P1
sent message m4.

Similarly, PO has the order in which P2 should replay message m2 to be consistent with
both PO and P1.

The content of these messages is obtained from the sender log of PO or regenerated
deterministically during the recovery of P1 and P2.

Note that information about messages m5 and m6 is lost due to failures. These messages
may be resent after recovery possibly in a different order.

However, since they did not causally affect the surviving process or the outside world,
the resulting state is consistent.

Each process maintains information about all the events that have causally affected its

state.

46 KOO AND TOUEG COORDINATED CHECKPOINTING AND RECOVERY
TECHNIQUE:

Koo and Toueg coordinated check pointing and recovery technique takes a consistent set
of checkpoints and avoids the domino effect and livelock problems during the recovery.

Includes 2 parts: the check pointing algorithm and the recovery algorithm

A.The Checkpointing Algorithm

The checkpoint algorithm makes the following assumptions about the distributed system:

Processes communicate by exchanging messages through communication channels.
Communication channels are FIFO.

Assume that end-to-end protocols (the sliding window protocol) exist to handle with
message loss due to rollback recovery and communication failure.

Communication failures do not divide the network.

The checkpoint algorithm takes two kinds of checkpoints on the stable storage: Permanent and

Tentative.

Page 18 of 32

CS8603 DS

A permanent checkpoint is a local checkpoint at a process and is a part of a consistent global
checkpoint.

A tentative checkpoint is a temporary checkpoint that is made a permanent checkpoint on the
successful termination of the checkpoint algorithm.

The algorithm consists of two phases.

First Phase
1. An initiating process Pi takes a tentative checkpoint and requests all other processes to
take tentative checkpoints. Each process informs Pi whether it succeeded in taking a
tentative checkpoint.
2. A process says “no” to a request if it fails to take a tentative checkpoint
3. If Pi learns that all the processes have successfully taken tentative checkpoints, Pi decides
that all tentative checkpoints should be made permanent; otherwise, Pi decides that all the
tentative checkpoints should be thrown-away.
Second Phase
1. Piinforms all the processes of the decision it reached at the end of the first phase.
2. A process, on receiving the message from Pi will act accordingly.
3. Either all or none of the processes advance the checkpoint by taking permanent
checkpoints.
4. The algorithm requires that after a process has taken a tentative checkpoint, it cannot
send messages related to the basic computation until it is informed of Pi’s decision.
Correctness: for two reasons
i. Either all or none of the processes take permanent checkpoint
ii. No process sends message after taking permanent checkpoint
An Optimization
The above protocol may cause a process to take a checkpoint even when it is not necessary for
consistency. Since taking a checkpoint is an expensive operation, we avoid taking checkpoints.

Page 19 of 32

B. The Rollback Recovery Algorithm

CS8603 DS

The rollback recovery algorithm restores the system state to a consistent state after a failure. The

rollback recovery algorithm assumes that a single process invokes the algorithm. It assumes that

the checkpoint and the rollback recovery algorithms are not invoked concurrently. The rollback

recovery algorithm has two phases.

First Phase

1. An initiating process Pi sends a message to all other processes to check if they all are

willing to restart from their previous checkpoints.

2. A process may reply “no” to a restart request due to any reason (e.g., it is already

participating in a check pointing or a recovery process initiated by some other process).

3. If Pi learns that all processes are willing to restart from their previous checkpoints, Pi

decides that all processes should roll back to their previous checkpoints. Otherwise,

4. Pi aborts the roll back attempt and it may attempt a recovery at a later time.

Second Phase

1. Pi propagates its decision to all the processes.

2. On receiving Pi’s decision, a process acts accordingly.

3. During the execution of the recovery algorithm, a process cannot send messages related

to the underlying computation while it is waiting for Pi’s decision.

Correctness: Resume from a consistent state

Optimization: May not to recover all, since some of the processes did not change anything

Failure

()

9
ra

X

Page 20 of 32

Time —»

CS8603 DS

The above protocol, in the event of failure of process X, the above protocol will require
processes X, Y, and Z to restart from checkpoints x2, y2, and z2, respectively.

Process Z need not roll back because there has been no interaction between process Z and the
other two processes since the last checkpoint at Z.

4.7 ALGORITHM FOR ASYNCHRONOUS CHECKPOINTING AND RECOVERY:
The algorithm of Juang and Venkatesan for recovery in a system that uses asynchronous check
pointing.
A. System Model and Assumptions
The algorithm makes the following assumptions about the underlying system:
e The communication channels are reliable, deliver the messages in FIFO order and have
infinite buffers.
e The message transmission delay is arbitrary, but finite.
e Underlying computation/application is event-driven: process P is at state s, receives
message m, processes the message, moves to state s and send messages out. So the

triplet (s, m, msgs_sent) represents the state of P

Two type of log storage are maintained:
— Volatile log: short time to access but lost if processor crash. Move to stable log
periodically.
— Stable log: longer time to access but remained if crashed
A. Asynchronous Check pointing
— After executing an event, the triplet is recorded without any synchronization with
other processes.
— Local checkpoint consist of set of records, first are stored in volatile log, then
moved to stable log.
B. The Recovery Algorithm
Notations and data structure
The following notations and data structure are used by the algorithm:
* RCVDi«j(CkPti) represents the number of messages received by processor pi from processor

pj , from the beginning of the computation till the checkpoint CkPti.

Page 21 of 32

CS8603 DS

» SENTi—j(CKPti) represents the number of messages sent by processor pi to processor pj , from
the beginning of the computation till the checkpoint CkPti.
Basic idea

e Since the algorithm is based on asynchronous check pointing, the main issue in the
recovery is to find a consistent set of checkpoints to which the system can be restored.

e The recovery algorithm achieves this by making each processor keep track of both the
number of messages it has sent to other processors as well as the number of messages it
has received from other processors.

e Whenever a processor rolls back, it is necessary for all other processors to find out if any
message has become an orphan message. Orphan messages are discovered by comparing
the number of messages sent to and received from neighboring processors.

For example, if RCVDi«j(CkPti) > SENTj—i(CkPtj) (that is, the number of messages received
by processor pi from processor pj is greater than the number of messages sent by processor pj to
processor pi, according to the current states the processors), then one or more messages at

processor pj are orphan messages.

The Algorithm

When a processor restarts after a failure, it broadcasts a ROLLBACK message that it had failed
Procedure RollBack_Recovery

processor pi executes the following:

STEP (a)

if processor pi is recovering after a failure then

CKkPti := latest event logged in the stable storage

else

CkPti := latest event that took place in pi {The latest event at pi can be either in stable or in
volatile storage.}

end if

STEP (b)

for k=1 1to N {N is the number of processors in the system} do

for each neighboring processor pj do

compute SENTi—j(CkPti)

Page 22 of 32

CS8603 DS

send a ROLLBACK(i, SENTi—j(CkPti)) message to pj

end for

for every ROLLBACK(], c) message received from a neighbor j do

if RCVDi«—j(CkPti) > ¢ {Implies the presence of orphan messages} then

find the latest event e such that RCVDi«j(e) = ¢ {Such an event e may be in the volatile storage
or stable storage.}

CkPti :=e

end if

end for

end for{for k}

D. An Example

Consider an example shown in Figure 2 consisting of three processors. Suppose processor Y
fails and restarts. If event ey?2 is the latest checkpointed event at Y, then Y will restart from the

state corresponding to ey?2.

€0 X | €y €0 €3
X | -
e_() e_} ()\: Fai]ure
o - ' A s
/\
€0
Z | >
z;! e, €.,

Time ——
Figure 2: An example of Juan-Venkatesan algorithm.

e Because of the broadcast nature of ROLLBACK messages, the recovery algorithm is
initiated at processors X and Z.

e Initially, X, Y, and Z set CkPtX « ex3, CkPtY « ey2 and CkPtZ « ez2, respectively,
and X, Y, and Z send the following messages during the first iteration:

e Y sends ROLLBACK(Y,2) to X and ROLLBACK(Y,1) to Z;

Page 23 of 32

CS8603 DS

e X sends ROLLBACK(X,2) to Y and ROLLBACK(X,0) to Z;

e Zsends ROLLBACK(Z,0) to X and ROLLBACK(Z,1)to Y.
Since RCVDX«+Y (CkPtX) = 3 > 2 (2 is the value received in the ROLLBACK(Y,2) message
from Y), X will set CkPtX to ex2 satisfying RCVDX«Y (ex2) = 1<2.
Since RCVDZ«Y (CkPtZ) =2 > 1, Z will set CkPtZ to ezl satisfying RCVDZ«Y (ezl) =1 <

1.

AtY, RCVDY—X(CkPtY) =1<2 and RCVDY «Z(CkPtY) = 1 = SENTZ«Y (CkPtZ).

Y need not roll back further.
In the second iteration, Y sends ROLLBACK(Y,2) to X and ROLLBACK(Y,1) to Z;

Z sends ROLLBACK(Z,1) to Y and ROLLBACK(Z,0) to X;
X sends ROLLBACK(X,0) to Z and ROLLBACK(X, 1) to Y.

If Y rolls back beyond ey3 and loses the message from X that caused ey3, X can resend this

message to Y because ex2 is logged at X and this message available in the log. The second and

third iteration will progress in the same manner. The set of recovery points chosen at the end of

the first iteration, {ex2, ey2, ez1}, is consistent, and no further rollback occurs.

CONSENSUS PROBLEM IN ASYNCHRONOUS SYSTEMS.

Table: Overview of results on agreement.
f denotes number of failure-prone processes. n is the total number of processes.

common knowledge attainable

Failure Synchronous system Asynchronous system
mode (message-passing and shared (message-passing and shared
memory) memory)
No Failure agreement attainable; agreement attainable;

concurrent common knowledge

Crash Failure

agreement attainable

f <n processes

agreement not attainable

Byzantine

Failure

agreement attainable

f < [(n-1)/3] Byzantine processes

agreement not attainable

In a failure-free system, consensus can be attained in a straightforward manner.

Consensus Problem (all processes have an initial value)

Page 24 of 32

CS8603 DS

Agreement: All non-faulty processes must agree on the same (single) value.

Validity: If all the non-faulty processes have the same initial value, then the agreed upon

value by all the non-faulty processes must be that same value.

Termination: Each non-faulty process must eventually decide on a value.

Consensus Problem in Asynchronous Systems.

The overhead bounds are for the given algorithms, and not necessarily tight bounds for

the

problem.

Solvable Failure model and overhead Definition

Variants

Reliable Crash Failure, n > f (MP) Validity, =~ Agreement, Integrity
broadcast conditions

k-set Crash Failure, f < k < n. (MP size of the set of values agreed
consensus and SM) upon must be less than k

C-agreement

Crash Failure, n > 5f + 1 (MP)

values agreed upon are
within € of each other

Renaming

up to f fail-stop processes, n =
2t +1 (MP)
Crash Failure, f<n -1 (SM)

select a unique name from
a set of names

Circumventing the impossibility results for consensus in asynchronous systems:

| Circumventing the impossibility results for consensus in asynchronous systems |

[
Message—passing

k-set consensus
epsilon-consensus
Renaming

Reliable broadcast

|
Shared memory

f-set consensus
epsilon-consensus
Renaming

Using atomic registers and
atemic snapshot objects
constructed from atomic
registers.

|

Consensus
Using mare powerful
objects than atomic
registers.
This is the study of
universal objects and
universal constructions.

Page 25 of 32

CS8603 DS

STEPS FOR BYZANTINE GENERALS (ITERATIVE FORMULATION),
SYNCHRONOUS, MESSAGE-PASSING:

(variables)

boolean: v «— initial value;

integer: f «—— maximum number of malicious processes, < [n%l Ik
tree of boolean:

@ lovel 0 root is v!;"-t.wherel. = ();
concat((j),L)

@ level A(f > h > 0) nodes: for each v}- at level h — 1 = sizeof (L), its n — 2 — sizeof (L) descendants at level h are v

such that k j, i and k is not a member of list L.

(message type)
OM(v, Dests, List, faulty), where the parameters are as in the recursive formulation.

(1) Initiator (i.e., Commander) initiates Oral Byzantine agreement:
(1a) send OM(v, N — {i}, (P;}.f)to N — {i}.
(1b) return(v).

2) (Non-initiator, i.e., Lieutenant) receives Oral Message OM:
2a) for md = 0 to f do

2b) for each message OM that arrives in this round, do

) receive OM(v, Dests, L = (Pk1 " 'p"f*l—faulty

/[faulty + round = f, | Dests| + sizeof (L) = n

(
(
(faulty) from P,

(), faulty) from ky

(2d) v;':gc(!’(‘z) —— v, [/ sizeof (L) + faulty = f + 1. fill in estimate.

(2) send OM(v, Dests — {i}, (P;, Pkl ;), faulty — 1) to Dests — {i} if rnd < f;
(2f) for level = f — 1 down to 0 do

(2g) foreachofthel.(n—2)....(n — (level + 1)) nodes v!; in level level, do

: qiviy 'L
(2h) v,f(x Fhx gl)= majarity,, o Concat((x),L);y;g;(V)%.Vfoncat((x))):

il ke 11— fauly

. Yk

Byzantine Agreement (single source has an initial value)
Agreement: All non-faulty processes must agree on the same value.

Validity: If the source process is non-faulty, then the agreed upon value by all the non-
faulty processes must be the same as the initial value of the source.

Page 26 of 32

CS8603 DS

STEPS FOR BYZANTINE GENERALS (RECURSIVE FORMULATION),
SYNCHRONOUS, MESSAGE-PASSING:

(variables)

boolean: v «— initial value;

integer: f «— maximum number of malicious processes, < [(n - 1)/3];

(message type)

Oral Msg{v, Dests, List, faulty), where

v is a boolean,

Dests is a set of destination process ids to which the message is sent,

List is a list of process ids traversed by this message, ordered from most recent to earliest,
faulty is an integer indicating the number of malicious processes to be tolerated.

Oral_Msg(f), where f > 0:

The algorithm is initiated by the Commander, who sends his source value v to all other processes using a OM(v, N, (i), f) message. The
commander returns his own value v and terminates.

6 [Recursion unfolding:] For each message of the form OM(vj, Dests, List, f') received in this round from some process j, the process 7 uses the
value Vj it receives from the source, and using that value, acts as a new source. (If no value is received, a default value is assumed.)

To act as a new source, the process i initiates OralMsg(f' — 1). wherein it sends
OM(v;, Dests — {i}, concat({i}, L), (" - 1))

to destinations not in concat((i), L)
in the next round.

0 [Recursion folding:] For each message of the form OM(vj, Dests, List, f') received in Step 2, each process i has computed the agreement

value v, for each k not in List and k i.corresponding to the value received from P}, after traversing the nodes in List, at one level lower in
the recursion. If it receives no value in this round, it uses a default value. Process 7 then uses the value majorityy g jor k—4i(; . V) as the

agreement value and returns it to the next higher level in the recursive invocation.
Oral Msg(0):

0 [Recursion unfolding:] Process acts as a source and sends its value to each other process.

e [Recursion folding:] Each process uses the value it receives from the other sources, and uses that value as the agreement value. If no value is
received, a default value is assumed.

Page 27 of 32

CS8603 DS

CODE FOR THE PHASE KING ALGORITHM:

Each phase has a unique "phase king" derived, say, from PID.

Each phase has two rounds:
e 1in1stround, each process sends its estimate to all other processes.

e 2 in 2nd round, the "Phase king" process arrives at an estimate based on the values
it received in 1st round, and broadcasts its new estimate to all others.

B — " e
W T 5 :
R AL N 2 A A A
PN N RS DI s
: P A i : fr—R_ O :
i T : I 5
I, 1 1 | 1 \ 1 100 1 Y 1
e — : : :] : : :
h phase 1 - phase 2 }) phase f+1]
Fig. Message pattern for the phase-king algorithm.
PHASE KING ALGORITHM CODE:
(variables)
boolean: v «—— initial value;
integer: f —— maximum number of malicious processes, f < [n/4];
(1) Each process executes the following f + 1 phases, where f < n/4:
(1a) for phase =1to f +1 do
(1b) Execute the following Round 1 actions: // actions in round one of each phase
(1c) broadcast v to all processes;
(1d) await value v; from each process P;;
(1e) majority +—— the value among the v; that occurs > n/2 times (default if no maj.);
(1f) mult —— number of times that majority occurs;
(1g) Execute the following Round 2 actions: // actions in round two of each phase
(1h) if i = phase then // only the phase leader executes this send step
(1i) broadcast majority to all processes;
(1j) receive tiebreaker from Pp,c. (default value if nothing is received);
(1k) if mult > n/2+ f then
(11) v «—— majority;
(1m) else v —— tiebreaker;
(1n) if phase = f + 1 then
(10) output decision value v.

Page 28 of 32

CS8603 DS

(f + 1) phases, (f + 1)[(n - 1)(n + 1)] messages, and can tolerate up to f < dn=4e
malicious processes

Correctness Argument
e 1 Among f + 1 phases, at least one phase k where phase-king is non-malicious.

e 2 In phase k, all non-malicious processes P; and P; will have same estimate of
consensus value as Px does.

e Pjand Pj use their own majority values. P; 's mult > n=2 + f)

e D uses its majority value; Pj uses phase-king's tie-breaker value. (Pi's mult > n=2 +
f, P;'s mult > n=2 for same value)

P; and Pj use the phase-king's tie-breaker value. (In the phase in which Px is
non- malicious, it sends same value to P;and P;)

In all 3 cases, argue that P; and Pj end up with same value as estimate

e If all non-malicious processes have the value x at the start of a phase, they will
continue to have x as the consensus value at the end of the phase.

CODE FOR THE EPSILON CONSENSUS (MESSAGE-PASSING, ASYNCHRONOUS):

_-Agreement: All non-faulty processes must make a decision and the values decided
upon by any two non-faulty processes must be within range of each other.

Validity: If a non-faulty process Pi decides on some value vi, then that value must be
within the range of values initially proposed by the processes.

Termination: Each non-faulty process must eventually decide on a value. The algorithm
for the message-passing model assumes n > 5f + 1, although the problem is solvable for n
>3f +1.

¢ Main loop simulates sync rounds.

e Main lines (1d)-(1f): processes perform all-all msg exchange

e Process broadcasts its estimate of consensus value, and awaits n - f similar

e msgs from other processes

e the processes' estimate of the consensus value converges at a particular rate,
e until it is _ from any other processes estimate.

e #rounds determined by lines (1a)-(1c).

Page 29 of 32

CS8603 DS

(variablés)

real: v —— input value; / /initial value
multiset of real V;
integer r —— 0; // number of rounds to execute

(1) Execution at process Pi,1 < i < n:
(1a) V «—— Asynchronous_Exchange(v,0);

(1b) v —— any element in(reduce® (V));

(1c) r —— [logc(diff(V))/€], where ¢ = c(n — 3f, 2f).
(1d) for round from 1 to r do

(1e) V —— Asynchronous_Exchange(v, round);

(1f) v — newyr ¢(V);
(1g) broadcast ((v, halt), r + 1);
(1h) output v as decision value.

(2) Asynchronous_Exchange(v,h) returns V:

(2a) broadcast (v, h) to all processes;

(2b) await n — f responses belonging to round h;

(2¢) for each process Py that sent (x, halt) as value, use x as its input henceforth;
(2d) return the multiset V.

TWO-PROCESS WAIT-FREE CONSENSUS USING FIFO QUEUE, COMPARE
& SWAP:

Wait-free Shared Memory Consensus using Shared Objects:
Not possible to go from bivalent to univalent state if even a single failure is allowed.

Difficulty is not being able to read & write a variable atomically.

e [t is not possible to reach consensus in an asynchronous shared memory system
using Read/Write atomic registers, even if a single process can fail by crashing.

e There is no wait-free consensus algorithm for reaching consensus in an
asynchronous shared memory system using Read/Write atomic registers.

To overcome these negative results:

e Weakening the consensus problem, e.g., k-set consensus, approximate
consensus, and renaming using atomic registers.

e Using memory that is stronger than atomic Read/Write memory to design wait-
free consensus algorithms. Such a memory would need corresponding access
primitives.

Page 30 of 32

CS8603 DS

Are there objects (with supporting operations), using which there is a wait-free (i.e., (n -1)-
crash resilient) algorithm for reaching consensus in a n-process system? Yes, e.g., Test&Set,
Swap, Compare&Swap. The crash failure model requires the solutions to be wait-free.

TWO-PROCESS WAIT-FREE CONSENSUS USING FIFO QUEUE:

(shared variables)

queue: Q —— (0); // queue Q initialized
integer: Choice[0,1] — [L, 1] // preferred value of each process
(local variables)

integer: temp —— 0;

integer: x —— initial choice;

(1) Process P;,0 < i < 1, executes this for 2-process consensus using a FIFO queue:
(1a) Choice[i] — x;

(1b) temp —— dequeue(Q);

(1c) if temp = O then

(1d) output(x)

(1e) else output(Choice[l — i]).

WAIT-FREE CONSENSUS USING COMPARE & SWAP:

(shared variables)

integer: Reg «—— | ; // shared register Reg initialized
(local variables)

integer: temp —— 0; // temp variable to read value of Reg
integer: x —— initial choice; // initial preference of process

(1) Process P;, (Vi = 1), executes this for consensus using Compare& Swap:

(1a) temp —— Compare& Swap(Reg, L, x);
(1b) if temp =_L then
(1c) output(x)

(1d) else output(temp).

Page 31 of 32

CS8603 DS

NONBLOCKING UNIVERSAL ALGORITHM:

Universality of Consensus Objects

An object is defined to be universal if that object along with read/write registers can
simulate any other object in a wait-free manner. In any system containing up to k processes,
an object X such that CN(X) = k is universal.

For any system with up to k processes, the universality of objects X with consensus number k
is shown by giving a universal algorithm to wait-free simulate any object using objects of
type X and read/write registers.

This is shown in two steps.

e 1 A universal algorithm to wait-free simulate any object whatsoever using
read/write registers and arbitrary k-processor consensus objects is given. This is the
main step.

e 2 Then, the arbitrary k-process consensus objects are simulated with objects of type
X, having consensus number k. This trivially follows after the first step.

Any object X with consensus number k is universal in a system with n < k
processes.

A nonblocking operation, in the context of shared memory operations, is an operation that
may not complete itself but is guaranteed to complete at least one of the pending
operations in a finite number of steps.

Nonblocking Universal Algorithm:

The linked list stores the linearized sequence of operations and states following each
operation.

Operations to the arbitrary object Z are simulated in a nonblocking way using an arbitrary
consensus object (the field op.next in each record) which is accessed via the Decide call.

Each process attempts to thread its own operation next into the linked
list.

e There are as many universal objects as there are operations to thread.

e A single pointer/counter cannot be used instead of the array Head. Because reading
and updating the pointer cannot be done atomically in a wait-free manner.

e Linearization of the operations given by the sequence number. As algorithm
is nonblock

Page 32 of 32

	CS3551 UNIT-I NOTES
	CS3551 UNIT - II NOTES
	Blank Page

