

PRATHYUSHA

ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

REGULATION 2021 – IV SEMESTER

CS3492 – DATABASE MANAGEMENT SYSTEMS

CS3492 DATABASE MANAGEMENT SYSTEMS

COURSE OBJECTIVES:

• To learn the fundamentals of data models, relational algebra and SQL

• To represent a database system using ER diagrams and to learn normalization techniques

• To understand the fundamental concepts of transaction, concurrency and recovery processing

• To understand the internal storage structures using different file and indexing techniques which will help

in physical DB design

• To have an introductory knowledge about the Distributed databases, NOSQL and database security

UNIT I RELATIONAL DATABASES

Purpose of Database System – Views of data – Data Models – Database System Architecture –

Introduction to relational databases – Relational Model – Keys – Relational Algebra – SQL fundamentals

– Advanced SQL features – Embedded SQL– Dynamic SQL

UNIT II DATABASE DESIGN

Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping –

Functional Dependencies – Non-loss Decomposition – First, Second, Third Normal Forms, Dependency

77 Preservation – Boyce/Codd Normal Form – Multi-valued Dependencies and Fourth Normal Form –

Join Dependencies and Fifth Normal Form

UNIT III TRANSACTIONS

Transaction Concepts – ACID Properties – Schedules – Serializability – Transaction support in SQL –

Need for Concurrency – Concurrency control –Two Phase Locking- Timestamp – Multiversion –

Validation and Snapshot isolation– Multiple Granularity locking – Deadlock Handling – Recovery

Concepts – Recovery based on deferred and immediate update – Shadow paging – ARIES Algorithm

 UNIT IV IMPLEMENTATION TECHNIQUES

RAID – File Organization – Organization of Records in Files – Data dictionary Storage – Column

Oriented Storage– Indexing and Hashing –Ordered Indices – B+ tree Index Files – B tree Index Files –

Static Hashing – Dynamic Hashing – Query Processing Overview – Algorithms for Selection, Sorting and

join operations – Query optimization using Heuristics - Cost Estimation.

UNIT V ADVANCED TOPICS

 Distributed Databases: Architecture, Data Storage, Transaction Processing, Query processing and

optimization – NOSQL Databases: Introduction – CAP Theorem – Document Based systems – Key value

Stores – Column Based Systems – Graph Databases. Database Security: Security issues – Access control

based on privileges – Role Based access control – SQL Injection – Statistical Database security – Flow

control – Encryption and Public Key infrastructures – Challenges

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

CO1:Construct SQL Queries using relational algebra

CO2:Design database using ER model and normalize the database

CO3: Construct queries to handle transaction processing and maintain consistency of the database

CO4: Compare and contrast various indexing strategies and apply the knowledge to tune the performance

of the database

CO5: Appraise how advanced databases differ from Relational Databases and find a suitable database for

the given requirement.

 TEXT BOOKS:

1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, “Database System Concepts”, Seventh Edition,

McGraw Hill, 2020.

2. Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of Database Systems”, Seventh Edition, Pearson

Education, 2017

REFERENCES:

1. C.J.Date, A.Kannan, S.Swamynathan, “An Introduction to Database Systems”, Eighth Edition, Pearson

Education, 2006.

CS3492 DATABASE MANAGEMENT SYSTEMS

UNIT I RELATIONAL DATABASES

Purpose of Database System – Views of data – Data Models – Database System Architecture –

Introduction to relational databases – Relational Model – Keys – Relational Algebra – SQL fundamentals

– Advanced SQL features – Embedded SQL– Dynamic SQL.

1. What is DBMS? What are the applications of database systems?

• A database-management system (DBMS) is a collection of interrelated data and a set of

programs to access those data. The collection of data, usually referred to as the database, contains

information relevant to an enterprise. The primary goal of a DBMS is to provide a way to store

and retrieve database information that is both convenient and efficient.

• Database systems are designed to manage large bodies of information. Management of data

involves both defining structures for storage of information and providing mechanisms for the

manipulation of information. In addition, the database system must ensure the safety of the

information stored, despite system crashes or attempts at unauthorized access. If data are to be

shared among several users, the system must avoid possible anomalous results.

DATABASE-SYSTEM APPLICATIONS:

Databases are widely used. Here are some representative applications:

 1) Enterprise Information:

 Sales: For customer, product, and purchase information.

 Accounting: For payments, receipts, account balances, assets and other accounting information.

 Human resources: For information about employees, salaries, payroll taxes, and benefits, and

for generation of paychecks.

 Manufacturing: For management of the supply chain and for tracking production of items in

factories, inventories of items in warehouses and stores, and orders for items.

 Online retailers: For sales data noted above plus online order tracking, generation of

recommendation lists, and maintenance of online product evaluations.

2) Banking and Finance:

 Banking: For customer information, accounts, loans, and banking transactions.

 Credit card transactions: For purchases on credit cards and generation of monthly statements.

 Finance: For storing information about holdings, sales, and purchases of financial instruments

such as stocks and bonds; also for storing real-time market data to enable online trading by customers and

automated trading by the firm.

3) Universities: For student information, course registrations, and grades (in addition to standard

enterprise information such as human resources and accounting).

4) Airlines: For reservations and schedule information. Airlines were among the first to use databases in a

geographically distributed manner.

 5) Telecommunication: For keeping records of calls made, generating monthly bills, maintaining

balances on prepaid calling cards, and storing information about the communication networks.

2. What are the purposes of database systems?

Database systems are designed to manage large bodies of information. Management of data involves both

defining structures for storage of information and providing mechanisms for the manipulation of

information. In addition, the database system must ensure the safety of the information stored, despite

system crashes or attempts at unauthorized access. If data are to be shared among several users, the system

must avoid possible anomalous results.

A database management system is a software tool that makes it possible to organize data in a database. It

is often referred to by its acronym, DBMS. The functions of a DBMS include concurrency, security,

backup and recovery, integrity and data descriptions.

File-processing system is supported by a conventional operating system. The system stores permanent

records in various files, and it needs different application programs to extract records from, and add

records to, the appropriate files. Before database management systems (DBMSs) were introduced,

organizations usually stored information in such systems.

ADVANTAGES OF DATABASE SYSTEMS :

1) Reducing Data Redundancy

The file based data management systems contained multiple files that were stored in many different

locations in a system or even across multiple systems. Because of this, there were sometimes multiple

copies of the same file which lead to data redundancy.

This is prevented in a database as there is a single database and any change in it is reflected immediately.

Because of this, there is no chance of encountering duplicate data.

2) Sharing of Data

In a database, the users of the database can share the data among themselves. There are various levels of

authorisation to access the data, and consequently the data can only be shared based on the correct

authorisation protocols being followed.

Many remote users can also access the database simultaneously and share the data between themselves.

3) Data Integrity

Data integrity means that the data is accurate and consistent in the database. Data Integrity is very

important as there are multiple databases in a DBMS. All of these databases contain data that is visible to

multiple users. So it is necessary to ensure that the data is correct and consistent in all the databases and for

all the users.

4) Data Security

Data Security is vital concept in a database. Only authorised users should be allowed to access the database

and their identity should be authenticated using a username and password. Unauthorised users should not

be allowed to access the database under any circumstances as it violates the integrity constraints.

5) Privacy

The privacy rule in a database means only the authorized users can access a database according to its

privacy constraints. There are levels of database access and a user can only view the data he is allowed to.

For example - In social networking sites, access constraints are different for different accounts a user may

want to access.

6) Backup and Recovery

Database Management System automatically takes care of backup and recovery. The users don't need to

backup data periodically because this is taken care of by the DBMS. Moreover, it also restores the

database after a crash or system failure to its previous condition.

7) Data Consistency

Data consistency is ensured in a database because there is no data redundancy. All data appears

consistently across the database and the data is same for all the users viewing the database. Moreover, any

changes made to the database are immediately reflected to all the users and there is no data inconsistency.

Disadvantages of file-processing system:

 1) Data redundancy and inconsistency.

 Since different programmers create the files and application programs over a long period, the various

files are likely to have different structures and the programs may be written in several programming

languages. Moreover, the same information may be duplicated in several places (files). For example, if a

student has a double major (say, music and mathematics) the address and telephone number of that student

may appear in a file that consists of student records of students in the Music department and in a file that

consists of student records of students in the Mathematics department. This redundancy leads to higher

storage and access cost. In addition, it may lead to data inconsistency; that is, the various copies of the

same data may no longer agree. For example, a changed student address may be reflected in the Music

department records but not elsewhere in the system.

 2) Difficulty in accessing data.

 Suppose that one of the university clerks needs to find out the names of all students who live within a

particular postal-code area. The clerk asks the data-processing department to generate such a list. Because

the designers of the original system did not anticipate this request, there is no application program on hand

to meet it. There is, however, an application program to generate the list of all students. The university

clerk has now two choices: either obtain the list of all students and extract the needed information

manually or ask a programmer to write the necessary application program. Both alternatives are obviously

unsatisfactory. Suppose that such a program is written, and that, several days later, the same clerk needs to

trim that list to include only those students who have taken at least 60 credit hours. As expected, a program

to generate such a list does not exist. Again, the clerk has the preceding two options, neither of which is

satisfactory.

Conventional file-processing environments do not allow needed data to be retrieved in a convenient

and efficient manner. More responsive data-retrieval systems are required for general use.

3) Data isolation. Because data are scattered in various files, and files may be in different

formats, writing new application programs to retrieve the appropriate data is difficult.

4) Integrity problems. The data values stored in the database must satisfy certain types of

consistency constraints. Suppose the university maintains an account for each department, and

records the balance amount in each account. Suppose also that the university requires that the

account balance of a department may never fall below zero. Developers enforce these constraints

in the system by adding appropriate code in the various application pro-grams. However, when

new constraints are added, it is difficult to change the programs to enforce them. The problem is

compounded when constraints involve several data items from different files.

5) Atomicity problems.

A computer system is subject to failure. In many applications, it is crucial that, if a failure occurs, the data

be restored to the consistent state that existed prior to the failure. Consider a program to transfer $500 from

the account balance of department A to the account balance of department B. If a system failure occurs

during the execution of the program, it is possible that the $500 was removed from the balance of

department A but was not credited to the balance of department B, resulting in an inconsistent database

state. Clearly, it is essential to database consistency that either both the credit and debit occur, or that

neither occur. That is, the funds transfer must be atomic — it must happen in its entirety or not at all. It is

difficult to ensure atomicity in a conventional file-processing system.

6) Concurrent-access anomalies.

For the sake of overall performance of the system and faster response, many systems allow multiple users

to update the data simultaneously. Indeed, today, the largest Internet retailers may have millions of

accesses per day to their data by shoppers. In such an environment, interaction of concurrent updates is

possible and may result in inconsistent data.

7) Security problems.

Not every user of the database system should be able to access all the data. For example, in a university,

payroll personnel need to see only that part of the database that has financial information. They do not

need access to information about academic records. But, since application programs are added to the file-

processing system in an ad hoc manner, enforcing such security constraints is difficult.

These difficulties prompted the development of database systems.

3. Describe about the various view of data.

A database system is a collection of interrelated data and a set of programs that allow users to access and

modify these data. A major purpose of a database system is to provide users with an abstract view of the

data. That is, the system hides certain details of how the data are stored and maintained.

For the system to be usable, it must retrieve data efficiently. The need for efficiency has led designers to

use complex data structures to represent data in the database. Since many database-system users are not

computer trained, developers hide the complexity from users through several levels of abstraction, to

simplify users’ interactions with the system:

Physical level. The lowest level of abstraction describes how the data are actually stored. The physical

level describes complex low-level data structures in detail.

Logical level. The next-higher level of abstraction describes what data are stored in the database, and what

relationships exist among those data. The logical level thus describes the entire database in terms of a

small number of relatively simple structures. Although implementation of the simple structures at the

logical level may involve complex physical-level structures, the user of the logical level does not need to

be aware of this complexity. This is referred to as physical data independence. Database administrators,

who must decide what information to keep in the database, use the logical level of abstraction.

View level. The highest level of abstraction describes only part of the entire database. Even though the

logical level uses simpler structures, complexity remains because of the variety of information stored in a

large database. Many users of the database system do not need all this information; instead, they need to

access only a part of the database. The view level of abstraction exists to simplify their interaction with the

system. The system may provide many views for the same database.

Figure .The three levels of data abstraction.

An analogy to the concept of data types in programming languages may clarify the distinction among

levels of abstraction. Many high-level programming languages support the notion of a structured type. For

example, we may describe a record as follows:1

type instructor = record

ID : char (5);

name : char (20);

dept name : char (20);

salary : numeric (8,2);

end;

This code defines a new record type called instructor with four fields. Each field has a name and a type

associated with it. A university organization may have several such record types, including

department, with fields dept name, building, and budget

course, with fields course id, title, dept name, and credits

student, with fields ID, name, dept name, and tot cred

At the physical level, an instructor, department, or student record can be described as a block of

consecutive storage locations. The compiler hides this level of detail from programmers. Similarly, the

database system hides many of the lowest-level storage details from database programmers. Database

administrators, on the other hand, may be aware of certain details of the physical organization of the data.

At the logical level, each such record is described by a type definition, as in the previous code segment,

and the interrelationship of these record types is defined as well. Programmers using a programming

language work at this level of abstraction. Similarly, database administrators usually work at this level of

abstraction.

Finally, at the view level, computer users see a set of application programs that hide details of the data

types. At the view level, several views of the database are defined, and a database user sees some or all of

these views. In addition to hiding details of the logical level of the database, the views also provide a

security mechanism to prevent users from accessing certain parts of the database. For example, clerks in

the university registrar office can see only that part of the database that has information about students;

they cannot access information about salaries of instructors.

Instances and Schemas:

Databases change over time as information is inserted and deleted. The collection of information stored in

the database at a particular moment is called an instance of the database. The overall design of the

database is called the database schema. Schemas are changed infrequently, if at all.

Database systems have several schemas, partitioned according to the levels of abstraction.

• The physical schema describes the database design at the physical level.

• The logical schema describes the database design at the logical level.

• A database may also have several schemas at the view level, sometimes called subschemas, that

describe different views of the database.

Of these, the logical schema is by far the most important, in terms of its effect on application programs,

since programmers construct applications by using the logical schema. The physical schema is hidden

beneath the logical schema, and can usually be changed easily without affecting application programs.

Application programs are said to exhibit physical data independence if they do not depend on the

physical schema, and thus need not be rewritten if the physical schema changes.

4. Explain about various data models in details.

Data model is a collection of conceptual tools for describing data, data relationships, data semantics, and

consistency constraints. A data model provides a way to describe the design of a database at the physical,

logical, and view levels.

The data models can be classified into four different categories:

1) Relational Model. The relational model uses a collection of tables to represent both data

and the relationships among those data. Each table has multiple columns, and each column has a

unique name. Tables are also known as relations. The relational model is an example of a record-

based model. Record-based models are so named because the database is structured in fixed-

format records of several types. Each table contains records of a particular type. Each record type

defines a fixed number of fields, or attributes. The columns of the table correspond to the attributes

of the record type. The relational data model is the most widely used data model, and a vast major-

ity of current database systems are based on the relational model.

2) Entity-Relationship Model. The entity-relationship (E-R) data model uses a collection of

basic objects, called entities, and relationships among these objects. An entity is a “thing” or

“object” in the real world that is distinguishable from other objects. The entity-relationship model

is widely used in database design.

3) Object-Based Data Model. Object-oriented programming (especially in Java, C++, or C#)

has become the dominant software-development methodology. This led to the development of an

object-oriented data model that can be seen as extending the E-R model with notions of

encapsulation, methods (functions), and object identity.

The object-relational data model combines features of the object-oriented data model and relational

data model.

4) Semistructured Data Model. The semistructured data model permits the specification of

data where individual data items of the same type may have different sets of attributes. This is in

contrast to the data models mentioned earlier, where every data item of a particular type must have

the same set of attributes. The Extensible Markup Language (XML) is widely used to represent

semistructured data.

5) The network data model and the hierarchical data model preceded the relational data

model. These models were tied closely to the underlying implementation, and complicated the task

of modeling data. As a result they are used little now, except in old database code that is still in

service in some places. They are outlined online in Appendices D and E for interested readers.

5. With the help of a neat block diagram , explain the basic architecture of a data base

management system?

A database system is partitioned into modules that deal with each of the responsibilities of the overall

system. The functional components of a database system can be broadly divided into the storage manager

and the query processor components.

The storage manager is important because databases typically require a large amount of storage space.

Corporate databases range in size from hundreds of gigabytes to, for the largest databases, terabytes of

data. A gigabyte is approximately 1000 megabytes (actually 1024) (1 billion bytes), and a terabyte is 1

million megabytes (1 trillion bytes). Since the main memory of computers cannot store this much

information, the information is stored on disks. Data are moved between disk storage and main memory as

needed. Since the movement of data to and from disk is slow relative to the speed of the central processing

unit, it is imperative that the database system structure the data so as to minimize the need to move data

between disk and main memory.

The query processor is important because it helps the database system to simplify and facilitate access to

data. The query processor allows database users to obtain good performance while being able to work at

the view level and not be burdened with understanding the physical-level details of the implementation of

the system. It is the job of the database system to translate updates and queries written in a nonprocedural

language, at the logical level, into an efficient sequence of operations at the physical level.

Storage Manager:

The storage manager is the component of a database system that provides the interface between the low-

level data stored in the database and the application programs and queries submitted to the system. The

storage manager is responsible for the interaction with the file manager. The raw data are stored on the

disk using the file system provided by the operating system. The storage man-ager translates the various

DML statements into low-level file-system commands. Thus, the storage manager is responsible for

storing, retrieving, and updating data in the database.

The storage manager components include:

• Authorization and integrity manager, which tests for the satisfaction of integrity constraints and

checks the authority of users to access data.

• Transaction manager, which ensures that the database remains in a consistent) state despite

system failures, and that concurrent transaction executions proceed without conflicting.

• File manager, which manages the allocation of space on disk storage and the data structures used

to represent information stored on disk.

• Buffer manager, which is responsible for fetching data from disk storage into main memory, and

deciding what data to cache in main memory. The buffer manager is a critical part of the database

system, since it enables the database to handle data sizes that are much larger than the size of main

memory.

The storage manager implements several data structures as part of the physical system implementation:

• Data files, which store the database itself.

• Data dictionary, which stores metadata about the structure of the database, in particular the

schema of the database.

• Indices, which can provide fast access to data items. A database index provides pointers to those

data items that hold a particular value. For example, we could use an index to find the instructor

record with a particular ID, or all instructor records with a particular name. Hashing is an

alternative to indexing that is faster in some but not all cases.

The Query Processor:

The query processor components include:

• DDL interpreter, which interprets DDL statements and records the definitions in the data

dictionary.

• DML compiler, which translates DML statements in a query language into an evaluation plan

consisting of low-level instructions that the query evaluation engine understands.

A query can usually be translated into any of a number of alternative evaluation plans that all give the

same result. The DML compiler also performs query optimization; that is, it picks the lowest cost

evaluation plan from among the alternatives.

• Query evaluation engine, which executes low-level instructions generated by the DML

compiler.

Database Architecture:

Figure .Two-tier and three-tier architectures.

The architecture of a database system is greatly influenced by the underlying computer system on which

the database system runs. Database systems can be centralized, or client-server, where one server machine

executes work on behalf of multiple client machines. Database systems can also be designed to exploit

parallel computer architectures. Distributed databases span multiple geographically separated machines.

Most users of a database system today are not present at the site of the database system, but connect to it

through a network. We can therefore differentiate between client machines, on which remote database

users work, and server machines, on which the database system runs.

Database applications are usually partitioned into two or three parts. In a two-tier architecture, the

application resides at the client machine, where it invokes database system functionality at the server

machine through query language statements. Application program interface standards like ODBC and

JDBC are used for interaction between the client and the server.

In contrast, in a three-tier architecture, the client machine acts as merely a front end and does not contain

any direct database calls. Instead, the client end communicates with an application server, usually

through a forms interface. The application server in turn communicates with a database system to access

data. The business logic of the application, which says what actions to carry out under what conditions, is

embedded in the application server, instead of being distributed across multiple clients. Three-tier

applications are more appropriate for large applications, and for applications that run on the World Wide

Web.

Database Users and Administrators:A primary goal of a database system is to retrieve information from

and store new information into the database. People who work with a database can be categorized as

database users or database administrators.

Database Users and User Interfaces:

There are four different types of database-system users, differentiated by the way they expect to interact

with the system. Different types of user interfaces have been designed for the different types of users.

1) Naive users are unsophisticated users who interact with the system by invoking one of the

application programs that have been written previously. For example, a clerk in the university

who needs to add a new instructor to department A invokes a program called new hire. This

program asks the clerk for the name of the new instructor, her new ID, the name of the department

(that is, A), and the salary.

The typical user interface for naive users is a forms interface, where the user can fill in appropriate fields

of the form. Naive users may also simply read reports generated from the database.

As another example, consider a student, who during class registration period, wishes to register for a class

by using a Web interface. Such a user connects to a Web application program that runs at a Web server.

The application first verifies the identity of the user, and allows her to access a form where she enters the

desired information. The form information is sent back to the Web application at the server, which then

determines if there is room in the class (by retrieving information from the database) and if so adds the

student information to the class roster in the database.

2) Application programmers are computer professionals who write application programs.

Application programmers can choose from many tools to develop user interfaces. Rapid

application development (RAD) tools are tools that en-able an application programmer to

construct forms and reports with minimal programming effort.

3) Sophisticated users interact with the system without writing programs. In-stead, they form their

requests either using a database query language or by using tools such as data analysis software.

Analysts who submit queries to explore data in the database fall in this category.

4) Specialized users are sophisticated users who write specialized database applications that do not

fit into the traditional data-processing framework. Among these applications are computer-aided

design systems, knowledge-base and expert systems, systems that store data with complex data

types (for example, graphics data and audio data), and environment-modeling systems. Chapter 22

covers several of these applications.

5) Database Administrator

One of the main reasons for using DBMSs is to have central control of both the data and the programs that

access those data. A person who has such central control over the system is called a database

administrator (DBA). The functions of a DBA include:

• Schema definition. The DBA creates the original database schema by executing a set of data

definition statements in the DDL.

• Storage structure and access-method definition.

• Schema and physical-organization modification. The DBA carries out changes to the schema

and physical organization to reflect the changing needs of the organization, or to alter the physical

organization to improve performance.

• Granting of authorization for data access. By granting different types of authorization, the

database administrator can regulate which parts of the database various users can access. The

authorization information is kept in a special system structure that the database system consults

whenever someone attempts to access the data in the system.

• Routine maintenance. Examples of the database administrator’s routine maintenance activities

are:

✓ Periodically backing up the database, either onto tapes or onto remote servers, to prevent loss of

data in case of disasters such as flooding.

✓ Ensuring that enough free disk space is available for normal operations, and upgrading disk space

as required.

✓ Monitoring jobs running on the database and ensuring that performance is not degraded by very

expensive tasks submitted by some users.

6. Explain about relational model.

• The relational model is the primary data model for commercial data-processing applications. It

attained its primary position because of its simplicity, which eases the job of the programmer,

compared to earlier data models such as the network model or the hierarchical model.

Structure of Relational Databases:

✓ A relational database consists of a collection of tables, each of which is assigned a unique

name.

For example:

1) Consider the instructor table stores information about instructors. The table has four column

headers: ID, name, dept name, and salary.

2) The course table stores information about courses, consisting of a course id, title, dept name, and

credits, for each course.Each instructor is identified by the value of the column ID, while each course is

identified by the value of the column course id.

3) The third table, prereq, stores the prerequisite courses for each course. The table has two columns,

course id and prereq id.

• A row in a table represents a relationship among a set of values. Since a table is a collection of

such relationships, there is a close correspondence between the concept of table and the

mathematical concept of relation, from which the relational data model takes its name. In

mathematical terminology, a tuple is simply a sequence (or list) of values. A relationship between

n values is represented mathematically by an n-tuple of values, i.e., a tuple with n values, which

corresponds to a row in a table.

ID Name dept_name Salary

10101 Srinivasan Comp. Sci. 65000

33456 Raghu Physics 87000

45565 Manasa Comp. Sci. 75000

76543 Singh Finance 80000

98345 Ravi Elec. Eng. 80000

 Figure .The instructor relation.

course_id Title dept_name Credits

BIO-101 Intro. to Biology Biology 4

BIO-301 Genetics Biology 4

BIO-399 Computational Biology Biology 3

CS-101 Intro. to Computer Science Comp. Sci. 4

CS-190 Game Design Comp. Sci. 4

Figure .The course relation

Course_id prereq_id

BIO-301 BIO-101

BIO-399 BIO-101

CS-190 CS-101

CS-315 CS-101

Figure .The prereq relation.

• In the relational model the term relation is used to refer to a table, while the term tuple is used to

refer to a row. Similarly, the term attribute refers to a column of a table.

• We use the term relation instance to refer to a specific instance of a relation, i.e., containing a

specific set of rows. The order in which tuples appear in a relation is irrelevant, since a relation is a

set of tuples. Thus, whether the tuples of a relation are listed in sorted order or are unsorted does

not matter;

• For each attribute of a relation, there is a set of permitted values, called the domain of that

attribute. Thus, the domain of the salary attribute of the instructor relation is the set of all possible

salary values, while the domain of the name attribute is the set of all possible instructor names.

• For all relations r, the domains of all attributes of r be atomic. A domain is atomic if elements of

the domain are considered to be indivisible units. For example, suppose the table instructor had an

attribute phone number, which can store a set of phone numbers corresponding to the instructor.

Then the domain of phone number would not be atomic, since an element of the domain is a set of

phone numbers, and it has subparts, namely the individual phone numbers in the set.

• The important issue is not what the domain itself is, but rather how we use domain elements in our

database. Suppose now that the phone number attribute stores a single phone number. Even then,

if we split the value from the phone number attribute into a country code, an area code and a local

number, we would be treating it as a nonatomic value. If we treat each phone number as a single

indivisible unit, then the attribute phone number would have an atomic domain.

• The null value is a special value that signifies that the value is unknown or does not exist. For

example, suppose as before that we include the attribute phone number in the instructor relation.

It may be that an instructor does not have a phone number at all, or that the telephone number is

unlisted. We would then have to use the null value to signify that the value is unknown or does

not exist. We shall see later that null values cause a number of difficulties when we access or

update the database, and thus should be eliminated if at all possible. We shall assume null values

are absent initially.

Database Schema:

✓ Database schema is the logical design of the database, and the database instance is a snapshot

of the data in the database at a given instant in time.

✓ The concept of a relation corresponds to the programming-language notion of a variable, while the

concept of a relation schema corresponds to the programming-language notion of type

definition.

✓ In general, a relation schema consists of a list of attributes and their corresponding domains.

✓ The concept of a relation instance corresponds to the programming-language notion of a value of a

variable. The value of a given variable may change with time;

Schema Diagrams:

• A database schema, along with primary key and foreign key dependencies, can be depicted by

schema diagrams. Figure shows the schema diagram for our university organization. Each

relation appears as a box, with the relation name at the top in blue, and the attributes listed inside

the box. Primary key attributes are shown underlined. Foreign key dependencies appear as arrows

from the foreign key attributes of the referencing relation to the primary key of the referenced

relation.

Figure. Schema diagram for the university database.

Relational Query Languages:

A query language is a language in which a user requests information from the database. These languages

are usually on a level higher than that of a standard programming language. Query languages can be

categorized as either procedural or nonprocedural.

1) In a procedural language, the user instructs the system to perform a sequence of operations on the

database to compute the desired result.

2) In a nonprocedural language, the user describes the desired information without giving a specific

procedure for obtaining that information.

classroom(building, room number, capacity)

department(dept name, building, budget)

course(course id, title, dept name, credits)

instructor(ID, name, dept name, salary)

section(course id, sec id, semester, year, building, room number, time slot id)

teaches(ID, course id, sec id, semester, year)

student(ID, name, dept name, tot cred)

takes(ID, course id, sec id, semester, year, grade)

advisor(s ID, i ID)

time slot(time slot id, day, start time, end time)

prereq(course id, prereq id)

Figure. Schema of the university database.

• Query languages used in practice include elements of both the procedural and the nonprocedural

approaches.

• There are a number of “pure” query languages: The relational algebra is procedural, whereas the

tuple relational calculus and domain relational calculus are nonprocedural. These query languages

are terse and formal, lacking the “syntactic sugar” of commercial languages, but they illustrate the

fundamental techniques for extracting data from the database.

Relational Operations:

• All procedural relational query languages provide a set of operations that can be applied to either a

single relation or a pair of relations. These operations have the nice and desired property that their

result is always a single relation. This property allows one to combine several of these operations

in a modular way. Specifically, since the result of a relational query is itself a relation, relational

operations can be applied to the results of queries as well as to the given set of relations.

1) The most frequent operation is the selection of specific tuples from a single relation (say

instructor) that satisfies some particular predicate (say salary > $85,000). The result is a new relation that

is a subset of the original relation (instructor).

2) Another frequent operation is to select certain attributes (columns) from a relation. The result is a

new relation having only those selected attributes.

3) The join operation allows the combining of two relations by merging pairs of tuples, one from

each relation, into a single tuple. There are a number of different ways to join relations .

4) The Cartesian product operation combines tuples from two relations, but unlike the join operation,

its result contains all pairs of tuples from the two relations, regardless of whether their attribute

values match.

Because relations are sets, we can perform normal set operations on relations.

5) The union operation performs a set union of two “similarly structured” tables (say a table of all

graduate students and a table of all undergraduate students). For example, one can obtain the set of

all students in a department. Other set operations, such as intersection and set difference can be

performed as well.

KEYS:

• The values of the attribute of a tuple must be such that they can uniquely identify the tuple. In other

words, no two tuples in a relation are allowed to have exactly the same value for all attributes.

1) super key:

• A superkey is a set of one or more attributes that, taken collectively, allow us to identify uniquely

a tuple in the relation. For example, the ID attribute of the relation instructor is sufficient to

distinguish one instructor tuple from another. Thus, ID is a superkey. The name attribute of

instructor, on the other hand, is not a superkey, because several instructors might have the same

name.

• A superkey may contain extraneous attributes. For example, the combination of ID and name is a

superkey for the relation instructor.

2) candidate key:

• A candidate key is a 'minimal' super key meaning the smallest subset of superkey attribute

which is unique.

• It is possible that several distinct sets of attributes could serve as a candidate key. Suppose that a

combination of name and dept name is sufficient to distinguish among members of the instructor

relation. Then, both {ID} and {name, dept name} are candidate keys. Although the attributes ID

and name together can distinguish instructor tuples, their combination, {ID, name}, does not form

a candidate key, since the attribute ID alone is a candidate key.

3) Primary key:

• There can be more than one candidate key in a relation out of which one can be chosen as

primary key.

• The primary key denote a candidate key that is chosen by the database designer as the principal

means of identifying tuples within a relation.

• A key (whether primary, candidate, or super) is a property of the entire relation, rather than of the

individual tuples. Any two individual tuples in the relation are prohibited from having the same

value on the key attributes at the same time. The designation of a key represents a constraint in

the real-world enterprise being modeled.

• Primary keys must be chosen with care.

• The primary key should be chosen such that its attribute values are never, or very rarely, changed.

• It is customary to list the primary key attributes of a relation schema before the other attributes; for

example, the dept name attribute of department is listed first, since it is the primary key. Primary

key attributes are also underlined.

4) Foreign key:

• A relation, say r1, may include among its attributes the primary key of an-other relation, say r2.

This attribute is called a foreign key from r1, referencing r2.

• The relation r1 is also called the referencing relation of the foreign key dependency, and r2 is

called the referenced relation of the foreign key.

7. List the operations of relational algebra and the purpose of each with example.

Relational algebra is a procedural query language. It gives a step by step process to obtain the result of the

query. It uses operators to perform queries.

TYPES OF RELATIONAL OPERATIONS:

1. Select Operation:

• The select operation selects tuples that satisfy a given predicate.

• It is denoted by sigma (σ).

1. Notation: σ p(r)

Where:

σ is used for selection prediction

r is used for relation

p is used as a propositional logic formula which may use connectors like: AND OR and NOT. These

relational can use as relational operators like =, ≠, ≥, <, >, ≤.

For example: LOAN Relation

BRANCH_NAME LOAN_NO AMOUNT

Perryride L-15 1500

Downtown L-14 1500

Roundhill L-11 900

Perryride L-16 1300

Input:

1. σ BRANCH_NAME="perryride" (LOAN)

Output:

BRANCH_NAME LOAN_NO AMOUNT

Perryride L-15 1500

Perryride L-16 1300

2. Project Operation:

• This operation shows the list of those attributes that we wish to appear in the result. Rest of the

attributes are eliminated from the table.

• It is denoted by ∏.

1. Notation: ∏ A1, A2, An (r)

Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

NAME STREET CITY

Jones Main Harrison

Smith North Rye

Input:

1. ∏ NAME, CITY (CUSTOMER)

Output:

NAME CITY

Jones Harrison

Smith Rye

3. Union Operation:

• Suppose there are two tuples R and S. The union operation contains all the tuples that are either in

R or S or both in R & S.

• It eliminates the duplicate tuples. It is denoted by ∪.

1. Notation: R ∪ S

A union operation must hold the following condition:

• R and S must have the attribute of the same number.

• Duplicate tuples are eliminated automatically.

Example:

DEPOSITOR RELATION

CUSTOMER_NAME ACCOUNT_NO

Johnson A-101

Smith A-121

Mayes A-321

Turner A-176

Johnson A-273

Jones A-472

Lindsay A-284

BORROW RELATION

CUSTOMER_NAME LOAN_NO

Jones L-17

Smith L-23

Hayes L-15

Jackson L-14

Curry L-93

Smith L-11

Williams L-17

Input:

1. ∏ CUSTOMER_NAME (BORROW) ∪ ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Johnson

Smith

Hayes

Turner

Jones

Lindsay

Jackson

Curry

Williams

Mayes

4. Set Intersection:

• Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in

both R & S.

• It is denoted by intersection ∩.

1. Notation: R ∩ S

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. ∏ CUSTOMER_NAME (BORROW) ∩ ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Smith

Jones

5. Set Difference:

• Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in

R but not in S.

• It is denoted by intersection minus (-).

1. Notation: R - S

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. ∏ CUSTOMER_NAME (BORROW) - ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Jackson

Hayes

Willians

Curry

6. Cartesian product

• The Cartesian product is used to combine each row in one table with each row in the other table. It

is also known as a cross product.

• It is denoted by X.

1. Notation: E X D

Example:

EMPLOYEE

EMP_ID EMP_NAME EMP_DEPT

1 Smith A

2 Harry C

3 John B

DEPARTMENT

DEPT_NO DEPT_NAME

A Marketing

B Sales

C Legal

Input:

1. EMPLOYEE X DEPARTMENT

Output:

EMP_ID EMP_NAME EMP_DEPT DEPT_NO DEPT_NAME

1 Smith A A Marketing

1 Smith A B Sales

1 Smith A C Legal

2 Harry C A Marketing

2 Harry C B Sales

2 Harry C C Legal

3 John B A Marketing

3 John B B Sales

3 John B C Legal

7. Rename Operation:

The rename operation is used to rename the output relation. It is denoted by rho (ρ).

Example: We can use the rename operator to rename STUDENT relation to STUDENT1.

1. ρ(STUDENT1, STUDENT)

8. Join Operations:

A Join operation combines related tuples from different relations, if and only if a given join condition is

satisfied. It is denoted by ⋈.

Example:

EMPLOYEE

EMP_CODE EMP_NAME

101 Stephan

102 Jack

103 Harry

SALARY

EMP_CODE SALARY

101 50000

102 30000

103 25000

1. Operation: (EMPLOYEE ⋈ SALARY)

Result:

EMP_CODE EMP_NAME SALARY

101 Stephan 50000

102 Jack 30000

103 Harry 25000

 Types of Join operations:

1) Natural Join:

• A natural join is the set of tuples of all combinations in R and S that are equal on their common

attribute names.

• It is denoted by ⋈.

Example: Let's use the above EMPLOYEE table and SALARY table:

Input:

1. ∏EMP_NAME, SALARY (EMPLOYEE ⋈ SALARY)

Output:

EMP_NAME SALARY

Stephan 50000

Jack 30000

Harry 25000

2) Outer Join:

The outer join operation is an extension of the join operation. It is used to deal with missing information.

Example:

EMPLOYEE

EMP_NAME STREET CITY

Ram Civil line Mumbai

Shyam Park street Kolkata

Ravi M.G. Street Delhi

Hari Nehru nagar Hyderabad

FACT_WORKERS

EMP_NAME BRANCH SALARY

Ram Infosys 10000

Shyam Wipro 20000

Kuber HCL 30000

Hari TCS 50000

Input:

1. (EMPLOYEE ⋈ FACT_WORKERS)

Output:

EMP_NAME STREET CITY BRANCH SALARY

Ram Civil line Mumbai Infosys 10000

Shyam Park street Kolkata Wipro 20000

Hari Nehru nagar Hyderabad TCS 50000

An outer join is basically of three types:

a. Left outer join

b. Right outer join

c. Full outer join

a. Left outer join:

• Left outer join contains the set of tuples of all combinations in R and S that are equal on their

common attribute names.

• In the left outer join, tuples in R have no matching tuples in S.

• It is denoted by ⟕.

Example: Using the above EMPLOYEE table and FACT_WORKERS table

Input:

1. EMPLOYEE ⟕ FACT_WORKERS

EMP_NAME STREET CITY BRANCH SALARY

Ram Civil line Mumbai Infosys 10000

Shyam Park street Kolkata Wipro 20000

Hari Nehru street Hyderabad TCS 50000

Ravi M.G. Street Delhi NULL NULL

b. Right outer join:

• Right outer join contains the set of tuples of all combinations in R and S that are equal on their

common attribute names.

• In right outer join, tuples in S have no matching tuples in R.

• It is denoted by ⟖.

Example: Using the above EMPLOYEE table and FACT_WORKERS Relation

Input:

1. EMPLOYEE ⟖ FACT_WORKERS

Output:

EMP_NAME BRANCH SALARY STREET CITY

Ram Infosys 10000 Civil line Mumbai

Shyam Wipro 20000 Park street Kolkata

Hari TCS 50000 Nehru street Hyderabad

Kuber HCL 30000 NULL NULL

c. Full outer join:

• Full outer join is like a left or right join except that it contains all rows from both tables.

• In full outer join, tuples in R that have no matching tuples in S and tuples in S that have no

matching tuples in R in their common attribute name.

• It is denoted by ⟗.

Example: Using the above EMPLOYEE table and FACT_WORKERS table

Input:

1. EMPLOYEE ⟗ FACT_WORKERS

Output:

EMP_NAME STREET CITY BRANCH SALARY

Ram Civil line Mumbai Infosys 10000

Shyam Park street Kolkata Wipro 20000

Hari Nehru street Hyderabad TCS 50000

Ravi M.G. Street Delhi NULL NULL

Kuber NULL NULL HCL 30000

3) Equi join:

It is also known as an inner join. It is the most common join. It is based on matched data as per the equality

condition. The equi join uses the comparison operator(=).

Example:

CUSTOMER RELATION

CLASS_ID NAME

1 John

2 Harry

3 Jackson

PRODUCT

PRODUCT_ID CITY

1 Delhi

2 Mumbai

3 Noida

Input:

CUSTOMER ⋈ PRODUCT

Output:

CLASS_ID NAME PRODUCT_ID CITY

1 John 1 Delhi

2 Harry 2 Mumbai

3 Harry 3 Noida

9. Describe the six clauses in the syntax of an sql query and show what type of constructs can be

specified in each of the six clauses. Which of the six clauses are required and which are

optional?

The basic categories of commands used in SQL to perform various functions. These functions include

building database objects, manipulating objects, populating database tables with data, updating existing

data in tables, deleting data, performing database queries, controlling database access, and overall database

administration.

The main categories are

• DDL (Data Definition Language)

• DML (Data Manipulation Language)

• DQL (Data Query Language)

• DCL (Data Control Language)

• Data administration commands

• Transactional control commands

i) DDL (Data Definition Language)

Data Definition Language, DDL, is the part of SQL that allows a database user to create and restructure

database objects, such as the creation or the deletion of a table.

Some of the most fundamental DDL commands discussed during following hours include the following:

CREATE TABLE:

 CREATE TABLE CUSTOMERS(ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, AGE

INT NOT NULL,ADDRESS CHAR (25) ,SALARY DECIMAL (18, 2),

 PRIMARY KEY (ID));

ALTER TABLE:

ALTER TABLE Customers ADD Email varchar(255);

ALTER TABLE Customers DROP COLUMN Email;

ALTER TABLE table_name MODIFY COLUMN column_name datatype;

DROP TABLE

DROP TABLE employee;

CREATE INDEX

CREATE INDEX idx_lastname ON Persons (LastName);

ALTER INDEX

 ALTER INDEX <index name> ON <table name> (<column(s)>);

DROP INDEX

DROP INDEX index_name;

CREATE VIEW

CREATE VIEW product11 AS SELECT ProductName, Price FROM Products WHERE

 Price > (SELECT AVG(Price) FROM Products);

DROP VIEW

DROP VIEW emp_view;

ii) DML (Data Manipulation Language):

Data Manipulation Language, DML, is the part of SQL used to manipulate data within objects of a

relational database.

There are three basic DML commands:

INSERT:

INSERT INTO Customers (CustomerName, City, Country)

VALUES ('alex', 'chennai', 'india');

UPDATE:

UPDATE Customers

SET ContactName = 'Alex', City= 'bangalore'

WHERE CustomerID = 1;

DELETE:

DELETE FROM Customers WHERE CustomerName='Alex';

iii) DQL (Data Query Language)

Though comprised of only one command, Data Query Language (DQL) is the most concentrated focus of

SQL for modern relational database users. The base command is as follows:

SELECT:

SELECT * FROM table_name;

SELECT CustomerName, City FROM Customers;

This command, accompanied by many options and clauses, is used to compose queries against a relational

database. Queries, from simple to complex, from vague to specific, can be easily created.

A query is an inquiry to the database for information. A query is usually issued to the database through an

application interface or via a command line prompt.

iv) Data Control Language(DCL)

Data control commands in SQL allow you to control access to data within the database. These DCL

commands are normally used to create objects related to user access and also control the distribution of

privileges among users. Some data control commands are as follows:

GRANT:

CREATE USER books_admin IDENTIFIED BY MyPassword;

GRANT SELECT, INSERT, UPDATE, DELETE ON books TO books_admin;

REVOKE:

GRANT SELECT, INSERT, UPDATE, DELETE ON books from books_admin;

CREATE SYNONYM:

CREATE SYNONYM offices FOR locations;

SELECT * FROM locations;

v) Data Administration Commands

Data administration commands allow the user to perform audits and perform analyses on operations within

the database. They can also be used to help analyze system performance. Two general data administration

commands are as follows:

START AUDIT

STOP AUDIT

Do not get data administration confused with database administration. Database administration is the

overall administration of a database, which envelops the use of all levels of commands. Database

administration is much more specific to each SQL implementation than are those core commands of the

SQL language.

vi) Transactional Control Commands

In addition to the previously introduced categories of commands, there are commands that allow the user

to manage database transactions.

• COMMIT Saves database transactions

• ROLLBACK Undoes database transactions

• SAVEPOINT Creates points within groups of transactions in which to ROLLBACK

• SET TRANSACTION Places a name on a transaction

10. Explain about nested sub queries.

• SQL provides a mechanism for the nesting of subqueries.

• A subquery is a select-from-where expression that is nested within another query.

• A common use of subqueries is to perform tests for set membership, set comparisons,

and set cardinality.

• Example Query

• Find courses offered in Fall 2009 and in Spring 2010

▪ select distinct course_id from section where semester = ’Fall’ and year=

2009 and course_id in (select course_id from

section where semester = ’Spring’ and year= 2010);

 Find courses offered in Fall 2009 but not in Spring 2010

• select distinct course_id from section where semester = ’Fall’ and year= 2009 and

course_id not in (select course_id from section where semester = ’Spring’ and

year= 2010);

Example Query:

• Find the total number of (distinct) studentswho have taken course sections taught by the

instructor with ID 10101

• select count (distinct ID) from takes where (course_id, sec_id, semester, year) in (select

course_id, sec_id, semester, year from teaches where teaches.ID= 10101);

• Note: Above query can be written in a much simpler manner. The formulation above is

simply to illustrate SQL features.

Set Comparison:

• Find names of instructors with salary greater than that of some (at least one) instructor

in the Biology department.

select distinct T.name from instructor as T, instructor as S where

T.salary > S.salary and S.dept_name = ’Biology’;

• Same query using > some clause

select name from instructorwhere salary > some (select salary

rom instructor where dept_name = ’Biology’);

• Example Query

o Find the names of all instructors whose salary is greater than the salary of all

instructors in the Biology department.

select name from instructor where salary > all (select salary from

instructor where dept_name = ’Biology’);

Test for Empty Relations

• The exists construct returns the value true if the

argument subquery is nonempty.

• Exists r  r  Ø

• not exists r  r = Ø

▪ Correlation Variables

• Yet another way of specifying the query “Find all courses taught in both the Fall 2009 semester

and in the Spring 2010 semester”

select course_id from section as S where semester = ’Fall’ and

year= 2009 and exists (select * from section as T where semester

= ’Spring’ and year= 2010 and S.course_id= T.course_id);

• Correlated subquery

• Correlation name or correlation variable

• Not Exists

• Find all students who have taken all courses offered in the Biology department.

select distinct S.ID, S.name from student as Swhere not exists ((select

course_id from course where dept_name = ’Biology’) except (select

T.course_id from takes as T where S.ID = T.ID));

• Note that X – Y = Ø  X  Y

• Note: Cannot write this query using = all and its variants

Test for Absence of Duplicate Tuples

• The unique construct tests whether a subquery has any duplicate tuples in its

result.

▪ (Evaluates to “true” on an empty set)

• Find all courses that were offered at most once in 2009

select T.course_id from course as T where unique (select R.course_id from

section as R where T.course_id= R.course_id

and R.year = 2009);

Subqueries in the From Clause:

• SQL allows a subquery expression to be used in the from clause Find the average

instructors’ salaries of those departments where the average salary is greater than

$42,000.

▪ select dept_name, avg_salary from (select dept_name, avg (salary) as

avg_salary from instructor group by dept_name) where avg_salary > 42000;

• Note that we do not need to use the having clause

• Another way to write above query

 select dept_name, avg_salary from (select dept_name, avg (salary) from instructor

group by dept_name)

as dept_avg (dept_name, avg_salary) where avg_salary > 42000;

• And yet another way to write it: lateral clause

select name, salary, avg_salary from instructor I1, lateral (select avg(salary) as avg_salary

from instructor I2 where I2.dept_name= I1.dept_name);

• Lateral clause permits later part of the from clause (after the lateral keyword) to access

correlation variables from the earlier part.

• Note: lateral is part of the SQL standard, but is not supported on many database systems;

some databases such as SQL Server offer alternative syntax

With Clause:

• The with clause provides a way of defining a temporary view whose definition is

available only to the query in which the with clause occurs.

• Find all departments with the maximum budget

▪ with max_budget (value) as (select max(budget) from department) select budget

from department, max_budget where department.budget = max_budget.value;

Complex Queries using With Clause:

• With clause is very useful for writing complex queries

• Supported by most database systems, with minor syntax variations

• Find all departments where the total salary is greater than the average of the total

salary at all departments

with dept _total (dept_name, value) as (select dept_name, sum(salary) from instructor

group by dept_name), dept_total_avg(value) as (select avg(value) from dept_total)

select dept_name from dept_total, dept_total_avg where

dept_total.value >= dept_total_avg.value;

Scalar Subquery:

• Scalar subquery is one which is used where a single

value is expected

• E.g. select dept_name, (select count(*) from instructor where

department.dept_name = instructor.dept_name) as

num_instructors from department;

• E.g. select name from instructor where salary * 10 >

o (select budget from department where department.dept_name =

instructor.dept_name)

• Runtime error if subquery returns more than one

result tuple

Modification of the Database:

• Deletion of tuples from a given relation

• Insertion of new tuples into a given relation

• Updating values in some tuples in a given relation

▪ Modification of the Database – Deletion

• Delete all instructors delete from instructor

• Delete all instructors from the Finance department delete

from instructor where dept_name= ’Finance’;

Delete all tuples in the instructor relation for those instructors associated with a department

located in the Watson building.

delete from instructor where dept_name in (select dept_name from department where building =

’Watson’);

• Delete all instructors whose salary is less than the average salary of instructors

o delete from instructor where salary< (select avg (salary) from instructor);

• Problem: as we delete tuples from deposit, the average salary changes

• Solution used in SQL:

o First, compute avg salary and find all tuples to delete

o Next, delete all tuples found above (without recomputing avg or retesting the

tuples)

▪ Modification of the Database – Insertion

• Add a new tuple to course insert into course values (’CS-437’, ’Database Systems’,

’Comp. Sci.’, 4);

• or equivalently insert into course (course_id, title, dept_name, credits) values (’CS-

437’, ’Database Systems’, ’Comp. Sci.’, 4);

• Add a new tuple to student with tot_creds set to null insert into student values

(’3003’, ’Green’, ’Finance’, null);

• Add all instructors to the student relation with tot_creds set to 0

• insert into student select ID, name, dept_name, 0 from instructor

▪ The select from where statement is evaluated fully before any of its results are

inserted into the relation (otherwise queries like insert into table1 select * from

table1would cause problems, if table1 did not have any primary key defined.

o Modification of the Database – Updates

• Increase salaries of instructors whose salary is over $100,000 by 3%,

and all others receive a 5% raise

Write two update statements:

 update instructor set salary = salary * 1.03 where salary > 100000;

update instructor set salary = salary * 1.05 where salary <= 100000;

• The order is important

• Can be done better using the case statement

Case Statement for Conditional Updates:

o Same query as before but with case statement

update instructor set salary = case when salary <= 100000 then salary * 1.05 else salary * 1.03 end

Updates with Scalar Subqueries:

• Recompute and update tot_creds value for all students

 update student S set tot_cred = (select sum(credits) from takes natural join

course where S.ID= takes.ID and takes.grade <> ’F’ and takes.grade is not

null);

• Sets tot_creds to null for students who have not taken any course

• Instead of sum(credits), use: case when sum(credits) is not null then sum(credits) else 0

end

11. Explain about join operations in SQL.

• Join operations take two relations and return as a result another relation.

• A join operation is a Cartesian product which requires that tuples in the two relations match

(under some condition). It also specifies the attributes that are present in the result of the join

• The join operations are typically used as subquery expressions in the from clause

Join operations – Example

• Relation course

• Relation prereq

• Observe that prereq information is missing for CS-315 and course information is missing

for CS-437

Outer Join

• An extension of the join operation that avoids loss of information.

• Computes the join and then adds tuples form one relation that does not match tuples in the

other relation to the result of the join.

• Uses null values.

Left Outer Join

course natural left outer join prereq

Right Outer Join

course natural right outer join prereq

Joined Relations

◼ Join operations take two relations and return as a result another relation.

◼ These additional operations are typically used as subquery expressions in the from

clause

◼ Join condition – defines which tuples in the two relations match, and what attributes

are present in the result of the join.

◼ Join type – defines how tuples in each relation that do not match any tuple in the other

relation (based on the join condition) are treated.

Full Outer Join

course natural full outer join prereq

Joined Relations – Examples

• course inner join prereq on course.course_id = prereq.course_id

• What is the difference between the above, and a natural join?

• course left outer join prereq on course.course_id = prereq.course_id

Joined Relations – Examples

• course natural right outer join prereq

• course full outer join prereq using (course_id)

12. Discuss about view in SQL.

Database views are created using the CREATE VIEW statement. Views can be created

from a single table, multiple tables, or another view. To create a view, a user must have the

appropriate system privilege according to the specific implementation.

SQL> CREATE TABLE EMPLOYEE (

EMPLOYEE_NAME VARCHAR2(10),

EMPLOYEE_NO NUMBER(8),

DEPT_NAME VARCHAR2(10),

DEPT_NO NUMBER (5),

DATE_OF_JOIN DATE

);

Table created.

CREATE VIEW

SUNTAX FOR CREATION OF VIEW

CREATE [OR REPLACE] [FORCE] VIEW viewname [(column-

name, column-name)] AS Query [with check option];

Include all not null attribute.

CREATION OF VIEW

SQL> CREATE VIEW EMPVIEW AS SELECT EMPLOYEE_NAME,

EMPLOYEE_NO,

DEPT_NAME,

DEPT_NO,

DATE_OF_JOIN FROM EMPLOYEE;

View Created.

DISPLAY VIEW:

SQL> SELECT * FROM EMPVIEW;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO

--------------------- ----------------------- ------------------- ---------------

RAVI 124 ECE 89

VIJAY 345 CSE 21

RAJ 98 IT 22

GIRI 100 CSE 67

SQL> INSERT INTO EMPVIEW VALUES ('SRI', 120,'CSE', 67);

1 ROW CREATED.

SQL>DROP VIEW EMPVIEW;

view dropped

SQL> CREATE OR REPLACE VIEW EMP_TOTSAL AS SELECT

EMPNO "EID", ENAME "NAME", SALARY "SAL" FROM EMPL;

JOIN VIEW:

EXAMPLE:

SQL> CREATE OR REPLACE VIEW DEPT_EMP_VIEW AS SELECT A.EMPNO,

A.ENAME,

A.DEPTNO,

B.DNAME,

B.LOC

FROM EMPL A, DEPMT B

WHERE

A.DEPTNO=B.DEPTNO;

13. Explain about integrity constraints and index creation in SQL.

1) not null

2) primary key

3) unique

4) check (P), where P is a predicate

5) Not Null and Unique Constraints

not null

a. Declare name and budget to be not null name varchar(20) not null

budget numeric(12,2) not null

➢ unique (A1, A2, …, Am)

✓ The unique specification states that the attributes A1, A2, … Am form a

candidate key.

✓ Candidate keys are permitted to be null (in contrast to primary keys).

The check clause

check (P):

where P is a predicate

Example: ensure that semester is one of fall, winter, spring or summer:

create table section (course_id varchar (8), sec_id varchar (8), semester varchar (6),

year numeric (4,0), building varchar (15), room_number varchar (7), time slot id

varchar (4), primary key (course_id, sec_id, semester, year), check (semester in

(’Fall’, ’Winter’, ’Spring’, ’Summer’)));

Referential Integrity

➢ Ensures that a value that appears in one relation for a given set of attributes also appears for

a certain set of attributes in another relation.

Example: If “Biology” is a department name appearing in one of the tuples in the

instructor relation, then there exists a tuple in the department relation for “Biology”.

➢ Let A be a set of attributes. Let R and S be two relations that contain attributes A and

where A is the primary key of S. A is said to be a foreign key of R if for any values of A

appearing in R these values also appear in S.

Cascading Actions in Referential Integrity

➢ create table course (course_id char(5) primary key,title varchar(20),dept_name

varchar(20) references department)

➢ create table course (…dept_name varchar(20),

foreign key (dept_name) references department on delete cascade

on update cascade, . . .)

➢ alternative actions to cascade: set null, set default

Integrity Constraint Violation During Transactions

➢ E.g.

create table person (ID char(10), name char(40), mother char(10), father char(10),

primary key ID, foreign key father references person, foreign key mother

references person)

➢ How to insert a tuple without causing constraint violation ?

✓ insert father and mother of a person before inserting person

✓ OR, set father and mother to null initially, update after inserting all persons (not

possible if father and mother attributes declared to be not null)

✓ OR defer constraint checking (next slide)

Complex Check Clauses

• check (time_slot_id in (select time_slot_id from time_slot)) why not use a foreign key

here?

• Every section has at least one instructor teaching the section.

✓ how to write this?

• Unfortunately: subquery in check clause not supported by pretty much any database

✓ Alternative: triggers (later)

• create assertion <assertion-name> check <predicate>;

✓ Also not supported by anyone

BUILT-IN DATA TYPES IN SQL

• date: Dates, containing a (4 digit) year, month and date

✓ Example: date ‘2005-7-27’

• time: Time of day, in hours, minutes and seconds.

✓ Example: time ‘09:00:30’ time ‘09:00:30.75’

• timestamp: date plus time of day

✓ Example: timestamp ‘2005-7-27 09:00:30.75’

• interval: period of time

✓ Example: interval ‘1’ day

✓ Subtracting a date/time/timestamp value from another gives an interval value

✓ Interval values can be added to date/time/timestamp values

INDEX CREATION

• create table student (ID varchar (5), name varchar (20) not null, dept_name varchar

(20), tot_cred numeric (3,0) default 0, primary key (ID))

• create index studentID_index on student(ID)

• Indices are data structures used to speed up access to records with specified values for index

attributes

e.g. select * from student where ID = ‘12345’

can be executed by using the index to find the required record, without looking at all

records of student

More on indices in Chapter 11

User-Defined Types

create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

create table department (dept_name varchar (20), building varchar (15), budget

Dollars);

Domains

• create domain construct in SQL-92 creates user-defined domain types create domain

person_name char(20) not null

• Types and domains are similar. Domains can have constraints, such as not null, specified

on them.

• create domain degree_level varchar(10) constraint degree_level_test

check (value in (’Bachelors’, ’Masters’, ’Doctorate’));

Large-Object Types

Large objects (photos, videos, CAD files, etc.) are stored as a large object:

• blob: binary large object -- object is a large collection of uninterpreted binary data

(whose interpretation is left to an application outside of the database system)

• clob: character large object -- object is a large collection of character data

• When a query returns a large object, a pointer is returned rather than the large object

itself.

14. Describe the GRANT functions and explain how it relates to security. What types of privileges

may be granted? How rights could be revoked.

Forms of authorization on parts of the database:

• Read - allows reading, but not modification of data.

• Insert - allows insertion of new data, but not modification of existing data.

• Update - allows modification, but not deletion of data. Delete - allows deletion of data.

Forms of authorization to modify the database schema Index - allows creation and deletion of

indices.

• Resources - allows creation of new relations.

• Alteration - allows addition or deletion of attributes in a relation.

• Drop - allows deletion of relations.

Authorization Specification in SQL

➢ The grant statement is used to confer authorization grant <privilege list> on <relation

name or view name> to <user list> <user list> is:

✓ a user-id

✓ public, which allows all valid users the privilege granted

✓ A role (more on this later)

➢ Granting a privilege on a view does not imply granting any privileges on the underlying

relations.

➢ The grantor of the privilege must already hold the privilege on the specified item (or be the

database administrator).

Privileges in SQL

➢ select: allows read access to relation,or the ability to query using the view

Example: grant users U1, U2, and U3 select authorization on the instructor relation:

grant select on instructor to U1, U2, U3

➢ insert: the ability to insert tuples

➢ update: the ability to update using the SQL update statement

➢ delete: the ability to delete tuples.

➢ all privileges: used as a short form for all the allowable privileges

Revoking Authorization in SQL

➢ The revoke statement is used to revoke authorization. revoke <privilege list> on

<relation name or view name> from <user list> Example:

revoke select on branch from U1, U2, U3

➢ <privilege-list> may be all to revoke all privileges the revokee may hold.

➢ If <revokee-list> includes public, all users lose the privilege except those granted it

explicitly.

➢ If the same privilege was granted twice to the same user by different grantees, the user

may retain the privilege after the revocation.

➢ All privileges that depend on the privilege being revoked are also revoked.

15. Explain about functions and procedures in SQL.

At the schema level, subprogram is a standalone subprogram. It is created with the CREATE

PROCEDURE or the CREATE FUNCTION statement. It is stored in the database and can be deleted with

the DROP PROCEDURE or DROP FUNCTION statement.

A subprogram created inside a package is a packaged subprogram. It is stored in the database and can be

deleted only when the package is deleted with the DROP PACKAGE statement.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters. PL/SQL

provides two kinds of subprograms −

• Functions − These subprograms return a single value; mainly used to compute and return a value.

• Procedures − These subprograms do not return a value directly; mainly used to perform an action.

Program 1:

 create or replace procedure p1 as

 begin

 dbms_output.put_line('welcome');

end;

 /

Procedure created.

SQL> execute p1;

welcome

Program 2:

create PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

 BEGIN

 IF x < y THEN

 z:= x;

 ELSE

 z:= y;

 END IF;

 END;

 /

Procedure created.

 declare

 a number;

 b number;

 c number;

 begin

 a:=23;

 b:=4;

 findMin(a,b,c);

 dbms_output.put_line('Minimum value is:'||c);

 end;

 /

Output:

Minimum value is:4

Program 3:

SQL> create table emp22(id number,name varchar(20),designation varchar(20),salary number);

Table created.

SQL> insert into emp22 values(3,'john','manager',100000);

1 row created.

SQL> insert into emp22 values(3,'jagan','hr',400000);

1 row created.

Functions:

CREATE OR REPLACE FUNCTION totalemployee return number as

 total number;

 begin

 SELECT count(*) into total from emp22;

 Return total;

 end;

 /

Function created.

 declare

 a number:=0;

 begin

 a:=totalemployee();

 dbms_output.put_line('Total employees are '||a);

 end;

 /

Total employees are 2

Language Constructs for Procedures & Functions:

• SQL supports constructs that gives it almost all the power of a general purpose

programming language.

• Compound statement: begin … end,

✓ May contain multiple SQL statements between begin and end.

✓ Local variables can be declared within a compound statements

While and repeat statements:

✓ while boolean expression do

sequence of statements ;

end while

✓ repeat

sequence of statements ;

 until boolean expression

end repeat

• For loop

Permits iteration over all results of a query

• Example: Find the budget of all departments

declare n integer default 0;

for r as select budget from department do

set n = n + r.budget

end for

• Conditional statements (if-then-else)

SQL:1999 also supports a case statement similar to C case statement

• Example procedure: registers student after ensuring classroom capacity is not exceeded

✓ Returns 0 on success and -1 if capacity is exceeded

• Signaling of exception conditions, and declaring handlers for exceptions

 declare out_of_classroom_seats condition

declare exit handler for out_of_classroom_seats

 begin

…

.. signal out_of_classroom_seats

end

✓ The handler here is exit -- causes enclosing begin..end to be exited

16. Explain about triggers in SQL.

• A trigger is a statement that is executed automatically by the system as a side

effect of a modification to the database.

• To design a trigger mechanism, we must:

✓ Specify the conditions under which the trigger is to be executed.

✓ Specify the actions to be taken when the trigger executes.

• Triggers introduced to SQL standard in SQL:1999, but supported even earlier

using non-standard syntax by most databases.

✓ Syntax illustrated here may not work exactly on your database

system; check the system manuals

Triggering Events and Actions in SQL

• Triggering event can be insert, delete or update

• Triggers on update can be restricted to specific attributes

✓ For example, after update of STUDENT on grade

• Values of attributes before and after an update can be referenced

✓ referencing old row as : for deletes and updates

✓ referencing new row as : for inserts and updates

Table creation:

Create table employee22(empid number,empname varchar(20),empdept varchar(20),salary number);

Example:

CREATE OR REPLACE TRIGGER display_salary

BEFORE DELETE OR UPDATE ON employee22

FOR EACH ROW

DECLARE

 sal_diff number;

BEGIN

 sal_diff := :NEW.salary - :OLD.salary;

 dbms_output.put_line('Old salary: ' || :OLD.salary);

 dbms_output.put_line('New salary: ' || :NEW.salary);

 dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

17. Explain about embedded SQL.

• The SQL standard defines embeddings of SQL in a variety of programming

languages such as C, C++, Java, Fortran, and PL/1,

• A language to which SQL queries are embedded is referred to as a host language,

and the SQL structures permitted in the host language comprise embedded SQL.

• The basic form of these languages follows that of the System R embedding of SQL

into PL/1.

• EXEC SQL statement is used to identify embedded SQL request to the preprocessor

EXEC SQL <embedded SQL statement >;

Note: this varies by language:

✓ In some languages, like COBOL, the semicolon is replaced with END-EXEC

✓ In Java embedding uses # SQL { …. };

• Before executing any SQL statements, the program must first connect to the

database. This is done using:

EXEC-SQL connect to server user user-name using password;

Here, server identifies the server to which a connection is to be established.

• Variables of the host language can be used within embedded SQL statements. They

are preceded by a colon (:) to distinguish from SQL variables (e.g., :credit_amount

)

• Variables used as above must be declared within DECLARE section, as illustrated

below. The syntax for declaring the variables, however, follows the usual host

language syntax.

 EXEC-SQL BEGIN DECLARE SECTION}

 int credit-amount ;

 EXEC-SQL END DECLARE SECTION;

• To write an embedded SQL query, we use the declare c cursor for <SQL query>

statement. The variable c is used to identify the query

• Example:

✓ From within a host language, find the ID and name of students who have

completed more than the number of credits stored in variable credit_amount

in the host langue Specify the query in SQL as follows:

EXEC SQL

declare c cursor for select ID, name from student

where tot_cred > :credit_amount

END_EXEC

• The variable c (used in the cursor declaration) is used to identify the query

• The open statement for our example is as follows:

EXEC SQL open c ;

This statement causes the database system to execute the query and to save the results within

a temporary relation. The query uses the value of the host-language variable credit-amount at

the time the open statement is executed.

EXEC-SQL connect to server user user-name using password;

EXEC-SQL BEGIN DECLARE SECTION}

 int credit-amount ;

EXEC-SQL END DECLARE SECTION;

EXEC SQL

declare c cursor for select ID,

name from student where

tot_cred > :credit_amount

END_EXEC

EXEC SQL open c ;

EXEC SQL fetch c into :si, :sn END_EXEC

 ……….statement to work with student name and id…………..

EXEC SQL close c ;

• The fetch statement causes the values of one tuple in the query result to be placed on

host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

• A variable called SQLSTATE in the SQL communication area

(SQLCA) gets set to ‘02000’ to indicate no more data is available

• The close statement causes the database system to delete the temporary relation that

holds the result of the query.

EXEC SQL close c ;

Note: above details vary with language. For example, the Java embedding defines Java

iterators to step through result tuples.

Updates Through Embedded SQL

• Embedded SQL expressions for database modification (update, insert, and delete)

• Can update tuples fetched by cursor by declaring that the cursor is for update

EXEC SQL

 declare c cursor for

 select *from instructor where dept_name = ‘Music’ for update

• We then iterate through the tuples by performing fetch operations on the cursor and after fetching

each tuple we execute the following code:

 update instructor

 set salary = salary + 1000 where current of c

18. Discuss about dynamic SQL.

• The embedded SQL queries were written as part of the host program source code. Hence, any time

we want to write a different query, we must modify the program code, and go through all the steps

involved (compiling, debugging, testing, and so on).

• In some cases, it is convenient to write a program that can execute different SQL queries or

updates (or other operations) dynamically at runtime. For example, we may want to write a

program that accepts an SQL query typed from the monitor, executes it, and displays its result,

such as the interactive interfaces available for most relational DBMSs.

• Another example is when a user-friendly interface generates SQL queries dynamically for the user

based on point-and-click operations on a graphical schema (for example, a QBE-like interface).

• Dynamic SQL is one technique for writing this type of database program, by giving a simple

example to illustrate how dynamic SQL can work.

• Program segment E3 in Figure reads a string that is input by the user (that string should be an

SQL update command) into the string program variable sqlupdatestring in line 3. It then prepares

this as an SQL command in line 4 by associating it with the SQL variable sqlcommand. Line 5

then executes the command.

• Notice that in this case no syntax check or other types of checks on the command are possible at

compile time, since the SQL command is not available until runtime. This contrasts with our

previous examples of embedded SQL, where the query could be checked at compile time because

its text was in the program source code.

• Although including a dynamic update command is relatively straightforward in dynamic SQL, a

dynamic query is much more complicated. This is because usually we do not know the types or the

number of attributes to be retrieved by the SQL query when we are writing the program.

• A complex data structure is sometimes needed to allow for different numbers and types of

attributes in the query result if no prior information is known about the dynamic query.

• In E3, the reason for separating PREPARE and EXECUTE is that if the command is to be

executed multiple times in a program, it can be prepared only once. Preparing the command

generally involves syntax and other types of checks by the system, as well as generating the

code for executing it. It is possible to combine the PREPARE and EXECUTE commands

(lines 4 and 5 in E3) into a single statement by writing

EXEC SQL EXECUTE IMMEDIATE :sqlupdatestring ;

• This is useful if the command is to be executed only once. Alternatively, the pro-grammer can

separate the two statements to catch any errors after the PREPARE statement, if any.

 EXEC SQL BEGIN DECLARE SECTION ;

 varchar sqlupdatestring [256] ;

 EXEC SQL END DECLARE SECTION ;

 ...

 prompt("Enter the Update Command: ", sqlupdatestring) ;

 EXEC SQL PREPARE sqlcommand FROM :sqlupdatestring ;

 EXEC SQL EXECUTE sqlcommand ;.

UNIT-1

PART-A

1. What is the purpose of Database Management System? Nov/ Dec 2014

A DBMS is a software for creating and managing databases. It provides users with a systematic way to

create, retrieve, update and manage data. It is a middleware between the database which store all the data

and the users or applications which need to interact with that stored database. A DBMS can limit what

data the end user sees, as well as how that end user can view the data, providing many views of a single

database schema

2. What are the characteristics that distinguish the database approach with the File – based

approach? April/ May 2015

In File System, files are used to store data while, collections of databases are utilized for the storage of

data in DBMS. Although File System and DBMS are two ways of managing data, DBMS clearly has

many advantages over File Systems. Typically when using a File System, most tasks such as storage,

retrieval and search are done manually and it is quite tedious whereas a DBMS will provide automated

methods to complete these tasks. Because of this reason, using a File System will lead to problems like

data integrity, data inconsistency and data security, but these problems could be avoided by using a

DBMS. Unlike File System, DBMS are efficient because reading line by line is not required and certain

control mechanisms are in place.

3. Is it possible for several attributes to have the same domain? Illustrate your answer with

suitable example. Nov/ Dec 2015

A domain is a pool of values from which the values of specific attributes of specific relations are taken.

For example, the domain dept is a set of all possible dept names and the domain emp_name is a set of all

employee names. Thus each and every attribute has its own domain. Hence it is not possible for several

attributes to have the same domain.

4. What are the disadvantages of file processing system? May/ June 2016

The disadvantages of file processing systems are

a) Data redundancy and inconsistency b) Difficulty in accessing data c) Data isolation d) Integrity

problems e) Atomicity problems f) Concurrent access anomalies

5. Differentiate File System with Database Management system. Nov/ Dec 2016

6. Distinguish key and super key. Nov Dec 2017

Minimal column which are sufficient to identify row is primary key. Super key also use for

identify row but one super key may be contain more than 1 primary key or combination of

primary keys known as super key. Both used for uniquely identify of row. Table contain more

than 1 candidate key but only 1 primary key

7. What are the advantages of using a DBMS?

a) Controlling redundancy b) Restricting unauthorized access c) Providing multiple user interfaces

d) Enforcing integrity constraints. e) Providing backup and recovery

8. Define instance and schema?

 Instance: Collection of data stored in the data base at a particular moment is called an Instance of

 the database.

 Schema: The overall design of the data base is called the data base schema.

9. Define the terms 1) Physical schema 2) logical schema.

Physical schema: The physical schema describes the database design at the physical level, which is the

lowest level of abstraction describing how the data are actually stored.

Logical schema: The logical schema describes the database design at the logical level, which describes

what data are stored in the database and what relationship exists among the data.

10. What is storage manager? List the components.

A storage manager is a program module that provides the interface between the low level data

Stored in a database and the application programs and queries submitted to the system.

The storage manager components include

a) Authorization and integrity manager b) Transaction manager c) File manager d) Buffer manager

11. What is a data dictionary?

A data dictionary is a data structure which stores Meta data about the structure of the database ie. The

schema of the database.

12. What are attributes? Give examples.

An entity is represented by a set of attributes. Attributes are descriptive properties possessed by each

member of an entity set.

Example: possible attributes of customer entity are customer name, customer id, Customer Street,

customer city.

13. What is relationship? Give examples

A relationship is an association among several entities.

Example: A depositor relationship associates a customer with each account that he/she has.

14. Define the term Relationship set.

Relationship set: The set of all relationships of the same type is termed as a relationship set.

15. Define null values

In some cases a particular entity may not have an applicable value for an attribute or if we do not know the

value of an attribute for a particular entity. In these cases null value is used.

16. List the role of DBA.

The person who has central control over the system is called database administrator. The functions of the

DBA include the following:

• Schema definition

• Storage structure and access-method definition

• Schema and physical-organization modification

• Granting of authorization for data access

• Integrity-constraint specification

17. Differentiate Static SQL and Dynamic SQL. Nov/ Dec 2014, April/ May 2015, Nov/ Dec 2015,

Nov/ Dec 2016

Static SQL: Static SQL statements are SQL instructions that are a part of the language syntax. It can

be used directly in the source code as normal procedural instructions.

Dynamic SQL: It is a programming technique that enables to build SQL statements dynamically at

runtime.

18. Give a brief description in DCL commands. NOV/DEC 2014

It is a computer language and a subset of SQL, used to control access to data in a database.

Examples of DCL commands include:

GRANT: used to allow specified users to perform specified tasks.

REVOKE: used to cancel previously granted permission

19. Why does SQL allow duplicate tuples in a table or in a query result? Nov/ Dec 2015

SQL usually treats a table not as a set but rather as a multiset. Duplicate tuples can appear more than

once in a table and in the result of a query. SQL does not automatically eliminate duplicate tuples in

the results of queries for the following reasons.

 Duplicate elimination is an expensive operation one way to implement it, is to sort

the tuples first and then eliminate duplicates.

 The users may want to see duplicate tuples in the result of a query

When an aggregate function is applied to tuples in most cases we do not want to eliminate duplicates

20. Name the categories of SQL Command. May/ June 2016

a. data definition language

b. data manipulation language

c. data control language

d. transaction control language

21. What is Data Definition Language? Give example. Nov/ Dec 2016

It is used to define relational database of a system. It creates, changes and removes a table structure.

Ex. CREATE, ALTER, DROP, RENAME and TRUNCATE.

22. Define Data Manipulation Language.

DML: A data manipulation language is a language that enables users to insert, modify and

delete the data in the database.

Ex. Insert, delete, modify

23. List the SQL statements used for Transaction Control.

a. Commit d. Set Transaction

b. Rollback

c. Save point

24. Define database objects.

A database object is any defined object in the database that is used to store or reference data. Some

examples include tables, views, clusters, sequences, indexes and synonyms.

25. Name the different types of joins supported in SQL.

a. Inner join

b. Outer join

1. Left Outer Join

2. Right Outer Join

3. Full Outer Join

c. Natural join

26. What is a trigger in SQL?

A trigger is a statement that the system executes automatically as a side effect of a

modification to the database.

27. What are primary keys?

A primary key is one or more columns in a table used to uniquely identify each row in the

table. Its values must not be null and must be unique across the column.

28. Explain the basic structure of an SQL expression.

An SQL Expression has three clauses: select, from and where.

 Select- used to list the attributes desired in the result of a query

 From- lists the relations to be scanned

 Where- predicate involving attributes in the from clause

select A1, A2….An from r1, r2,….rn where p;

29. Write a SQL Statement to find the names & loan numbers of all customers who have a

loan at Chennai branch from the following relations.

i). Loan (Loan _ no, Branch _ name, amount)

ii). Branch (Branch _ name, Branch _city, Assets)

select Loan_no from Loan, Branch where Loan.Branch_name = Branch.Branch_name and

Branch_city =’Chennai’;

Part B

1. Consider a student registration database comprising of the below given table schema .

 student file

student number , student name , address , telephone

 course file

course number , description , hours , professor number

professor file

professor number , name , office

registration file

student number , course number , date

consider a suitable example of tuples/records for the above mentioned tables and write DML , statements

(SQL) to answer for the queries listed below

i) Which courses does a specific professor teach ?

ii) What courses are taught by two specific professors?

iii) Who teaches a specific courses and where is his/her office?

iv)For specific student number in which courses is the student registered and what is his/her name?

v) who are the professors for a specific student ?

vi) Who are the students registered in specific courses?

2) Explain the following with examples:

 i) DDL

 ii) DML

 ii) Embedded SQL

3) Assume the following table :

degree(degcode,name,subject)

candidate(seat no, degcode,semesrer,month,year,result)

Marks(seatno,degcode,semester,month,year,papcode,marks)

Degcode-degree code.Name-name of the degree(MSC.MCOM)

SUBJECT_subject of courses Eg. Phy , pap code –paper code eg.A1

Solve the following queries using SQL

i) Write a SELECT statement to display all the degree codes are there in the candidate table but not present

in degree table in the order of degcode.

ii) Write a SELECT statement to display the name of all the candidates who have got less than 40 marks

in exactly 2 subjects .

iii) Write a SELECT statement to display the name, subject and number of the candidate for all degrees in

which there are less than 5 candidates.

iv) Write a SELECT statement to display the names of all the

candidates who have got highest total marks in MSc., (Maths).

4) Describe the GRANT functions and explain how it relates to security. what types of privileges may

be granted? How rights could be revoked ?

5) With the help of a neat block diagram , explain the basic architecture of a data base management

system?

6) Describe the six clauses in the syntax of an sql query and show what type of constructs can be specified

in each of the six clauses.which of the six clauses are required and which are optional?

7) List the operations of relational algebra and the purpose of each with example.

8) consider the relation schema given in figure 1.design and draw an ER diagram that capture the

information of this schema.

 Employee(empno,name,office,age)

 Books(isbn,tittle ,authors,publisher)

 Loan(empno,isbn,date)

write the following queries in relational algebra and SQL.

i)find the name of employees who have borrowed a book published by McGraw-Hill.

ii) find the name of employees who have borrowed all books published by McGraw-Hill.

 9) Write the DDL,DML,DCL commands for the students database.Which contains

 Student details :name,id,DOB,branch,DOJ.

 Course details:Course name,Course id,Stud.id,Faculty name,id,marks.

10) Differentiate between foreign key constraints and referential integrity constraints with suitable

examples?

 11) Justify the need of embedded SQL .consider the relation student(studentno,name,mark and

grade).Write embedded dynamic SQL statements in C language to retrieve all the student’s records whose

marks more than 90.

12) Explain about functions and procedures in SQL.

13) Discuss about triggers.

SQL QUERIES (UNIVERSITY QUESTIONS)

1) Consider a student registration database comprising of the below given table schema.

 Student

 student number, student name, address, telephone

 course

 course number, description, hours, professor number

 professor

 professor number, name, office

 registration

 student number, course number, date

Consider a suitable example of tuples/records for the above mentioned tables and write DML,

statements (SQL) to answer for the queries listed below

i) Which courses does a specific professor teach and what courses are taught by two specific

professors?

ii) Who teaches a specific courses and where is his/her office?

iii) For specific student number in which courses is the student registered and what is his/her

 name?

iv) Who are the professors for a specific student and who are the students registered in specific

 courses?

Answers:

i)select courseno from course where professor no=10001;

 select courseno from course where professor no=10001 or professor no=10004;

ii) select name , office from professor, course where coursed=101 and

professor.professorno=course.professorno;

iii) select courseno,studentname from registration . student where student.studentno=

registration.studentno;

iv)select professorno from course , registration where studentno=5001 and course.courseno=

registration.courseno;

select studentno from registration where courseno=6003;

2) Consider the relation schema given in figure.

 Employee(empno, name, office, age)

 Books(isbn, tittle, authors, publisher)

 Loan(empno, isbn, date)

 Write the following queries in relational algebra and SQL.

 a) Find the name of employees who have borrowed a book published by McGraw-Hill.

 b) Find the name of employees who have borrowed all books published by McGraw-Hill.

 c) Find the name of the employee who has loan and age greater than 25

Answers:

a) select name from employee e, books b, loan l where e.empno = l.empno and l.isbn =

b.isbn and b.publisher = ‘McGrawHill’

b) select distinct e.name from employee e where not exists ((select isbn from books where

publisher = ’McGrawHill’) except (select isbn from loan l where l.empno = e.empno));

c) select name from employee e, loan l where l.age>25 and e.empno=l.empno;

4) Elaborate about various join types of operations in SQL with example.

 Assume the following table:

 degree(degcode,name,subject)

candidate(seat no, degcode,semesrer,month,year,result)

Marks(seatno,degcode,semester,month,year,papcode,marks)

Degcode-degree code.Name-name of the degree(MSC.MCOM)

SUBJECT_subject of courses Eg. Phy , pap code –paper code eg.A1

Solve the following queries using SQL

i) Write a SELECT statement to display all the degree codes are there in the candidate table but

not present in degree table in the order of degcode.

ii) Write a SELECT statement to display the name of all the candidates who have got less than

 40 marks in exactly 2 subjects .

iii) Write a SELECT statement to display the name, subject and number of the candidate for all

 degrees in which there are less than 5 candidates.

iv) Write a SELECT statement to display the names of all the candidates who have got highest

 total marks in MSc., (Maths).

Answers:

i) select degcode from candidate where degcode not in select degcode from degree;

ii) select name from candidate,marks where candidate.seatid=marks.seatid and marks.mark

<40 ;

iii) Select name,subject, count (seatno) from degree, marks group by degcode;

iv) Select seatno from marks m1,marks m2 where m1.mark>m2.mark;

5. Justify the need of embedded SQL .consider the relation student(studentno, name,

 mark and grade).Write embedded SQL statements in C language to retrieve all the

 student’s records whose marks more than 90.

Embedded SQL is essentially identical across different host languages. Programming conventions and
syntax change very little. Therefore, to write applications in different languages, you need not learn new
syntax.

Embedded SQL is easy to use because it is simply Transact- SQL with some added features that facilitate
using it in an application.

EXEC-SQL connect to server user user-name using password;

EXEC SQL BEGIN DECLARE SECTION;

int studno, mark1,grad ;

char sname[30];

EXEC SQL END DECLARE SECTION;

 EXEC SQL

 declare c cursor for select studentno, name, mark , grade from student where mark>90

 END EXEC

 EXEC SQL open c ;

EXEC SQL fetch c into :studno, :sname, :mark1, :grad END_EXEC

……………………………

…………………..

 EXEC SQL close c ;

CS3492 DATABASE MANAGEMENT SYSTEMS

UNIT II DATABASE DESIGN

Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping –

Functional Dependencies – Non-loss Decomposition – First, Second, Third Normal Forms, Dependency

Preservation – Boyce/Codd Normal Form – Multi-valued Dependencies and Fourth Normal Form – Join

Dependencies and Fifth Normal Form.

1. Discuss about main phases of database design.

 The main phases of database design are

o Requirements collection and analysis

o Conceptual design

o Logical design

o Physical design

1) Requirements collection and analysis :

• During this step, the database designers interview prospective database users to understand and
document their data requirements. The result of this step is a concisely written set of users’
requirements. These requirements should be specified in as detailed and complete a form as
possible. In parallel with specifying the data requirements, it is useful to specify the known
functional requirements of the application. These consist of the user-defined operations (or
transactions) that will be applied to the database, including both retrievals and updates. In
software design, it is common to use data flow diagrams, sequence diagrams, scenarios, and other
techniques to specify functional requirements.

2) Conceptual design:

• Once the requirements have been collected and analyzed, the next step is to create a conceptual

schema for the database, using a high-level conceptual data model. This step is called

conceptual design. The conceptual schema is a concise description of the data requirements of

the users and includes detailed descriptions of the entity types, relationships, and constraints;

these are expressed using the concepts pro-vided by the high-level data model. Because these

concepts do not include implementation details, they are usually easier to understand and can be

used to communicate with nontechnical users. The high-level conceptual schema can also be

used as a reference to ensure that all users’ data requirements are met and that the requirements

do not conflict. This approach enables database designers to concentrate on specifying the

properties of the data, without being concerned with storage and implementation details. This

makes it is easier to create a good conceptual data-base design.

• During or after the conceptual schema design, the basic data model operations can be used to

specify the high-level user queries and operations identified during functional analysis. This also

serves to confirm that the conceptual schema meets all the identified functional requirements.

Modifications to the conceptual schema can be introduced if some functional requirements cannot

be specified using the initial schema.

3) Logical design:

• The next step in database design is the actual implementation of the database, using a commercial

DBMS. Most current commercial DBMSs use an implementation data model—such as the

relational or the object-relational database model—so the conceptual schema is transformed from

the high-level data model into the implementation data model. This step is called logical design or

data model mapping; its result is a database schema in the implementation data model of the

DBMS. Data model mapping is often automated or semiautomated within the database design

tools.

4) Physical design:

• The last step is the physical design phase, during which the internal storage structures, file

organizations, indexes, access paths, and physical design parameters for the database files are

specified. In parallel with these activities, application programs are designed and implemented as

database transactions corresponding to the high-level transaction specifications.

2. Explain symbols used in Entity-Relationship (ER) model.

• Entity-Relationship (ER) model is a popular high-level conceptual data model. This model and
its variations are frequently used for the conceptual design of database applications, and many
database design tools employ its concepts.

• The diagrammatic notation associated with the ER model is known as ER diagrams.

• The ER model describes data as entities, relationships, and attributes.

1) Entities and Attributes:

• The basic object that the ER model represents is an entity, which is a thing in the real world with

an independent existence.

• An entity may be an object with a physical existence (for example, a particular person, car, house,

or employee) or it may be an object with a conceptual existence (for instance, a company, a job, or

a university course).

• Each entity has attributes—the particular properties that describe it. For example, an

EMPLOYEE entity may be described by the employee’s name, age, address, salary, and job.

• A particular entity will have a value for each of its attributes. The attribute values that describe

each entity become a major part of the data stored in the database.

• Figure shows two entities and the values of their attributes. The EMPLOYEE entity e1 has four

attributes: Name, Address, Age, and Home_phone; their values are ‘John Smith,’ ‘2311 Kirby,
Houston, Texas 77001’, ‘55’, and ‘713-749-2630’, respec-tively. The COMPANY entity c1 has
three attributes: Name, Headquarters, and President; their values are ‘Sunco Oil’, ‘Houston’, and
‘John Smith’, respectively.

Several types of attributes occur in the ER model:

i) simple versus composite

ii) single-valued versus multivalued

iii) stored versus derived.
i) Composite versus Simple (Atomic) Attributes.

• Composite attributes can be divided into smaller subparts, which represent more basic
attributes with independent meanings.

• For example, the Address attribute of the EMPLOYEE entity shown in Figure can be
subdivided into Street_address, City, State, and Zip, with the values ‘2311 Kirby’, ‘Ashok
nagar’, ‘Tamilnadu’, and ‘600001.’

• Attributes that are not divisible are called simple or atomic attributes.

• Composite attributes can form a hierarchy; for example, Street_address can be further
subdivided into three simple component attributes: Number, Street, and Apartment_number.
The value of a composite attribute is the concatenation of the values of its component simple
attributes.

Figure .A hierarchy of composite attributes.

• Composite attributes are useful to model situations in which a user sometimes refers to the
composite attribute as a unit but at other times refers specifically to its components. If the
composite attribute is referenced only as a whole, there is no need to subdivide it into component
attributes. For example, if there is no need to refer to the individual components of an address (Zip
Code, street, and so on), then the whole address can be designated as a simple attribute.

ii) Single-Valued versus Multivalued Attributes:

• Most attributes have a single value for a particular entity; such attributes are called single-valued.

For example, Age is a single-valued attribute of a person. In some cases an attribute can have a set

of values for the same entity—for instance, a Colors attribute for a car. Such attributes are called

multivalued.

• A multivalued attribute may have lower and upper bounds to constrain the number of values

allowed for each individual entity. For example, the Colors attribute of a car may be restricted to

have between one and three values, if we assume that a car can have three colors at most.

iii) Stored versus Derived Attributes:

• In some cases, two (or more) attribute values are related—for example, the Age and Birth_date

attributes of a person. For a particular person entity, the value of Age can be determined from the

current (today’s) date and the value of that person’s Birth_date. The Age attribute is hence called a

derived attribute and is said to be derivable from the Birth_date attribute, which is called a

stored attribute. Some attribute values can be derived from related entities; for example, an

attribute Number_of_employees of a DEPARTMENT entity can be derived by counting the

number of employees related to (working for) that department.

NULL Values:

In some cases, a particular entity may not have an applicable value for an attribute. For example, the

Apartment_number attribute of an address applies only to addresses that are in apartment buildings and not

to other types of residences, such as single-family homes. For such situations, a special value called NULL

is created.

Complex Attributes:

Figure: complex attribute : Address_phone

In general, composite and multivalued attributes can be nested arbitrarily. We can represent arbitrary

nesting by grouping components of a composite attribute between parentheses () and separating the

components with commas, and by displaying multivalued attributes between braces { }. Such attributes are

called complex attributes. For example, if a person can have more than one residence and each residence

can have a single address and multiple phones, an attribute Address_phone for a person can be specified as

shown in Figure. Both Phone and Address are themselves composite attributes.

2) Entity Types, Entity Sets, Keys, and Value Sets

Entity Types and Entity Sets.

• A database usually contains groups of entities that are similar. For example, a company

employing hundreds of employees may want to store similar information concerning each of the

employees. These employee entities share the same attributes, but each entity has its own value(s)

for each attribute.

• An entity type defines a collection (or set) of entities that have the same attributes. Each entity

type in the database is described by its name and attributes.

• An entity type is represented in ER diagrams as a rectangular box enclosing the entity type name.
• Attribute names are enclosed in ovals and are attached to their entity type by straight lines.
• Composite attributes are attached to their component attributes by straight lines.
• Multivalued attributes are displayed in double ovals. Figure (a) shows a CAR entity type in this

notation.

• An entity type describes the schema or intension for a set of entities that share the same structure.
The collection of entities of a particular entity type is grouped into an entity set, which is also
called the extension of the entity type.

Key Attributes of an Entity Type:

• An important constraint on the entities of an entity type is the key or uniqueness constraint on

attributes. An entity type usually has one or more attributes whose values are distinct for each

individual entity in the entity set. Such an attribute is called a key attribute, and its values can be

used to identify each entity uniquely.

• For example, the Name attribute is a key of the COMPANY entity type, because no two

companies are allowed to have the same name.

• For the PERSON entity type, a typical key attribute is Ssn (Social Security number). Sometimes

several attributes together form a key, meaning that the combination of the attribute values must be

distinct for each entity.

• In ER diagrammatic notation, each key attribute has its name underlined inside the oval.

 Value Sets (Domains) of Attributes.

• Each simple attribute of an entity type is associated with a value set (or domain of values), which

specifies the set of values that may be assigned to that attribute for each individual entity.

• If the range of ages allowed for employees is between 16 and 70, we can specify the value set of

the Age attribute of EMPLOYEE to be the set of integer numbers between 16 and 70.

Relationship types, Roles, Structural Constraints:

Relationship type: R among n Entity types E1, ..., En defines a set of associations among entities

from these types. Each association will be denoted as:

(e1, ..., en) where ei belongs to Ei, 1 <= i <= n.

ex. WORKS_FOR relationship

Figure. Some instances of the WORKS_FOR relationship between EMPLOYEE and

DEPARTMENT.

Degree of a relationship:

 The degree of a relationship type is the number of participating entity types. Hence, the

WORKS_FOR relationship is of degree two. A relationship type of degree two is called binary, and one of

degree three is called ternary. An example of a ternary relationship is SUPPLY Degree of relationship = n

(usually n = 2, binary relationship)

Figure. Some relationship instances of a ternary relationship SUPPLY.

 Relationships as Attributes: It is sometimes convenient to think of a relationship type in terms of

attributes,

Role names

 Each entity participating in a relationship has a ROLE.

 E.g. Employee plays the role of worker and Department plays the role of employer in the

WORKS_FOR relationship type

Role names are more important in recursive relationships.

Figure.The recursive relationship SUPERVISION, where the EMPLOYEE entity type plays the two

roles of supervisor (1) and supervisee (2).

Structural Constraints on Relationships

Two types:

1) Cardinality Ratio Constraint (1-1, 1-N, M-N)

2) Participation Constraint

* Total participation (existence dependency)

* Partial participation

Figure. The 1:1 relationship MANAGES, with partial participation of employee and total

participation of DEPARTMENT.

Figure. The M:N relationship WORKS_ON between EMPLOYEE and PROJECT.

In ER Diagrams:

Total participation is denoted by double line and partial participation by single line cardinality ratios

are mentioned as labels of edges.

Attributes of relationships:

e.x. Hours attribute for WORKS_ON relationship

If relationship is 1-N or 1-1, these attributes can be migrated to the entity sets involved in the

relationship.

1-N: migrate to N side

1-1: migrate to either side

Weak Entity Types

• An entity that does not have a key attribute

• A weak entity must participate in an identifying relationship type with an owner or identifying

entity type

• Entities are identified by the combination of:

– A partial key of the weak entity type

– The particular entity they are related to in the identifying entity type

Example:

 Suppose that a DEPENDENT entity is identified by the dependent’s first name and birthdates, and the

specific EMPLOYEE that the dependent is related to. DEPENDENT is a weak entity type with

EMPLOYEE as its identifying entity type via the identifying relationship type DEPENDENT_OF

Weak Entity Type is: DEPENDENT

Identifying Relationship is: DEPENDENTS_OF

Figure. ER diagram of company.

3. Explain about Enhanced ER model. (or)

Discuss about EER model.

Extended-ER (EER) Model Concepts

• Includes all modeling concepts of basic ER

• Additional concepts: subclasses/superclasses, specialization/generalization, categories, attribute

inheritance

• The resulting model is called the enhanced-ER or Extended ER (E2R or EER) model

• It is used to model applications more completely and accurately if needed

• It includes some object-oriented concepts, such as inheritance

Subclasses and Superclasses:

• An entity type may have additional meaningful subgroupings of its entities

• Example: EMPLOYEE may be further grouped into SECRETARY, ENGINEER, MANAGER,

TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE,…

– Each of these groupings is a subset of EMPLOYEE entities

– Each is called a subclass of EMPLOYEE

– EMPLOYEE is the superclass for each of these subclasses

• These are called superclass/subclass relationships.

• Example: EMPLOYEE/SECRETARY, EMPLOYEE/TECHNICIAN

• These are also called IS-A relationships (SECRETARY IS-A EMPLOYEE, TECHNICIAN IS-A

EMPLOYEE, …).

• Note: An entity that is member of a subclass represents the same real-world entity as some

member of the superclass

– The Subclass member is the same entity in a distinct specific role

– An entity cannot exist in the database merely by being a member of a subclass; it must

also be a member of the superclass

– A member of the superclass can be optionally included as a member of any number of its

subclasses

• Example: A salaried employee who is also an engineer belongs to the two subclasses ENGINEER

and SALARIED_EMPLOYEE

– It is not necessary that every entity in a superclass be a member of some subclass

Attribute Inheritance in Superclass / Subclass Relationships

• An entity that is member of a subclass inherits all attributes of the entity as a member of the

superclass .

It also inherits all relationships

Specialization and Generalization:

1)Specialization

• Is the process of defining a set of subclasses of a superclass

• The set of subclasses is based upon some distinguishing characteristics of the entities in the

superclass

• Example: {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of EMPLOYEE based

upon job type.

– May have several specializations of the same superclass

• Example: Another specialization of EMPLOYEE based in method of pay is

{SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}.

– Superclass/subclass relationships and specialization can be diagrammatically represented

in EER diagrams

– Attributes of a subclass are called specific attributes. For example, TypingSpeed of

SECRETARY

– The subclass can participate in specific relationship types. For example, BELONGS_TO

of HOURLY_EMPLOYEE

Example of a Specialization

Figure.Specialization

2)Generalization

• The reverse of the specialization process

• Several classes with common features are generalized into a superclass; original classes become its

subclasses

• Example: CAR, TRUCK generalized into VEHICLE; both CAR, TRUCK become subclasses of

the superclass VEHICLE.

– We can view {CAR, TRUCK} as a specialization of VEHICLE

– Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK

Modeling of UNION types using categories:

• All of the superclass/subclass relationships we have seen thus far have a single superclass

• A shared subclass is subclass in more than one distinct superclass/subclass relationships, where

each relationships has a single superclass (multiple inheritance)

• In some cases, need to model a single superclass/subclass relationship with more than one

superclass

• Superclasses represent different entity types

• Such a subclass is called a category or UNION TYPE

• Example: Database for vehicle registration, vehicle owner can be a person, a bank (holding a lien

on a vehicle) or a company.

– Category (subclass) OWNER is a subset of the union of the three superclasses

COMPANY, BANK, and PERSON

– A category member must exist in at least one of its superclasses

• Note: The difference from shared subclass, which is subset of the intersection of its superclasses

(shared subclass member must exist in all of its superclasses).

Example of categories (UNION TYPES)

Figure. categories (UNION TYPES)

4. Discuss the correspondence between the ER model construct and the relational model constructs.

Show how each ER model construct can be mapped to the relation model.

SEVEN-STEP ALGORITHM TO CONVERT THE BASIC ER MODEL CONSTRUCTS INTO

RELATIONS :

Step 1: Mapping of Regular Entity Types:

• For each regular (strong) entity type E in the ER schema, create a relation R that includes all the

simple attributes of E. Include only the simple component attributes of a composite attribute. Choose

one of the key attributes of E as the primary key for R. If the chosen key of E is a composite, then

the set of simple attributes that form it will together form the primary key of R.

• If multiple keys were identified for E during the conceptual design, the information describing the
attributes that form each additional key is kept in order to specify secondary (unique) keys of
relation R. Knowledge about keys is also kept for index-ing purposes and other types of analyses.

• In our example, we create the relations EMPLOYEE, DEPARTMENT, and PROJECT in Figure to
correspond to the regular entity types EMPLOYEE, DEPARTMENT, and PROJECT in Figure . The
foreign key and relationship attributes, if any, are not included yet; they will be added during
subsequent steps. These include the attributes Super_ssn and Dno of EMPLOYEE, Mgr_ssn and
Mgr_start_date of DEPARTMENT, and Dnum of PROJECT. In our example, we choose Ssn,
Dnumber, and Pnumber as primary keys for the relations EMPLOYEE, DEPARTMENT, and
PROJECT, respectively. Knowledge that Dname of DEPARTMENT and Pname of PROJECT are
secondary keys is kept for possible use later in the design.

• The relations that are created from the mapping of entity types are sometimes called entity relations
because each tuple represents an entity instance.

Step 2: Mapping of Weak Entity Types:

• For each weak entity type W in the ER schema with owner entity type E, create a relation R

and include all simple attributes (or simple components of composite attributes) of W as
attributes of R. In addition, include as foreign key attributes of R, the primary key attribute(s)

of the relation(s) that correspond to the owner entity type(s); this takes care of mapping the

identifying relationship type of W. The primary key of R is the combination of the primary

key(s) of the owner(s) and the partial key of the weak entity type W, if any.

• If there is a weak entity type E2 whose owner is also a weak entity type E1, then E1 should be
mapped before E2 to determine its primary key first.

• In our example, we create the relation DEPENDENT in this step to correspond to the weak
entity type DEPENDENT . We include the primary key Ssn of the EMPLOYEE relation—
which corresponds to the owner entity type—as a foreign key attribute of DEPENDENT; we
rename it Essn, although this is not necessary.

Figure . Illustration of some mapping steps.

(a) Entity relations after step 1.

(b) Additional weak entity relation after step 2.

(c) Relationship relation after step 5.

(d) Relation representing multivalued attribute after step 6.

The primary key of the DEPENDENT relation is the combination {Essn, Dependent_name}, because
Dependent_name is the partial key of DEPENDENT.

It is common to choose the propagate (CASCADE) option for the referential triggered action on the
foreign key in the relation corresponding to the weak entity type, since a weak entity has an existence
dependency on its owner entity. This can be used for both ON UPDATE and ON DELETE.

Step 3: Mapping of Binary 1:1 Relationship Types:

 For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that

correspond to the entity types participating in R. There are three possible approaches:

(1) Foreign key approach

 (2) Merged relationship approach

 (3) Cross-reference or relationship relation approach.

The first approach is the most useful and should be followed unless special conditions exist.

(1) Foreign key approach:

Choose one of the relations—S, say—and include as a foreign key in S the primary key of T. It is
better to choose an entity type with total participation in R in the role of S. Include all the simple attributes
(or simple components of composite attributes) of the 1:1 relationship type R as attributes of S.

In our example, we map the 1:1 relationship type MANAGES from Figure by choosing the
participating entity type DEPARTMENT to serve in the role of S because its participation in the
MANAGES relationship type is total (every department has a manager). We include the primary key of the
EMPLOYEE relation as foreign key in the DEPARTMENT relation and rename it Mgr_ssn. We also
include the simple attribute Start_date of the MANAGES relationship type in the DEPARTMENT relation

and rename it Mgr_start_date.

Note that it is possible to include the primary key of S as a foreign key in T instead. In our example,
this amounts to having a foreign key attribute, say Department_managed in the EMPLOYEE relation, but
it will have a NULL value for employee tuples who do not manage a department. If only 2 percent of

employees manage a department, then 98 percent of the foreign keys would be NULL in this case. Another
possibility is to have foreign keys in both relations S and T redundantly, but this creates redundancy and
incurs a penalty for consistency maintenance.

(2)Merged relation approach:

An alternative mapping of a 1:1 relationship type is to merge the two entity types and the relationship

into a single rela-tion. This is possible when both participations are total, as this would indicate that the

two tables will have the exact same number of tuples at all times.

(3)Cross-reference or relationship relation approach:

 The third option is to set up a third relation R for the purpose of cross-referencing the primary keys of
the two relations S and T representing the entity types. As we will see, this approach is required for binary
M:N relationships. The relation R is called a relationship relation (or sometimes a lookup table), because
eachtuple in R represents a relationship instance that relates one tuple from S with one tuple from T. The
relation R will include the primary key attributes of S and T as foreign keys to S and T. The primary key of
R will be one of the two foreign keys, and the other foreign key will be a unique key of R. The drawback is
having an extra relation, and requiring an extra join operation when combining related tuples from the
tables.

Step 4: Mapping of Binary 1:N Relationship Types:

For each regular binary 1:N relationship type R, identify the relation S that represents the participating

entity type at the N-side of the relationship type. Include as foreign key in S the primary key of the relation

T that represents the other entity type participating in R; we do this because each entity instance on the N-

side is related to at most one entity instance on the 1-side of the relationship type. Include any simple

attributes (or simple components of composite attributes) of the 1:N relationship type as attributes of S.

In our example, we now map the 1:N relationship types WORKS_FOR, CONTROLS, and

SUPERVISION from Figure 9.1. For WORKS_FOR we include the primary key Dnumber of the

DEPARTMENT relation as foreign key in the EMPLOYEE relation and call it Dno. For SUPERVISION

we include the primary key of the EMPLOYEE relation as foreign key in the EMPLOYEE relation itself—

because the relationship is recursive—and call it Super_ssn. The CONTROLS relationship is mapped to

the foreign key attribute Dnum of PROJECT, which references the primary key Dnumber of the

DEPARTMENT relation. .

An alternative approach is to use the relationship relation (cross-reference) option as in the third
option for binary 1:1 relationships. We create a separate relation R whose attributes are the primary keys of
S and T, which will also be foreign keys to S and T. The primary key of R is the same as the primary key
of S. This option can be used if few tuples in S participate in the relationship to avoid excessive NULL
values in the foreign key.

Step 5: Mapping of Binary M:N Relationship Types.

 For each binary M:N relationship type R, create a new relation S to represent R. Include as foreign

key attributes in S the primary keys of the relations that represent the participating entity types; their

combination will form the primary key of S. Also include any sim-ple attributes of the M:N relationship

type (or simple components of composite attributes) as attributes of S. Notice that we cannot represent an

M:N relationship type by a single foreign key attribute in one of the participating relations (as we did for

1:1 or 1:N relationship types) because of the M:N cardinality ratio; we must cre-ate a separate relationship

relation S.

In our example, we map the M:N relationship type WORKS_ON from Figure by creating the relation
WORKS_ON in Figure 9.2. We include the primary keys of the PROJECT and EMPLOYEE relations as
foreign keys in WORKS_ON and rename them Pno and Essn, respectively. We also include an attribute

Hours in WORKS_ON to represent the Hours attribute of the relationship type. The primary key of the
WORKS_ON relation is the combination of the foreign key attributes {Essn, Pno}.

The propagate (CASCADE) option for the referential triggered action should be specified on the

foreign keys in the relation corresponding to the relationship R, since each relationship instance has an

existence dependency on each of the entities it relates. This can be used for both ON UPDATE and ON

DELETE.

Notice that we can always map 1:1 or 1:N relationships in a manner similar to M:N relationships by
using the cross-reference (relationship relation) approach, as we discussed earlier. This alternative is
particularly useful when few relationship instances exist, in order to avoid NULL values in foreign keys.
In this case, the primary key of the relationship relation will be only one of the foreign keys that refer-ence
the participating entity relations. For a 1:N relationship, the primary key of the relationship relation will be
the foreign key that references the entity relation on the N-side. For a 1:1 relationship, either foreign key
can be used as the primary key of the relationship relation.

Step 6: Mapping of Multivalued Attributes:

 For each multivalued attribute A, create a new relation R. This relation R will include an attribute

corresponding to A, plus the primary key attribute K—as a foreign key in R—of the relation that

represents the entity type or relationship type that has A as a multivalued attribute. The primary key of R is

the combination of A and K. If the multivalued attribute is composite, we include its simple components.

In our example, we create a relation DEPT_LOCATIONS (see Figure 9.3(d)). The attribute Dlocation
represents the multivalued attribute LOCATIONS of DEPARTMENT, while Dnumber—as foreign key—
represents the primary key of the DEPARTMENT relation. The primary key of DEPT_LOCATIONS is
the combination of {Dnumber, Dlocation}. A separate tuple will exist in DEPT_LOCATIONS for each
loca-tion that a department has.

The propagate (CASCADE) option for the referential triggered action should be specified on the
foreign key in the relation R corresponding to the multivalued attribute for both ON UPDATE and ON
DELETE. We should also note that the key of R when mapping a composite, multivalued attribute requires
some analysis of the meaning of the component attributes. In some cases, when a multi-valued attribute is
composite, only some of the component attributes are required to be part of the key of R; these attributes
are similar to a partial key of a weak entity type that corresponds to the multivalued attribute .

Step 7: Mapping of N-ary Relationship Types:

 For each n-ary relationship type R, where n > 2, create a new relation S to represent R. Include as
foreign key attributes in S the primary keys of the relations that represent the participating entity types.
Also include any simple attributes of the n-ary relationship type (or simple components of composite
attributes) as attributes of S. The primary key of S is usually a combination of all the foreign keys that
reference the relations representing the participating entity types. However, if the cardinality constraints on
any of the entity types E participating in R is 1, then the primary key of S should not include the foreign
key attribute that references the relation E corresponding to E.

Table . Correspondence between ER and Relational Models

5. Explain about functional dependency and nonloss decomposition.

• A functional dependency is a constraint between two sets of attributes from the database.
• A functional dependency, denoted by X → Y, between two sets of attributes X and Y that are

subsets of R specifies a constraint on the possible tuples that can form a relation state r of R. The
constraint is that, for any two tuples t1 and t2 in r that have t1[X] = t2[X], they must also have t1[Y]
= t2[Y].

• This means that the values of the Y component of a tuple in r depend on, or are determined by, the
values of the X component; alternatively, the values of the X com-ponent of a tuple uniquely (or
functionally) determine the values of the Y component. We also say that there is a functional
dependency from X to Y, or that Y is functionally dependent on X. The abbreviation for
functional dependency is FD or f.d. The set of attributes X is called the left-hand side of the FD,
and Y is called the right-hand side.

• Thus, X functionally determines Y in a relation schema R if, and only if, whenever two tuples of
r(R) agree on their X-value, they must necessarily agree on their Y-value. Note the following:

• If a constraint on R states that there cannot be more than one tuple with a given X-value in any
relation instance r(R)—that is, X is a candidate key of R—this implies that X → Y for any subset
of attributes Y of R (because the key constraint implies that no two tuples in any legal state r(R)
will have the same value of X). If X is a candidate key of R, then X → R.

 If X → Y in R, this does not say whether or not Y → X in R.

• A functional dependency is a property of the semantics or meaning of the attributes. The
database designers will use their understanding of the semantics of the attributes of R—that is,
how they relate to one another—to specify the functional dependencies that should hold on all
relation states (extensions) r of R. Whenever the semantics of two sets of attributes in R indicate
that a functional dependency should hold, we specify the dependency as a constraint. Relation
extensions r(R) that satisfy the functional dependency constraints are called legal relation states
(or legal extensions) of R.

• Hence, the main use of functional dependencies is to describe further a relation schema R by
specifying constraints on its attributes that must hold at all times. Certain FDs can be specified
without referring to a specific relation, but as a property of those attributes given their commonly
understood meaning. For example, {State, Driver_license_number} → Ssn should hold for any
adult in the United States and hence should hold whenever these attributes appear in a relation. It is
also possible that certain functional dependencies may cease to exist in the real world if the
relationship changes. For example, the FD Zip_code → Area_code used to exist as a relationship

between postal codes and telephone num-ber codes in the United States, but with the proliferation
of telephone area codes it is no longer true.

• Consider the relation schema EMP_PROJ. From the semantics of the attributes and the relation,
we know that the following functional dependencies should hold:

a. Ssn → Ename

b. Pnumber →{Pname, Plocation}

c. {Ssn, Pnumber} → Hours

• These functional dependencies specify that (a) the value of an employee’s Social Security number
(Ssn) uniquely determines the employee name (Ename), (b) the value of a project’s number
(Pnumber) uniquely determines the project name (Pname) and location (Plocation), and (c) a
combination of Ssn and Pnumber values uniquely determines the number of hours the employee
currently works on the project per week (Hours). Alternatively, we say that Ename is functionally
determined by (or functionally dependent on) Ssn, or given a value of Ssn, we know the value of
Ename, and so on.

• A functional dependency is a property of the relation schema R, not of a particular legal relation
state r of R. Therefore, an FD cannot be inferred automatically from a given relation extension r
but must be defined explicitly by someone who knows the semantics of the attributes of R.

• Given a populated relation, one cannot determine which FDs hold and which do not unless the
meaning of and the relationships among the attributes are known. All one can say is that a certain
FD may exist if it holds in that particular extension. One cannot guarantee its existence until the
meaning of the corresponding attributes is clearly understood. One can, however, emphatically
state that a certain FD does not hold if there are tuples that show the violation of such an FD.

• Figure introduces a diagrammatic notation for displaying FDs: Each FD is displayed as a
horizontal line. The left-hand-side attributes of the FD are connected by vertical lines to the line
representing the FD, while the right-hand-side attributes are connected by the lines with arrows
pointing toward the attributes. We denote by F the set of functional dependencies that are specified
on relation schema R.

 NON LOSS DECOMPOSITION (OR) LOSSLESS DECOMPOSITION :

• The decompositio of relation R into R1 and R2 is lossless when the join of R1 and R2 yield the

same relation as in R.
• A relational table is decomposed (or factored) into two or more smaller tables, in such a way that

the designer can capture the precise content of the original table by joining the decomposed
parts. This is called lossless-join (or non-additive join) decomposition.

• This is also referred as non-additive decomposition.

• The lossless-join decomposition is always defined with respect to a specific set F of dependencies.

Example:

<EmpInfo>

Emp_ID Emp_Name Emp_Age Emp_Location Dept_ID Dept_Name

E001 Jacob 29 Alabama Dpt1 Operations

E002 Henry 32 Alabama Dpt2 HR

E003 Tom 22 Texas Dpt3 Finance

Decompose the above table into two tables:

<EmpDetails>

Emp_ID Emp_Name Emp_Age Emp_Location

E001 Jacob 29 Alabama

E002 Henry 32 Alabama

E003 Tom 22 Texas

<DeptDetails>

Dept_ID Emp_ID Dept_Name

Dpt1 E001 Operations

Dpt2 E002 HR

Dpt3 E003 Finance

Now, Natural Join is applied on the above two tables:

The result will be:

Emp_ID Emp_Name Emp_Age Emp_Location Dept_ID Dept_Name

E001 Jacob 29 Alabama Dpt1 Operations

E002 Henry 32 Alabama Dpt2 HR

E003 Tom 22 Texas Dpt3 Finance

Therefore, the above relation had lossless decomposition i.e. no loss of information.

Lossy Decomposition:

• When a relation is decomposed into two or more relational schemas, the loss of information is

unavoidable when the original relation is retrieved.

Example:

<EmpInfo>

Emp_ID Emp_Name Emp_Age Emp_Location Dept_ID Dept_Name

E001 Jacob 29 Alabama Dpt1 Operations

E002 Henry 32 Alabama Dpt2 HR

E003 Tom 22 Texas Dpt3 Finance

Decompose the above table into two tables:

<EmpDetails>

Emp_ID Emp_Name Emp_Age Emp_Location

E001 Jacob 29 Alabama

E002 Henry 32 Alabama

E003 Tom 22 Texas

<DeptDetails>

Dept_ID Dept_Name

Dpt1 Operations

Dpt2 HR

Dpt3 Finance

Now, you won’t be able to join the above tables, since Emp_ID isn’t part of the DeptDetails relation.
Therefore, the above relation has lossy decomposition.

6. State the need for Normalization of a database and explain the various Normal Forms

(1st, 2nd, and 3rd, BCNF, 4th, 5th and domain-key) with suitable examples.

(or)

Explain the boyce-code normal form with an example. Also state how it differs from that of 3NF.

Discuss join dependencies and fifth normal form, and explain why 5NF?

What are normal forms? Explain the type of normal forms with suitable example.

Describe about the multi_valued dependencies and fourth normal form with suitable example.

• The normalization process takes a relation schema through a series of tests to certify whether it

satisfies a certain normal form. The process, which proceeds in a top-down fashion by evaluating

each relation against the criteria for normal forms and decomposing relations as necessary, can
thus be considered as relational design by analysis.

• Initially, Codd proposed three normal forms, which he called first, second, and third normal form.
A stronger definition of 3NF—called Boyce-Codd normal form (BCNF)—was proposed later by
Boyce and Codd. All these normal forms are based on a single analytical tool: the functional
dependencies among the attributes of a relation. Later, a fourth normal form (4NF) and a fifth
normal form (5NF) were proposed, based on the concepts of multivalued dependencies and join
dependencies, respectively.

• Normalization of data can be considered a process of analyzing the given relation schemas based
on their FDs and primary keys to achieve the desirable properties of

1) minimizing redundancy
2) minimizing the insertion, deletion, and update anomalies

Example: Suppose a manufacturing company stores the employee details in a table named employee that

has four attributes: emp_id for storing employee’s id, emp_name for storing employee’s name,

emp_address for storing employee’s address and emp_dept for storing the department details in which the

employee works. At some point of time the table looks like this:

emp_id emp_name emp_address emp_dept

101 Rick Delhi D001

101 Rick Delhi D002

123 Maggie Agra D890

166 Glenn Chennai D900

166 Glenn Chennai D004

The above table is not normalized. We will see the problems that we face when a table is not normalized.

Update anomaly: In the above table we have two rows for employee Rick as he belongs to two

departments of the company. If we want to update the address of Rick then we have to update the same in

two rows or the data will become inconsistent. If somehow, the correct address gets updated in one

department but not in other then as per the database, Rick would be having two different addresses, which

is not correct and would lead to inconsistent data.

Insert anomaly: Suppose a new employee joins the company, who is under training and currently not

assigned to any department then we would not be able to insert the data into the table if emp_dept field

doesn’t allow nulls.

Delete anomaly: Suppose, if at a point of time the company closes the department D890 then deleting the

rows that are having emp_dept as D890 would also delete the information of employee Maggie since she is

assigned only to this department.

• To overcome these anomalies we need to normalize the data.
• It can be considered as a “filtering” or “purification” process to make the design have successively

better quality. Unsatisfactory relation schemas that do not meet certain conditions—the normal
form tests—are decomposed into smaller relation schemas that meet the tests and hence possess
the desirable properties. Thus, the normalization procedure provides database design-ers with the
following:

a. A formal framework for analyzing relation schemas based on their keys and on the functional
dependencies among their attributes

b. A series of normal form tests that can be carried out on individual relation schemas so that the
relational database can be normalized to any desired degree

The normal form of a relation refers to the highest normal form condition that it meets, and hence
indicates the degree to which it has been nor-malized.

Normal forms, when considered in isolation from other factors, do not guarantee a good database
design. It is generally not sufficient to check separately that each relation schema in the database is, say, in
BCNF or 3NF. Rather, the process of normalization through decomposition must also confirm the
existence of additional properties that the relational schemas, taken together, should possess. These would
include two properties:

1) The nonadditive join or lossless join property, which guarantees that the spurious tuple
generation problem does not occur with respect to the relation schemas created after decomposition.

2) The dependency preservation property, which ensures that each functional dependency is
represented in some individual relation resulting after decomposition.

• The nonadditive join property is extremely critical and must be achieved at any cost,
whereas the dependency preservation property, although desirable, is some-times sacrificed.

• Denormalization is the process of storing the join of higher nor-mal form relations as a base

relation, which is in a lower normal form.
• A superkey of a relation schema R = {A1, A2, ... , An} is a set of attributes S ⊆ R with the

property that no two tuples t1 and t2 in any legal relation state r of R will have t1[S] = t2[S]. A
key K is a superkey with the additional property that removal of any attribute from K will cause
K not to be a superkey any more.

• The difference between a key and a superkey is that a key has to be minimal;
• If a relation schema has more than one key, each is called a candidate key. One of the

candidate keys is arbitrarily designated to be the primary key, and the others are called
secondary keys.

• An attribute of relation schema R is called a prime attribute of R if it is a member of some
candidate key of R. An attribute is called nonprime if it is not a prime attribute—that is, if it is
not a member of any candidate key.

 FIRST NORMAL FORM (1NF):

• First normal form states that the domain of an attribute must include only atomic (simple,
indivisible) values and that the value of any attribute in a tuple must be a single value
from the domain of that attribute.

• A relation is in 1NF if the domain of attribute must be an single atomic value.
• The only attribute values permitted by 1NF are single atomic (or indivisible) values.
• Consider the DEPARTMENT relation schema shown in Figure We assume that each

department can have a number of locations. This is not in 1NF because Dlocations is not an
atomic attribute. There are two ways we can look at the Dlocations attribute:

1) The domain of Dlocations contains atomic values, but some tuples can have a set of these values. In
this case, Dlocations is not functionally dependent on the primary key Dnumber.

2) The domain of Dlocations contains sets of values and hence is nonatomic. In this case, Dnumber
→ Dlocations because each set is considered a single member of the attribute domain.

a)DEPARTMENT

 Dname Dnumber Dmgr_ssn Dlocations

(b) DEPARTMENT

Dname Dnumber Dmgr_ssn Dlocations

Research 5 333445555 {Bangalore, Chennai, Delhi}

Administration 4 987654321 { Chennai }

Headquarters 1 888665555 { Delhi }

(c) DEPARTMENT

Dname Dnumber Dmgr_ssn Dlocation

Research 5 333445555 Bangalore

Research 5 333445555 Chennai

Research 5 333445555 Delhi

Administration 4 987654321 Chennai

Headquarters 1 888665555 Delhi

Figure. Normalization into 1NF. (a) A relation schema that is not in 1NF. (b) Sample state of relation
DEPARTMENT. (c) 1NF version of the same relation with redundancy.

SECOND NORMAL FORM:

• Second normal form (2NF) is based on the concept of full functional dependency.
• A functional dependency X → Y is a full functional dependency if removal of any attribute A

from X means that the dependency does not hold any more; that is, for any attribute A ε X, (X –
{A}) does not functionally determine Y.

• A functional dependency X → Y is a partial dependency if some attribute A ε X can be removed
from X and the dependency still holds; that is, for some A ε X, (X – {A}) → Y.

• In Figure, {Ssn, Pnumber} → Hours is a full dependency (neither Ssn → Hours nor
 Pnumber → Hours holds). However, the dependency {Ssn, Pnumber} → Ename is partial
because Ssn → Ename holds.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully functionally
dependent on the primary key of R.

• The test for 2NF involves testing for functional dependencies whose left-hand side attributes are
part of the primary key. If the primary key contains a single attribute, the test need not be applied
at all. The EMP_PROJ relation in Figure is in 1NF but is not in 2NF.

• The nonprime attribute Ename violates 2NF because of FD2, as do the nonprime attributes
Pname and Plocation because of FD3. The functional dependencies FD2 and FD3 make Ename,
Pname, and Plocation partially dependent on the primary key {Ssn, Pnumber} of EMP_PROJ,
thus violating the 2NF test.

• If a relation schema is not in 2NF, it can be second normalized or 2NF normalized into a number
of 2NF relations in which nonprime attributes are associated only with the part of the primary key
on which they are fully functionally dependent. Therefore, the functional dependencies FD1, FD2,
and FD3 in Figure lead to the decomposition of EMP_PROJ into the three relation schemas EP1,
EP2, and EP3 shown in Figure 15.11(a), each of which is in 2NF.

THIRD NORMAL FORM:

• Third normal form (3NF) is based on the concept of transitive dependency. A functional
dependency X → Y in a relation schema R is a transitive dependency if there exists a set of
attributes Z in R that is neither a candidate key nor a subset of any key of R, and both X → Z and
Z → Y hold. The dependency Ssn → Dmgr_ssn is transitive through Dnumber in EMP_DEPT in
Figure 15.3(a), because both the dependencies Ssn → Dnumber and Dnumber → Dmgr_ssn hold
and Dnumber is nei-ther a key itself nor a subset of the key of EMP_DEPT. Intuitively, we can
see that the dependency of Dmgr_ssn on Dnumber is undesirable in since Dnumber is not a
key of EMP_DEPT.

Definition. A relation schema R is in 3NF if it satisfies 2NF and no nonprime attribute of R is
transitively dependent on the primary key.

• The relation schema EMP_DEPT in Figure 15.3(a) is in 2NF, since no partial dependencies on a
key exist. However, EMP_DEPT is not in 3NF because of the transitive dependency of Dmgr_ssn
(and also Dname) on Ssn via Dnumber. We can normalize EMP_DEPT by decomposing it into the
two 3NF relation schemas ED1 and ED2 shown in Figure. Intuitively, we see that ED1 and ED2
represent independent entity facts about employees and departments. A NATURAL JOIN
operation on ED1 and ED2 will recover the original relation EMP_DEPT without generating
spurious tuples.

• Intuitively, we can see that any functional dependency in which the left-hand side is part (a proper
subset) of the primary key, or any functional dependency in which the left-hand side is a nonkey
attribute, is a problematic FD.

• 2NF and 3NF normalization remove these problem FDs by decomposing the original relation into
new relations. In terms of the normalization process, it is not necessary to remove the partial
dependencies before the transitive dependencies, but historically, 3NF has been defined with the
assumption that a relation is tested for 2NF first before it is tested for 3NF.

BOYCE-CODD NORMAL FORM (BCNF):

• Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was found to
be stricter than 3NF. That is, every relation in BCNF is also in 3NF; however, a relation in 3NF is
not necessarily in BCNF.

• A relation is in BCNF if every functional dependency X → Y, X is the super key of the table.

• For BCNF, the table should be in 3NF, and for every FD, LHS is super key.
Example: Let's assume there is a company where employees work in more than one department.

EMPLOYEE table:

EMP_ID EMP_COUNTRY EMP_DEPT DEPT_TYPE EMP_DEPT_NO

264 India Designing D394 283

264 India Testing D394 300

364 UK Stores D283 232

364 UK Developing D283 549

In the above table Functional dependencies are as follows:

1. EMP_ID → EMP_COUNTRY
2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}

Candidate key: {EMP-ID, EMP-DEPT}

The table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys.

To convert the given table into BCNF, we decompose it into three tables:

EMP_COUNTRY table:

EMP_ID EMP_COUNTRY

264 India

264 India

EMP_DEPT table:

EMP_DEPT DEPT_TYPE EMP_DEPT_NO

Designing D394 283

Testing D394 300

Stores D283 232

Developing D283 549

EMP_DEPT_MAPPING table:

EMP_ID EMP_DEPT

D394 283

D394 300

D283 232

D283 549

Functional dependencies:

1. EMP_ID → EMP_COUNTRY
2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}

Candidate keys:

For the first table: EMP_ID
For the second table: EMP_DEPT
For the third table: {EMP_ID, EMP_DEPT}

Now, this is in BCNF because left side part of both the functional dependencies is a key.

MULTIVALUED DEPENDENCY AND FOURTH NORMAL FORM

Definition. A relation schema R is in 4NF with respect to a set of dependencies F (that includes functional
dependencies and multivalued dependencies) if, for every nontrivial multivalued dependency X →→ Y in
F, X is a superkey for R.

Definition. A multivalued dependency X →→ Y specified on relation schema R, where X and Y are
both subsets of R, specifies the following constraint on any relation state r of R: If two tuples t1 and t2
exist in r such that t1[X] = t2[X], then two tuples t3 and t4 should also exist in r with the following
properties, where we use Z to denote (R – (X ∪ Y))

t3[X] = t4[X] = t1[X] = t2[X].

t3[Y] = t1[Y] and t4[Y] = t2[Y].

t3[Z] = t2[Z] and t4[Z] = t1[Z].

• Whenever X →→ Y holds, we say that X multidetermines Y. Because of the symmetry in the
definition, whenever X →→ Y holds in R, so does X →→ Z. Hence, X →→ Y implies X →→ Z,
and therefore it is sometimes written as X →→ Y|Z.

• An MVD X →→ Y in R is called a trivial MVD if (a) Y is a subset of X, or (b) X ∪ Y=R.

• For example, the relation EMP_PROJECTS in Figure 15.15(b) has the trivial MVD Ename →→
Pname. An MVD that satisfies neither (a) nor (b) is called a nontrivial MVD. A trivial MVD will
hold in any relation state r of R; it is called trivial because it does not specify any significant or
meaningful constraint on R.

• If we have a nontrivial MVD in a relation, we may have to repeat values redundantly in the tuples.
In the EMP relation of Figure(a), the values ‘X’ and ‘Y’ of Pname are repeated with each value of
Dname (or, by symmetry, the values ‘John’ and ‘Anna’ of Dname are repeated with each value of
Pname). This redundancy is clearly undesirable. However, the EMP schema is in BCNF because
no functional dependencies hold in EMP. Therefore, we need to define a fourth normal form that is
stronger than BCNF and disallows relation schemas such as EMP.

• Notice that relations containing nontrivial MVDs tend to be all-key relations—that is, their key is
all their attributes taken together. Furthermore, it is rare that such all-key relations with a
combinatorial occurrence of repeated values would be designed in practice. However, recognition
of MVDs as a potential problematic dependency is essential in relational design.

The process of normalizing a relation involving the nontrivial MVDs that is not in 4NF consists of
decomposing it so that each MVD is represented by a separate relation where it becomes a trivial MVD.

• A relation will be in 4NF if it is in Boyce Codd normal form and has only one
trivial multi-valued dependency.

Figure . (a)The EMP relation with two MVDs: Ename →→ Pname and Ename →→ Dname.

(b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and
EMP_DEPENDENTS.

• Consider the EMP relation in Figure(a). EMP is not in 4NF because in the nontrivial MVDs
Ename →→ Pname and Ename→→Dname, and Ename is not a superkey of EMP.

• We decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS, shown in Figure(b). Both
EMP_PROJECTS and EMP_DEPENDENTS are in 4NF, because the MVDs Ename→→Pname
in EMP_PROJECTS and Ename →→ Dname in EMP_DEPENDENTS are trivial MVDs. No
other nontrivial MVDs hold in either EMP_PROJECTS or EMP_DEPENDENTS. No FDs hold in
these relation schemas either.

JOIN DEPENDENCIES AND FIFTH NORMAL FORM

Definition. A join dependency (JD) can be said to exist if the join of R1 and R2 over C is equal to
relation R. Where, R1 and R2 are the decompositions R1(A, B, C), and R2 (C,D) of a given relations R (A,
B, C, D). Alternatively, R1 and R2 is a lossless decomposition of R.

Definition Of fifth normal form, which is also called project-join normal form.

A database is said to be in 5NF, if and only if,

• It's in 4NF

• If we can decompose table further to eliminate redundancy and anomaly, and when we re-

join the decomposed tables by means of candidate keys, we should not be losing the original

data or any new record set should not arise. In simple words, joining two or more

decomposed table should not lose records nor create new records.

• Consider an example of different Subjects taught by different lecturers and the lecturers taking

classes for different semesters.

• Note: Please consider that Semester 1 has Mathematics, Physics and Chemistry and Semester 2

has only Mathematics in its academic year!!

• In above table, Rose takes both Mathematics and Physics class for Semester 1, but she does not

take Physics class for Semester 2. In this case, combination of all these 3 fields is required to

identify a valid data. Imagine we want to add a new class - Semester3 but do not know which

Subject and who will be taking that subject. We would be simply inserting a new entry with Class

as Semester3 and leaving Lecturer and subject as NULL. As we discussed above, it's not a good to

have such entries. Moreover, all the three columns together act as a primary key, we cannot leave

other two columns blank!

• Hence we have to decompose the table in such a way that it satisfies all the rules till 4NF and

when join them by using keys, it should yield correct record. Here, we can represent each lecturer's

Subject area and their classes in a better way. We can divide above table into three - (SUBJECT,

LECTURER), (LECTURER, CLASS), (SUBJECT, CLASS)

• Now, each of combinations is in three different tables. If we need to identify who is teaching

which subject to which semester, we need join the keys of each table and get the result.

• For example, who teaches Physics to Semester 1, we would be selecting Physics and Semester1

from table 3 above, join with table1 using Subject to filter out the lecturer names. Then join with

table2 using Lecturer to get correct lecturer name. That is we joined key columns of each table to

get the correct data. Hence there is no lose or new data - satisfying 5NF condition.

SELECT t3.Class, t3.Subject, t1.Lecturer FROM TABLE3 t3, TABLE3 t2, TABLE3 t1,
where t3.Class = 'SEMESTER1' and t3.SUBJECT= 'PHYSICS' AND t3.Subject = t1.Subject
AND t3.Class = t2.Class AND t1.Lecturer = t2.Lecturer;

UNIT-2

PART –A

1. Why 4NF in Normal Form is more desirable than BCNF? Nov/ Dec 2014

4NF is an improvement over BCNF since it eliminates another form of undesirable structure MVD by

taking two projections.

R.A -> R.B

A relation R is in fourth normal form if whenever there exists a MVD in relation R.A ->-> B then all

attributes of R are also functionally dependent on A

4NF is stronger than BCNF, ie, any 4NF relation is necessary in BCNF

2. Define functional dependency. April/ May 2015

Functional dependency is a relationship that exists when one attribute uniquely determines another

attribute. If R is a relation with attributes X and Y, a functional dependency between the attributes is

represented as X->Y, which specifies Y is functionally dependent on X.

3. State the anomalies of 1NF. Nov/ Dec 2015

INSERT. Certain student with SID 5 got admission in a different campus (say) Karachi cannot be added

until the student registers for a course.

DELETE. If student graduates and his/her corresponding record is deleted, then all information about that

student is lost.

UPDATE. If student migrates from Islamabad campus to Lahore campus (say) SID = 1, then six rows

would have to be updated with this new information

4. Explain entity relationship model. May/ June 2016

The entity relationship model is a collection of basic objects called entities and relationship among those

objects. An entity is a thing or object in the real world that is distinguishable from other objects.

5. What is a weak entity? Give example. Nov/ Dec 2016

An entity set may not have sufficient attributes to form a primary key, and its primary key compromises

of its partial key and primary key of its parent entity, then it is said to be Weak Entity set

6. What are the desirable properties of decomposition? Nov/ Dec 2017

a. Lossless Join: this property ensures that any instance of the original relation can be

identified from corresponding instances in the smaller relation.

b. Dependency Preservation: this property ensures that a constraint on the original relation

can be maintained by simply enforcing some constraint on each of the smaller relation.

7. What is meant by normalization of data?

Normalization is a process of analyzing the given relation schemas based on their

Functional Dependencies (FDs) and primary key to achieve the properties

i) Minimizing redundancy

ii) Minimizing insertion, deletion and updating anomalies

8. Distinguish key and super key. Nov Dec 2017

 Minimal column which are sufficient to identify row is primary key. Super key also use for

identify row but one super key may be contain more than 1 primary key or combination of primary keys

known as super key. Both used for uniquely identify of row. Table contain more than 1 candidate key but

only 1 primary key

9. Define instance and schema?

Instance: Collection of data stored in the data base at a particular moment is called an Instance of the

database.

Schema: The overall design of the data base is called the data base schema.

10. Define the terms 1) Physical schema 2) logical schema.

Physical schema: The physical schema describes the database design at the physical level, which is the

lowest level of abstraction describing how the data are actually stored.

Logical schema: The logical schema describes the database design at the logical level, which describes

what data are stored in the database and what relationship exists among the data.

11. What are attributes? Give examples.

An entity is represented by a set of attributes. Attributes are descriptive properties possessed by each

member of an entity set.

Example: possible attributes of customer entity are customer name, customer id, Customer Street,

customer city.

12. What is relationship? Give examples

A relationship is an association among several entities.

Example: A depositor relationship associates a customer with each account that he/she has.

13. . Define the term Relationship set.

Relationship set: The set of all relationships of the same type is termed as a relationship set.

14. Define null values

In some cases a particular entity may not have an applicable value for an attribute or if we do not know the

value of an attribute for a particular entity. In these cases null value is used.

15. Consider the following relation :

R (A, B, C, D, E)

The primary key of the relation is AB. The following functional dependencies hold :

A → C

B → D

AB → E .

Is the above relation in second normal form?

16. Consider the following relation :

R(A, B, C, D)

The primary key of the relation is A. The following functional dependencies hold :

A → B,C

B → D

Is the above relation in third normal form?

17. What is the need for normalization?

Normalization is the process of removing redundant data from your tables in order to improve storage

efficiency, data integrity and scalability. This improvement is balanced against an increase in

complexity and potential performance losses from the joining of the normalized tables at query-time.

There are two goals of the normalization process: eliminating redundant data (for example, storing the

same data in more than one table) and ensuring data dependencies make sense (only storing related

data in a table). Both of these are worthy goals as they reduce the amount of space

a database consumes and ensure that data is logically stored.

18. Give an example of a relation schema R and a set of dependencies such that R is in BCNF, but not in

http://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

 4NF.

19. Why are certain functional dependencies called as trivial functional dependencies?

20. A relation R={A,B,C,D} has FD’s F={ A → D , D → C , C → AB} is R is in 3NF?

Part-B

1. Distinguish between lossless-join decomposition and dependency preserving decomposition.

2. Discuss the correspondence between the ER model construct and the relational model constructs.

Show how each ER model construct can be mapped to the relation model. Discuss the option for

mapping EER model construct.

3. Consider the relation schema given in figure. Design and draw an ER diagram that capture the

information of this schema.

 Employee(empno,name,office,age)

 Books(isbn,tittle ,authors,publisher)

 Loan(empno,isbn,date)

4. A car rental company maintains a data base for all vehicles in its current fleet. for all vehicles, it

includes the vehicle identification number license number, manufacturer, model, data of purchase

and color. Special data are included for certain types of vehicles?

Trucks: cargo capacity

Sports cars: horse power, renter age requirement

Vans: number of passengers

Off-road vehicles : ground clearance, drivetrain(four or two wheel drive)

 Construct an ER model for the car rental company database.

5. Draw E-R diagram for banking system.

6. Draw E-R diagram for the “Restaurant Menu ordering system”, which will facilitate the food item

ordering and services with in a restaurant. the entire restaurant scenario is detailed as follows. The

customer is able to view the food items menu, call the waiter, place orders and obtain the final bill

through the computer kept in their table. The waiters through their wireless tablet PC are able to

initialize a table for customers, control the table functions to assist customers, orders, send order to

food preparation staff(chef) and finalize the customers bill. The food preparation staffs(chefs),with

their touch-display interfaces to the system, are able to view orders sent to kitchen by the waiters.

during preparation, they are able to let the waiter know the status of each item, and can send

notifications when items are completed. The system should have fill accountability and logging

facilities, and should support supervisor actions to account for exceptional circumstances, such as

a meal being refunded or walked out on.

7. What are normal forms? Explain the type of normal forms with suitable example. Nov/ Dec 2014

 (or)

State the need for Normalization of a database and explain the various Normal Forms (1st, 2nd, and

3rd, BCNF, 4th, 5th and domain-key) with suitable examples. May/ June 2015

8. Explain non loss decomposition and functional dependencies with suitable example.

9. Explain the boyce-code normal form with an example. Also state how it differs from that of 3NF.

10. Discuss join dependencies and fifth normal form, and explain why 5NF?

11. Construct an ER diagram for car insurance company that has a set of customers each of whom

owns one or more cars. Each car has associated with it zero to any number of recorded accidents.

Each insurance policy covers one or more cars, and has one or more premium payments associated

with it. Each payment is for a particular period of time, and has an associated due date, and the

date when the premium was made. (7) Nov/ Dec 2016

12. Describe about the multi_valued dependencies and fourth normal form with suitable example.

13. Explain boyce codd normal form and fourth norml forms with suitable example.

14. Explain the principles of

 (i) Loss less join decomposition

 (ii) Join dependencies

 (iii) Fifth normal form.

CS3492 DATABASE MANAGEMENT SYSTEMS

UNIT III TRANSACTIONS

Transaction Concepts – ACID Properties – Schedules – Serializability –

Transaction support in SQL – Need for Concurrency – Concurrency control –Two

Phase Locking- Timestamp – Multiversion – Validation and Snapshot isolation–

Multiple Granularity locking – Deadlock Handling – Recovery Concepts –

Recovery based on deferred and immediate update – Shadow paging – ARIES

Algorithm

1. Explain about Transaction concept and schedules.

(or)

Discuss about transaction states , ACID properties and schedules.

• A transaction is a unit of program execution that accesses and possibly updates various

data items.

• A transaction is delimited by statements of the form begin transaction and end

transaction. The transaction consists of all operationsexecuted between the begin

transaction and end transaction.

• This collection of steps must appear to the user as a single, indivisible unit. Since a

transaction is indivisible, it either executes in its entirety or not at all. Thus, if a transaction

begins to execute but fails for whatever reason, any changes to the database that the

transaction may have made must be undone.

ACID Properties:

Properties of the transactions:

 1) Atomicity. Either all operations of the transaction are reflected properly inthe database,

or none are.

 2) Consistency. Execution of a transaction in isolation (that is, with no othertransaction

executing concurrently) preserves the consistency of the data-base.

 3) Isolation. Even though multiple transactions may execute concurrently, thesystem

guarantees that, for every pair of transactions Ti and Tj , it appears to Ti that either Tj finished

execution before Ti started or Tj started execution after Tifinished. Thus, each transaction is

unaware of other transactions executingconcurrently in the system.

4) Durability. After a transaction completes successfully, the changes it hasmade to the

database persist, even if there are system failures.

These properties are often called the ACIDproperties; the acronym is derived from the first letter

of each of the four properties.

A Simple Transaction Model:

• Consider a simple bank application consisting of several accounts and a set of transactions

that access and update those accounts.

• Transactions access data using two operations:

• read(X), which transfers the data itemXfrom the database to a variable,also called X,

in a buffer in main memory belonging to the transaction that executed the read operation.

• write(X), which transfers the value in the variableXin the main-memorybuffer of the

transaction that executed the write to the data item X in the database.

• It is important to know if a change to a data item appears only in main memory or if it has

been written to the database on disk. In a real database system, the write operation does

not necessarily result in the immediate update of the data onthe disk; the write operation

may be temporarily stored elsewhere and executed on the disk later. For now, however,

we shall assume that the write operation updates the database immediately.

Let Ti be a transaction that transfers $50 from account A to account B. This transaction can be

defined as:

Ti:read(A);

A := A −50;

write(A);

read(B);

B := B + 50;

write(B).

STATES OF TRANSACTION:

• A transaction must be in one of the following states:

 1) Active, the initial state; the transaction stays in this state while it is executing.

 2) Partially committed, after the final statement has been executed.

 3) Failed, after the discovery that normal execution can no longer proceed.

 4) Aborted, after the transaction has been rolled back and the database has beenrestored to its

state prior to the start of the transaction.

 5) Committed, after successful completion.We say that a transaction has committed only if it

has entered the committed state.

Figure.State diagram of a transaction.

• A transaction may not always complete its execution successfully. Such a transaction is

termed aborted.

• If we are to ensure the atomicity property, an aborted transaction must have no effect on the

state of the database. Thus, any changes that the aborted transaction made to the database

must be undone.

• Once the changes caused by an aborted transaction have been undone, we say that the

transaction has been rolled back.

• It is part of the responsibility of the recovery scheme to manage transaction aborts. This is

done typically by maintaining a log.

• Each database modification made by a transaction is first recorded in the log. We record the

identifier of the transaction performing the modification, the identifier of the data item being

modified, and both the old value (prior to modification) and the new value (after modification)

of the data item.

• Only then is the database itself modified. Maintaining a log provides the possibility of redoing

a modification to ensure atomicity and durability as well as the possibility of undoing a

modification to ensure atomicity in case of a failure during transaction execution.

• A transaction that completes its execution successfully is said to be committed. A committed

transaction that has performed updates transforms the databaseinto a new consistent state,

which must persist even if there is a system failure.

• We say that a transaction has aborted only if it has entered the aborted state. A transaction is

said to have terminated if it has either committed or aborted.

• A transaction enters the failed state after the system determines that the transaction can no

longer proceed with its normal execution (for example, because of hardware or logical errors).

Such a transaction must be rolled back. Then, it enters the aborted state. At this point, the

system has two options:

• It can restart the transaction, but only if the transaction was aborted as a result of

some hardware or software error that was not created through the internal logic of the

transaction. A restarted transaction is considered to be a new transaction.

• It can kill the transaction. It usually does so because of some internal logical error

that can be corrected only by rewriting the application program, or because the input was bad,

or because the desired data were not found in the database.

SCHEDULES:

• Schedules represent the chronological order in which instructions are executed in the

system.

• A schedule for a set of transactions must consist of all instructions of those trans-actions,

and must preserve the order in which the instructions appear in each individual

transaction.

• The database system must control the interaction among the concurrent transactions to

prevent them from destroying the consistency of the database. It does so through a variety

of mechanisms called concurrency-control schemes.

Two good reasons for allowing concurrency:

1) Improved throughput and resource utilization.

2) Reduced waiting time.

• Consider banking system which has several accounts, and a set of transactions that access

and update those accounts.

• Let T1 and T2 be two transactions that transfer funds from one account to another.

• Transaction T1 transfers $50 from account A to account B. It is defined as:

T1:read(A);

A := A −50;

write(A);

read(B);

B := B + 50;

write(B).

• Transaction T2 transfers 10 percent of the balance from account A to account B. It is

defined as:

T2:read(A);

temp:= A * 0.1;

A := A − temp;

write(A);

read(B);

B := B + temp;

write(B).

• Suppose the current values of accounts A and B are $1000 and $2000, respectively.

Suppose also that the two transactions are executed one at a time in the order T1 followed

by T2. This execution sequence appears in Figure. In the figure, the sequence of instruction

steps is in chronological order from top to bottom, with instructions of T1 appearing in the

left column and instructions of T2appearing in the right column. The final values of

accounts A and B, after theexecution in Figure takes place, are $855 and $2145,

respectively. Thus, the total amount of money in accounts A and B —that is, the sum A +

B —is preserved after the execution of both transactions.

• The first execution sequence (T1 followed by T2) is referred as schedule 1, and the second

execution sequence (T2 followed by T1) referred as schedule 2. These schedules are

serial:

• Each serial schedule consists of a sequence of instructions from various transactions,

where the instructions belonging to one single transaction appear together in that schedule.

• Schedules include commit operation to indicate that the transaction has entered the

committed state.

Figure.Schedule 1 — a serial schedule in which T1 is followed by T2.

Figure .Schedule 2 — a serial schedule in which T2 is followed by T1.

Figure .Schedule 3 — a concurrent schedule equivalent to schedule 1.

2. Discuss View Serializability and conflict Serializability.

 (or)

 Explain about serializability and precedence graph.

A serializable schedule always leaves the database in consistent state. A serial schedule is always

a serializable schedule because in serial schedule, a transaction only starts when the other

transaction finished execution. However a non-serial schedule needs to be checked for

Serializability.

A non-serial schedule of n number of transactions is said to be serializable schedule, if it is

equivalent to the serial schedule of those n transactions. A serial schedule doesn’t allow

concurrency, only one transaction executes at a time and the other starts when the already running

transaction finished.

https://beginnersbook.com/2018/12/dbms-schedules/

Types of Serializability

1) Conflict serializability.

2) View serializablity

1) CONFLICT SERIALIZABILITY:

If a schedule S can be transformed into a schedule S by a series of swaps of non-conflicting

instructions, we say that S and S are conflict equivalent. The concept of conflict equivalence

leads to the concept of conflict serializability. A schedule S is conflict serializable if it is

conflict equivalent to a serial schedule.

• Consider a schedule S in which there are two consecutive instructions, and J, of

transactions Ti and Tj , respectively (i =j). If I and J refer to different data items, then we

can swap I and J without affecting the results of any instruction in the schedule. However,

if I and J refer to the same data item Q, then the order of the two steps may matter. Since

we are dealing with only read and write instructions, there are four cases that we need to

consider:

a. I =read(Q), J =read(Q). -----------Non conflicting instruction.

b. I =read(Q), J =write(Q) -----------conflicting instruction.

c. I =write(Q), J =read(Q) -----------conflicting instruction.

d. I =write(Q), J =write(Q) ----------- conflicting instruction.

Figure .Schedule 3 — showing only the read and write instructions.

Figure .Schedule 5 — schedule 3 after swapping of a pair of instructions.

• We say that I and Jconflict if they are operations by different transactions on the same

data item, and at least one of these instructions is a write operation.

• To illustrate the concept of conflicting instructions, we consider schedule 3in Figure. The

write(A) instruction of T1 conflicts with the read(A) instruction of T2. However, the

write(A) instruction of T2 does not conflict with the read(B) instruction of T1, because the

two instructions access different data items.

• Since the write(A) instruction of T2 in schedule 3 does not conflict with the read(B)

instruction of T1, we can swap these instructions to generate an equivalent schedule,

schedule 5. Regardless of the initial system state, schedules 3 and 5 both produce the same

final system state.

We continue to swap non-conflicting instructions:

• Swap the read(B) instruction of T1 with the read(A) instruction of T2.

• Swap the write(B) instruction of T1 with the write(A) instruction of T2.

• Swap the write(B) instruction of T1 with the read(A) instruction of T2.

The final result of these swaps, schedule 6, is a serial schedule. Note that schedule 6 is exactly the

same as schedule 1, but it shows only the read and write instructions. Thus, we have shown that

schedule 3 is equivalentto a serial schedule. This equivalence implies that, regardless of the initial

system state, schedule 3 will produce the same final state as will some serial schedule.

 Figure .Schedule 6 — a serial schedule that is equivalent to schedule 3.

PRECEDENCE GRAPH:

Figure.Precedence graph for (a) schedule 1 and (b) schedule 2.

• Precedence graph is a simple and efficient method for determining conflict serializability

of a schedule. Consider a schedule S. We construct a directed graph, called a precedence

graph, from S. This graph consists of a pair G = (V, E), where V is a set of vertices and E

is a set of edges. The set of vertices consists of all thetransactions participating in the

schedule. The set of edges consists of all edges Ti→Tjfor which one of three conditions

holds:

✓ Tiexecuteswrite(Q) beforeTjexecutesread(Q).

✓ Tiexecutesread(Q) beforeTjexecuteswrite(Q).

✓ Tiexecuteswrite(Q) beforeTjexecuteswrite(Q).

• If an edge Ti→Tj exists in the precedence graph, then, in any serial schedule S’ equivalent

to S, Ti must appear before Tj .

• For example, the precedence graph for schedule 1 in Figure(a) contains the single edge

T1→T2, since all the instructions of T1 are executed before the first instruction of T2 is

executed. Similarly, Figure(b) shows the precedence graph for schedule 2 with the single

edge T2→T1, since all the instructions of T2 are executed before the first instruction of T1

is executed.

• The precedence graph for schedule 4 appears in Figure. It contains the edge T1→T2,

because T1 executes read(A) before T2 executes write(A). It also contains the edge T2→T1,

because T2 executes read(B) before T1 executes write(B).

• If the precedence graph for S has a cycle, then schedule S is not conflict serializable.

If the graph contains no cycles, then the schedule S is conflict serializable.

• A serializability order of the transactions can be obtained by finding a linear order

consistent with the partial order of the precedence graph. This process is called

topological sorting. There are several possible linear orders that can be obtained through

a topological sort.

• For example, the graph of Figure(a) has the two acceptable linear orderings shown in

Figures(b) and (c).

Figure.Precedence graph for schedule 4.

Figure .Illustration of topological sorting.

• Thus, to test for conflict serializability, we need to construct the precedence graph and to

invoke a cycle-detection algorithm. Cycle-detection algorithms can be found in standard

textbooks on algorithms.

• Cycle-detection algorithms, such as those based on depth-first search, require on the order

of n2 operations, where n is the number of vertices in the graph (that is, the number of

transactions).

Recoverable Schedules:

T6 T7

read(A)

write(A)

read(A)

commit

read(B)

Figure .Schedule 9, a nonrecoverable schedule.

• Consider the partial schedule 9 in Figure, in which T7 is a transaction that performs only

one instruction: read(A). We call this a partial schedule because we have not included a

commit or abort operation for T6. Notice that T7 commits immediately after executing the

read(A) instruction. Thus, T7 commits while T6 is still in the active state. Now suppose that

T6 fails before it commits. T7 has read the value of data item A written by T6. Therefore,

we say that T7 is dependent on T6. Because of this, we must abort T7 to ensure atomicity.

However, T7 has already committed and cannot be aborted. Thus, we have a situation

where it is impossible to recover correctly from the failure of T6.

• Schedule 9 is an example of a nonrecoverable schedule.

• A recoverable schedule is one where, for each pair of transactions Ti and Tj such that

Tj reads a data item previously written by Ti , the commit operation of Ti appears

before the commit operation of Tj . For the example of schedule 9 to be recoverable,

T7 would have to delay committing until after T6 commits.

Cascadeless Schedules:

• Even if a schedule is recoverable, to recover correctly from the failure of a transaction Ti ,

we may have to roll back several transactions. Such situations occur if transactions have

read data written by Ti .

• Consider the partial schedule of Figure. Transaction T8 writes a value of A that is

read by transac-tionT9. Transaction T9 writes a value of A that is read by transaction

T10. Suppose that, at this point, T8 fails. T8 must be rolled back. Since T9 is dependent

on T8, T9 must be rolled back. Since T10 is dependent on T9, T10 must be rolled back.

This phenomenon, in which a single transaction failure leads to a series of

transaction rollbacks, is called cascading rollback.

T8 T9 T10

read(A)

read(B)

write(A)

read(A)

write(A)

read(A)

abort

Figure.Schedule 10.

• Cascading rollback is undesirable, since it leads to the undoing of a significant amount of

work. It is desirable to restrict the schedules to those where cascading rollbacks cannot

occur. Such schedules are called cascadeless schedules. Formally, a cascadeless schedule

is one where, for each pair of transactions Ti and Tj such that Tj reads a data item

previously written by Ti , the commit operation of Ti appears before the read operation of

Tj . It is easy to verify that every cascadeless schedule is also recoverable.

2) VIEW SERIALIZABILITY:

• Consider two schedules S and S’ , where the same set of transactions participates in

both schedules. The schedules S and S’ are said to be view equivalent if three

conditions are met:

(1) For each data item Q, if transaction Ti reads the initial value of Q in schedule S, then

transaction Ti must, in schedule S , also read the initial value of Q.

(2) For each data item Q, if transaction Ti executes read(Q) in schedule S, and if that value

was produced by a write(Q) operation executed by transaction Tj , then the read(Q)

operation of transaction Ti must, in schedule S , also read the value of Q that was

produced by the same write(Q) operation of transaction Tj .

(3) For each data item Q, the transaction (if any) that performs the final write(Q) operation

in schedule S must perform the final write(Q) operation in schedule S .

• The concept of view equivalence leads to the concept of view serializability. We say

that a schedule S is view serializable if it is view equivalent to a serial schedule.

• As an illustration, suppose that we augment schedule 4 with transaction T29, and obtain

the following view serializable (schedule 5):

T27 T28 T29

read (Q)

write (Q)

write (Q)

write (Q)

• Indeed, schedule 5 is view equivalent to the serial schedule <T27,T28,T29>, since the

one read(Q) instruction reads the initial value of Q in both schedules and T29performs

the final write of Q in both schedules.

• Every conflict-serializable schedule is also view serializable, but there are view-

serializable schedules that are not conflict serializable. Indeed, schedule 5 is not

conflict serializable, since every pair of consecutive instructions conflicts, and, thus,

no swapping of instructions is possible.

• Observe that, in schedule 5, transactions T28 and T29 perform write(Q) operations

without having performed a read(Q) operation. Writes of this sort are called blind

writes. Blind writes appear in any view-serializable schedule that is not conflict

serializable.

3. Discuss about Transaction Support in SQL with an example.

SQL transaction is is a logical unit of work and is guaranteed to be atomic. A single SQL

statement is always considered to be atomic—either it completes execution without an error or it

fails and leaves the database unchanged.

With SQL, there is no explicit Begin_Transaction statement. Transaction initiation is done

implicitly when particular SQL statements are encountered. However, every transaction must

have an explicit end statement, which is either a COMMIT or a ROLLBACK. Every transaction

has certain characteristics attributed to it. These characteristics are specified by a SET

TRANSACTION statement in SQL. The characteristics are the access mode, the diagnostic area

size, and the isolation level.

The access mode can be specified as READ ONLY or READ WRITE. The default is READ

WRITE, unless the isolation level of READ UNCOMMITTED is specified , in which case READ

ONLY is assumed. A mode of READ WRITE allows select, update, insert, delete, and create

commands to be executed. A mode of READ ONLY, as the name implies, is simply for data

retrieval.

The diagnostic area size option, DIAGNOSTIC SIZE n, specifies an integer value n, which

indicates the number of conditions that can be held simultaneously in the diagnostic area. These

conditions supply feedback information (errors or exceptions) to the user or program on the n

most recently executed SQL statement.

The isolation level option is specified using the statement ISOLATION LEVEL <isolation>, where

the value for <isolation> can be READ UNCOMMITTED, READ COMMITTED,

REPEATABLE READ, or SERIALIZABLE. The default isolation level is SERIALIZABLE,

although some systems use READ COMMITTED as their default. The use of the term

SERIALIZABLE here is based on not allowing violations that cause dirty read, unrepeatable read,

and phantoms, and it is thus not identical to the way serializability . If a transaction executes at a

lower isolation level than SERIALIZABLE, then one or more of the following three violations may

occur:

1. Dirty read. A transaction T1 may read the update of a transaction T2, which has not yet

committed. If T2 fails and is aborted, then T1 would have read a value that does not exist and is

incorrect.

2. Nonrepeatable read. A transaction T1 may read a given value from a table. If another

transaction T2 later updates that value and T1 reads that value again, T1 will see a different value.

3. Phantoms. A transaction T1 may read a set of rows from a table, perhaps based on some

condition specified in the SQL WHERE-clause. Now suppose that a transaction T2 inserts a new

row r that also satisfies the WHERE-clause condition used in T1, into the table used by T1. The

record r is called a phantom record because it was not there when T1 starts but is there when T1

ends. T1 may or may not see the phantom, a row that previously did not exist. If the equivalent

serial order is T1 followed by T2, then the record r should not be seen; but if it is T2 followed

by T1,then the phantom record should be in the result given to T1. If the system cannot ensure

the correct behavior, then it does not deal with the phantom record problem.

Table. Possible Violations Based on Isolation Levels as Defined in SQL

 Type of Violation

Isolation Level Dirty Read Nonrepeatable

Read

Phantom

READ

UNCOMMITTED

Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE

READ

No No Yes

SERIALIZABLE No No No

Table summarizes the possible violations for the different isolation levels. An entry of Yes

indicates that a violation is possible and an entry of No indicates that it is not possible. READ

UNCOMMITTED is the most forgiving, and SERIALIZABLE is the most restrictive in that it

avoids all three of the problems mentioned above.

A sample SQL transaction might look like the following:

EXEC SQL WHENEVER SQL ERROR GOTO UNDO;

EXEC SQL SET TRANSACTION

READ WRITE

DIAGNOSTIC SIZE 5

ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno, Salary) VALUES

 ('Robert', 'Smith', '991004321', 2, 35000);

EXEC SQL UPDATE EMPLOYEE

 SET Salary = Salary * 1.1 WHERE Dno = 2;

EXEC SQL COMMIT;

GOTO THE_END;

UNDO: EXEC SQL ROLLBACK;

THE_END: ... ;

The above transaction consists of first inserting a new row in the EMPLOYEE table and then

updating the salary of all employees who work in department 2. If an error occurs on any of the

SQL statements, the entire transaction is rolled back. This implies that any updated salary (by

this transaction) would be restored to its previous value and that the newly inserted row would be

removed.

4. What is concurrency control? How is it implemented in DBMS? Illustrate with a

suitable example. (or)

 Explain briefly about two phase commit. (or) Explain about locking protocols.

(or)

Explain rigorous two phase locking protocol. (or) Explain strict two phase locking

protocol.

Concurrency control is the process of managing simultaneous operations on the database without

having them interfere with each other.

LOCK-BASED PROTOCOLS

One way to ensure isolation is to require that data items be accessed in a mutually exclusive

manner; that is, while one transaction is accessing a data item, no other transaction can modify

that data item. The most common method used to implement this requirement is to allow a

transaction to access a data item only if it is currently holding a lock on that item.

Locks:

There are various modes in which a data item may be locked.

Two modes are:

 1) Shared. If a transactionTihas obtained a shared-mode lock (denoted by S)on item Q, then

Ti can read, but cannot write, Q.

 2) Exclusive. If a transactionTihas obtained an exclusive-mode lock (denotedby X) on item

Q, then Ti can both read and write Q.

Figure.Lock-compatibility matrix comp.

• Every transaction request a lock in an appropriate mode on data item Q, depending on the

types of operations that it will perform on Q. The transaction makes the request to the

concurrency-control manager. Thetransaction can proceed with the operation only after

the concurrency-control manager grants the lock to the transaction. The use of these two

lock modes allows multiple transactions to read a data item but limits write access to just

one transaction at a time.

• Shared mode is compatible with shared mode, but not with exclusive mode. At any time,

several shared-mode locks can be held simultaneously (by different transactions) on a

particular data item. A subsequent exclusive-mode lock request has to wait until the

currently held shared-mode locks are released.

• A transaction requests a shared lock on data item Q by executing the lock-S(Q)

instruction. Similarly, a transaction requests an exclusive lock through the lock-X(Q)

instruction. A transaction can unlock a data itemQby theunlock(Q)instruction.

• To access a data item, transaction Ti must first lock that item. If the data item is already

locked by another transaction in an incompatible mode, the concurrency-control manager

will not grant the lock until all incompatible locks held by other transactions have been

released. Thus, Ti is made to wait until all incompatible locks held by other transactions

have been released.

• Transaction Ti may unlock a data item that it had locked at some earlier point. Note that a

transaction must hold a lock on a data item as long as it accesses that item. Moreover, it is

not necessarily desirable for a transaction to unlock a data item immediately after its final

access of that data item, since serializability may not be ensured.

• Consider again the banking example. Let A and B be two accounts that are accessed by

transactions T1 and T2.

T1:lock-X(B);

read(B);

B := B −50;

write(B);

unlock(B);

lock-X(A);

read(A);

A := A + 50;

write(A);

unlock(A).Figure.TransactionT1.

• Transaction T1 transfers $50 from account B to account A.

• Transaction T2 displays the total amount of money in accounts A and B—that is, the sum A

+ B..

T2:lock-S(A);

read(A);

unlock(A);

lock-S(B);

read(B);

unlock(B);

display(A+B).

Figure.Transaction T2.

T1 T2 concurrency-control manager

lock-X(B) grant-X(B, T1)

read(B)

B := B –50
write(B)
unlock(B)

lock-S(A)

grant-S(A, T2)

read(A)
 unlock(A)
 lock-S(B)

grant-S(B, T2)

read(B)
 unlock(B)

lock-X(A)

display(A +

B)

grant-X(A, T1)

read(A)

A := A −50
write(A)
unlock(A)

Figure.Schedule 1.

GRANTING OF LOCKS:

• When a transaction requests a lock on a data item in a particular mode, and no other

transaction has a lock on the same data item in a conflicting mode, the lock can be

granted.

• However, care must be taken to avoid the following scenario. Suppose a transaction T2

has a shared-mode lock on a data item, and another transaction T1 requests an exclusive-

mode lock on the data item.

• Clearly, T1 has to wait for T2 to release the shared-mode lock. Meanwhile, a transaction T3

may request a shared-mode lock on the same data item. The lock request is compatible

with the lock granted to T2, so T3 may be granted the shared-mode lock.

• At this point T2 may release the lock, but still T1 has to wait for T3 to finish. But again,

there may be a new transaction T4 that requests a shared-mode lock on the same data item,

and is granted the lock before T3 releases it. In fact, it is possible that there is a sequence

of transactions that each requests a shared-mode lock on the data item, and each

transaction releases the lock a short while after it is granted, but T1 never gets the

exclusive-mode lock on the data item. The transaction T1 may never make progress, and is

said to be starved.

• We can avoid starvation of transactions by granting locks in the following manner: When

a transaction Ti requests a lock on a data item Q in a particular mode M, the concurrency-

control manager grants the lock provided that:

• There is no other transaction holding a lock on Q in a mode that conflicts with M.

• There is no other transaction that is waiting for a lock on Q and that made its lock request

before Ti .Thus, a lock request will never get blocked by a lock request that is made later.

THE TWO-PHASE LOCKING PROTOCOL:

• One protocol that ensures serializability is the two-phase locking protocol. This protocol

requires that each transaction issue lock and unlock requests in two phases:

 1) Growing phase. A transaction may obtain locks, but may not release anylock.

 2) Shrinking phase. A transaction may release locks, but may not obtain anynew locks.

• Initially, a transaction is in the growing phase. The transaction acquires locks as needed.

Once the transaction releases a lock, it enters the shrinking phase, and it can issue no more

lock requests.

• The two-phase locking protocol ensures conflict serializability.

• Consider any transaction. The point in the schedule where the transaction has obtained its

final lock (the end of its growing phase) is called the lock point of the transaction.

• Now, transactions can be ordered according to their lock points— this ordering is, in fact,

a serializability ordering for the transactions. We leave the proof as an exercise for you to

do.

• Two-phase locking does not ensure freedom from deadlock. Observe that transactions T3

and T4 are two phase, but, in schedule 2 , they are deadlocked.

• Cascading rollback may occur under two-phase locking.

• Consider the partial schedule of Figure 15.8. Each transaction observes the two-phase

locking protocol, but the failure of T5 after the read(A) step of T7 leads to cascading

rollback of T6 and T7.

T5 T6 T7

lock-X(A)

read(A)

lock-S(B)

read(B)

write(A)

unlock(A)

lock-X(A)

read(A)

write(A)

unlock(A)

lock-S(A)

read(A)

 Figure .Partial schedule under two-phase locking.

STRICT TWO-PHASE LOCKING PROTOCOL:

• Cascading rollbacks can be avoided by a modification of two-phase locking called the

strict two-phase locking protocol. This protocol requires not only that locking be two

phase, but also that all exclusive-mode locks taken by a transaction be held until that

transaction commits. This requirement ensures that any data written by an uncommitted

transaction are locked in exclusive mode until the transaction commits, preventing any

other transaction from reading the data.

RIGOROUS TWO-PHASE LOCKINGPROTOCOL:

• Another variant of two-phase locking is the rigorous two-phase lockingprotocol, which

requires that all locks be held until the transaction commits.

• Consider the following two transactions, for which we have shown only some of the

significant read and write operations:

T8:read(a1);

read(a2);

. . .

read(an);

write(a1).

T9:read(a1);

read(a2);

display(a1 + a2).

• If we employ the two-phase locking protocol, then T8 must lock a1 in exclusive mode.

Therefore, any concurrent execution of both transactions amounts to a serial execution.

Notice, however, that T8 needs an exclusive lock on a1 only at the end of its execution,

when it writes a1. Thus, if T8 could initially lock a1 in shared mode, and then could later

change the lock to exclusive mode, we could get more concurrency, since T8 and T9 could

access a1 and a2 simultaneously.

• This observation leads us to a refinement of the basic two-phase locking protocol, in

which lock conversions are allowed.

• We shall provide a mechanism for upgrading a shared lock to an exclusive lock, and

downgrading an exclusive lock to a shared lock. We denote conversion from shared to

exclusive modes by upgrade, and from exclusive to shared by downgrade.

• Lock conversion cannot beallowed arbitrarily. Rather, upgrading can take place in only

the growing phase, whereas downgrading can take place in only the shrinking phase.

T8 T9

 lock-S(a1)

lock-S(a1)

 lock-S(a2)

lock-S(a2)

lock-S(a3)

lock-S(a4)

unlock(a1)

unlock(a2)

lock-S(an)

upgrade(a1)

Figure.Incomplete schedule with a lock conversion.

• Returning to our example, transactions T8 and T9 can run concurrently under the refined

two-phase locking protocol, as shown in the incomplete schedule of Figure, where only

some of the locking instructions are shown.

• Note that a transaction attempting to upgrade a lock on an item Q may be forced to wait.

This enforced wait occurs if Q is currently locked by another transaction in shared mode.

• Just like the basic two-phase locking protocol, two-phase locking with lock conversion

generates only conflict-serializable schedules, and transactions can be serialized by their

lock points. Further, if exclusive locks are held until the end of the transaction, the

schedules are cascadeless.

• Strict two-phase locking and rigorous two-phase locking (with lock conversions) are

used extensively in commercial database systems.

• A simple but widely used scheme automatically generates the appropriate lock and unlock

instructions for a transaction, on the basis of read and write requests from the transaction:

• When a transaction Ti issues a read(Q) operation, the system issues a lock-S(Q) instruction

followed by the read(Q) instruction.

• When Ti issues a write(Q) operation, the system checks to see whether Ti already holds a

shared lock on Q. If it does, then the system issues an up-grade(Q) instruction, followed

by the write(Q) instruction. Otherwise, thesystem issues a lock-X(Q) instruction, followed

by the write(Q) instruction.

• All locks obtained by a transaction are unlocked after that transaction commits or aborts.

IMPLEMENTATION OF LOCKING:

• A lock manager can be implemented as a process that receives messages from

transactions and sends messages in reply.

• The lock-manager process replies to lock-request messages with lock-grant messages, or

with messages requesting rollback of the transaction (in case of deadlocks).

• Unlock messages require only an acknowledgment in response, but may result in a grant

message to another waiting transaction.

• The lock manager uses this data structure: For each data item that is currently locked, it

maintains a linked list of records, one for each request, in the order in which the requests

arrived. It uses a hash table, indexed on the name of a data item, to find the linked list (if

any) for a data item; this table is called the locktable.

• Each record of the linked list for a data item notes which transaction madethe request, and

what lock mode it requested. The record also notes if the request has currently been

granted.

• Figure shows an example of a lock table. The table contains locks for five different data

items, I4, I7, I23, I44, and I912. The lock table uses overflow chaining, so there is a linked

list of data items for each entry in the lock table. There is also a list of transactions that

have been granted locks, or are waiting for locks, for each of the data items. Granted locks

are the rectangles filled in a darker shade, while waiting requests are the rectangles filled

in a lighter shade. We have omitted the lock mode to keep the figure simple. It can be

seen, for example, that T23 has been granted locks on I912 and I7, and is waiting for a

lock on I4.

• Although the figure does not show it, the lock table should also maintain an index on

transaction identifiers, so that it is possible to determine efficiently the set of locks held by

a given transaction.

• The lock manager processes requests this way:

• When a lock request message arrives, it adds a record to the end of the linked list

for the data item, if the linked list is present. Otherwise it creates a new linked list,

containing only the record for the request.

• It always grants a lock request on a data item that is not currently locked. But if the

transaction requests a lock on an item on which a lock is currently held, the lock manager

grants the request only if it is compatible with the locks that are currently held, and all

earlier requests have been granted already. Otherwise the request has to wait.

• When the lock manager receives an unlock message from a transaction, it deletes

the record for that data item in the linked list corresponding to that transaction. It tests the

record that follows, if any, as described in the previous paragraph, to see if that request

can now be granted. If it can, the lock manager grants that request, and processes the

record following it, if any, similarly, and so on.

• If a transaction aborts, the lock manager deletes any waiting request made by the

transaction. Once the database system has taken appropriate actions to undo the

transaction , it releases all locks held by the aborted transaction.

Figure.Lock table.

This algorithm guarantees freedom from starvation for lock requests, since a request can never be

granted while a request received earlier is waiting to be granted.

5. Explain about tree protocol. (Or) Explain about graph based protocol.

• The simplest model requires that we have prior knowledge about the order in which the

database items will be accessed. Given such information, it is possible to construct locking

protocols that are not two phase, but that, nevertheless, ensure conflict serializability.

• To acquire such prior knowledge, we impose a partial ordering → on the set D ={d1,d2, . .

. ,dh}of all data items. Ifdi→dj, then any transaction accessing both di and dj must access di

before accessing dj . This partial ordering may be the result of either the logical or the

physical organization of the data, or it may be imposed solely for the purpose of

concurrency control.

• The partial ordering implies that the set D may now be viewed as a directed acyclic graph,

called a database graph. In this section, for the sake of simplicity, we will restrict our

attention to only those graphs that are rooted trees. We shall present a simple protocol,

called the tree protocol, which is restricted to employ only exclusive locks. References to

other, more complex, graph-based locking protocolsare in the bibliographical notes.

• In the tree protocol, the only lock instruction allowed is lock-X. Each trans-action Ti can

lock a data item at most once, and must observe the following rules:

➢ The first lock by Ti may be on any data item.

➢ Subsequently, a data item Q can be locked by Ti only if the parent of Q is currently

locked by Ti .

➢ Data items may be unlocked at any time.

➢ A data item that has been locked and unlocked by Ti cannot subsequently be

relocked by Ti .

• All schedules that are legal under the tree protocol are conflict serializable.

• To illustrate this protocol, consider the database graph of Figure. The following four

transactions follow the tree protocol on this graph. We show only the lock and unlock

instructions:

T10:lock-X(B);lock-X(E);lock-X(D);unlock(B);unlock(E);lock-X(G);unlock(D); unlock(G).

T11:lock-X(D);lock-X(H);unlock(D);unlock(H).

T12:lock-X(B);lock-X(E);unlock(E);unlock(B).

T13:lock-X(D);lock-X(H);unlock(D);unlock(H).

Figure.Tree-structured database graph.

• One possible schedule in which these four transactions participated appears in Figure.

Note that, during its execution, transaction T10 holds locks on two disjoint subtrees.

• Observe that the schedule of Figure is conflict serializable. It can be shown not only that

the tree protocol ensures conflict serializability, but also that this protocol ensures freedom

from deadlock.

• The tree protocol does not ensure recoverability and cascadelessness. To ensure

recoverability and cascadelessness, the protocol can be modified to not permit release of

exclusive locks until the end of the transaction.

• Holding exclusive locks until the end of the transaction reduces concurrency. Here is an

alternative that improves concurrency, but ensures only recoverability: For each data item

with an uncommitted write, we record which transaction performed the last write to the

data item.

• Whenever a transaction Ti performs a read of an uncommitted data item, we record a

commit dependency of Ti on the transaction that performed the last write to the data item.

Transaction Ti is then not permitted to commit until the commit of all transactions on

which it has a commit dependency. If any of these transactions aborts, Ti must also be

aborted.

T10 T11 T12 T13

lock-X(B)

lock-X(D)

 lock-X(H)

lock-X(E)

unlock(D)

lock-X(D)

unlock(B)

unlock(E)

lock-X(B)

unlock(H)

lock-X(E)

lock-X(G)

unlock(D)

lock-X(D)

 lock-X(H)

 unlock(D)

unlock(E)

unlock(H)

unlock(G)

 unlock(B)

 Figure .Serializable schedule under the tree protocol.

Advantage:

• It is deadlock-free, so no rollbacks are required.

• Unlocking may occur earlier. Earlier unlocking may lead to shorter waiting times, and to

an increase in concurrency.

Disadvantage:

• A transaction may have to lock data items that it does not access. For example, a

transaction that needs to access data items A and J in the database graph of Figure must

lock not only A and J, but also data items B, D, and H.

• This additional locking results in increased locking overhead, the possibility of additional

waiting time, and a potential decrease in concurrency. Further, without prior knowledge of

what data items will need to be locked, transactions will have to lock the root of the tree,

and that can reduce concurrency greatly.

6. Explain in detail about deadlock.

• A system is in a deadlock state if there exists a set of transactions such that every

transaction in the set is waiting for another transaction in the set. More precisely,

there exists a set of waiting transactions {T0, T1, . . . ,Tn} such that T0 is waiting for a

data item that T1 holds, and T1 is waiting for a data item that T2 holds, and . . . ,

andTn−1is waiting for a data item thatTnholds, andTnis waiting for a dataitem that T0

holds. None of the transactions can make progress in such a situation.

• The only remedy to this undesirable situation is for the system to invoke some drastic

action, such as rolling back some of the transactions involved in the deadlock. Rollback of

a transaction may be partial: That is, a transaction may be rolled back to the point where it

obtained a lock whose release resolves the deadlock.

• There are two principal methods for dealing with the deadlock problem. We can use a

deadlock prevention protocol to ensure that the system will never enter a deadlock state.

• Alternatively, we can allow the system to enter a deadlock state, and then try to recover

by using a deadlock detection and deadlock recovery scheme. Both methods may result

in transaction rollback. Prevention is commonly used if the probability that the system

would enter a deadlock state is relatively high; otherwise, detection and recovery are more

efficient.

DEADLOCK PREVENTION:

There are five approaches to deadlock prevention.

1) The simplest scheme under the first approach requires that each transaction locks all its

data items before it begins execution. Moreover, either all are locked in one step or none

are locked.

 Two main disadvantages to this protocol:

a) It is often hard to predict, before the transaction begins, what data items need to be

locked;

b) Data-item utilization may be very low, since many of the data items may be locked

but unused for a long time.

2) Another approach for preventing deadlocks is to impose an ordering of all data items, and

to require that a transaction lock data items only in a sequence consistent with the

ordering. We have seen one such scheme in the tree protocol, which uses a partial ordering

of data items.

A variation of this approach is to use a total order of data items, in conjunction with two-phase

locking. Once a transaction has locked a particular item, it cannot request locks on items that

precede that item in the ordering. This scheme is easy to implement, as long as the set of data

items accessed by a transaction is known when the transaction starts execution. There is no need

to change the underlying concurrency-control system if two-phase locking is used: All that is

needed is to ensure that locks are requested in the right order.

The second approach for preventing deadlocks is to use preemption and transaction rollbacks. In

preemption, when a transaction Tj requests a lock that transaction Ti holds, the lock granted to Ti

may be preempted by rolling back of Ti , and granting of the lock to Tj . To control the

preemption, we assign a unique timestamp, based on a counter or on the system clock, to each

transaction when it begins. The system uses these timestamps only to decide whether a transaction

should wait or roll back. Locking is still used for concurrency control. If a transaction is rolled

back, it retains its old timestamp when restarted.

 Two different deadlock-prevention schemes using timestamps have been proposed:

1) Wait –die scheme:

• Consider a transaction T i requests to lock a resource (data item), which is already held

with a conflicting lock by another transaction T j.

• (TS- Time Stamp)

• If TS(Ti) < TS(Tj) − that is Ti, which is requesting a conflicting lock, is older than Tj −

then Ti is allowed to wait until the data-item is available. Else Ti dies.

• Ti is restarted later with a random delay but with the same timestamp.

• The wait–die scheme is a non-preemptive technique.

2) Wound–wait scheme:

• It is a preemptive technique.

• Consider a transaction T i requests to lock a resource (data item), which is already held

with a conflicting lock by another transaction T j.

• (TS- Time Stamp)

• If TS(Ti) < TS(Tj), then Ti forces Tj to be rolled back − that is Ti wounds Tj. Tj is restarted

later with a random delay but with the same timestamp.

• Else Ti is forced to wait until the resource is available.

• The major problem with both of these schemes is that unnecessary rollbacks may occur.

3) Time out based approach:

• In this approach, a transaction that has requested a lock waits for at most a specified

amount of time. If the lock has not been granted within that time, the transaction is said to

time out, and it rolls itself back and restarts.

• If there was in fact a deadlock, one or more transactions involved in the deadlock will time

out and roll back, allowing the others to proceed. This scheme falls somewhere between

deadlock prevention, where a deadlock will never occur, and deadlock detection and

recovery.

• The timeout scheme is particularly easy to implement, and works well if transactions are

short and if long waits are likely to be due to deadlocks. However, in general it is hard to

decide how long a transaction must wait before timing out. Too long a wait results in

unnecessary delays once a deadlock has occurred. Too short a wait results in transaction

rollback even when there is no deadlock, leading to wasted resources. Starvation is also a

possibility with this scheme. Hence, the timeout-based scheme has limited applicability.

DEADLOCK DETECTION:

• If a system does not employ some protocol that ensures deadlock freedom, then a

detection and recovery scheme must be used. An algorithm that examines the state of the

system is invoked periodically to determine whether a deadlock has occurred. If one has,

then the system must attempt to recover from the deadlock. To do so, the system must:

➢ Maintain information about the current allocation of data items to transac-tions, as

well as any outstanding data item requests.

➢ Provide an algorithm that uses this information to determine whether the system has

entered a deadlock state.

➢ Recover from the deadlock when the detection algorithm determines that a

deadlock exists.

• Deadlocks can be described precisely in terms of a directed graph called a wait-for graph.

This graph consists of a pairG= (V,E), whereVis a set of vertices andE is a set of edges.

• The set of vertices consists of all the transactions in the system.Each element in the set E

of edges is an ordered pair Ti→Tj . If Ti→Tj is in E, then there is a directed edge from

transaction Ti to Tj , implying that transaction Tiis waiting for transactionTjto release a data

item that it needs.

Figure.Wait-for graph with no cycle.

• When transaction Ti requests a data item currently being held by transaction Tj, then the

edge Ti→Tjis inserted in the wait-for graph. This edge is removedonly when transaction Tj

is no longer holding a data item needed by transaction Ti.

• A deadlock exists in the system if and only if the wait-for graph contains a cycle. Each

transaction involved in the cycle is said to be deadlocked. To detect deadlocks, the system

needs to maintain the wait-for graph, and periodically to invoke an algorithm that searches

for a cycle in the graph.

• To illustrate these concepts, consider the wait-for graph in Figure, which depicts the

following situation:

➢ Transaction T17 is waiting for transactions T18 and T19.

➢ Transaction T19 is waiting for transaction T18.

➢ Transaction T18 is waiting for transaction T20.

• Since the graph has no cycle, the system is not in a deadlock state.

• Suppose now that transaction T20 is requesting an item held by T19. The edge T20→ T19is

added to the wait-for graph, resulting in the new system state inFigure 15.14. This time,

the graph contains the cycle:

T18 →T20 →T19 →T18

implying that transactions T18, T19, and T20 are all deadlocked.

Figure.Wait-for graph with a cycle.

• If deadlocks occur frequently, then the detection algorithm should be in-voked more

frequently. Data items allocated to deadlocked transactions will be unavailable to other

transactions until the deadlock can be broken. In addition, the number of cycles in the

graph may also grow. In the worst case, we would invoke the detection algorithm every

time a request for allocation could not be granted immediately.

RECOVERY FROM DEADLOCK:

• When a detection algorithm determines that a deadlock exists, the system must recover

from the deadlock. The most common solution is to roll back one or moretransactions to

break the deadlock.

• Three actions need to be taken:

1) Selection of a victim. Given a set of deadlocked transactions, we must determine

which transaction (or transactions) to roll back to break the deadlock. We should

roll back those transactions that will incur the minimum cost. Unfortunately, the

term minimum cost is not a precise one. Many factors may determine the cost of a

rollback, including:

a. How long the transaction has computed, and how much longer the

transaction will compute before it completes its designated task.

b. How many data items the transaction has used.

c. How many more data items the transaction needs for it to complete.

d. How many transactions will be involved in the rollback.

2) Rollback. Once we have decided that a particular transaction must be rolledback,

we must determine how far this transaction should be rolled back.

• The simplest solution is a total rollback: Abort the transaction and then restart it.

However, it is more effective to roll back the transaction only as far as necessary to break

the deadlock. Such partial rollback requires the system to maintain additional

information about the state of all the running transactions. Specifically, the sequence of

lock requests/grants and updates performed by the transaction needs to be recorded.

• The deadlock detection mechanism should decide which locks the selected transaction

needs to release in order to break the deadlock. The selected transaction must be rolled

back to the point where it obtained the first of these locks, undoing all actions it took after

that point. The recovery mechanism must be capable of performing such partial rollbacks.

Furthermore, the transactions must be capable of resuming execution after a partial

rollback. See the bibliographical notes for relevant references.

• Starvation. In a system where the selection of victims is based primarily oncost

factors, it may happen that the same transaction is always picked as a victim. As a result,

this transaction never completes its designated task, thus there is starvation. We must

ensure that a transaction can be picked as a victim only a (small) finite number of times.

The most common solution is to include the number of rollbacks in the cost factor.

7. Explain about Multiple Granularity in details.

• Granularity is the size of data that is allowed to be locked. Multiple granularity is

hierarchically breaking up our database into smaller blocks that can be locked. This

locking technique allows the locking of various data sizes and sets. This way of breaking

the data into blocks that can be locked decreases lock overhead and increases the

concurrency in our database.

• Multiple Granularity allow the data items to be of various sizes and define a hierarchy

of data granularities, where the small granularities are nested within larger ones

• It Can be represented graphically as a tree.

• When a transaction locks a node in the tree explicitly, it implicitly locks all the node's

descendents in the same mode.

• Granularity of locking (level in tree where locking is done):

o fine granularity (lower in tree): high concurrency, high locking overhead

o coarse granularity (higher in tree): low locking overhead, low concurrency

The levels, starting from the coarsest (top) level are

• database

• area

• file

• record

Intention Lock Modes:

• In addition to S and X lock modes, there are three additional lock modes with multiple

granularity:

o Intention-shared (IS): indicates explicit locking at a lower level of the tree but

only with shared locks.

o Intention-exclusive (IX): indicates explicit locking at a lower level with exclusive

or shared locks

o Shared and intention-exclusive (SIX): the subtree rooted by that node is locked

explicitly in shared mode and explicit locking is being done at a lower level with

exclusive-mode locks.

• Intention locks allow a higher level node to be locked in S or X mode without having to

check all descendent nodes.

• The compatibility matrix for all lock modes is:

Multiple Granularity Locking Scheme

• Transaction Ti can lock a node Q, using the following rules:

o The lock compatibility matrix must be observed.

o The root of the tree must be locked first, and may be locked in any mode.

o A node Q can be locked by Ti in S or IS mode only if the parent of Q is currently

locked by Ti in either IX or IS mode.

o A node Q can be locked by Ti in X, SIX, or IX mode only if the parent of Q is

currently locked by Ti in either IX or SIX mode.

o Ti can lock a node only if it has not previously unlocked any node (that is, Ti is

two-phase).

o Ti can unlock a node Q only if none of the children of Q are currently locked by Ti.

• Observe that locks are acquired in root-to-leaf order, whereas they are released in leaf-to-

root order.

• Lock granularity escalation: in case there are too many locks at a particular level, switch to

higher granularity S or X lock

8. Explain about timestamp-based protocols in details.

• The Timestamp Ordering Protocol is used to order the transactions based on their

Timestamps. The order of transaction is nothing but the ascending order of the

transaction creation.

• The priority of the older transaction is higher that's why it executes first. To determine

the timestamp of the transaction, this protocol uses system time or logical counter.

• Each transaction is issued a timestamp when it enters the system. If an old transaction Ti

has time-stamp TS(Ti), a new transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti)

<TS(Tj).

• The protocol manages concurrent execution such that the time-stamps determine the

serializability order.

• In order to assure such behavior, the protocol maintains for each data Q two timestamp

values:

o W-timestamp(Q) is the largest time-stamp of any transaction that executed

write(Q) successfully.

o R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q)

successfully.

• The timestamp ordering protocol ensures that any conflicting read and write operations are

executed in timestamp order.

• Suppose a transaction Ti issues a read(Q)

o If TS(Ti)  W-timestamp(Q), then Ti needs to read a value of Q that was already

overwritten.

▪ Hence, the read operation is rejected, and Ti is rolled back.

o If TS(Ti)  W-timestamp(Q), then the read operation is executed, and R-

timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

• Suppose that transaction Ti issues write(Q).

o If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed

previously, and the system assumed that that value would never be produced.

▪ Hence, the write operation is rejected, and Ti is rolled back.

o If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q.

▪ Hence, this write operation is rejected, and Ti is rolled back.

o Otherwise, the write operation is executed, and W-timestamp(Q) is set to TS(Ti).

Example Use of the Protocol

A partial schedule for several data items for transactions with timestamps 1, 2, 3, 4, 5

Thomas’ Write Rule:

• Modified version of the timestamp-ordering protocol in which obsolete write operations

may be ignored under certain circumstances.

• When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q), then Ti is attempting

to write an obsolete value of {Q}.

o Rather than rolling back Ti as the timestamp ordering protocol would have done,

this {write} operation can be ignored.

• Otherwise this protocol is the same as the timestamp ordering protocol.

• Thomas' Write Rule allows greater potential concurrency.

o Allows some view-serializable schedules that are not conflict-serializable.

9. Explain about the validation-based protocol.

(or)

Explain about Optimistic Concurrency Control Technique.

• Validation Based Protocol is also called Optimistic Concurrency Control Technique.

This protocol is used in DBMS (Database Management System) for avoiding

concurrency in transactions. It is called optimistic because of the assumption it makes,

i.e. very less interference occurs, therefore, there is no need for checking while the

transaction is executed.

• In this technique, no checking is done while the transaction is been executed. Until the

transaction end is reached updates in the transaction are not applied directly to the

database. All updates are applied to local copies of data items kept for the transaction.

At the end of transaction execution, while execution of the transaction, a validation

phase checks whether any of transaction updates violate serializability. If there is no

violation of serializability the transaction is committed and the database is updated; or

else, the transaction is updated and then restarted.

• Execution of transaction Ti is done in three phases.

 1. Read and execution phase: Transaction Ti writes only to temporary local variables

 2. Validation phase: Transaction Ti performs a ''validation test'' to determine if local

 variables can be written without violating serializability.

 3. Write phase: If Ti is validated, the updates are applied to the database; otherwise, Ti is

 rolled back.

• The three phases of concurrently executing transactions can be interleaved, but each

transaction must go through the three phases in that order.

o Assume for simplicity that the validation and write phase occur together,

atomically and serially

 I.e., only one transaction executes validation/write at a time.

• Each transaction Ti has 3 timestamps

o Start(Ti) : the time when Ti started its execution

o Validation(Ti): the time when Ti entered its validation phase

o Finish(Ti) : the time when Ti finished its write phase

• Serializability order is determined by timestamp given at validation time; this is done to

increase concurrency.

o Thus, TS(Ti) is given the value of Validation(Ti).

• This protocol is useful and gives greater degree of concurrency if probability of conflicts

is low.

o because the serializability order is not pre-decided, and

o relatively few transactions will have to be rolled back.

Validation Test for Transaction Tj:

• If for all Ti with TS (Ti) < TS (Tj) either one of the following condition holds:

o finish(Ti) < start(Tj)

o start(Tj) < finish(Ti) < validation(Tj) and the set of data items written by Ti does

not intersect with the set of data items read by Tj.

• then validation succeeds and Tj can be committed. Otherwise, validation fails and Tj is

aborted.

• Justification: Either the first condition is satisfied, and there is no overlapped execution,

or the second condition is satisfied and

o The writes of Tj do not affect reads of Ti since they occur after Ti has finished its

reads.

o The writes of Ti do not affect reads of Tj since Tj does not read any item written by

Ti.

Schedule Produced by Validation:

• Example of schedule produced using validation

10. Discuss about multiversion schemes.

In multiversion concurrency-control schemes, each write(Q) operation creates a new

version of Q. When a transaction issues a read(Q) operation, the concurrency-control manager

selects one of the versions of Q to be read. The concurrency-control scheme must ensure that the

version to be read is selected in a manner that ensures serializability. It is also crucial, for

performance reasons, that a transaction be able to determine easily and quickly which version of

the data item should be read.

• Multiversion schemes keep old versions of data item to increase concurrency.

o Multiversion Timestamp Ordering

o Multiversion Two-Phase Locking

• Each successful write results in the creation of a new version of the data item written.

• Use timestamps to label versions.

• When a read(Q) operation is issued, select an appropriate version of Q based on the

timestamp of the transaction, and return the value of the selected version.

• reads never have to wait as an appropriate version is returned immediately.

Multiversion Timestamp Ordering:

• Each data item Q has a sequence of versions <Q1, Q2,...., Qm>. Each version Qk contains

three data fields:

o Content -- the value of version Qk.

o W-timestamp(Qk) -- timestamp of the transaction that created (wrote) version Qk

o R-timestamp(Qk) -- largest timestamp of a transaction that successfully read

version Qk

• When a transaction Ti creates a new version Qk of Q, Qk's W-timestamp and R-timestamp

are initialized to TS(Ti).

• R-timestamp of Qk is updated whenever a transaction Tj reads Qk, and TS(Tj) > R-

timestamp(Qk).

• Suppose that transaction Ti issues a read(Q) or write(Q) operation. Let Qk denote the

version of Q whose write timestamp is the largest write timestamp less than or equal to

TS(Ti).

1. If transaction Ti issues a read(Q), then the value returned is the content of version

Qk.

2. If transaction Ti issues a write(Q)

1. if TS(Ti) < R-timestamp(Qk), then transaction Ti is rolled back.

2. if TS(Ti) = W-timestamp(Qk), the contents of Qk are overwritten

3. else a new version of Q is created.

• Observe that

o Reads always succeed

o A write by Ti is rejected if some other transaction Tj that (in the serialization order

defined by the timestamp values) should read Ti's write, has already read a version

created by a transaction older than Ti.

• Protocol guarantees serializability

Multiversion Two-Phase Locking:

• Differentiates between read-only transactions and update transactions

• Update transactions acquire read and write locks, and hold all locks up to the end of the

transaction. That is, update transactions follow rigorous two-phase locking.

o Each successful write results in the creation of a new version of the data item

written.

o Each version of a data item has a single timestamp whose value is obtained from a

counter ts-counter that is incremented during commit processing.

• Read-only transactions are assigned a timestamp by reading the current value of ts-

counter before they start execution; they follow the multiversion timestamp-ordering

protocol for performing reads.

• When an update transaction wants to read a data item:

o it obtains a shared lock on it, and reads the latest version.

• When it wants to write an item

o it obtains X lock on; it then creates a new version of the item and sets this version's

timestamp to .

• When update transaction Ti completes, commit processing occurs:

o Ti sets timestamp on the versions it has created to ts-counter + 1

o Ti increments ts-counter by 1

• Read-only transactions that start after Ti increments ts-counter will see the values updated

by Ti.

• Read-only transactions that start before Ti increments the

ts-counter will see the value before the updates by Ti.

• Only serializable schedules are produced.

MVCC: Implementation Issues:

• Creation of multiple versions increases storage overhead

o Extra tuples

o Extra space in each tuple for storing version information

• Versions can, however, be garbage collected

o E.g. if Q has two versions Q5 and Q9, and the oldest active transaction has

timestamp > 9, than Q5 will never be required again

11. Explain about the snapshot isolation.

• The isolation levels in DBMS are used to maintain concurrent execution of transactions

without facing interruption through problems like dirty read, phantom read, and non-

repeatable read. Snapshot isolation is one such isolation level that achieves the

maximum level of concurrency.

• Motivation: Decision support queries that read large amounts of data have concurrency

conflicts with OLTP transactions that update a few rows

o Poor performance results

• Solution 1: Give logical “snapshot” of database state to read only transactions, read-write

transactions use normal locking

o Multiversion 2-phase locking

o Works well, but how does system know a transaction is read only?

• Solution 2: Give snapshot of database state to every transaction, updates alone use 2-phase

locking to guard against concurrent updates

o Problem: variety of anomalies such as lost update can result

o Partial solution: snapshot isolation level

▪ Proposed by Berenson et al, SIGMOD 1995

▪ Variants implemented in many database systems

• E.g. Oracle, PostgreSQL, SQL Server 2005

• A transaction T1 executing with Snapshot Isolation

o takes snapshot of committed data at start

o always reads/modifies data in its own snapshot

o updates of concurrent transactions are not visible to T1

o writes of T1 complete when it commits

o First-committer-wins rule:

▪ Commits only if no other concurrent transaction has already written data

that T1 intends to write.

T1 T2 T3

W(Y := 1)

Commit

Start

R(X) → 0

R(Y)→ 1

W(X:=2)

W(Z:=3)

Commit

R(Z) → 0

R(Y) → 1

W(X:=3)

Commit-Req

Abort

Snapshot Read:

• Concurrent updates invisible to snapshot read

Snapshot Write: First Committer Wins

o Variant: “First-updater-wins”

▪ Check for concurrent updates when write occurs by locking item

• But lock should be held till all concurrent transactions have finished

▪ (Oracle uses this plus some extra features)

▪ Differs only in when abort occurs, otherwise equivalent

Benefits of SI:

• Reading is never blocked,

o and also doesn’t block other txns activities

• Performance similar to Read Committed

• Avoids the usual anomalies

o No dirty read

o No lost update

o No non-repeatable read

o Predicate based selects are repeatable (no phantoms)

• Problems with SI

o SI does not always give serializable executions

▪ Serializable: among two concurrent txns, one sees the effects of the other

▪ In SI: neither sees the effects of the other

o Result: Integrity constraints can be violated

• Snapshot Isolation:

• E.g. of problem with SI

o T1: x:=y

o T2: y:= x

o Initially x = 3 and y = 17

▪ Serial execution: x = ??, y = ??

▪ if both transactions start at the same time, with snapshot isolation: x = ?? ,

y = ??

• Called skew write

• Skew also occurs with inserts

o E.g:

▪ Find max order number among all orders

▪ Create a new order with order number = previous max + 1

Snapshot Isolation Anomalies:

• SI breaks serializability when txns modify different items, each based on a previous state

of the item the other modified

o Not very common in practice

▪ E.g., the TPC-C benchmark runs correctly under SI

▪ when txns conflict due to modifying different data, there is usually also a

shared item they both modify too (like a total quantity) so SI will abort one

of them

o But does occur

▪ Application developers should be careful about write skew

• SI can also cause a read-only transaction anomaly, where read-only transaction may see an

inconsistent state even if updaters are serializable

• Using snapshots to verify primary/foreign key integrity can lead to inconsistency

o Integrity constraint checking usually done outside of snapshot

12. Explain about Recovery Concepts in detail.

 (Or)

 Discuss about Recovery Techniques Based on deferred update and Immediate

 Update.

• Recovery process restores database to most recent consistent state before time of failure

• Information kept in system log

• Typical recovery strategies

o Restore backed-up copy of database

▪ Best in cases of extensive damage

o Identify any changes that may cause inconsistency

▪ Best in cases of noncatastrophic failure

▪ Some operations may require redo

• Deferred update techniques

o Do not physically update the database until after transaction commits

o Undo is not needed; redo may be needed

• Immediate update techniques

o Database may be updated by some operations of a transaction before it reaches

commit point

o Operations also recorded in log

o Recovery still possible

◼ Undo and redo operations required to be idempotent

◼ Executing operations multiple times equivalent to executing just once

◼ Entire recovery process should be idempotent

◼ Caching (buffering) of disk blocks

◼ DBMS cache: a collection of in-memory buffers

◼ Cache directory keeps track of which database items are in the buffers

◼ Cache buffers replaced (flushed) to make space for new items

◼ Dirty bit associated with each buffer in the cache

◼ Indicates whether the buffer has been modified

◼ Contents written back to disk before flush if dirty bit equals one

◼ Pin-unpin bit

◼ Page is pinned if it cannot be written back to disk yet

◼ Main strategies

◼ In-place updating

◼ Writes the buffer to the same original disk location

◼ Overwrites old values of any changed data items

◼ Shadowing

◼ Writes an updated buffer at a different disk location, to maintain multiple

versions of data items

◼ Not typically used in practice

◼ Before-image: old value of data item

◼ After-image: new value of data item

◼ Write-ahead logging

◼ Ensure the before-image (BFIM) is recorded

◼ Appropriate log entry flushed to disk

◼ Necessary for UNDO operation if needed

◼ UNDO-type log entries

◼ REDO-type log entries

◼ Steal/no-steal and force/no-force

◼ Specify rules that govern when a page from the database cache can be written to

disk

◼ No-steal approach

◼ Cache buffer page updated by a transaction cannot be written to disk before the

transaction commits

◼ Steal approach

◼ Recovery protocol allows writing an updated buffer before the transaction

commits

◼ Force approach

◼ All pages updated by a transaction are immediately written to disk before the

transaction commits

◼ Otherwise, no-force

◼ Typical database systems employ a steal/no- force strategy

◼ Avoids need for very large buffer space

◼ Reduces disk I/O operations for heavily updated pages

◼ Write-ahead logging protocol for recovery algorithm requiring both UNDO and REDO

◼ BFIM of an item cannot be overwritten by its after image until all UNDO-type log

entries have been force-written to disk

◼ Commit operation of a transaction cannot be completed until all REDO-type and

UNDO-type log records for that transaction have been force- written to disk

Checkpoints in the System Log and Fuzzy Checkpointing:

o Taking a checkpoint

o Suspend execution of all transactions temporarily

o Force-write all main memory buffers that have been modified to disk

o Write a checkpoint record to the log, and force- write the log to the disk

o Resume executing transactions

o DBMS recovery manager decides on checkpoint interval

o Fuzzy checkpointing

o System can resume transaction processing after a begin_checkpoint record

is written to the log

o Previous checkpoint record maintained until end_checkpoint record is

written

Transaction Rollback:

◼ Transaction failure after update but before commit

◼ Necessary to roll back the transaction

◼ Old data values restored using undo-type log entries

◼ Cascading rollback

◼ If transaction T is rolled back, any transaction S that has read value of item written

by T must also be rolled back

◼ Almost all recovery mechanisms designed to avoid this

Figure 22.1 Illustrating cascading rollback (a process that never occurs in strict or cascadeless

schedules) (a) The read and write operations of three transactions (b) System log at point of

crash (c) Operations before the crash

Transactions that Do Not Affect the Database:

◼ Example actions: generating and printing messages and reports

◼ If transaction fails before completion, may not want user to get these reports

◼ Reports should be generated only after transaction reaches commit point

◼ Commands that generate reports issued as batch jobs executed only after transaction

reaches commit point

◼ Batch jobs canceled if transaction fails

NO-UNDO/REDO Recovery Based on Deferred Update:

◼ Deferred update concept

◼ Postpone updates to the database on disk until the transaction completes

successfully and reaches its commit point

◼ Redo-type log entries are needed

◼ Undo-type log entries not necessary

◼ Can only be used for short transactions and transactions that change few items

◼ Buffer space an issue with longer transactions

◼ Deferred update protocol

◼ Transaction cannot change the database on disk until it reaches its commit point

◼ All buffers changed by the transaction must be pinned until the transaction

commits (no-steal policy)

◼ Transaction does not reach its commit point until all its REDO-type log entries are

recorded in log and log buffer is force-written to disk

Figure 22.2 An example of a recovery timeline to illustrate the effect of checkpointing

Recovery Techniques Based on Immediate Update

◼ Database can be updated immediately

◼ No need to wait for transaction to reach commit point

◼ Not a requirement that every update be immediate

◼ UNDO-type log entries must be stored

◼ Recovery algorithms

◼ UNDO/NO-REDO (steal/force strategy)

UNDO/REDO (steal/no-force strategy)

Figure. An example of recovery using deferred update with concurrent transactions

(a) The READ and WRITE operations of four transactions (b) System log at the point of crash

13. Discuss about Shadow Paging.

◼ No log required in a single-user environment

◼ Log may be needed in a multiuser environment for the concurrency control

method

◼ Shadow paging considers disk to be made of n fixed-size disk pages

◼ Directory with n entries is constructed

◼ When transaction begins executing, directory copied into shadow directory to save

while current directory is being used

Shadow directory is never modified

◼ New copy of the modified page created and stored elsewhere

◼ Current directory modified to point to new disk block

◼ Shadow directory still points to old disk block

◼ Failure recovery

◼ Discard current directory

◼ Free modified database pages

◼ NO-UNDO/NO-REDO technique

Figure. An example of shadow paging

14. Elaborate about the ARIES Recovery Algorithm.

◼ ARIES Recovery Algorithm is Used in many IBM relational database products

◼ It Uses a steal/no-force approach for writing

◼ Concepts

◼ Write-ahead logging

◼ Repeating history during redo

◼ Retrace all database system actions prior to crash to reconstruct database

state when crash occurred

◼ Logging changes during undo

◼ Prevents ARIES from repeating completed undo operations if failure

occurs during recovery

◼ Analysis step

◼ Identifies dirty (updated) pages in the buffer and set of transactions active at the

time of crash

◼ Determines appropriate start point in the log for the REDO operation

◼ REDO

◼ Reapplies updates from the log to the database

◼ Only necessary REDO operations are applied

◼ UNDO

◼ Log is scanned backward

◼ Operations of transactions that were active at the time of the crash are undone in

reverse order

◼ Every log record has associated log sequence number (LSN)

◼ Indicates address of log record on disk

◼ Corresponds to a specific change of some transaction

Figure. An example of recovery in ARIES (a) The log at point of crash (b) The Transaction

and Dirty Page Tables at time of checkpoint (c) The Transaction and Dirty Page Tables after

the analysis phase

UNIT-III

PART-A

1. What is meant by concurrency control? Nov/ Dec 2015

In a multiprogramming environment, multiple transactions can be executed simultaneously.

The system must control the interaction among the concurrent transactions. This control is

achieved through one of concurrency control schemes. The concurrency control schemes are

based on the serializability property.

2. Give an example of two phase commit protocol. Nov/ Dec 2015

lock-X(A); // Growing Phase

read(A);

A=A-50;

Write(A);

lock-X(B); // Growing Phase

read(B);

B=B+50;

Wtite(B);

 unlock(A); // Shrinking Phase

 unlock(B); // Shrinking Phase

3. What are the properties of transaction? April/ May 2016, Nov/ Dec 2014, April/

May 2015 Collection of operations that form a single logical unit of work are called

transaction.

ACID Properties

1) Atomicity.

Either all operations of the transaction are properly reflected in the database or none are.

2) Consistency.

Execution of a transaction in isolation preserves the consistency of the database.

3) Isolation.

Although multiple transactions may execute concurrently, each transaction must be unaware

of other concurrently executing transactions. Intermediate transaction results must be hidden

from other concurrently executed transactions.

4) Durability.

After a transaction completes successfully, the changes it has made to the database persist,

even if there are system failures.

4. Differentiate Strict Two Phase Locking Protocol and Rigorous Two Phase Locking

Protocol. April/ May 2016

Strict Two Phase Locking Protocol

All exclusive locks are held by transaction T and are released when T commits and not before.

Rigorous Two Phase Locking Protocol

All locks both exclusive and shared locks held by transaction T are released when T commits

and not before.

5. What is Serializability (Serializable Schedule)? How is it tested? Nov/ Dec 2014, Nov/

Dec 2016, April/ May 2017

Serializability is a schedule that has the same effect on the database as a serial schedule. It is

tested using two techniques: View Serializability and Conflict Serializability.

6. List the four conditions for deadlock. Nov/ Dec 2016

i. mutual exclusion

ii. hold and wait

iii. no pre-emption

iv. circular wait

7. What type of locking is needed for insert and delete operations? April/ May 2017

Shared lock is obtained when Data item can only be read. But data item can be both read as

well as written when exclusive lock is obtained. So exclusive lock is needed for insert and

delete operations

8. Brief about cascading rollback.

The Phenomenon in which a single transaction failure leads to a series of transaction roll

backs, is called cascading rollback.

9. With neat diagram show the states of a transaction.

10. What is transaction-management component?

Ensuring atomicity is the responsibility of the database system itself specifically; it is handled

by a component called the transaction-management component.

11. When two operations in schedule are said to be conflict?

i) Two operation belong to different transaction

ii) Two operation access the same item x

iii) At least one of the operation is write-item(x)

12. Define cascading rollback

A cascading rollback occurs in database systems when a transaction (T1) causes a failure and a

rollback must be performed. Other transactions dependent on T1's actions must also be

rollbacked due to T1's failure, thus causing a cascading effect. That is, one transaction's failure

causes many to fail

13. List out the two-phase locking.

1) Growing phase: A transaction may obtain locks but may not replace any lock.

2) Shrinking phase: A transition may release lock but may not obtain any new locks.

14. Define lock.

Lock is variable associated with a data item. Lock is used as a means of synchronizing the

access by concurrent transaction to the database item.

15. Define timestamp

Timestamp are typically based on the order in which transition are stared.

16. Define timestamp based protocol.

Timestamp based protocol ensures serializability. It selects an ordering among transactions

in advance using time stamps.

17. If deadlock is avoided by deadlock avoidance scheme, is starvation still possible? Explain

your answer.

A transaction may become the victim of deadlock-prevention rollback arbitrarily many times,

thus creating a potential starvation situation.

18. When are two scheduled conflict equivalent?

If a schedule S can be transformed into a schedule S` by a series of swaps of non-conflicting

instructions, we say that S and S` are conflict equivalent.

19. Why is it necessary to have control of concurrent execution of transactions? How is it

made possible?

The system must control the interaction among the concurrent transactions. This control is

achieved through one of the concurrency control schemes. The concurrency control are based

on the serializability property.

20. What are the two operations that access data in transaction?

Read(x)- transfer data item x from database.

Write(x)- transfer data item x from the local buffer.

21. List the two commonly used Concurrency Control techniques.

1) Lock based protocols

2) Time stamp based protocol

22. What are the pitfalls of lock-based protocols?

The potential for deadlock exists in most locking protocols. Deadlocks are a necessary evil. •

Starvation is also possible if concurrency control manager is badly designed. For example: – A

transaction may be waiting for an X-lock on an item, while a sequence of other transactions

request and are granted an S-lock on the same item. – The same transaction is repeatedly rolled

back due to deadlocks. • Concurrency control manager can be designed to prevent starvation.

23. Define recovery in a database system.

 Recovery in a database system means, primarily, recovering the database itself; that is,

restoring the database to a correct state after some failure has rendered the current state

incorrect, or at least suspect.

24. What is a transaction? (MAY 2010)

A transaction is a logical unit of work; it begins with the execution of a BEGIN TRANSACTION

operation, and ends with the execution of a COMMIT or ROLLBACK operation.

25. What is a commit point?

A commit point corresponds to the end of a logical unit of work, and hence to a point at which

the database is supposed to be in a correct state.

26. What is a system failure?

 System failures (e.g., power outage), which affect all transactions currently in progress but do

not physically damage the database. A system failure is sometimes called a soft crash.

27. What is a media failure?

 Media failures (e.g. head crash on the disk), which do cause damage to the database or some

portion thereof, and affect at least those transactions currently using that portion. A media

failure is sometimes called a hard crash.

28. What is a check point record?

 The checkpoint record contains a list of all transactions that were in progress at the time

the checkpoint was taken.

29. Expand ARIES.

 The name ARIES stands for ―Algorithms for Recovery and Isolation Exploiting Semantics.

30. What are the three broad phases of ARIES?

 ARIES operates in three broad phases:

➢ Analysis: Build the REDO and UNDO lists

➢ Redo: Start from a position in the log determined in the analysis phase and restore the

database to the state it was in at the time of the crash.

➢ Undo: Undo the effects of transactions that failed to commit.

31. What is a two-phase commit?

 Two-phase commit is important whenever a given transaction can interact with several

independent ―resource managers, each managing its own set of recoverable resources

and maintaining its own recovery log.

32. What is the need for save points?

 It might be possible for a transaction to establish intermediate save points while it is

executing, and subsequently to roll back to a previously established save point, if required,

instead of having to roll back all the way to the beginning.

33. Define concurrency (MAY 2012)

 Concurrency refers to the fact that DBMSs typically allow many transactions to access the

same database at the same time.

34. What are the three problems that any concurrency control mechanism must

address?

 The three problems are:

➢ The lost update problem

➢ The uncommitted dependency problem

➢ The inconsistent analysis problem

35. What is the last update problem?

 Transaction A retrieves some tuple t at time t1; transaction B retrieves that same tuple t at

time t2; transaction A updates the tuple at time t3; and transaction B updates the same tuple at

time t4; Transaction A‗s update is lost at time t4, because transaction B overwrites it with-out

even looking at it.

36. What is the uncommitted dependency problem?

 The uncommitted dependency problem arises if one transaction is allowed to retrieve-or,

worse, update-a tuple that has been updated by another transaction but not yet committed by

that other transaction.

37. What is an isolation level?

 The isolation level that applies to a given transaction might be defined as the degree of

interference the transaction in question is prepared to tolerate on the part of concurrent

transactions.

38. What do you mean by phantom problem?

 If transactions operate at less than the maximum isolation level is the so-called phantom

problem

39. What is an intent locking protocol?

 The intent locking protocol, according to which no transaction is allowed to acquire a lock on

a tuple before first acquiring a lock-probably an intent lock on the relvar that contains it.

40. What is a shadow copy scheme?

 It is simple, but efficient, scheme called the shadow copy schemes. It is based o n making

copies of the database called shadow copies that one transaction is active at a time. The

scheme also assumes that the database is simply a file on disk.

41. What type of locking needed for insert and delete operations (April/May- 2017)

 When you execute an INSERT, UPDATE, or DELETE statement, the database server uses

exclusive locks. An exclusive lock means that no other users can update or delete the item

until the database server removes the lock

Part B

1 Discuss View Serializability and conflict Serializability. Nov/ Dec 2015

2 Explain briefly about two phase commit. May/ June 2016, (8) May/ June 2015, (6) Nov/

Dec 2016

3 Explain about locking protocols. May/ June 2016

4 Consider the following schedules. The actions are listed in the order they are scheduled and

prefixed with the transaction name. May/ June 2015

S1: T1: R(X), T2: R(X), T1: W(Y), T2: W(Y), T1: R(Y), T2: R(Y)

S2: T3: W(X), T1: R(X), T1: W(Y), T2: R(X), T2: W(Z), T3:

R(Z) For each of the schedules answer the following questions:

(i) What is the precedence graph for the schedule?

(ii) Is the schedule conflict serializable? If so, what are all the conflict equivalent

serial schedule?

(iii) Is the schedule view serializable? If so, what are all the view equivalent serial

schedule?

5 Discuss the violations caused by each of the following: Dirty read, non-repeatable read and

phantoms with suitable example. April/ May 2017

6 Consider the following two transactions:

T1: read(A);

Read(B);

If A=0 then B=B+1;

Write(B);

T2: read(B);

Read(A);

If B=0 then A=A+1;

Write(A);

Add lock and unlock instructions to transactions T1 and T2 so that they observe the two phase

locking protocol. Can the execution of these transactions result in a deadlock? Nov/ Dec 2016

7 Consider the following extension to the tree locking protocol, which allows both shared and

exclusive locks:

 A transaction can be either a read only transaction in which case it can request only

shared locks or an update transaction, in which case it can request only exclusive

locks.

 Each transaction must follow the rules of the tree protocol. Read-only transactions

may lock any data item first, whereas update transaction must lock the root first.

Show that the protocol ensures serializability and deadlock freedom Nov/ Dec

2016

8 Why is Recovery needed? Discuss any two Recovery Techniques. (MAY 2012)

9 Explain the following protocols for concurrency control (MAY 2008)

a) Lock based protocols.

b) Time stamp based protocols.

10 Explain testing for serializability with respect to concurrency control schemes. How will

you determine, whether a schedule is serializble or not. (MAY 2008)

11 Explain the deferred and immediate-modification version of the log based Recovery

scheme.(MAY 2007)

12 Write short notes on shadow paging.(DEC 2007)

13 What is a transaction? Draw the state diagram corresponding to a transaction and present

an outline of the same.

14 Outline the properties that must be satisfied by a transaction.

15 Explain about Timestamp based protocol.

16 Discuss about Multiversion based protocol.

17 Elaborate about Validation protocol for concurrency control.

18 Explain about Snapshot isolation.

19 Discuss about the Multiple Granularity locking.

20 Discuss about Shadow paging

21 Explain in detail about ARIES Algorithm.

22 What is concurrency? Explain it in terms of locking mechanisms and two phase commit

protocol. Nov/ Dec 2014

23 Write short notes on Transaction concept and schedules. Nov/ Dec 2014

24 Explain about Deadlock prevention and detection techniques. Nov/ Dec 2014, (16) Nov/

Dec 2015, (6) Nov/ Dec 2016

25 What is concurrency control? How is it implemented in DBMS? Illustrate with a suitable

example Nov/ Dec 2015

CS3492 DATABASE MANAGEMENT SYSTEMS

UNIT IV IMPLEMENTATION TECHNIQUES

RAID – File Organization – Organization of Records in Files – Data dictionary Storage –

Column Oriented Storage– Indexing and Hashing –Ordered Indices – B+ tree Index Files – B

tree Index Files – Static Hashing – Dynamic Hashing – Query Processing Overview –

Algorithms for Selection, Sorting and join operations – Query optimization using Heuristics -

Cost Estimation.

1. Explain about RAID system. How does it improve performance and reliability.

• RAID (redundant array of independent disks; originally redundant array of inexpensive

disks) is a way of storing the same data in different places on multiple hard disks to protect data in

the case of a drive failure.

• Redundant arrays of independent disks (RAID), have been proposed to achieve improved

performance and reliability.

• Reliability is achieved by redundancy. The simplest (but most expensive) approach to

introducing redundancy is to duplicate every disk. This technique is called mirroring (or,

sometimes, shadow-ing). A logical disk then consists of two physical disks, and every write is

carriedout on both disks. If one of the disks fails, the data can be read from the other.

• Improvement in Performance is achieved by Parallelism. With multiple disks, we can

improve the transfer rate as well (or instead) by striping data across multiple disks.

Bit-level striping :

• Data striping consists of splitting the bits of each byte across multiple disks; such striping is

called bit-level striping.

Block-level striping :

• Block-level striping stripes blocks across multiple disks. It treats the array of disks as a

single large disk, and it gives blocks logical numbers; we assume the block numbers start from 0.

With an array of n disks, block-level striping assigns logical block i of the disk array to disk (i mod

n) + 1; it uses the i /n th physical block of the disk to store logical block i .

There are two main goals of parallelism in a disk system:

1) Load-balance multiple small accesses (block accesses), so that the throughput of such accesses

increases.

2) Parallelize large accesses so that the response time of large accesses is reduced.

RAID Levels:

• Mirroring provides high reliability, but it is expensive. Striping provides high data-transfer

rates, but does not improve reliability. Various alternative schemes aim to provide redundancy at

lower cost by combining disk striping with “parity” bits. These schemes have different cost –

performance trade-offs. The schemes are classified into RAID levels.

• In the figure, P indicates error-correcting bits, and C indicates a second copy of the data.

https://searchstorage.techtarget.com/definition/hard-disk

• For all levels, the figure depicts four disks’ worth of data, and the extra disks depicted are

used to store redundant information for failure recovery.

RAID level 0:

• RAID level 0 refers to disk arrays with striping at the level of blocks, but without any

redundancy (such as mirroring or parity bits). Figure(a) shows an array of size 4.

RAID level 1:

• RAID level 1 refers to disk mirroring with block striping. Figure(b) shows a mirrored

organization that holds four disks’ worth of data.

• Note that some vendors use the term RAID level 1+0 or RAID level 10 to refer to

mirroring with striping, and use the term RAID level 1 to refer to mirroring without striping.

Mirroring without striping can also be used with arrays of disks, to give the appearance of a single

large, reliable disk: if each disk has M blocks, logical blocks 0 to M − 1 are stored on disk 0, M to

2M − 1 on disk 1(the second disk), and so on, and each disk is mirrored.

 Figure. RAID levels.

RAID level 2:

• RAID level 2 known as memory-style error-correcting-code (ECC) organization, employs

parity bits. Memory systems have long used parity bits for error detection and correction. Each byte

in a memory system may have a parity bit associated with it that records whether the numbers of

bits in the byte that are set to 1 is even (parity = 0) or odd (parity = 1). If one of the bits in the byte

gets damaged (either a 1 becomes a 0, or a 0 becomes a 1), the parity of the byte changes and thus

will not match the stored parity. Similarly, if the stored parity bit gets damaged, it will not match

the computed parity. Thus, all 1-bit errors will be detected by the memory system. Error-correcting

schemes store 2 or more extra bits, and can reconstruct the data if a single bit gets damaged.

• The idea of error-correcting codes can be used directly in disk arrays by striping bytes

across disks. For example, the first bit of each byte could be stored in disk 0, the second bit in disk

1, and so on until the eighth bit is stored in disk 7, and the error-correction bits are stored in further

disks.

• Figure (c) shows the level 2 scheme. The disks labeled P store the error-correction bits. If

one of the disks fails, the remaining bits of the byte and the associated error-correction bits can be

read from other disks, and can be used to reconstruct the damaged data. Figure 10.3c shows an

array of size 4; note RAID level 2 requires only three disks’ overhead for four disks of data, unlike

RAID level 1, which required four disks’ overhead.

RAID level 3:

• RAID level 3 bit-interleaved parity organization, improves on level 2 by exploiting the

fact that disk controllers, unlike memory systems, can detect whether a sector has been read

correctly, so a single parity bit can be used for error correction, as well as for detection. The idea is

as follows: If one of the sectors gets damaged, the system knows exactly which sector it is, and, for

each bit in the sector, the system can figure out whether it is a 1 or a 0 by computing the parity of

the corresponding bits from sectors in the other disks. If the parity of the remaining bits is equal to

the stored parity, the missing bit is 0; otherwise, it is 1.

• RAID level 3 is as good as level 2, but is less expensive in the number of extra disks (it has

only a one-disk overhead), so level 2 is not used in practice. Figure (d) shows the level 3 scheme.

• RAID level 3 has two benefits over level 1. It needs only one parity disk for several regular

disks, whereas level 1 needs one mirror disk for every disk, and thus level 3 reduces the storage

overhead. Since reads and writes of a byte are spread out over multiple disks, with N-way striping

of data, the transfer rate for reading or writing a single block is N times faster than a RAID level 1

organization using N-way striping. On the other hand, RAID level 3 supports a lower number of

I/O operations per second, since every disk has to participate in every I/O request.

RAID level 4:

• RAID level 4 block-interleaved parity organization, uses block-level striping, like RAID 0,

and in addition keeps a parity block on a separate disk for corresponding blocks from N other disks.

This scheme is shown pictorially in Figure (e). If one of the disks fails, the parity block can be used

with the corresponding blocks from the other disks to restore the blocks of the failed disk.

• A block read accesses only one disk, allowing other requests to be processed by the other

disks. Thus, the data-transfer rate for each access is slower, but multiple read accesses can proceed

in parallel, leading to a higher overall I/O rate. The transfer rates for large reads is high, since all

the disks can be read in parallel; large writes also have high transfer rates, since the data and parity

can be written in parallel.

• Small independent writes, on the other hand, cannot be performed in parallel. A write of a

block has to access the disk on which the block is stored, as well as the parity disk, since the parity

block has to be updated. Moreover, both the old value of the parity block and the old value of the

block being written have to be read for the new parity to be computed. Thus, a single write requires

four disk accesses: two to read the two old blocks, and two to write the two blocks.

RAID level 5:

• RAID level 5 block-interleaved distributed parity, improves on level 4 by partitioning

data and parity among all N + 1 disks, instead of storing data in N disks and parity in one disk. In

level 5, all disks can participate in satisfying read requests, unlike RAID level 4, where the parity

disk cannot participate, so level 5 increases the total number of requests that can be met in a given

amount of time. For each set of N logical blocks, one of the disks stores the parity, and the other N

disks store the blocks.

• Figure shows the setup. The P’s are distributed across all the disks. For example, with

an array of 5 disks, the parity block, labeled Pk, for logical blocks 4k, 4k + 1, 4k + 2, 4k + 3 is

stored in disk k mod 5; the corresponding blocks of the other four disks store the 4 data blocks 4k to

4k + 3. The following table indicates how the first 20 blocks, numbered 0 to 19, and their parity

blocks are laid out. The pattern shown gets repeated on further blocks.

• Note that a parity block cannot store parity for blocks in the same disk, since then a disk

failure would result in loss of data as well as of parity, and hence would not be recoverable. Level 5

subsumes level 4, since it offers better read – write performance at the same cost, so level 4 is not

used in practice.

RAID level 6:

• RAID level 6 is the P + Q redundancy scheme, is much like RAID level 5, but stores extra

redundant information to guard against multiple disk failures. Instead of using parity, level 6 uses

error-correcting codes such as the Reed – Solomon codes (see the bibliographical notes). In the

scheme in Figure (g), 2 bits of redundant data are stored for every 4 bits of data — unlike 1 parity

bit in level 5 — and the system can tolerate two disk failures.

Choice of RAID Level:

 The factors to be taken into account in choosing a RAID level are:

➢ Monetary cost of extra disk-storage requirements.

➢ Performance requirements in terms of number of I/O operations.

➢ Performance when a disk has failed.

➢ Performance during rebuild (that is, while the data in a failed disk are being rebuilt on a new

disk).

2. Describe the different types of file organization? Explain using a sketch of each of

them with their advantages and disadvantages.

• A database is mapped into a number of different files that are maintained by the underlying

operating system. These files reside permanently on disks.

• A file is organized logically as a sequence of records. These records are mapped onto disk

blocks. Files are provided as a basic construct in operating systems, so we shall assume the

existence of an underlying file system. We need to consider ways of representing logical data

models in terms of files.

• Each file is also logically partitioned into fixed-length storage units called blocks, which

are the units of both storage allocation and data transfer. Most databases use block sizes of 4 to 8

kilobytes by default, but many databases allow the block size to be specified when a database

instance is created. Larger block sizes can be useful in some database applications.

• A block may contain several records; the exact set of records that a block contains is

determined by the form of physical data organization being used. We shall assume that no record

is larger than a block. This assumption is realistic for most data-processing applications, such as

our university example. There are certainly several kinds of large data items, such as images, that

can be significantly larger than a block.

• In a relational database, tuples of distinct relations are generally of different sizes. One

approach to mapping the database to files is to use several files, and to store records of only one

fixed length in any given file. An alternative is to structure our files so that we can accommodate

multiple lengths for records; however, files of fixed-length records are easier to implement than are

files of variable-length records. Many of the techniques used for the former can be applied to the

variable-length case. Thus, we begin by considering a file of fixed-length records, and consider

storage of variable-length records later.

1) Fixed-Length Records:

• Consider a file of instructor records for university database. Each record of this file is

defined (in pseudocode) as:

type instructor = record

ID varchar (5);

name varchar(20);

dept name varchar (20);

salary numeric (8,2);

end

• Assume that each character occupies 1 byte and that numeric (8,2) occupies 8 bytes.

Suppose that instead of allocating a variable amount of bytes for the attributes ID, name, and dept

name, we allocate the maximum number of bytes that each attribute can hold. Then, the instructor

record is 53 bytes long. A simple approach is to use the first 53 bytes for the first record, the next

53 bytes for the second record, and so on.

Two problems with this simple approach:

1) Unless the block size happens to be a multiple of 53 (which is unlikely), some records will cross

block boundaries. That is, part of the record will be stored in one block and part in another. It

would thus require two block accesses to read or write such a record.

 2) It is difficult to delete a record from this structure. The space occupied by the record to be

deleted must be filled with some other record of the file, or we must have a way of marking deleted

records so that they can be ignored.

record 0

10101 Srinivasan Comp. Sci. 65000

record 1 12121 Wu Finance 90000

record 2 15151 Mozart Music 40000

record 3 22222 Einstein Physics 95000

record 4 32343 El Said History 60000

record 5 33456 Gold Physics 87000

record 6 45565 Katz Comp. Sci. 75000

record 7 58583 CaliÞeri History 62000

record 8 76543 Singh Finance 80000

record 9 76766 Crick Biology 72000

record 10 83821 Brandt Comp. Sci. 92000

record 11 98345 Kim Elec. Eng. 80000

Figure. File containing instructor records.

• To avoid the first problem, we allocate only as many records to a block as would fit entirely

in the block (this number can be computed easily by dividing the block size by the record size, and

discarding the fractional part). Any remaining bytes of each block are left unused.

• When a record is deleted, we could move the record that came after it into the space

formerly occupied by the deleted record, and so on, until every record following the deleted record

has been moved ahead. Such an approach requires moving a large number of records. It might be

easier simply to move the final record of the file into the space occupied by the deleted record.

record 0 10101 Srinivasan Comp. Sci. 65000

record 1 12121 Wu Finance 90000

record 2 15151 Mozart Music 40000

record 4 32343 El Said History 60000

record 5 33456 Gold Physics 87000

record 6 45565 Katz Comp. Sci. 75000

record 7 58583 CaliÞeri History 62000

record 8 76543 Singh Finance 80000

record 9 76766 Crick Biology 72000

record 10 83821 Brandt Comp. Sci. 92000

record 11 98345 Kim Elec. Eng. 80000

Figure .File with record 3 deleted and all records moved.

record 0 10101 Srinivasan Comp. Sci. 65000

record 1 12121 Wu Finance 90000

record 2 15151 Mozart Music 40000

record 11 98345 Kim Elec. Eng. 80000

record 4 32343 El Said History 60000

record 5 33456 Gold Physics 87000

record 6 45565 Katz Comp. Sci. 75000

record 7 58583 CaliÞeri History 62000

record 8 76543 Singh Finance 80000

record 9 76766 Crick Biology 72000

record 10 83821 Brandt Comp. Sci. 92000

Figure.File with record 3 deleted and final record moved.

• It is undesirable to move records to occupy the space freed by a deleted record, since doing

so requires additional block accesses. Since insertions tend to be more frequent than deletions, it is

acceptable to leave open the space occupied by the deleted record, and to wait for a subsequent

insertion before reusing the space. A simple marker on a deleted record is not sufficient, since it is

hard to find this available space when an insertion is being done. Thus, we need to introduce an

additional structure.

• At the beginning of the file, we allocate a certain number of bytes as a file header. The

header will contain a variety of information about the file. For now, all we need to store there is the

address of the first record whose contents are deleted. We use this first record to store the address

of the second available record, and so on. Intuitively, we can think of these stored addresses as

pointers, since they point to the location of a record. The deleted records thus form a linked list,

which is often referred to as a free list. Figure 10.7 shows the file of Figure 10.4, with the free list,

after records 1, 4, and 6 have been deleted.

• On insertion of a new record, we use the record pointed to by the header. We change the

header pointer to point to the next available record. If no space is available, we add the new record

to the end of the file.

 Figure. File with free list after deletion of records 1, 4, and 6.

• Insertion and deletion for files of fixed-length records are simple to implement, because the

space made available by a deleted record is exactly the space needed to insert a record. If we allow

records of variable length in a file, this match no longer holds. An inserted record may not fit in the

space left free by a deleted record, or it may fill only part of that space.

2) Variable-Length Records:

Variable-length records arise in database systems in several ways:

➢ Storage of multiple record types in a file.

➢ Record types that allow variable lengths for one or more fields.

• Record types that allow repeating fields, such as arrays or multisets.

• Different techniques for implementing variable-length records exist. Two different

problems must be solved by any such technique:

• How to represent a single record in such a way that individual attributes can be extracted

easily.

• How to store variable-length records within a block, such that records in a block can be

extracted easily.

• The representation of a record with variable-length attributes typically has two parts: an

initial part with fixed length attributes, followed by data for variable-length attributes. Fixed-length

attributes, such as numeric values, dates, or fixed-length character strings are allocated as many

bytes as required to store their value. Variable-length attributes, such as varchar types, are

represented in the initial part of the record by a pair (offset, length), where offset denotes where the

data for that attribute begins within the record, and length is the length in bytes of the variable-

sized attribute. The values for these attributes are stored consecutively, after the initial fixed-length

part of the record. Thus, the initial part of the record stores a fixed size of information about each

attribute, whether it is fixed-length or variable-length.

• An example of such a record representation is shown in Figure 10.8. The figure shows an

instructor record, whose first three attributes ID, name, and dept name are variable-length strings,

and whose fourth attribute salary is a fixed-sized number. We assume that the offset and length

values are stored in two bytes each, for a total of 4 bytes per attribute. The salary attribute is

assumed to be stored in 8 bytes, and each string takes as many bytes as it has characters.

 Figure. Representation of variable-length record.

• The figure also illustrates the use of a null bitmap, which indicates which attributes of the

record have a null value. In this particular record, if the salary were null, the fourth bit of the

bitmap would be set to 1, and the salary value stored in bytes 12 through 19 would be ignored.

Since the record has four attributes, the null bitmap for this record fits in 1 byte, although more

bytes may be required with more attributes. In some representations, the null bitmap is stored at the

beginning of the record, and for attributes that are null, no data (value, or offset/length) are stored

at all. Such a representation would save some storage space, at the cost of extra work to extract

attributes of the record. This representation is particularly useful for certain applications where

records have a large number of fields, most of which are null.

• We next address the problem of storing variable-length records in a block. The slotted-page

structure is commonly used for organizing records within a block. There is a header at the

beginning of each block, containing the following information:

➢ The number of record entries in the header.

➢ The end of free space in the block.

• An array whose entries contain the location and size of each record.

• The actual records are allocated contiguously in the block, starting from the end of the

block. The free space in the block is contiguous, between the final entry in the header array, and the

first record. If a record is inserted, space is allocated for it at the end of free space, and an entry

containing its size and location is added to the header.

• If a record is deleted, the space that it occupies is freed, and its entry is set to deleted (its

size is set to −1, for example). Further, the records in the block before the deleted record are

moved, so that the free space created by the deletion gets occupied, and all free space is again

between the final entry in the header array and the first record.

• The end-of-free-space pointer in the header is appropriately updated as well. Records can be

grown or shrunk by similar techniques, as long as there is space in the block. The cost of moving

the records is not too high, since the size of a block is limited: typical values are around 4 to 8

kilobytes.

 Figure. Slotted-page structure.

• The slotted-page structure requires that there be no pointers that point directly to records.

Instead, pointers must point to the entry in the header that contains the actual location of the record.

This level of indirection allows records to be moved to prevent fragmentation of space inside a

block, while supporting indirect pointers to the record.

• Databases often store data that can be much larger than a disk block. For instance, an image

or an audio recording may be multiple megabytes in size, while a video object may be multiple

gigabytes in size. Recall that SQL supports the types blob and clob, which store binary and

character large objects.

• Most relational databases restrict the size of a record to be no larger than the size of a block,

to simplify buffer management and free-space management. Large objects are often stored in a

special file (or collection of files) instead of being stored with the other (short) attributes of records

in which they occur. A (logical) pointer to the object is then stored in the record containing the

large object. Large objects are often represented using B+-tree file organizations. B+-tree file

organizations permit us to read an entire object, or specified byte ranges in the object, as well as to

insert and delete parts of the object.

3. Discuss about organization of records in file.

• A relation is a set of records.

Possible ways of organizing records in files are:

 1) Heap file organization. Any record can be placed anywhere in the file where there is space

for the record. There is no ordering of records. Typically, there is a single file for each relation.

 2) Sequential file organization. Records are stored in sequential order, according to the value

of a “search key” of each record.

3) Hashing file organization. A hash function is computed on some attribute of each record. The

result of the hash function specifies in which block of the file the record should be placed.

Generally, a separate file is used to store the records of each relation.

4) In a multitable clustering file organization, records of several different relations are stored in

the same file; further, related records of the different relations are stored on the same block, so that

one I/O operation fetches related records from all the relations. For example, records of the two

relations can be considered to be related if they would match in a join of the two relations.

1) Sequential File Organization:

• A sequential file is designed for efficient processing of records in sorted order based on

some search key. A search key is any attribute or set of attributes; it need not be the primary key,

or even a super key.

• To permit fast retrieval of records in search-key order, we chain together records by

pointers. The pointer in each record points to the next record in search-key order. Furthermore, to

minimize the number of block accesses in sequential file processing, we store records physically in

search-key order, or as close to search-key order as possible.

 Figure. Sequential file for instructor records.

• Figure shows a sequential file of instructor records taken from our university example. In

that example, the records are stored in search-key order, using ID as the search key.

• The sequential file organization allows records to be read in sorted order; that can be useful

for display purposes, as well as for certain query-processing algorithms.

• It is difficult, however, to maintain physical sequential order as records are inserted and

deleted, since it is costly to move many records as a result of a single insertion or deletion. We can

manage deletion by using pointer chains, as we saw previously. For insertion, we apply the

following rules:

 i) Locate the record in the file that comes before the record to be inserted in search-key order.

 ii) If there is a free record (that is, space left after a deletion) within the same block as this

record, insert the new record there. Otherwise, insert the new record in an overflow block. In either

case, adjust the pointers so as to chain together the records in search-key order.

 Figure. Sequential file after an insertion.

• Figure shows the file after the insertion of the record (32222, Verdi, Music, 48000). The

structure in Figure allows fast insertion of new records, but forces sequential file-processing

applications to process records in an order that does not match the physical order of the records.

• If relatively few records need to be stored in overflow blocks, this approach works well.

Eventually, however, the correspondence between search-key order and physical order may be

totally lost over a period of time, in which case sequential processing will become much less

efficient. At this point, the file should be reorganized so that it is once again physically in

sequential order.

• Such reorganizations are costly, and must be done during times when the system load is

low. The frequency with which reorganizations are needed depends on the frequency of insertion of

new records. In the extreme case in which insertions rarely occur, it is possible always to keep the

file in physically sorted order. In such a case, the pointer field is not needed.

2) Multitable Clustering File Organization:

• Many relational database systems store each relation in a separate file, so that they can take

full advantage of the file system that the operating system provides. Usually, tuples of a relation

can be represented as fixed-length records. Thus, relations can be mapped to a simple file structure.

This simple implementation of a relational database system is well suited to low-cost database

implementations as in, for example, embedded systems or portable devices. In such systems, the

size of the database is small, so little is gained from a sophisticated file structure. Furthermore, in

such environments, it is essential that the overall size of the object code for the database system be

small. A simple file structure reduces the amount of code needed to implement the system.

• This simple approach to relational database implementation becomes less satisfactory as the

size of the database increases. We have seen that there are performance advantages to be gained

from careful assignment of records to blocks, and from careful organization of the blocks

themselves. Clearly, a more complicated file structure may be beneficial, even if we retain the

strategy of storing each relation in a separate file.

• However, many large-scale database systems do not rely directly on the underlying

operating system for file management. Instead, one large operating-system file is allocated to the

database system. The database system stores all relations in this one file, and manages the file

itself.

• Even if multiple relations are stored in a single file, by default most databases store records

of only one relation in a given block. This simplifies data management. However, in some cases it

can be useful to store records of more than one relation in a single block. To see the advantage of

storing records of multiple relations in one block, consider the following SQL query for the

university database:

select dept name, building, budget, ID, name, salary from department natural join instructor;

• This query computes a join of the department and instructor relations. Thus, for each tuple

of department, the system must locate the instructor tuples with the same value for dept name.

Ideally, these records will be located with the help of indices, which we shall discuss in Chapter 11.

Regardless of how these records are located, however, they need to be transferred from disk into

main memory. In the worst case, each record will reside on a different block, forcing us to do one

block read for each record required by the query.

Figure. The department relation.

Figure. The instructor relation.

• As a concrete example, consider the department and instructor relations. In Figure, we

show a file structure designed for efficient execution of queries involving the natural join of

department and instructor. The instructor tuples for each ID are stored near the department tuple

for the corresponding dept name. This structure mixes together tuples of two relations, but allows

for efficient processing of the join.

• When a tuple of the department relation is read, the entire block containing that tuple is

copied from disk into main memory. Since the corresponding instructor tuples are stored on the

disk near the department tuple, the block containing the department tuple contains tuples of the

instructor relation needed to process the query. If a department has so many instructors that the

instructor records do not fit in one block, the remaining records appear on nearby blocks.

• A multitable clustering file organization is a file organization, such as that illustrated in

Figure, that stores related records of two or more relations in each block. Such a file organization

allows us to read records that would satisfy the join condition by using one block read. Thus, we

are able to process this particular query more efficiently.

• In the representation shown in Figure, the dept name attribute is omitted from instructor

records since it can be inferred from the associated department record; the attribute may be retained

in some implementations, to simplify access to the attributes. We assume that each record contains

the identifier of the relation to which it belongs, although this is not shown in Figure.
Comp. Sci. Taylor 100000
10101 Srinivasan Comp. Sci. 65000
45565 Katz Comp. Sci. 75000
83821 Brandt Comp. Sci. 92000
Physics Watson 70000
33456 Gold Physics 87000

Figure. Multitable clustering file structure.

 select * from department;

• Our use of clustering of multiple tables into a single file has enhanced processing of a

particular join (that of department and instructor), but it results in slowing processing of other

types of queries. For example, requires more block accesses than it did in the scheme under which

we stored each relation in a separate file, since each block now contains significantly fewer

department records. To locate efficiently all tuples of the department relation in the structure of

Figure, we can chain together all the records of that relation using pointers.

• When multitable clustering is to be used depends on the types of queries that the database

designer believes to be most frequent. Careful use of multitable clustering can produce significant

performance gains in query processing.

 Partitioning

Many databases allow the records in a relation to be partitioned into smaller relations that are stored

separately. Such table partitioning is typically done on the basis of an attribute value; for example,

records in a transaction relation in an accounting database may be partitioned by year into smaller

relations corresponding to each year, such as transaction 2018, transaction 2019, and so on. Queries

can be written based on the trans- action relation but are translated into queries on the year-wise

relations. Most accesses are to records of the current year and include a selection based on the year.

Query op- timizers can rewrite such a query to only access the smaller relation corresponding to the

requested year, and they can avoid reading records corresponding to other years.

For example, a query

select * from transaction where year=2019

would only access the relation transaction 2019, ignoring the other relations, while a query without

the selection condition would read all the relations.

The cost of some operations, such as finding free space for a record, increase with relation size; by

reducing the size of each relation, partitioning helps reduce such over- heads. Partitioning can also be

used to store different parts of a relation on different storage devices; for example, in the year 2019,

transaction 2018 and earlier year transactions can which are infrequently accessed could be stored

on magnetic disk, while transaction 2019 could be stored on SSD, for faster access.

4. Explain about Data-Dictionary Storage.

A relational database system needs to maintain data about the relations, such as the schema of the

relations. In general, such “data about data” are referred to as metadata. Relational schemas and

other metadata about relations are stored in a structure called the data dictionary or system catalog.

Among the types of information that the system must store are these:

• Names of the relations

• Names of the attributes of each relation

• Domains and lengths of attributes

• Names of views defined on the database, and definitions of those views

• Integrity constraints (e.g., key constraints)

In addition, many systems keep the following data on users of the system:

• Names of users, the default schemas of the users, and passwords or other informa- tion to
authenticate users

• Information about authorizations for each user

Further, the database may store statistical and descriptive data about the relations and attributes, such

as the number of tuples in each relation, or the number of distinct values for each attribute.

The data dictionary may also note the storage organization (heap, sequential, hash, etc.) of relations,

and the location where each relation is stored:

• If relations are stored in operating system files, the dictionary would note the names of
the file (or files) containing each relation.

• If the database stores all relations in a single file, the dictionary may note the blocks
containing records of each relation in a data structure such as a linked list.

There is a need to store information about each index on each of the relations:

• Name of the index

• Name of the relation being indexed

• Attributes on which the index is defined

• Type of index formed

All this metadata information constitutes, in effect, a miniature database. Some database systems

store such metadata by using special-purpose data structures and code. It is generally preferable to

store the data about the database as relations in the database itself. By using database relations to

store system metadata, we simplify the overall structure of the system and harness the full power of

the database for fast access to system data.

The exact choice of how to represent system metadata by relations must be made by the system

designers. We show the schema diagram of a toy data dictionary in Figure, storing part of the

information mentioned above. The schema is only illustrative; real implementations store far more

information than what the figure shows.

In the metadata representation shown, the attribute index attributes of the relation Index metadata is

assumed to contain a list of one or more attributes, which can be represented by a character string

such as “dept name, building”. The Index metadata relation is thus not in first normal form; it can be

normalized, but the preceding representation is likely to be more efficient to access. The data

dictionary is often stored in a non normalized form to achieve fast access.

Figure. Relational schema representing part of the system metadata.

• Whenever the database system needs to retrieve records from a relation, it must first consult

the Relation metadata relation to find the location and storage organization of the relation, and

then fetch records using this information.

• However, the storage organization and location of the Relation metadata relation itself must

be recorded elsewhere (e.g., in the database code itself, or in a fixed location in the

database), since we need this information to find the contents of Relation metadata.

• Since system metadata are frequently accessed, most databases read it from the database

into in-memory data structures that can be accessed very efficiently. This is done as part of

10101

12121
15151
22222
32343

33456
45565
58583
76543
76766
83821
98345

65000

90000
40000
95000
60000

87000
75000
62000
80000
72000
92000
80000

Srinivasan

Wu
Mozart
Einstei
n El
Said
Gold
Katz
Califieri
Singh
Crick
Brandt
Kim

Comp. Sci.

Finance
Music
Physics
History
Physics
Comp.
Sci.
History
Finance
Biology
Comp.
Sci. Elec.
Eng.

the database startup, before the database starts processing any queries.

 5. Discuss about Column-Oriented Storage.

• Databases traditionally store all attributes of a tuple together in a record, and tuples are stored

in a file. Such a storage layout is referred to as a row-oriented storage.

• In contrast, in column-oriented storage, also called a columnar storage, each attribute of a

relation is stored separately, with values of the attribute from successive tuples stored at

successive positions in the file. Figure shows how the instructor relation would be stored in

column-oriented storage, with each attribute stored separately.

• In the simplest form of column-oriented storage, each attribute is stored in a separate file.

Further, each file is compressed, to reduce its size.

• If a query needs to access the entire contents of the ith row of a table, the values at the ith

position in each of the columns are retrieved and used to reconstruct the row. Column-

oriented storage thus has the drawback that fetching multiple attributes of a single tuple

requires multiple I/O operations. Thus, it is not suitable for queries that fetch multiple

attributes from a few rows of a relation.

• However, column-oriented storage is well suited for data analysis queries, which process

many rows of a relation, but often only access some of the attributes.

BENEFITS:

1) Reduced I/O.: When a query needs to access only a few attributes of a relation with a large

number of attributes, the remaining attributes need not be fetched from disk into memory.

In contrast, in row-oriented storage, irrelevant attributes are fetched into memory from

disk. The reduction in I/O can lead to significant reduction in query execution cost.

Figure Columnar representation of the instructor relation.

2) Improved CPU cache performance. When the query processor fetches the con- tents of

a particular attribute, with modern CPU architectures multiple consecutive bytes, called a

cache line, are fetched from memory to CPU cache. If these bytes are accessed later,

access is much faster if they are in cache than if they have to be fetched from main

memory. However, if these adjacent bytes contain values for attributes that are not be

needed by the query, fetching them into cache wastes memory bandwidth and uses up

cache space that could have been used for other data. Column-oriented storage does not

suffer from this problem, since adjacent bytes are from the same column, and data

analysis queries usually access all these values consecutively.

3) Improved compression. Storing values of the same type together significantly

increases the effectiveness of compression, when compared to compressing data stored in row

format; in the latter case, adjacent attributes are of different types, reducing the efficiency of

compression. Compression significantly reduces the time taken to retrieve data from disk,

which is often the highest-cost component for many queries. If the compressed files are stored

in memory, the in-memory stor- age space is also reduced correspondingly, which is

particularly important since main memory is significantly more expensive than disk storage.

4) Vector processing. Many modern CPU architectures support vector processing, which

allows a CPU operation to be applied in parallel on a number of elements of an array. Storing

data columnwise allows vector processing of operations such as comparing an attribute with a

constant, which is important for applying selection conditions on a relation. Vector processing

can also be used to compute an aggregate of multiple values in parallel, instead of aggregating

the values one at a time.

As a result of these benefits, column-oriented storage is increasingly used in data- warehousing

applications, where queries are primarily data analysis queries. It should be noted that indexing and

query processing techniques need to be carefully designed to get the performance benefits of

column-oriented storage.

Databases that use column-oriented storage are referred to as column stores, while databases that use

row-oriented storage are referred to as row stores.

DRAWBACKS:

1) Cost of tuple reconstruction: Reconstructing a tuple from the individual columns can be

expensive, negating the benefits of columnar represen- tation if many columns need to be

reconstructed. While tuple reconstruction is common in transaction-processing applications,

data analysis applications usual output only a few columns out of many that are stored in

“fact tables” in data warehouses.

2) Cost of tuple deletion and update. Deleting or updating a single tuple in a com- pressed

representation would require rewriting the entire sequence of tuples that are compressed as

one unit. Since updates and deletes are common in transaction- processing applications,

column-oriented storage would result in a high cost for these operations if a large number of

tuples were compressed as one unit. In contrast, data-warehousing systems typically do not

support updates to tu- ples, and instead support only insert of new tuples and bulk deletes of

a large number of old tuples at a time. Inserts are done at the end of the relation repre-

sentation, that is, new tuples are appended to the relation. Since small deletes and updates do

not occur in a data warehouse, large sequences of attribute values can be stored and

compressed together as one unit, allowing for better compression than with small

sequences.

3) Cost of decompression. Fetching data from a compressed representation requires

decompression, which in the simplest compressed representations requires reading all the data

from the beginning of a file. Transaction processing queries usually only need to fetch a few

records; sequential access is expensive in such a scenario, since many irrelevant records may

have to be decompressed to access a few relevant records.

• Since data analysis queries tend to access many consecutive records, the time spent on

decompression is typically not wasted. However, even data analysis queries do not need to

access records that fail selection conditions, and attributes of such records should be

skipped to reduce disk I/O.

• To allow skipping of attribute values from such records, compressed representations for

column stores allow decompression to start at any of a number of points in the file, skipping

earlier parts of the file. This could be done by starting compression afresh after every 10,000

values (for example). By keeping track of where in the file the data start for each group of

10,000 values, it is possible to access the ith value by going to the start of the group

[i / 1 0 0 0 0] and starting decompression from there.

• ORC (Optimized Row Columnar) and Parquet are columnar file representations used in

many big-data processing applications. In ORC, a row-oriented representation is converted

to column- oriented representation as follows: A sequence of tuples occupying several

hundred megabytes is broken up into a columnar representation called a stripe. An ORC

file contains several such stripes, with each stripe occupying around 250 megabytes.

• Figure illustrates some details of the ORC file format. Each stripe has index data followed by

row data. The row data area stores a compressed representation of the sequence of value for

the first column, followed by the compressed representation of the second column, and so on.

The index data region of a stripe stores for each attribute the starting point within the stripe

for each group of (say) 10,000 values of that attribute. The index is useful for quick access

to a desired tuple or sequence of tuples; the index also allows queries containing selections

to skip groups of tuples if the query determines that no tuple in those groups satisfies the

selections. ORC files store several other pieces of information in the stripe footer and file

footer, which we skip here.

• Some column-store systems allow groups of columns that are often accessed together to be

stored together, instead of breaking up each column into a different file. Such systems thus

allow a spectrum of choices that range from pure column-oriented storage, where every

column is stored separately, to pure row-oriented storage, where all columns are stored

together. The choice of which attributes to store together depends on the query workload.

Figure. Columnar data representation in the ORC file format.

• Some of the benefits of column-oriented storage can be obtained even in a row- oriented

storage system by logically decomposing a relation into multiple relations. For example, the

instructor relation could be decomposed into three relations, containing (ID, name), (ID,

dept name) and (ID, salary), respectively. Then, queries that access only the name do not

have to fetch the dept name and salary attributes. However, in this case the same ID

attribute occurs in three tuples, resulting in wasted space.

• Some database systems use a column-oriented representation for data within a disk block,

without using compression.8 Thus, a block contains data for a set of tuples, and all attributes

for that set of tuples are stored in the same block. Such a scheme is useful in transaction-

processing systems, since retrieving all attribute values does not require multiple disk

accesses.

• At the same time, using column-oriented storage within the block provides the benefits of

more efficient memory access and cache usage, as well as the potential for using vector

processing on the data. However, this scheme does not allow irrelevant disk blocks to be

skipped when only a few attributes are retrieved, nor does it give the benefits of compression.

Thus, it represents a point in the space between pure row-oriented storage and pure column-

oriented storage.

• Some databases, such as SAP HANA support two underlying storage systems, one a row-

oriented one designed for transaction processing, and the second a column- oriented one,

designed for data analysis.

• Tuples are normally created in the row- oriented store but are later migrated to the column-

oriented store when they are no longer likely to be accessed in a row-oriented manner. Such

systems are called hybrid row/column stores.

• In other cases, applications store transactional data in a row-oriented store, but copy data

periodically (e.g., once a day or a few times a day) to a data warehouse, which may use a

column-oriented storage system.

• Sybase IQ was one of the early products to use column-oriented storage, but there are now

several research projects and companies that have developed database systems based on

column stores, including C-Store, Vertica, MonetDB, Vectorwise, among others.

6. Explain about indexing in detail. (or)

Describe the ordered indices with example.

• An index for a file in a database system works in much the same way as the index in the

textbook.

• To retrieve a student record given an ID, the database system would look up an index to

find on which disk block the corresponding record resides, and then fetch the disk block, to get the

appropriate student record.

• Keeping a sorted list of students’ ID would not work well on very large databases with

thousands of students, since the index would itself be very big; further, even though keeping the

index sorted reduces the search time, finding a student can still be rather time-consuming. Instead,

more sophisticated indexing techniques may be used.

There are two basic kinds of indices:

 1) Ordered indices: Based on a sorted ordering of the values.

 2) Hash indices: Based on a uniform distribution of values across a range of buckets.

 The bucket to which a value is assigned is determined by a function, called

 a hash function.

• We shall consider several techniques for both ordered indexing and hashing. No one

technique is the best. Rather, each technique is best suited to particular database applications.

Each technique must be evaluated on the basis of these factors:

1) Access types: The types of access that are supported efficiently. Access types can include

finding records with a specified attribute value and finding records whose attribute values fall in a

specified range.

 2) Access time: The time it takes to find a particular data item, or set of items, using the

technique in question.

 3) Insertion time: The time it takes to insert a new data item. This value includes the time it

takes to find the correct place to insert the new data item, as well as the time it takes to update the

index structure.

 4) Deletion time: The time it takes to delete a data item. This value includes the time it takes to

find the item to be deleted, as well as the time it takes to update the index structure.

 5) Space overhead: The additional space occupied by an index structure. Pro-vided that the

amount of additional space is moderate, it is usually worth-while to sacrifice the space to achieve

improved performance.

• We often want to have more than one index for a file. For example, we may wish to search

for a book by author, by subject, or by title.

• An attribute or set of attributes used to look up records in a file is called a search key.

 ORDERED INDICES:

• To gain fast random access to records in a file, we can use an index structure. Each index

structure is associated with a particular search key.

• An ordered index stores the values of the search keys in sorted order, and associates with

each search key the records that contain it.

• The records in the indexed file may themselves be stored in some sorted order. A file may

have several indices, on different search keys. If the file containing the records is sequentially

ordered, a clustering index is an index whose search key also defines the sequential order of the

file.

• Clustering indices are also called primary indices; the term primary index may appear to

denote an index on a primary key, but such indices can in fact be built on any search key.

• The search key of a clustering index is often the primary key, although that is not

necessarily so. Indices whose search key specifies an order different from the sequential order of

the file are called nonclustering indices, or secondary indices. The terms “clustered” and

“nonclustered” are often used in place of “clustering” and “nonclustering.”

• All files are ordered sequentially on some search key. Such files, with a clustering index on

the search key, are called index-sequential files. They represent one of the oldest index schemes

used in database systems. They are designed for applications that require both sequential

processing of the entire file and random access to individual records.

• Figure shows a sequential file of instructor records taken from our university example. In

the example of Figure , the records are stored in sorted order of instructor ID, which is used as the

search key.

Figure. Sequential file for instructor records.

DENSE AND SPARSE INDICES :

• An index entry, or index record, consists of a search-key value and pointers to one or

more records with that value as their search-key value. The pointer to a record consists of the

identifier of a disk block and an offset within the disk block to identify the record within the block.

 Figure.Dense index.

 There are two types of ordered indices that we can use:

 1) Dense index: In a dense index, an index entry appears for every search-key value in the file.

In a dense clustering index, the index record contains the search-key value and a pointer to the first

data record with that search-key value. The rest of the records with the same search-key value

would be stored sequentially after the first record, since, because the index is a clustering one,

records are sorted on the same search key.

In a dense nonclustering index, the index must store a list of pointers to all records with the same

search-key value.

 2) Sparse index: In a sparse index, an index entry appears for only some of the search-key

values. Sparse indices can be used only if the relation is stored in sorted order of the search key,

that is, if the index is a clustering index. As is true in dense indices, each index entry contains a

search-key value and a pointer to the first data record with that search-key value. To locate a

record, we find the index entry with the largest search-key value that is less than or equal to the

search-key value for which we are looking. We start at the record pointed to by that index entry,

and follow the pointers in the file until we find the desired record.

 Figure. Sparse index.

 Figure. Dense index with search key dept name.

• Figures show dense and sparse indices, respectively, for the instructor file. Suppose that we

are looking up the record of instructor with ID “22222”. Using the dense index of Figure, we

follow the pointer directly to the desired record. Since ID is a primary key, there exists only one

such record and the search is complete. If we are using the sparse index, we do not find an index

entry for “22222”. Since the last entry (in numerical order) before “22222” is “10101”, we follow

that pointer. We then read the instructor file in sequential order until we find the desired record.

• As another example, suppose that the search-key value is not a primary key. Figure shows

a dense clustering index for the instructor file with the search key being dept name. Observe that in

this case the instructor file is sorted on the search key dept name, instead of ID, otherwise the index

on dept name would be a nonclustering index. Suppose that we are looking up records for the

History department. Using the dense index of Figure, we follow the pointer directly to the first

History record. We process this record, and follow the pointer in that record to locate the next

record in search-key (dept name) order. We continue processing records until we encounter a

record for a department other than History.

• It is generally faster to locate a record if we have a dense index rather than a sparse index.

However, sparse indices have advantages over dense indices in that they require less space and they

impose less maintenance overhead for insertions and deletions.

MULTILEVEL INDICES:

• Suppose we build a dense index on a relation with 1,000,000 tuples. Index entries are

smaller than data records, so let us assume that 100 index entries fit on a 4 kilobyte block. Thus,

our index occupies 10,000 blocks. If the relation instead had 100,000,000 tuples, the index would

instead occupy 1,000,000 blocks, or 4 gigabytes of space. Such large indices are stored as

sequential files on disk.

• If an index is small enough to be kept entirely in main memory, the search time to find an

entry is low. However, if the index is so large that not all of it can be kept in memory, index blocks

must be fetched from disk when required. (Even if an index is smaller than the main memory of a

computer, main memory is also required for a number of other tasks, so it may not be possible to

keep the entire index in memory.) The search for an entry in the index then requires several disk-

block reads.

• Binary search can be used on the index file to locate an entry, but the search still has a large

cost. If the index would occupy b blocks, binary search requires as many as log2(b) blocks to be

read. (x denotes the least integer that is greater than or equal to x; that is, we round upward.) For a

10,000-block index, binary search requires 14 block reads.

• On a disk system where a block read takes on average 10 milliseconds, the index search

will take 140 milliseconds. This may not seem much, but we would be able to carry out only seven

index searches a second, whereas a more efficient search mechanism would let us carry out far

more searches per second, as we shall see shortly. Note that, if overflow blocks have been used,

binary search is not possible. In that case, a sequential search is typically used, and that requires b

block reads, which will take even longer. Thus, the process of searching a large index may be

costly.

Figure.Two-level sparse index.

• To deal with this problem, we treat the index just as we would treat any other sequential

file, and construct a sparse outer index on the original index, which we now call the inner index, as

shown in Figure 11.5. Note that the index entries are always in sorted order, allowing the outer

index to be sparse. To locate a record, we first use binary search on the outer index to find the

record for the largest search-key value less than or equal to the one that we desire. The pointer

points to a block of the inner index. We scan this block until we find the record that has the largest

search-key value less than or equal to the one that we desire. The pointer in this record points to the

block of the file that contains the record for which we are looking.

• In our example, an inner index with 10,000 blocks would require 10,000 entries in the outer

index, which would occupy just 100 blocks. If we assume that the outer index is already in main

memory, we would read only one index block for a search using a multilevel index, rather than the

14 blocks we read with binary search. As a result, we can perform 14 times as many index searches

per second.

• If our file is extremely large, even the outer index may grow too large to fit in main

memory. With a 100,000,000 tuple relation, the inner index would occupy 1,000,000 blocks, and

the outer index occupies 10,000 blocks, or 40 megabytes. Since there are many demands on main

memory, it may not be possible to reserve that much main memory just for this particular outer

index. In such a case, we can create yet another level of index. Indeed, we can repeat this process as

many times as necessary. Indices with two or more levels are called multilevel indices. Searching

for records with a multilevel index requires significantly fewer I/O operations than does searching

for records by binary search.

Index Update:

• Regardless of what form of index is used, every index must be updated whenever a record is

either inserted into or deleted from the file. Further, in case a record in the file is updated, any

index whose search-key attribute is affected by the update must also be updated; for example, if the

department of an instructor is changed, an index on the dept name attribute of instructor must be

updated correspondingly. Such a record update can be modeled as a deletion of the old record,

followed by an insertion of the new value of the record, which results in an index deletion followed

by an index insertion. As a result we only need to consider insertion and deletion on an index, and

do not need to consider updates explicitly.

1) Insertion. First, the system performs a lookup using the search-key value that appears in the

record to be inserted. The actions the system takes next depend on whether the index is dense or

sparse:

 Dense indices:

• If the search-key value does not appear in the index, the system inserts an index entry with

the search-key value in the index at the appropriate position.

 Otherwise the following actions are taken:

• If the index entry stores pointers to all records with the same search-key value, the system

adds a pointer to the new record in the index entry.

• Otherwise, the index entry stores a pointer to only the first record with the search-key value.

The system then places the record being inserted after the other records with the same search-key

values.

Sparse indices:

• We assume that the index stores an entry for each block. If the system creates a new block,

it inserts the first search-key value (in search-key order) appearing in the new block into the index.

On the other hand, if the new record has the least search-key value in its block, the system updates

the index entry pointing to the block; if not, the system makes no change to the index.

 2) Deletion. To delete a record, the system first looks up the record to be deleted. The actions

the system takes next depend on whether the index is dense or sparse:

 Dense indices:

 If the deleted record was the only record with its particular search-key value, then the system

deletes the corresponding index entry from the index.

 Otherwise the following actions are taken:

• If the index entry stores pointers to all records with the same search-key value, the system

deletes the pointer to the deleted record from the index entry.

• Otherwise, the index entry stores a pointer to only the first record with the search-key value.

In this case, if the deleted record was the first record with the search-key value, the system updates

the index entry to point to the next record.

 Sparse indices:

▪ If the index does not contain an index entry with the search-key value of the deleted record,

nothing needs to be done to the index.

Otherwise the system takes the following actions:

• If the deleted record was the only record with its search key, the system replaces the

corresponding index record with an index rec-ord for the next search-key value (in search-key

order). If the next search-key value already has an index entry, the entry is deleted instead of being

replaced.

• Otherwise, if the index entry for the search-key value points to the record being deleted, the

system updates the index entry to point to the next record with the same search-key value.

• Insertion and deletion algorithms for multilevel indices are a simple extension of the scheme just

described. On deletion or insertion, the system updates the lowest-level index as described. As far

as the second level is concerned, the lowest-level index is merely a file containing records—thus, if

there is any change in the lowest-level index, the system updates the second-level index. The same

technique applies to further levels of the index, if there are any.

SECONDARY INDICES:

• Secondary indices must be dense, with an index entry for every search-key value, and a

pointer to every record in the file. A clustering index may be sparse, storing only some of the

search-key values, since it is always possible to find records with intermediate search-key values by

a sequential access to a part of the file. If a secondary index stores only some of the search-key

values, records with intermediate search-key values may be anywhere in the file and, in general, we

cannot find them without searching the entire file.

• A secondary index on a candidate key looks just like a dense clustering index, except that

the records pointed to by successive values in the index are not stored sequentially. In general,

however, secondary indices may have a different structure from clustering indices. If the search key

of a clustering index is not a candidate key, it suffices if the index points to the first record with a

particular value for the search key, since the other records can be fetched by a sequential scan of

the file.

• In contrast, if the search key of a secondary index is not a candidate key, it is not enough to

point to just the first record with each search-key value. The remaining records with the same

search-key value could be anywhere in the file, since the records are ordered by the search key of

the clustering index, rather than by the search key of the secondary index. Therefore, a secondary

index must contain pointers to all the records.

• We can use an extra level of indirection to implement secondary indices on search keys that

are not candidate keys. The pointers in such a secondary index do not point directly to the file.

Instead, each points to a bucket that contains pointers to the file. Figure 11.6 shows the structure of

a secondary index that uses an extra level of indirection on the instructor file, on the search key

salary.

• A sequential scan in clustering index order is efficient because records in the file are stored

physically in the same order as the index order. However, we cannot (except in rare special cases)

store a file physically ordered by both the search key of the clustering index and the search key of a

secondary index.

• Because secondary-key order and physical-key order differ, if we attempt to scan the file

sequentially in secondary-key order, the reading of each record is likely to require the reading of a

new block from disk, which is very slow.

• The procedure described earlier for deletion and insertion can also be applied to secondary

indices; the actions taken are those described for dense indices storing a pointer to every record in

the file. If a file has multiple indices, whenever the file is modified, every index must be updated.

Figure . Secondary index on instructor file, on noncandidate key salary.

• Secondary indices improve the performance of queries that use keys other than the search

key of the clustering index. However, they impose a significant overhead on modification of the

database. The designer of a database decides which secondary indices are desirable on the basis of

an estimate of the relative frequency of queries and modifications.

Disadvantages:

• The main disadvantage of the index-sequential file organization is that performance

degrades as the file grows, both for index lookups and for sequential scans through the data.

Although this degradation can be remedied by reorganization of the file, frequent reorganizations

are undesirable.

• One disadvantage of sequential file organization is that we must access an index structure to

locate data, or must use binary search, and that results in more I/O operations.

7. Discuss in detail about B+ tree and B tree index files.

• The B+ -tree index structure is the most widely used of several index structures that

maintain their efficiency despite insertion and deletion of data. A B+-tree index takes the form of a

balanced tree in which every path from the root of the tree to a leaf of the tree is of the same

length. Each nonleaf node in the tree has between n/2 and n children, where n is fixed for a

particular tree.

• B+-tree structure imposes performance overhead on insertion and deletion, and adds space

overhead. The overhead is acceptable even for frequently modified files, since the cost of file

reorganization is avoided. Furthermore, since nodes may be as much as half empty (if they have the

minimum number of children), there is some wasted space. This space overhead, too, is acceptable

given the performance benefits of the B+-tree structure.

Structure of a B+-Tree:

• A B+-tree index is a multilevel index, but it has a structure that differs from that of the

multilevel index-sequential file. Figure shows a typical node of a B+-tree. It contains up to n − 1

search-key values K1, K2, . . . , Kn − 1, and n pointers P1, P2, . . . , Pn. The search-key values within a

node are kept in sorted order; thus, if i < j, then Ki < K j .

• We consider first the structure of the leaf nodes. For i = 1, 2, . . . , n− 1, pointer Pi points to

a file record with search-key value Ki . Pointer Pn has a special purpose that we shall discuss

shortly.

• Figure shows one leaf node of a B+-tree for the instructor file, in which we have chosen n to

be 4, and the search key is name.

• Now that we have seen the structure of a leaf node, let us consider how search-key values

are assigned to particular nodes. Each leaf can hold up to n − 1 values. We allow leaf nodes to

contain as few as (n − 1)/2 values. With n = 4 in our example B+-tree, each leaf must contain at

least 2 values, and at most 3 values.

• The ranges of values in each leaf do not overlap, except if there are duplicate search-key

values, in which case a value may be present in more than one leaf. Specifically, if Li and L j are

leaf nodes and i < j, then every search-key value in Li is less than or equal to every search-key

value in L j . If the B+-tree index is used as a dense index (as is usually the case) every search-key

value must appear in some leaf node.

P1 K1 P2 É Pn-1 Kn-1 Pn

 Figure. Typical node of a B+ -tree.

• Now we can explain the use of the pointer Pn. Since there is a linear order on the leaves

based on the search-key values that they contain, we use Pn to chain together the leaf nodes in

search-key order. This ordering allows for efficient sequential processing of the file.

• The nonleaf nodes of the B+-tree form a multilevel (sparse) index on the leaf nodes. The

structure of nonleaf nodes is the same as that for leaf nodes, except that all pointers are pointers to

tree nodes. A nonleaf node may hold up to n pointers, and must hold at least n/2 pointers. The

number of pointers in a node is called the fanout of the node. Nonleaf nodes are also referred to as

internal nodes.

• Let us consider a node containing m pointers (m ≤ n). For i = 2, 3, . . . , m − 1, pointer Pi

points to the subtree that contains search-key values less than Ki and greater than or equal to Ki − 1.

Pointer Pm points to the part of the subtree that contains those key values greater than or equal to

Km − 1, and pointer P1 points to the part of the subtree that contains those search-key values less

than K1.

• Unlike other nonleaf nodes, the root node can hold fewer than n/2 pointers; however, it

must hold at least two pointers, unless the tree consists of only one node. It is always possible to

construct a B+-tree, for any n, that satisfies the preceding requirements.

• Figure shows a complete B+-tree for the instructor file (with n = 4). We have shown

instructor names abbreviated to 3 characters in order to depict the tree clearly; in reality, the tree

nodes would contain the full names. We have also omitted null pointers for simplicity; any pointer

field in the figure that does not have an arrow is understood to have a null value.

Figure . B+ -tree for instructor file (n =4).

• Figure shows another B+-tree for the instructor file, this time with n = 6. As before, we

have abbreviated instructor names only for clarity of presentation.

• Observe that the height of this tree is less than that of the previous tree, which had n = 4.

• These examples of B+-trees are all balanced. That is, the length of every path from the root

to a leaf node is the same. This property is a requirement for a B+-tree. Indeed, the “B” in B+ -tree

stands for “balanced.” It is the balance property of B+-trees that ensures good performance for

lookup, insertion, and deletion.

Queries on B+-Trees:

1) To find records with a search-key value

• Let us consider how we process queries on a B+-tree. Suppose that we wish to find records

with a search-key value of V.

• Intuitively, the function starts at the root of the tree, and traverses the tree down until it

reaches a leaf node that would contain the specified value if it exists in the tree. Specifically,

starting with the root as the current node, the function repeats the following steps until a leaf node

is reached. First, the current node is examined, looking for the smallest i such that search-key value

Ki is greater than or equal to V. Suppose such a value is found; then, if Ki is equal to V, the current

node is set to the node pointed to by Pi+1, otherwise K i > V, and the current node is set to the node

pointed to by Pi . If no such value Ki is found, then clearly V > Km−1, where Pm is the last non null

pointer in the node. In this case the current node is set to that pointed to by Pm. The above

procedure is repeated, traversing down the tree until a leaf node is reached.

2) Updates on B+-Trees:

• When a record is inserted into, or deleted from a relation, indices on the relation must be

updated correspondingly. Updates to a record can be modeled as a deletion of the old record

followed by insertion of the updated record. Hence we only consider the case of insertion and

deletion.

• Insertion and deletion are more complicated than lookup, since it may be necessary to split

a node that becomes too large as the result of an insertion, or to coalesce nodes (that is, combine

nodes) if a node becomes too small (fewer than n/2 pointers). Furthermore, when a node is split or

a pair of nodes is combined, we must ensure that balance is preserved. To introduce the idea behind

insertion and deletion in a B+-tree, we shall assume temporarily that nodes never become too large

or too small. Under this assumption, insertion and deletion are performed as defined next.

 Insertion. Using the same technique as for lookup from the find() function, we first find the

leaf node in which the search-key value would appear. We then insert an entry (that is, a search-key

value and record pointer pair) in the leaf node, positioning it such that the search keys are still in

order.

 Deletion. Using the same technique as for lookup, we find the leaf node containing the entry to

be deleted, by performing a lookup on the search-key value of the deleted record; if there are

multiple entries with the same search-key value, we search across all entries with the same search-

key value until we find the entry that points to the record being deleted. We then remove the entry

from the leaf node. All entries in the leaf node that are to the right of the deleted entry are shifted

left by one position, so that there are no gaps in the entries after the entry is deleted.

We now consider the general case of insertion and deletion, dealing with node splitting and node

coalescing.

Figure. Split of leaf node on insertion of “Adams”

Figure. Deletion of “Srinivasan” from the B+ -tree of Figure 11.13.

B-TREE INDEX FILES:

• B-tree indices are similar to B+-tree indices. The primary distinction between the two

approaches is that a B-tree eliminates the redundant storage of search-key values. In the B+-tree of

Figure, the search keys “Califieri”, “Einstein”, “Gold”, “Mozart”, and “Srinivasan” appear in

nonleaf nodes, in addition to appearing in the leaf nodes. Every search-key value appears in some

leaf node; several are repeated in nonleaf nodes.

• A B-tree allows search-key values to appear only once (if they are unique), unlike a B+-tree,

where a value may appear in a nonleaf node, in addition to appearing in a leaf node. Figure shows a

B-tree that represents the same search keys as the B+-tree of Figure. Since search keys are not

repeated in the B-tree, we may be able to store the index in fewer tree nodes than in the

corresponding B+-tree index. However, since search keys that appear in nonleaf nodes appear

nowhere else in the B-tree, we are forced to include an additional pointer field for each search key

in a nonleaf node. These additional pointers point to either file records or buckets for the associated

search key.

 Figure. B-tree equivalent of B+ -tree

• It is worth noting that many database system manuals, articles in industry literature, and

industry professionals use the term B-tree to refer to the data structure that we call the B+-tree. In

fact, it would be fair to say that in current usage, the term B-tree is assumed to be synonymous with

B+-tree. However, in this book we use the terms B-tree and B+-tree as they were originally defined,

to avoid confusion between the two data structures.

• A generalized B-tree leaf node appears in Figure (a); a nonleaf node appears in Figure (b).

Leaf nodes are the same as in B+-trees. In nonleaf nodes, the pointers Pi are the tree pointers that

we used also for B+-trees, while the pointers Bi are bucket or file-record pointers. In the generalized

B-tree in the figure, there are n − 1 keys in the leaf node, but there are m − 1 keys in the nonleaf

node. This discrepancy occurs because nonleaf nodes must include pointers Bi , thus reducing the

number of search keys that can be held in these nodes. Clearly, m < n, but the exact relationship

between m and n depends on the relative size of search keys and pointers.

• The number of nodes accessed in a lookup in a B-tree depends on where the search key is

located. A lookup on a B+-tree requires traversal of a path from the root of the tree to some leaf

node. In contrast, it is sometimes possible to find the desired value in a B-tree before reaching a

leaf node.

• However, roughly n times as many keys are stored in the leaf level of a B-tree as in the

nonleaf levels, and, since n is typically large, the benefit of finding certain values early is relatively

small. Moreover, the fact that fewer search keys appear in a nonleaf B-tree node, compared to B+-

trees, implies that a B-tree has a smaller fanout and therefore may have depth greater than that of

the corresponding B+-tree. Thus, lookup in a B-tree is faster for some search keys but slower for

others, although, in general, lookup time is still proportional to the logarithm of the number of

search keys.

 Figure . Typical nodes of a B-tree. (a) Leaf node. (b) Nonleaf node.

• Deletion in a B-tree is more complicated. In a B+-tree, the deleted entry always appears in a

leaf. In a B-tree, the deleted entry may appear in a nonleaf node. The proper value must be selected

as a replacement from the subtree of the node containing the deleted entry. Specifically, if search

key Ki is deleted, the smallest search key appearing in the subtree of pointer Pi + 1 must be moved

to the field formerly occupied by Ki . Further actions need to be taken if the leaf node now has too

few entries. In contrast, insertion in a B-tree is only slightly more complicated than is insertion in a

B+-tree.

• The space advantages of B-trees are marginal for large indices, and usually do not outweigh

the disadvantages that we have noted. Thus, pretty much all database-system implementations use

the B+-tree data structure, even if (as we discussed earlier) they refer to the data structure as a B-

tree.

8. Explain about static hashing and dynamic hashing.

STATIC HASHING:

• File organizations based on the technique of hashing allow us to avoid accessing an index

structure. Hashing also provides a way of constructing indices. .

• The term bucket is used to denote a unit of storage that can store one or more records. A

bucket is typically a disk block, but could be chosen to be smaller or larger than a disk block.

• Let K denote the set of all search-key values, and let B denote the set of all bucket

addresses. A hash function h is a function from K to B. Let h denote a hash function.

• To insert a record with search key Ki , we compute h(Ki), which gives the address of the

bucket for that record. Assume for now that there is space in the bucket to store the record. Then,

the record is stored in that bucket.

• To perform a lookup on a search-key value Ki , we simply compute h(Ki), then search the

bucket with that address. Suppose that two search keys, K5 and K7, have the same hash value; that

is, h(K5) = h(K7). If we perform a lookup on K5, the bucket h(K5) contains records with search-key

values K5 and records with search-key values K7. Thus, we have to check the search-key value of

every record in the bucket to verify that the record is one that we want.

• Deletion is equally straightforward. If the search-key value of the record to be deleted is Ki ,

we compute h(Ki), then search the corresponding bucket for that record, and delete the record from

the bucket.

• Hashing can be used for two different purposes.

1) In a hash file organization, we obtain the address of the disk block containing a desired

record directly by computing a function on the search-key value of the record.

2) In a hash index organization we organize the search keys, with their associated pointers,

into a hash file structure.

Hash Functions:

• An ideal hash function distributes the stored keys uniformly across all the buckets, so that

every bucket has the same number of records.

• Since we do not know at design time precisely which search-key values will be stored in the

file, we want to choose a hash function that assigns search-key values to buckets in such a way that

the distribution has these qualities:

• The distribution is uniform. That is, the hash function assigns each bucket the same

number of search-key values from the set of all possible search-key values.

• The distribution is random. That is, in the average case, each bucket will have nearly

the same number of values assigned to it, regardless of the actual distribution of search-key values.

More precisely, the hash value will not be correlated to any externally visible ordering on the

search-key values, such as alphabetic ordering or ordering by the length of the search keys; the

hash function will appear to be random.

• As an illustration of these principles, let us choose a hash function for the instructor file

using the search key dept name. The hash function that we choose must have the desirable

properties not only on the example instructor file that we have been using, but also on an instructor

file of realistic size for a large university with many departments.

• Assume that we decide to have 26 buckets, and we define a hash function that maps names

beginning with the ith letter of the alphabet to the ith bucket. This hash function has the virtue of

simplicity, but it fails to provide a uniform distribution, since we expect more names to begin with

such letters as B and R than Q and X, for example.

Figure. Hash organization of instructor file, with dept name as the key.

Typical hash functions perform computation on the internal binary machine representation of

characters in the search key. A simple hash function of this type first computes the sum of the

binary representations of the characters of a key, then returns the sum modulo the number of

buckets.

• Figure shows the application of such a scheme, with eight buckets, to the instructor file,

under the assumption that the ith letter in the alphabet is represented by the integer i.

• The following hash function is a better alternative for hashing strings. Let s be a string of

length n, and let s[i] denote the ith byte of the string. The hash function is defined as:

s[0] * 31(n−1) + s[1] * 31(n−2) + · · · + s[n − 1]

• The function can be implemented efficiently by setting the hash result initially to 0, and

iterating from the first to the last character of the string, at each step multiplying the hash value by

31 and then adding the next character (treated as an integer). The above expression would appear to

result in a very large number, but it is actually computed with fixed-size positive integers; the result

of each multiplication and addition is thus automatically computed modulo the largest possible

integer value plus 1. The result of the above function modulo the number of buckets can then be

used for indexing.

• Hash functions require careful design. A bad hash function may result in lookup taking time

proportional to the number of search keys in the file. A well-designed function gives an average-

case lookup time that is a (small) constant, independent of the number of search keys in the file.

Handling of Bucket Overflows:

• So far, we have assumed that, when a record is inserted, the bucket to which it is mapped

has space to store the record. If the bucket does not have enough space, a bucket overflow is said

to occur. Bucket overflow can occur for several reasons:

• Insufficient buckets. The number of buckets, which we denote nB , must be chosen such that

nB > nr / fr , where nr denotes the total number of records that will be stored and fr denotes the

number of records that will fit in a bucket. This designation, of course, assumes that the total

number of records is known when the hash function is chosen.

• Skew. Some buckets are assigned more records than are others, so a bucket may overflow even

when other buckets still have space. This situation is called bucket skew. Skew can occur for two

reasons:

 1) Multiple records may have the same search key.

 2) The chosen hash function may result in non uniform distribution of search keys.

• So that the probability of bucket overflow is reduced, the number of buckets is chosen to be

(nr / fr) *(1 + d), where d is a fudge factor, typically around 0.2. Some space is wasted: About 20

percent of the space in the buckets will be empty. But the benefit is that the probability of overflow

is reduced.

• Despite allocation of a few more buckets than required, bucket overflow can still occur. We

handle bucket overflow by using overflow buckets. If a record must be inserted into a bucket b,

and b is already full, the system provides an overflow bucket for b, and inserts the record into the

overflow bucket. If the overflow bucket is also full, the system provides another overflow bucket,

and so on. All the overflow buckets of a given bucket are chained together in a linked list.

Overflow handling using such a linked list is called overflow chaining.

Figure . Overflow chaining in a hash structure.

• We must change the lookup algorithm slightly to handle overflow chaining. As before, the

system uses the hash function on the search key to identify a bucket b. The system must examine

all the records in bucket b to see whether they match the search key, as before. In addition, if

bucket b has overflow buckets, the system must examine the records in all the overflow buckets

also.

• The form of hash structure that we have just described is sometimes referred to as closed

hashing.

• Under an alternative approach, called open hashing, the set of buckets is fixed, and there

are no overflow chains. Instead, if a bucket is full, the system inserts records in some other bucket

in the initial set of buckets B. One policy is to use the next bucket (in cyclic order) that has space;

this policy is called linear probing. Other policies, such as computing further hash functions, are

also used.

• Open hashing has been used to construct symbol tables for compilers and assemblers, but

closed hashing is preferable for database systems. The reason is that deletion under open hashing is

troublesome. Usually, compilers and assemblers perform only lookup and insertion operations on

their symbol tables. However, in a database system, it is important to be able to handle deletion as

well as insertion. Thus, open hashing is of only minor importance in database implementation.

• An important drawback to the form of hashing that we have described is that we must

choose the hash function when we implement the system, and it cannot be changed easily thereafter

if the file being indexed grows or shrinks. Since the function h maps search-key values to a fixed

set B of bucket addresses, we waste space if B is made large to handle future growth of the file. If B

is too small, the buckets contain records of many different search-key values, and bucket overflows

can occur. As the file grows, performance suffers.

HASH INDICES:

• Hashing can be used not only for file organization, but also for index-structure creation.

• A hash index organizes the search keys, with their associated pointers, into a hash file

structure. We construct a hash index as follows. We apply a hash function on a search key to

identify a bucket, and store the key and its associated pointers in the bucket (or in overflow

buckets). Figure shows a secondary hash index on the instructor file, for the search key ID. The

hash function in the figure computes the sum of the digits of the ID modulo 8.

• The hash index has eight buckets, each of size 2 (realistic indices would, of course, have

much larger bucket sizes). One of the buckets has three keys mapped to it, so it has an overflow

bucket. In this example, ID is a primary key for instructor, so each search key has only one

associated pointer. In general, multiple pointers can be associated with each key.

• We use the term hash index to denote hash file structures as well as secondary hash indices.

Strictly speaking, hash indices are only secondary index structures. A hash index is never needed as

a clustering index structure, since, if a file itself is organized by hashing, there is no need for a

separate hash index structure on it. However, since hash file organization provides the same direct

access to records that indexing provides, we pretend that a file organized by hashing also has a

clustering hash index on it.

Figure. Hash index on search key ID of instructor file.

DYNAMIC HASHING:

• The need to fix the set B of bucket addresses presents a serious problem with the static

hashing technique. Most databases grow larger over time. If we are to use static hashing for such a

database, we have three classes of options:

• Choose a hash function based on the current file size. This option will result in performance

degradation as the database grows.

• Choose a hash function based on the anticipated size of the file at some point in the future.

Although performance degradation is avoided, a significant amount of space may be wasted

initially.

• Periodically reorganize the hash structure in response to file growth. Such a reorganization

involves choosing a new hash function, recomputing the hash function on every record in the file,

and generating new bucket assignments. This reorganization is a massive, time-consuming

operation. Furthermore, it is necessary to forbid access to the file during reorganization.

• Dynamic hashing techniques allow the hash function to be modified dynamically to

accommodate the growth or shrinkage of the database.

Data Structure:

• Extendable hashing copes with changes in database size by splitting and join together

buckets as the database grows and shrinks. As a result, space efficiency is retained. Moreover, since

the reorganization is performed on only one bucket at a time, the resulting performance overhead is

acceptably low.

• With extendable hashing, we choose a hash function h with the desirable properties of

uniformity and randomness. However, this hash function generates values over a relatively large

range — namely, b-bit binary integers. A typical value for b is 32.

Figure. General extendable hash structure.

• We do not create a bucket for each hash value. Indeed, 232 is over 4 billion, and that many

buckets is unreasonable for all but the largest databases. Instead, we create buckets on demand, as

records are inserted into the file. We do not use the entire b bits of the hash value initially. At any

point, we use i bits, where

• 0≤ i ≤ b. These i bits are used as an offset into an additional table of bucket addresses.

The value of i grows and shrinks with the size of the database.

• Figure shows a general extendable hash structure. The i appearing above the bucket address

table in the figure indicates that i bits of the hash value h(K) are required to determine the correct

bucket for K. This number will change as the file grows. Although i bits are required to find the

correct entry in the bucket address table, several consecutive table entries may point to the same

bucket.

• All such entries will have a common hash prefix, but the length of this prefix may be less

than i. Therefore, we associate with each bucket an integer giving the length of the common hash

prefix. In Figure the integer associated with bucket j is shown as i j . The number of bucket-

address-table entries that point to bucket j is 2(i − i j)

Queries and Updates:

• To locate the bucket containing search-key value Kl , the system takes the first i high-order

bits of h(Kl), looks at the corresponding table entry for this bit string, and follows the bucket

pointer in the table entry.

• To insert a record with search-key value Kl , the system follows the same procedure for

lookup as before, ending up in some bucket—say, j. If there is room in the bucket, the system

inserts the record in the bucket. If, on the other hand, the bucket is full, it must split the bucket and

redistribute the current records, plus the new one. To split the bucket, the system must first

determine from the hash value whether it needs to increase the number of bits that it uses.

• If i = i j , only one entry in the bucket address table points to bucket j. Therefore, the system

needs to increase the size of the bucket address table so that it can include pointers to the two

buckets that result from splitting bucket j. It does so by considering an additional bit of the hash

value. It increments the value of i by 1, thus doubling the size of the bucket address table. It

replaces each entry by two entries, both of which contain the same pointer as the original entry.

Now two entries in the bucket address table point to bucket j. The system allocates a new bucket

(bucket z), and sets the second entry to point to the new bucket. It sets i j and iz to i. Next, it

rehashes each record in bucket j and, depending on the first i bits (remember the system has added

1 to i), either keeps it in bucket j or allocates it to the newly created bucket.

• The system now reattempts the insertion of the new record. Usually, the attempt will

succeed. However, if all the records in bucket j, as well as the new record, have the same hash-

value prefix, it will be necessary to split a bucket again, since all the records in bucket j and the

new record are assigned to the same bucket. If the hash function has been chosen carefully, it is

unlikely that a single insertion will require that a bucket be split more than once, unless there are a

large number of records with the same search key. If all the records in bucket j have the same

search-key value, no amount of splitting will help. In such cases, overflow buckets are used to store

the records, as in static hashing.

• If i > i j , then more than one entry in the bucket address table points to bucket j. Thus, the

system can split bucket j without increasing the size of the bucket address table. Observe that all

the entries that point to bucket j correspond to hash prefixes that have the same value on the

leftmost i j bits. The system allocates a new bucket (bucket z), and sets i j and iz to the value that

results from adding 1 to the original i j value. Next, the system needs to adjust the entries in the

bucket address table that previously pointed to bucket j. (Note that with the new value for i j , not

all the entries correspond to hash prefixes that have the same value on the leftmost i j bits.) The

system leaves the first half of the entries as they were (pointing to bucket j), and sets all the

remaining entries to point to the newly created bucket (bucket z). Next, as in the previous case, the

system rehashes each record in bucket j, and allocates it either to bucket j or to the newly created

bucket z.

Figure. Hash function for dept name.

• The system then reattempts the insert. In the unlikely case that it again fails, it applies one

of the two cases, i = i j or i > i j , as appropriate.

• Note that, in both cases, the system needs to recompute the hash function on only the

records in bucket j.

• To delete a record with search-key value Kl , the system follows the same procedure for

lookup as before, ending up in some bucket—say, j. It removes both the search key from the bucket

and the record from the file. The bucket, too, is removed if it becomes empty. Note that, at this

point, several buckets can be coalesced, and the size of the bucket address table can be cut in half.

The procedure for deciding on which buckets can be coalesced and how to coalesce buckets is left

to you to do as an exercise. The conditions under which the bucket address table can be reduced in

size are also left to you as an exercise. Unlike coalescing of buckets, changing the size of the

bucket address table is a rather expensive operation if the table is large. Therefore it may be

worthwhile to reduce the bucket-address-table size only if the number of buckets reduces greatly.

• To illustrate the operation of insertion, we use the instructor file in Figure 11.1 and assume

that the search key is dept name with the 32-bit hash values as appear in Figure 11.27. Assume that,

initially, the file is empty, as in Figure 11.28. We insert the records one by one. To illustrate all the

features of extendable hashing in a small structure, we shall make the unrealistic assumption that a

bucket can hold only two records.

Figure. Initial extendable hash structure.

Figure. Hash structure after three insertions.

• We insert the record (10101, Srinivasan, Comp. Sci., 65000). The bucket address table

contains a pointer to the one bucket, and the system inserts the record. Next, we insert the record

(12121, Wu, Finance, 90000). The system also places this record in the one bucket of our structure.

• When we attempt to insert the next record (15151, Mozart, Music, 40000), we find that the

bucket is full. Since i = i0, we need to increase the number of bits that we use from the hash value.

We now use 1 bit, allowing us 21 = 2 buckets. This increase in the number of bits necessitates

doubling the size of the bucket address table to two entries. The system splits the bucket, placing in

the new bucket those records whose search key has a hash value beginning with 1, and leaving in

the original bucket the other records. Figure 11.29 shows the state of our structure after the split.

• Next, we insert (22222, Einstein, Physics, 95000). Since the first bit of h(Physics) is 1, we

must insert this record into the bucket pointed to by the “1” entry in the bucket address table. Once

again, we find the bucket full and i = i1. We increase the number of bits that we use from the hash

to 2. This increase in the number of bits necessitates doubling the size of the bucket address table to

four entries, as in Figure 11.30. Since the bucket of Figure for hash prefix 0 was not split, the two

entries of the bucket address table of 00 and 01 both point to this bucket.

• For each record in the bucket of Figure for hash prefix 1 (the bucket being split), the system

examines the first 2 bits of the hash value to determine which bucket of the new structure should

hold it.

Figure . Hash structure after four insertions.

Figure. Extendable hash structure for the instructor file.

• Next, we insert (32343, El Said, History, 60000), which goes in the same bucket as Comp.

Sci. The following insertion of (33456, Gold, Physics, 87000) results in a bucket overflow, leading

to an increase in the number of bits, and a doubling of the size of the bucket address table.

• The insertion of (45565, Katz, Comp. Sci., 75000) leads to another bucket over-flow; this

overflow, however, can be handled without increasing the number of bits, since the bucket in

question has two pointers pointing to it.

Next, we insert the records of “Califieri”, “Singh”, and “Crick” without any bucket overflow. The

insertion of the third Comp. Sci. record (83821, Brandt, Comp. Sci., 92000), however, leads to

another overflow. This overflow cannot be handled by increasing the number of bits, since there are

three records with exactly the same hash value. Hence the system uses an overflow bucket, as in

figure.

Static Hashing versus Dynamic Hashing:

• We now examine the advantages and disadvantages of extendable hashing, com-pared with

static hashing. The main advantage of extendable hashing is that performance does not degrade as

the file grows. Furthermore, there is minimal space overhead. Although the bucket address table

incurs additional overhead, it contains one pointer for each hash value for the current prefix length.

This table is thus small. The main space saving of extendable hashing over other forms of hashing

is that no buckets need to be reserved for future growth; rather, buckets can be allocated

dynamically.

• A disadvantage of extendable hashing is that lookup involves an additional level of

indirection, since the system must access the bucket address table before accessing the bucket

itself. This extra reference has only a minor effect on performance.

• Thus, extendable hashing appears to be a highly attractive technique, pro-vided that we are

willing to accept the added complexity involved in its implementation. The bibliographical notes

reference more detailed descriptions of extendable hashing implementation.

• The bibliographical notes also provide references to another form of dynamic hashing

called linear hashing, which avoids the extra level of indirection associated with extendable

hashing, at the possible cost of more overflow buckets.

9. Give a detailed description about Query Processing.

A query expressed in a high-level query language such as SQL must first be scanned, parsed, and

validated.

• The scanner identifies the query tokens—such as SQL keywords, attribute names, and

relation names—that appear in the text of the query, whereas the parser checks the query syntax to

determine whether it is formulated according to the syntax rules (rules of grammar) of the query

language.

• The query must also be validated by checking that all attribute and relation names are valid

and semantically meaningful names in the schema of the particular database being queried.

• An internal representation of the query is then created, usually as a tree data structure called

a query tree. It is also possible to represent the query using a graph data structure called a query

graph.

• The DBMS must then devise an execution strategy or query plan for retrieving the results

of the query from the database files. A query typically has many possible execution strategies, and

the process of choosing a suitable one for processing a query is known as query optimization.

• Figure shows the different steps of processing a high-level query. The query optimizer

module has the task of producing a good execution plan, and the code generator generates the

code to execute that plan. The runtime database processor has the task of running (executing) the

query code, whether in compiled or interpreted mode, to produce the query result. If a runtime error

results, an error message is generated by the runtime database processor.

• The term optimization is actually a inaccurate name because in some cases the chosen

execution plan is not the optimal (or absolute best) strategy—it is just a reasonably efficient

strategy for executing the query. Finding the optimal strategy is usually too time-consuming—

except for the simplest of queries. In addition, trying to find the optimal query execution strategy

may require detailed information on how the files are implemented and even on the contents of the

files—information that may not be fully available in the DBMS catalog. Hence, planning of a good

execution strategy may be a more accurate description than query optimization.

• For lower-level navigational database languages in legacy systems—such as the network

DML or the hierarchical DL/1—the programmer must choose the query execution strategy while

writing a database program.

• If a DBMS provides only a navigational language, there is limited need or opportunity for

extensive query optimization by the DBMS; instead, the programmer is given the capability to

choose the query execution strategy. On the other hand, a high-level query language—such as SQL

for relational DBMSs (RDBMSs) or OQL for object DBMSs (ODBMSs)—is more declarative in

nature because it specifies what the intended results of the query are, rather than identifying the

details of how the result should be obtained. Query optimization is thus necessary for queries that

are specified in a high-level query language.

Code can be:

Executed directly (interpreted mode)

Stored and executed later whenever needed (compiled mode)

Figure . Typical steps when processing a high-level query.

10. Explain about algorithm for select and join operations.

• There are many algorithms for executing a SELECT operation, which is basically a search

operation to locate the records in a disk file that satisfy a certain condition. Some of the search

algorithms depend on the file having specific access paths, and they may apply only to certain types

of selection conditions.

• Search Methods for Simple Selection. A number of search algorithms are possible for

selecting records from a file. These are also known as file scans, because they scan the records of a

file to search for and retrieve records that satisfy a selection condition. If the search algorithm

involves the use of an index, the index search is called an index scan. The following search

methods (S1 through S6) are examples of some of the search algorithms that can be used to

implement a select operation:

 S1—Linear search (brute force algorithm). Retrieve every record in the file, and test whether

its attribute values satisfy the selection condition. Since the records are grouped into disk blocks,

each disk block is read into a main memory buffer, and then a search through the records within the

disk block is conducted in main memory.

 S2—Binary search. If the selection condition involves an equality comparison on a key

attribute on which the file is ordered, binary search—which is more efficient than linear search—

can be used. An example is OP1 if Ssn is the ordering attribute for the EMPLOYEE file.

 S3a—Using a primary index. If the selection condition involves an equality comparison on a

key attribute with a primary index—for example, Ssn = ‘123456789’ in OP1—use the primary

index to retrieve the record. Note that this condition retrieves a single record (at most).

 S3b—Using a hash key. If the selection condition involves an equality comparison on a key

attribute with a hash key—for example, Ssn = ‘123456789’ in OP1—use the hash key to retrieve

the record. Note that this condition retrieves a single record (at most).

 S4—Using a primary index to retrieve multiple records. If the comparison condition is >,

>=, <, or <= on a key field with a primary index—for example, Dnumber > 5 in OP2—use the

index to find the record satisfying the corresponding equality condition (Dnumber = 5), then

retrieve all subsequent records in the (ordered) file. For the condition Dnumber < 5, retrieve all the

preceding records.

 S5—Using a clustering index to retrieve multiple records. If the selection condition involves

an equality comparison on a non key attribute with a clustering index—for example, Dno = 5 in

OP3—use the index to retrieve all the records satisfying the condition.

 S6—Using a secondary (B+-tree) index on an equality comparison. This search method can

be used to retrieve a single record if the indexing field is a key (has unique values) or to retrieve

multiple records if the indexing field is not a key. This can also be used for comparisons involving

>, >=, <, or <=.

Method S1 (linear search) applies to any file, but all the other methods depend on having the

appropriate access path on the attribute used in the selection condition.

Method S2 (binary search) requires the file to be sorted on the search attribute.

 The methods that use an index (S3a, S4, S5, and S6) are generally referred to as index searches,

and they require the appropriate index to exist on the search attribute. Methods S4 and S6 can be

used to retrieve records in a certain range—for example, 30000 <= Salary <= 35000. Queries

involving such conditions are called range queries.

Search Methods for Complex Selection. If a condition of a SELECT operation is a conjunctive

condition—that is, if it is made up of several simple conditions connected with the AND logical

connective such as OP4 above—the DBMS can use the following additional methods to implement

the operation:

 S7—Conjunctive selection using an individual index. If an attribute involved in any single

simple condition in the conjunctive select condition has an access path that permits the use of one

of the methods S2 to S6, use that condition to retrieve the records and then check whether each

retrieved record satisfies the remaining simple conditions in the conjunctive select condition.

 S8—Conjunctive selection using a composite index. If two or more attributes are involved in

equality conditions in the conjunctive select condition and a composite index (or hash structure)

exists on the combined fields— for example, if an index has been created on the composite key

(Essn, Pno) of the WORKS_ON file for OP5—we can use the index directly.

 S9—Conjunctive selection by intersection of record pointers. If secondary indexes (or other

access paths) are available on more than one of the fields involved in simple conditions in the

conjunctive select condition, and if the indexes include record pointers (rather than block pointers),

then each index can be used to retrieve the set of record pointers that satisfy the individual

condition. The intersection of these sets of record pointers gives the record pointers that satisfy the

conjunctive select condition, which are then used to retrieve those records directly. If only some of

the conditions have secondary indexes, each retrieved record is further tested to determine whether

it satisfies the remaining conditions. In general, method S9 assumes that each of the indexes is on a

nonkey field of the file, because if one of the conditions is an equality condition on a key field, only

one record will satisfy the whole condition.

IMPLEMENTING THE JOIN OPERATION:

The JOIN operation is one of the most time-consuming operations in query processing. Many of

the join operations encountered in queries are of the EQUIJOIN and NATURAL JOIN varieties, so

we consider just these two here since we are only giving an overview of query processing and

optimization.The term join refers to an EQUIJOIN (or NATURAL JOIN).

There are many possible ways to implement a two-way join, which is a join on two files. Joins

involving more than two files are called multiway joins. The number of possible ways to execute

multiway joins grows very rapidly. In this section we discuss techniques for implementing only

two-way joins.

consider the EMPLOYEE, DEPARTMENT, and PROJECT relations. The algorithms we discuss

next are for a join operation of the form:

R A=B S

where A and B are the join attributes, which should be domain-compatible attrib-utes of R and S,

respectively. The methods we discuss can be extended to more gen-eral forms of join. We illustrate

four of the most common techniques for performing such a join, using the following sample

operations:

OP6: EMPLOYEE Dno=Dnumber DEPARTMENT

OP7: DEPARTMENT Mgr_ssn=Ssn EMPLOYEE

Methods for Implementing Joins.

 J1—Nested-loop join (or nested-block join). This is the default (brute force) algorithm, as it

does not require any special access paths on either file in the join. For each record t in R (outer

loop), retrieve every record s from S (inner loop) and test whether the two records satisfy the join

condition t[A] = s[B].9

 J2—Single-loop join (using an access structure to retrieve the matching records). If an

index (or hash key) exists for one of the two join attributes— say, attribute B of file S—retrieve

each record t in R (loop over file R), and then use the access structure (such as an index or a hash

key) to retrieve directly all matching records s from S that satisfy s[B] = t[A].

 J3—Sort-merge join. If the records of R and S are physically sorted (ordered) by value of the

join attributes A and B, respectively, we can implement the join in the most efficient way possible.

Both files are scanned concurrently in order of the join attributes, matching the records that have

the same values for A and B. If the files are not sorted, they may be sorted first by using external

sorting. In this method, pairs of file blocks are copied into memory buffers in order and the records

of each file are scanned only once each for matching with the other file—unless both A and B are

non key attributes, in which case the method needs to be modified slightly. A sketch of the sort-

merge join algorithm is given in Figure (a). We use R(i) to refer to the ith record in file R. A

variation of the sort-merge join can be used when secondary indexes exist on both join attributes.

The indexes provide the ability to access (scan) the records in order of the join attributes, but the

records themselves are physically scattered all over the file blocks, so this method may be quite

inefficient, as every record access may involve accessing a different disk block.

 J4—Partition-hash join. The records of files R and S are partitioned into smaller files. The

partitioning of each file is done using the same hashing function h on the join attribute A of R (for

partitioning file R) and B of S (for partitioning file S). First, a single pass through the file with

fewer records (say, R) hashes its records to the various partitions of R; this is called the

partitioning phase, since the records of R are partitioned into the hash buck-ets. In the simplest

case, we assume that the smaller file can fit entirely in main memory after it is partitioned, so that

the partitioned subfiles of R are all kept in main memory. The collection of records with the same

value of h(A) are placed in the same partition, which is a hash bucket in a hash table in main

memory. In the second phase, called the probing phase, a single pass through the other file (S)

then hashes each of its records using the same hash function h(B) to probe the appropriate bucket,

and that record is combined with all matching records from R in that bucket. This simplified

description of partition-hash join assumes that the smaller of the two files fits entirely into memory

buckets after the first phase. In practice, techniques J1 to J4 are implemented by accessing whole

disk blocks of a file, rather than individual records. Depending on the available number of buffers

in memory, the number of blocks read in from the file can be adjusted.

11. Explain about query optimization using heuristics rules.

• Optimization techniques apply heuristic rules to modify the internal representation of a

query—which is usually in the form of a query tree or a query graph data structure—to improve its

expected performance.

• The scanner and parser of an SQL query first generate a data structure that corresponds to

an initial query representation, which is then optimized according to heuristic rules. This leads to

an optimized query representation, which corresponds to the query execution strategy. Following

that, a query execution plan is generated to execute groups of operations based on the access paths

available on the files involved in the query.

• One of the main heuristic rules is to apply SELECT and PROJECT operations before

applying the JOIN or other binary operations, because the size of the file resulting from a binary

operation—such as JOIN—is usually a multiplicative function of the sizes of the input files. The

SELECT and PROJECT operations reduce the size of a file and hence should be applied before a

join or other binary operation.

Notation for Query Trees and Query Graphs:

• A query tree is a tree data structure that corresponds to a relational algebra expression. It

represents the input relations of the query as leaf nodes of the tree, and represents the relational

algebra operations as internal nodes.

• An execution of the query tree consists of executing an internal node operation whenever its

operands are available and then replacing that internal node by the relation that results from

executing the operation. The order of execution of operations starts at the leaf nodes, which

represents the input database relations for the query, and ends at the root node, which represents

the final operation of the query. The execution terminates when the root node operation is executed

and produces the result relation for the query.

• Figure (a) shows a query tree for query Q2: For every project located in ‘Stafford’, retrieve

the project number, the controlling department number, and the department manager’s last name,

address, and birthdate. This query is specified on the COMPANY relational schema and

corresponds to the following relational algebra expression:

This corresponds to the following SQL query:

Q2: SELECT P.Pnumber, P.Dnum, E.Lname, E.Address, E.Bdate FROM PROJECT AS P,

 DEPARTMENT AS D, EMPLOYEE AS E WHERE P.Dnum=D.Dnumber AND

 D.Mgr_ssn=E.Ssn AND P.Plocation= ‘Stafford’;

Figure. Two query trees for the query Q2. (a) Query tree corresponding to the relational algebra

expression for Q2. (b) Initial (canonical) query tree for SQL query Q2. (c) Query graph for Q2.

• In Figure(a), the leaf nodes P, D, and E represent the three relations PROJECT,

DEPARTMENT, and EMPLOYEE, respectively, and the internal tree nodes represent the

relational algebra operations of the expression. When this query tree is executed, the node marked

(1) in Figure (a) must begin execution before node (2) because some resulting tuples of operation

(1) must be available before we can begin executing operation (2). Similarly, node (2) must begin

executing and producing results before node (3) can start execution, and so on.

• As we can see, the query tree represents a specific order of operations for executing a query.

A more neutral data structure for representation of a query is the query graph notation. Figure (c)

shows the query graph for query Q2. Relations in the query are represented by relation nodes,

which are displayed as single circles. Constant values, typically from the query selection

conditions, are represented by constant nodes, which are displayed as double circles or ovals.

Selection and join conditions are represented by the graph edges, as shown in Figure (c) . Finally,

the attributes to be retrieved from each relation are displayed in square brackets above each

relation.

• The query graph representation does not indicate an order on which operations to perform

first. There is only a single graph corresponding to each query. Although some optimization

techniques were based on query graphs, it is now generally accepted that query trees are preferable

because, in practice, the query optimizer needs to show the order of operations for query execution,

which is not possible in query graphs.

 HEURISTIC OPTIMIZATION OF QUERY TREES:

• In general, many different relational algebra expressions can be equivalent; that is, they can

represent the same query.

• The query parser will typically generate a standard initial query tree to correspond to an

SQL query, without doing any optimization. For example, for a SELECT-PROJECT-JOIN query,

such as Q2, the initial tree is shown in Figure (b). The CARTESIAN PRODUCT of the relations

specified in the FROM clause is first applied; then the selection and join conditions of the WHERE

clause are applied, followed by the projection on the SELECT clause attributes.

• Such a canonical query tree represents a relational algebra expression that is very inefficient

if executed directly, because of the CARTESIAN PRODUCT (×) operations. For example, if the

PROJECT, DEPARTMENT, and EMPLOYEE relations had record sizes of 100, 50, and 150 bytes

and contained 100, 20, and 5,000 tuples, respectively, the result of the CARTESIAN PRODUCT

would contain 10 million tuples of record size 300 bytes each.

• However, the initial query tree in Figure(b) is in a simple standard form that can be easily

created from the SQL query. It will never be executed. The heuristic query optimizer will transform

this initial query tree into an equivalent final query tree that is efficient to execute.

• The optimizer must include rules for equivalence among relational algebra expressions that

can be applied to transform the initial tree into the final, optimized query tree. First we discuss

informally how a query tree is transformed by using heuristics, and then we discuss general

transformation rules and show how they can be used in an algebraic heuristic optimizer.

Example of Transforming a Query. :

• Consider the following query Q: Find the last names of employees born after 1957 who

work on a project named ‘Aquarius’. This query can be specified in SQL as follows:

 SELECT Lname FROM EMPLOYEE, WORKS_ON, PROJECT WHERE

Pname=‘Aquarius’

 AND Pnumber=Pno AND Essn=Ssn AND Bdate > ‘1957-12-31’;

• The initial query tree for Q is shown in Figure(a). Executing this tree directly first creates a

very large file containing the CARTESIAN PRODUCT of the entire EMPLOYEE, WORKS_ON,

and PROJECT files. That is why the initial query tree is never executed, but is transformed into

another equivalent tree that is efficient to execute. This particular query needs only one record

from the PROJECT relation— for the ‘Aquarius’ project—and only the EMPLOYEE records for

those whose date of birth is after ‘1957-12-31’. Figure (b) shows an improved query tree that first

applies the SELECT operations to reduce the number of tuples that appear in the CARTESIAN

PRODUCT.

Figure Steps in converting a query tree during heuristic optimization.

a) Initial (canonical) query tree for SQL query Q.

b) Moving SELECT operations down the query tree.

c) Applying the more restrictive SELECT operation first.

d) Replacing CARTESIAN PRODUCT and SELECT with JOIN operations.

e) Moving PROJECT operations down the query tree.

• A further improvement is achieved by switching the positions of the EMPLOYEE and

PROJECT relations in the tree, as shown in Figure (c). This uses the information that Pnumber is a

key attribute of the PROJECT relation, and hence the SELECT operation on the PROJECT relation

will retrieve a single record only. We can further improve the query tree by replacing any

CARTESIAN PRODUCT operation that is followed by a join condition with a JOIN operation, as

shown in Figure (d). Another improvement is to keep only the attributes needed by subsequent

operations in the intermediate relations, by including PROJECT (π) operations as early as possible

in the query tree, as shown in Figure(e). This reduces the attributes (columns) of the intermediate

relations, whereas the SELECT operations reduce the number of tuples (records).

• A query tree can be transformed step by step into an equivalent query tree that is more

efficient to execute. However, we must make sure that the transformation steps always lead to an

equivalent query tree. To do this, the query optimizer must know which transformation rules

preserve this equivalence.

• General Transformation Rules for Relational Algebra Operations.

• There are many rules for transforming relational algebra operations into equivalent ones.

For query optimization purposes, we are interested in the meaning of the operations and the

resulting relations. Hence, if two relations have the same set of attributes in a different order but the

two relations represent the same information, we consider the relations to be equivalent.

12. Explain about algorithm External sorting in DBMS.

• Sorting is one of the primary algorithms used in query processing. For example, whenever

an SQL query specifies an ORDER BY-clause, the query result must be sorted. Sorting is

also a key component in sort-merge algorithms used for JOIN and other operations (such

as UNION and INTERSECTION), and in duplicate elimination algorithms for the

PROJECT operation (when an SQL query specifies the DISTINCT option in the SELECT

clause). We will discuss one of these algorithms in this sec- tion. Note that sorting of a

particular file may be avoided if an appropriate index— such as a primary or clustering

index—exists on the desired file attribute to allow ordered access to the records of the file.

• External sorting refers to sorting algorithms that are suitable for large files of records

stored on disk that do not fit entirely in main memory, such as most data- base files.6 The

typical external sorting algorithm uses a sort-merge strategy, which starts by sorting small

subfiles—called runs—of the main file and then merges the sorted runs, creating larger

sorted subfiles that are merged in turn. The sort-merge algorithm, like other database

algorithms, requires buffer space in main memory, where the actual sorting and merging

of the runs is performed. The basic algorithm, outlined in Figure 18.2, consists of two

phases: the sorting phase and the merging phase. The buffer space in main memory is part

of the DBMS cache—an area in the computer’s main memory that is controlled by the

DBMS. The buffer space is divided into individual buffers, where each buffer is the same

size in bytes as the size of one disk block. Thus, one buffer can hold the contents of exactly

one disk block.

• In the sorting phase, runs (portions or pieces) of the file that can fit in the available buffer
space are read into main memory, sorted using an internal sorting algorithm, and written
back to disk as temporary sorted subfiles (or runs). The size of each run and the number of

initial runs (nR) are dictated by the number of file blocks (b) and the available buffer

space (nB). For example, if the number of available main memory buffers nB = 5 disk
blocks and the size of the file b = 1,024 disk blocks, then nR=⌠ (b/nB) ˥ or 205 initial runs
each of size 5 blocks (except the last run, which will have only 4 blocks). Hence, after the
sorting phase, 205 sorted runs (or 205 sorted subfiles of the original file) are stored as
temporary subfiles on disk.

• In the merging phase, the sorted runs are merged during one or more merge passes. Each

merge pass can have one or more merge steps. The degree of merging (dM) is the number

of sorted subfiles that can be merged in each merge step. During each merge step, one

buffer block is needed to hold one disk block from each of the sorted subfiles being

merged, and one additional buffer is needed for containing one disk block of the merge

result, which will produce a larger sorted file that is the result of merging several smaller

sorted subfiles. Hence, dM is the smaller of (nB − 1) and nR, and the number of merge

passes is ⌠ (logdM(nR)) ˥. In our example, where nB = 5, dM = 4 (four-way merging),

so the 205 initial sorted runs would be merged 4 at a time in each step into 52 larger

sorted subfiles at the end of the first merge pass. These 52 sorted files are then merged 4

at a time into 13 sorted files, which are then merged into 4 sorted files, and then finally

into 1 fully sorted file, which means that four passes are needed.

• Th

e performance of the sort-merge algorithm can be measured in terms of the number of

disk block reads and writes (between the disk and main memory) before the sorting of

the whole file is completed. The following formula approximates this cost:

 (2 * b) + (2 * b * (logdM nR))

• The first term (2 * b) represents the number of block accesses for the sorting phase, since
each file block is accessed twice: once for reading into a main memory buffer and once for
writing the sorted records back to disk into one of the sorted subfiles. The second term
represents the number of block accesses for the merging phase. During each merge pass, a
number of disk blocks approximately equal to the original file blocks b is read and written.
Since the number of merge passes is (logdM nR), we get the total merge cost of (2 * b * (logdM
nR)).

• The
minimum number of main memory buffers needed is nB = 3, which gives a dM of 2 and an
nR (of b/3. The minimum) dM of 2 gives the worst-case performance of the algorithm,
which is:

 (2 * b) + (2 * (b * (log2 nR))).

13. Explain about query optimization using cost estimation.

• A query optimizer does not depend solely on heuristic rules; it also estimates and compares

the costs of executing a query using different execution strategies and algorithms, and it then

chooses the strategy with the lowest cost estimate. For this approach to work, accurate cost

estimates are required so that different strategies can be compared fairly and realistically. In

addition, the optimizer must limit the number of execution strategies to be considered; otherwise,

too much time will be spent making cost estimates for the many possible execution strategies.

Hence, this approach is more suitable for compiled queries where the optimization is done at

compile time and the resulting execution strategy code is stored and executed directly at runtime.

For interpreted queries, where the entire process shown in

• A full-scale optimization may slow down the response time. A more elaborate optimization

is indicated for compiled queries, whereas a partial, less time-consuming optimization works best

for interpreted queries.

• This approach is generally referred to as cost-based query optimization. It uses traditional

optimization techniques that search the solution space to a problem for a solution that minimizes an

objective (cost) function. The cost functions used in query optimization are estimates and not exact

cost functions, so the optimization may select a query execution strategy that is not the optimal

(absolute best) one.

Cost Components for Query Execution:

The cost of executing a query includes the following components:

1) Access cost to secondary storage. This is the cost of transferring (reading and writing) data

blocks between secondary disk storage and main memory buffers. This is also known as disk I/O

(input/output) cost. The cost of search-ing for records in a disk file depends on the type of access

structures on that file, such as ordering, hashing, and primary or secondary indexes. In addition,

factors such as whether the file blocks are allocated contiguously on the same disk cylinder or

scattered on the disk affect the access cost.

2) Disk storage cost. This is the cost of storing on disk any intermediate files that are generated

by an execution strategy for the query.

3) Computation cost. This is the cost of performing in-memory operations on the records within

the data buffers during query execution. Such operations include searching for and sorting records,

merging records for a join or a sort operation, and performing computations on field values. This is

also known as CPU (central processing unit) cost.

4) Memory usage cost. This is the cost pertaining to the number of main memory buffers needed

during query execution.

5) Communication cost. This is the cost of shipping the query and its results from the database

site to the site or terminal where the query originated. In distributed databases, it would also

include the cost of transferring tables and results among various computers during query

evaluation.

For large databases, the main emphasis is often on minimizing the access cost to secondary storage.

Simple cost functions ignore other factors and compare different query execution strategies in

terms of the number of block transfers between disk and main memory buffers. For smaller

databases, where most of the data in the files involved in the query can be completely stored in

memory, the emphasis is on minimizing computation cost. In distributed databases, where many

sites are involved, communication cost must be minimized also. It is difficult to include all the cost

components in a (weighted) cost function because of the difficulty of assigning suitable weights to

the cost components. That is why some cost functions consider a single factor only—disk access.

Catalog Information Used in Cost Functions:

• To estimate the costs of various execution strategies, we must keep track of any information

that is needed for the cost functions. This information may be stored in the DBMS catalog, where it

is accessed by the query optimizer. First, we must know the size of each file. For a file whose

records are all of the same type, the number of records (tuples) (r), the (average) record size (R),

and the number of file blocks (b) (or close estimates of them) are needed. The blocking factor

(bfr) for the file may also be needed. We must also keep track of the primary file organization for

each file.

• The primary file organization records may be unordered, ordered by an attribute with or

without a primary or clustering index, or hashed (static hashing or one of the dynamic hashing

methods) on a key attribute. Information is also kept on all primary, secondary, or clustering

indexes and their indexing attributes. The number of levels (x) of each multilevel index (primary,

secondary, or clustering) is needed for cost functions that estimate the number of block accesses

that occur during query execution. In some cost functions the number of first-level index blocks

(bI1) is needed.

Another important parameter is the number of distinct values (d) of an attribute and the attribute

selectivity (sl), which is the fraction of records satisfying an equal-ity condition on the attribute.

This allows estimation of the selection cardinality (s= sl * r) of an attribute, which is the average

number of records that will satisfy an equality selection condition on that attribute. For a key

attribute, d = r, sl = 1/r and s=1. For a nonkey attribute, by making an assumption that the d

distinct values are uniformly distributed among the records, we estimate sl = (1/d) and so s = (r/d).

Information such as the number of index levels is easy to maintain because it does not change very

often. However, other information may change frequently; for example, the number of records r in

a file changes every time a record is inserted or deleted. The query optimizer will need reasonably

close but not necessarily completely up-to-the-minute values of these parameters for use in

estimating the cost of various execution strategies.

For a nonkey attribute with d distinct values, it is often the case that the records are not uniformly

distributed among these values. For example, suppose that a company has 5 departments numbered

1 through 5, and 200 employees who are distributed among the departments as follows: (1, 5), (2,

25), (3, 70), (4, 40), (5, 60). In such cases, the optimizer can store a histogram that reflects the

distribution of employee records over different departments in a table with the two attributes (Dno,

Selectivity), which would contain the following values for our example: (1, 0.025), (2, 0.125), (3,

0.35), (4, 0.2), (5, 0.3). The selectivity values stored in the histogram can also be estimates if the

employee table changes frequently.

Examples of Cost Functions for SELECT:

We now give cost functions for the selection algorithms S1 to S8 in terms of number of block

transfers between memory and disk. Algorithm S9 involves an intersection of record pointers after

they have been retrieved by some other means, such as algorithm S6, and so the cost function will

be based on the cost for S6. These cost functions are estimates that ignore computation time,

storage cost, and other factors. The cost for method Si is referred to as CSi block accesses.

 S1—Linear search (brute force) approach. We search all the file blocks to retrieve all

records satisfying the selection condition; hence, CS1a = b. For an equality condition on a key

attribute, only half the file blocks are searched on the average before finding the record, so a rough

estimate for CS1b = (b/2) if the record is found; if no record is found that satisfies the condition, CS1b

= b.

 S2—Binary search. This search accesses approximately CS2 = log2b + (s/bfr) − 1 file blocks.

This reduces to log2b if the equality condition is on a unique (key) attribute, because s = 1 in this

case.

 S3a—Using a primary index to retrieve a single record. For a primary index, retrieve one

disk block at each index level, plus one disk block from the data file. Hence, the cost is one more

disk block than the number of index levels: CS3a = x + 1.

 S3b—Using a hash key to retrieve a single record. For hashing, only one disk block needs to

be accessed in most cases. The cost function is approximately CS3b = 1 for static hashing or linear

hashing, and it is 2 disk block accesses for extendible hashing.

 S4—Using an ordering index to retrieve multiple records. If the comparison condition is >,

>=, <, or <= on a key field with an ordering index, roughly half the file records will satisfy the

condition. This gives a cost function of CS4 = x + (b/2). This is a very rough estimate, and although

it may be correct on the average, it may be quite inaccurate in individual cases. A more accurate

estimate is possible if the distribution of records is stored in a histogram.

 S5—Using a clustering index to retrieve multiple records. One disk block is accessed at

each index level, which gives the address of the first file disk block in the cluster. Given an equality

condition on the indexing attribute, s records will satisfy the condition, where s is the selection

cardinality of the indexing attribute. This means that (s/bfr) file blocks will be in the cluster of file

blocks that hold all the selected records, giving CS5 = x + (s/bfr) .

 S6—Using a secondary (B+-tree) index. For a secondary index on a key (unique) attribute, the

cost is x + 1 disk block accesses. For a secondary index on a nonkey (nonunique) attribute, s

records will satisfy an equality condition, where s is the selection cardinality of the indexing

attribute. However, because the index is nonclustering, each of the records may reside on a

different disk block, so the (worst case) cost estimate is CS6a = x + 1 + s. The additional 1 is to

account for the disk block that contains the record pointers after the index is searched. If the

comparison condition is >, >=, <, or <= and half the file records are assumed to satisfy the

condition, then (very roughly) half the first-level index blocks are accessed, plus half the file

records via the index. The cost estimate for this case, approximately, is CS6b = x + (bI1/2) + (r/2).

The r/2 factor can be refined if better selectivity estimates are available through a histogram. The

latter method CS6b can be very costly.

 S7—Conjunctive selection. We can use either S1 or one of the methods S2 to S6 discussed

above. In the latter case, we use one condition to retrieve the records and then check in the main

memory buffers whether each retrieved record satisfies the remaining conditions in the conjunction.

If multiple indexes exist, the search of each index can produce a set of record pointers (record ids)

in the main memory buffers. The intersection of the sets of record pointers (referred to in S9) can

be computed in main memory, and then the resulting records are retrieved based on their record ids.

 S8—Conjunctive selection using a composite index. Same as S3a, S5, or S6a, depending on

the type of index.

Examples of Cost Functions for JOIN:

To develop reasonably accurate cost functions for JOIN operations, we need to have an estimate for

the size (number of tuples) of the file that results after the JOIN operation. This is usually kept as a

ratio of the size (number of tuples) of the resulting join file to the size of the CARTESIAN

PRODUCT file, if both are applied to the same input files, and it is called the join selectivity (js).

If we denote the number of tuples of a relation R by |R|, we have:

js = |(R c S)| / |(R × S)| = |(R c S)| / (|R| * |S|)

If there is no join condition c, then js = 1 and the join is the same as the CARTESIAN PRODUCT.

If no tuples from the relations satisfy the join condition, then js = 0. In general, 0 <= js <= 1. For a

join where the condition c is an equality comparison R.A =S.B, we get the following two special

cases:

 1) If A is a key of R, then |(R c S)| ≤ |S|, so js ≤ (1/|R|). This is because each record in file S

will be joined with at most one record in file R, since A is a key of R. A special case of this

condition is when attribute B is a foreign key of S that references the primary key A of R. In

addition, if the foreign key B has the NOT NULL constraint, then js = (1/|R|), and the result file of

the join will contain |S| records.

 2) If B is a key of S, then |(R c S)| ≤ |R|, so js ≤ (1/|S|).

Having an estimate of the join selectivity for commonly occurring join conditions enables the query

optimizer to estimate the size of the resulting file after the join operation, given the sizes of the two

input files, by using the formula |(R c S)| = js

 |R| * |S|. We can now give some sample approximate cost functions for estimating the cost of

some of the join algorithms. The join operations are of the form:

R A=B S

where A and B are domain-compatible attributes of R and S, respectively. Assume that R has bR

blocks and that S has bS blocks:

 J1—Nested-loop join. Suppose that we use R for the outer loop; then we get the following cost

function to estimate the number of block accesses for this method, assuming three memory buffers.

We assume that the blocking factor for the resulting file is bfrRS and that the join selectivity is

known:

CJ1 = bR + (bR * bS) + ((js * |R| * |S|)/bfrRS)

The last part of the formula is the cost of writing the resulting file to disk.

This cost formula can be modified to take into account different numbers of memory buffers. If nB

main memory buffers are available to perform the join, the cost formula becomes:

CJ1 = bR + (bR/(nB – 2) * bS) + ((js * |R| * |S|)/bfrRS)

 J2—Single-loop join (using an access structure to retrieve the matching record(s)). If an

index exists for the join attribute B of S with index levels xB, we can retrieve each record s in R and

then use the index to retrieve all the matching records t from S that satisfy t[B] = s[A]. The cost

depends on the type of index. For a secondary index where sB is the selection cardinality for the

join attribute B of S,21 we get:

CJ2a = bR + (|R| * (xB + 1 + sB)) + ((js * |R| * |S|)/bfrRS)

For a clustering index where sB is the selection cardinality of B, we get

 CJ2b = bR + (|R| * (xB + (sB/bfrB))) + ((js * |R| * |S|)/bfrRS)

For a primary index, we get

CJ2c = bR + (|R| * (xB + 1)) + ((j s * |R| * |S|)/bfrRS)

If a hash key exists for one of the two join attributes—say, B of S—we get

CJ2d = bR + (|R| * h) + ((j s * |R| * |S|)/bfrRS)

where h ≥ 1 is the average number of block accesses to retrieve a record, given its hash key value.

Usually, h is estimated to be 1 for static and linear hashing and 2 for extendible hashing.

 J3—Sort-merge join. If the files are already sorted on the join attributes, the cost function for

this method is

CJ3a = bR + bS + ((j s * |R| * |S|)/bfrRS)

If we must sort the files, the cost of sorting must be added.

UNIT-IV

PART- A

1. What is RAID? (NOV 2014)(R)

 A variety of disk organization techniques, collectively called redundant arrays of independent

disks (RAID), have been proposed to achieve improved performance and reliability.

2. What are the factors to be taken into account in choosing a RAID level?

The factors to be taken into account in choosing a RAID level are

• Monetary cost of extra disk-storage requirements

• Performance requirements in terms of number of I/O operations

• Performance when a disk has failed.

• Performance during rebuild(that is, while the date in a failed disk are being rebuilt on a new

disk)

3. What is heap file organization?

Any record can be placed anywhere in the file where there is space for the record. There is no

ordering of records. Typically, there is a single file for each relation.

4. What is sequential file organization?

Records are stored in sequential order, according to the value of a

―search key‖ of each record.

5. What is hashing file organization?

A hash function is computed on some attribute of each record. The result of the hash function

specifies in which block of the file the record should be placed,

6. What is a multitable clustering file organization?

A multitable clustering file organization is a file organization that stores related records of two or

more relations in each block. Such a file organization allows us to read records that would

satisfy the join condition by using one block read.

7. What are the two basic kinds of indices?

The Two basic kinds of indices are

➢ Ordered indices

➢ Hash indices

8. What are access types?

The types of access that are supported efficiently. Access types can include finding records with a

specified attribute vale and finding records whose attribute values fall in a specified range.

9. What is access time?

The time it takes to find a particular data item, or set of items, using the technique in question.

10. What is insertion time?

The time it takes to insert a new data item. This value includes the time it takes to find the

correct place to insert the new data item, as well as the time it takes to update the index

structure.

11. What is deletion time?

The time it takes to delete a data item. This value includes the time it takes to find the item to be

deleted, as well as the time it takes to update the index structure.

12. What is space overhead?

The additional space occupied by an index structure. Provided that the amount of additional space

is moderate, it is usually worth-while to sacrifice the space to achieve improved performance.

13. What is a search key?

An attribute or set of attributes used to look up records in a file is called a search key.

14. What is an clustering index (or) primary index? (NOV 2014)

Clustering index is an index whose search key also defines the sequential order of the file.

15. What is an nonclustering index (or) secondary index?

Indices whose search key specifies an order different from the sequential order of the file are

called nonclustering indices.

16. What is an index-sequential file?

 All files are ordered sequentially on some search key. Such files, with a clustering index on the

search key, are called index-sequential files.

17. What is a dense index? (MAY 2012)

An index record appears for every search-key value in the file. In a dense clustering index, the

index record contains the search-key value and a pointer to the first data record with that search-

key value. The rest of the records with the same search-key value would be stored sequentially

after the first record, since, because the index is a clustering one, records are stored on the same

search key. Dense index implementations may store a list of pointers to all records with the

same search-key value; doing so is not essential for clustering indices.

18. What is a sparse index? (MAY 2012)

An index record appears for only some of the search-key values. as is true in dense indices, each

index record contains a search-key value and a pointer to the first data record with that search-

key value. To locate a record, we find the index entry with the largest search-key value that is

less than or equal to the search-key value for which we are looking. We start at the record

pointed to by that index entry, and follow the pointers in the file until we find the desired record.

19. What is a multilevel indices?

Indices with two or more levels are called multilevel indices.

20. What is a balanced tree?

Balanced tree in which every path from the root of the tree to the leaf of the tree is of the same

length.

21. Define hashing.

Hashing allow us to avoid accessing an index structure. It provides a way of constructing

indices.

22. Define a bucket.

The term bucket to denote a unit of storage that can store one or more records. A bucket is

typically a disk block, but could be chosen to be a smaller or larger than a disk block.

23. Define hash function.

A hash function h is a function from K to B. Let h denote a hash function

24. What are the two different purposes of hashing?

Hashing can be used for two different purposes.

• Hash file organization

• Hash index organization

25. What is a hash index?

A hash index organizes the search keys, with their associated pointers, into a hash file structure.

26. What is dynamic hashing? (NOV 2014)

Dynamic hashing techniques allow the hash function to be modified dynamically to accommodate

the growth or shrinkage of the database.

27. What are the steps involved in query processing?

The steps involved in processing a query are

• Parsing and translation

• Optimization

• Evaluation

28. What is an indexed nested-loop join?

Indexed nested loop join can be used with existing indices, as well as with temporary indices

created for the sole purpose of evaluating the join.

29. What is a merge join?

The merge-join algorithm can be used to compute natural joins and equi-joins.

30. What is an index record?

An index record, or index entry, consists of a search – key vale and pointers to one or more

records with that value as their search-key value.

31. Define mean time to failure(MTTF)

Mean time to failure is a measure of the reliability of the disk. The mean time to failure of a

disk is the amount of time that, on average, we can expect the system to run continuously

without any failure.

32. What is mirroring?

The simplest approach to introducing redundancy is to duplicate every disk. This technique is

called mirroring.

33. How dynamic hashing differ from static hashing? (DEC2015)

Static Hashing

• A bucket is a unit of storage containing one or more records (a bucket is typically a disk block).

• The file blocks are divided into M equal-sized buckets, numbered bucket0, bucket1...

bucketM- 1.Typically, a bucket corresponds to one (or a fixed number of) disk block.

• In a hash file organization we obtain the bucket of a record directly from its search-key value

using a hash

Dynamic Hashing

• Good for database that grows and shrinks in size

• Allows the hash function to be modified dynamically

• Extendable hashing – one form of dynamic hashing

• Hash function generates values over a large range —typically b-bit integers, with b = 32.

• At any time use only a prefix of the hash function to index into a table of bucket addresses.

• Let the length of the prefix be i bits, 0 _ i _ 32.

34. Disadvantages of B TREE over B+ TREE. (NOV 2016)

In a B tree search keys and data stored in internal or leaf nodes. But in B+- tree data store only leaf

nodes. Searching any data in a B+ tree is very easy because all data are found in leaf nodes. In a

B tree, data cannot be found in leaf nodes.In a B tree, data may be found in leaf nodes or internal

nodes. Deletion of internal nodes is very complicated. In a B+ tree, data is only found in leaf

nodes. Deletion of leaf nodes is easy. Insertion in B tree is more complicated than B+ tree.B+

trees store redundant search key but B tree has no redundant value. In a B+ tree, leaf nodes data

are ordered as a sequential linked list but in B tree the leaf node cannot be stored using a linked

list. Many database systems' implementations prefer the structural simplicity of a B+ tree.

35. What is a query execution plan?(Apr/May-2017)

Execution plan will be generated by Query optimizer with the help of statistics and Algebrizer

processor tree.

It is the result of Query optimizer and tells how to do\perform your work\requirement.

There are two different execution plans - Estimated and Actual.

Estimated execution plan indicates optimizer view.

Actual execution plan indicates what executed the query and how was it done.

36. Which cost component are used most often as the basis for cost function? (Apr/May-2017)

(i) Access cost to secondary storage

(ii) Memory usage of cost

 (iii)Storage cost

37. What is replication transparency?(Apr/May-2017)

Distribution Transparency. Distribution transparency is the property of distributed

databases by the virtue of which the internal details of the distribution are hidden from the

users. The DDBMS designer may choose to fragment tables, replicate the fragments and store

them at different sites.

38. State the Need for Query Optimization.

• Process of selecting an efficient execution plan for evaluating the query.

• refers to the process of finding lowest cost method of evaluating a given query.

• Need for being logically consistent because the least cost plan will always be consistently low.

PART B

1. Explain various level of RAID in detail.

2. Discuss about File Organization with neat diagram

3. Explain about Organization of Records in Files

4. Elaborate about Data dictionary Storage.

5. Explain about Column Oriented Storage

6. Explain two types of ordered indices.

7. Discuss about B+ tree Index Files.

8. Elaborate about B tree Index Files

9. Explain about static hashing and Dynamic Hashing

10. Discuss about various steps in query processing

11. Explain about various Algorithms for Selection.

12. Elaborate about algorithms for Sorting and join operations

13. Discuss about Query optimization using Heuristics

14. Explain about Cost Estimation in query execution.

CS3492 / DATABASE MANAGEMENT SYSTEMS

UNIT V ADVANCED TOPICS

Distributed Databases: Architecture, Data Storage, Transaction Processing, Query processing
and optimization – NOSQL Databases: Introduction – CAP Theorem – Document Based
systems – Key value Stores – Column Based Systems – Graph Databases. Database
Security: Security issues – Access control based on privileges – Role Based access control –
SQL Injection – Statistical Database security – Flow control – Encryption and Public Key
infrastructures – Challenges

1. Explain about Distributed Database Concepts, characteristics and the advantages.

Distributed database (DDB) is a collection of multiple logically interrelated databases distributed over a

computer network. Distributed database management system (DDBMS) is a software system that manages

a distributed database while making the distribution transparent to the user.

For a database to be called distributed, the following minimum conditions should be satisfied:
■ Connection of database nodes over a computer network. There are mul tiple computers, called
sites or nodes. These sites must be connected by an underlying network to transmit data and commands
among sites.
■ Logical interrelation of the connected databases. It is essential that the information in the various
database nodes be logically related.
■ Possible absence of homogeneity among connected nodes. It is not necessary that all nodes be
identical in terms of data, hardware, and software.
The sites may all be located in physical proximity—say, within the same building or a group of adjacent
buildings—and connected via a local area network, or they may be geographically distributed over large
distances and connected via a long-haul or wide area network. Local area networks typically use
wireless hubs or cables, whereas long-haul networks use telephone lines, cables, wireless
communication infrastructures, or satellites. It is common to have a combination of various types of
networks.

• Networks may have different topologies that define the direct communication paths among
sites. The type and topology of the network used may have a significant impact on the
performance and hence on the strategies for distributed query processing and distributed
database design. For high-level architectural issues, however, it does not matter what type
of network is used; what matters is that each site be able to communicate, directly or
indirectly, with every other site. We assume that some type of network exists among nodes,
regardless of any particular topology.

Characteristics:

 1) Transparency

The concept of transparency extends the general idea of hiding implementation details from end
users. A highly transparent system offers a lot of flexibility to the end user/application developer
since it requires little or no awareness of underlying details on their part. In the case of a traditional
centralized database, transparency simply pertains to logical and physical data independence for
application developers. However, in a DDB scenario, the data and software are distributed over
multiple nodes connected by a computer network, so additional types of transparencies are
introduced.
The following types of transparencies are possible:

i) Data organization transparency (also known as distribution or network transparency). This refers
to freedom for the user from the operational details of the network and the placement of the data
in the distributed system. It may be divided into location transparency and naming transparency.
Location transparency refers to the fact that the command used to perform a task is independent of
the location of the data and the location of the node where the command was issued. Naming
transparency implies that once a name is associated with an object, the named objects can be
accessed unambiguously without additional specification as to where the data is located.

ii) Replication transparency. Copies of the same data objects may be stored at multiple sites for
better availability, performance, and reliability. Replication transparency makes the user unaware of
the existence of these copies.

iii) Fragmentation transparency. Two types of fragmentation are possible. Horizontal
fragmentation distributes a relation (table) into subrelations that are subsets of the tuples
(rows) in the original relation; this is also known as sharding in the newer big data and cloud
computing systems. Vertical fragmentation distributes a relation into subrelations where each
subrelation is defined by a subset of the columns of the original relation. Fragmentation
transparency makes the user unaware of the existence of fragments.

iv) Design transparency and execution transparency—which refer, respectively, to
freedom from knowing how the distributed database is designed and where a transaction
executes.

Figure. Data distribution and replication among distributed databases.

 2) Availability and Reliability

• Reliability and availability are two of the most common potential advantages cited for distributed
databases. Reliability is broadly defined as the probability that a system is running (not down) at
a certain time point, whereas availability is the probability that the system is continuously
available during a time interval. We can directly relate reliability and availability of the database
to the faults, errors, and failures associated with it. A failure can be described as a deviation of
a system’s behavior from that which is specified in order to ensure correct execution of
operations. Errors constitute that subset of system states that causes the failure. Fault is the
cause of an error.

• To construct a system that is reliable, we can adopt several approaches. One common
approach stresses fault tolerance; it recognizes that faults will occur, and it designs
mechanisms that can detect and remove faults before they can result in a system failure.
Another more stringent approach attempts to ensure that the final system does not contain any
faults. This is done through an exhaustive design process followed by extensive quality control
and testing. A reliable DDBMS tolerates failures of underlying components, and it processes
user requests as long as data- base consistency is not violated. A DDBMS recovery manager
has to deal with failures arising from transactions, hardware, and communication networks.
Hardware failures can either be those that result in loss of main memory contents or loss of
secondary storage contents. Network failures occur due to errors associated with messages
and line failures. Message errors can include their loss, corruption, or out-of-order arrival at
destination.

 3) Scalability and Partition Tolerance

Scalability determines the extent to which the system can expand its capacity while continuing to
operate without interruption. There are two types of scalability:

1. Horizontal scalability: This refers to expanding the number of nodes in the distributed system. As
nodes are added to the system, it should be possible to distribute some of the data and processing loads
from existing nodes to the new nodes.

2. Vertical scalability: This refers to expanding the capacity of the individual nodes in the system, such
as expanding the storage capacity or the process- ing power of a node.
As the system expands its number of nodes, it is possible that the network, which connects the
nodes, may have faults that cause the nodes to be partitioned into groups of nodes. The nodes
within each partition are still connected by a subnetwork, but communication among the partitions
is lost. The concept of partition tolerance states that the system should have the capacity to
continue operating while the network is partitioned.

 Autonomy

• Autonomy determines the extent to which individual nodes or DBs in a connected DDB can
operate independently. A high degree of autonomy is desirable for increased flexibility and
customized maintenance of an individual node. Autonomy can be applied to design,
communication, and execution. Design autonomy refers to independence of data model
usage and transaction management techniques among nodes. Communication autonomy
determines the extent to which each node can decide on sharing of information with other
nodes. Execution autonomy refers to independence of users to act as they please.

 Advantages of Distributed Databases

1. Improved ease and flexibility of application development. Developing and maintaining
applications at geographically distributed sites of an organization is facilitated due to transparency of data
distribution and control.

2. Increased availability. This is achieved by the isolation of faults to their site of origin without
affecting the other database nodes connected to the network. When the data and DDBMS software are
distributed over many sites, one site may fail while other sites continue to operate. Only the data and
software that exist at the failed site cannot be accessed. Further improvement is achieved by judiciously
replicating data and software at more than one site. In a centralized system, failure at a single site
makes the whole system unavailable to all users. In a distributed database, some of the data may be
unreachable, but users may still be able to access other parts of the database. If the data in the failed site
has been replicated at another site prior to the failure, then the user will not be affected at all. The ability
of the system to survive network partitioning also contributes to high availability.

3. Improved performance. A distributed DBMS fragments the database by keeping the data closer
to where it is needed most. Data localization reduces the contention for CPU and I/O services and
simultaneously reduces access delays involved in wide area networks. When a large database is distributed
over multiple sites, smaller databases exist at each site. As a result, local queries and transactions
accessing data at a single site have better performance because of the smaller local data- bases. In
addition, each site has a smaller number of transactions executing than if all transactions are submitted to
a single centralized database. Moreover, interquery and intraquery parallelism can be achieved by
executing multiple queries at different sites, or by breaking up a query into a number of subqueries that
execute in parallel. This contributes to improved performance.

4. Easier expansion via scalability. In a distributed environment, expansion of the system in terms of
adding more data, increasing database sizes, or adding more nodes is much easier than in centralized (non-
distributed) systems.

 2. Discuss about Data Fragmentation, Replication, and Allocation Techniques

 for Distributed Database Design.

(or)

Explain about data storage in Distributed Database.

• Data Fragmentation techniques are used to break up the database into logical units, called
fragments, which may be assigned for storage at the various nodes. data replication permits
certain data to be stored in more than one site to increase availability and reliability; and the
process of allocating fragments—or replicas of fragments—for storage at the various nodes. These
techniques are used during the process of distributed database design. The information
concerning data fragmentation, allocation, and replication is stored in a global directory that is
accessed by the DDBS applications as needed.

a) Horizontal Fragmentation.

• A horizontal fragment of a relation is a subset of the tuples in that relation. The tuples that
belong to the horizontal fragment are specified by a condition on one or more attributes of the
relation. Often, only a single attribute is involved.

• Horizontal fragmentation divides a relation horizontally by grouping rows to create subsets of
tuples, where each subset has a certain logical meaning. These fragments can then be assigned
to different sites in the distributed system. Derived horizontal fragmentation applies the
partitioning of a primary relation (DEPARTMENT in our example) to other secondary relations
(EMPLOYEE and PROJECT in our example), which are related to the primary via a foreign key. This
way, related data between the primary and the secondary relations gets fragmented in the same
way.

b) Vertical Fragmentation.

Each site may not need all the attributes of a relation, which would indicate the need for a different type

of fragmentation. Vertical fragmentation divides a relation “vertically” by columns. A vertical fragment

of a relation keeps only certain attributes of the relation.

This vertical fragmentation is not quite proper, because if the two fragments are stored separately, we

cannot put the original employee tuples back together, since there is no common attribute between the

two fragments.

It is necessary to include the primary key or some candidate key attribute in every vertical fragment so

that the full relation can be reconstructed from the fragments. Hence, we must add the Ssn attribute to

the personal information fragment.

Notice that each horizontal fragment on a relation R can be specified in the relational algebra by a σCi(R)

operation. A set of horizontal fragments whose conditions C1, C2, ..., Cn include all the tuples in R—that is,

every tuple in R satisfies (C1 OR C2 OR ... OR Cn)—is called a complete horizontal fragmentation of R. In

many cases a complete horizontal fragmentation is also disjoint; that is, no tuple in R satisfies (Ci AND Cj)

for any i ≠ j. Our two earlier examples of horizontal fragmentation for the EMPLOYEE and PROJECT

relations were both complete and disjoint. To reconstruct the relation R from a complete horizontal

fragmentation, we need to apply the UNION operation to the fragments.

A vertical fragment on a relation R can be specified by a πLi(R) operation in the relational algebra. A set of

vertical fragments whose projection lists L1, L2, ..., Ln include all the attributes in R but share only the

primary key attribute of R is called a complete vertical fragmentation of R. In this case the projection

lists satisfy the following two conditions:

 L1 ∪ L2 ∪ ... ∪ Ln = ATTRS(R).
 Li ∩ Lj = PK(R) for any i ≠ j, where ATTRS(R) is the set of attributes of R and PK(R) is the primary key of
R.

To reconstruct the relation R from a complete vertical fragmentation, we apply the OUTER UNION

operation to the vertical fragments (assuming no horizontal fragmentation is used). Notice that we could

also apply a FULL OUTER JOIN operation and get the same result for a complete vertical fragmentation,

even when some horizontal fragmentation may also have been applied.

Mixed (Hybrid) Fragmentation.:

 We can intermix the two types of fragmentation, yielding a mixed fragmentation. For example, we may

combine the horizontal and vertical fragmentations of the EMPLOYEE relation given earlier into a mixed

fragmentation that includes six fragments. In this case, the original relation can be reconstructed by

applying UNION and OUTER UNION (or OUTER JOIN) operations in the appropriate order. In general, a

fragment of a relation R can be specified by a SELECT-PROJECT combination of operations πL(σC(R)). If

 = TRUE (that is, all tuples are selected) and L ≠ ATTRS(R), we get a vertical fragment, and if C ≠ TRUE
and L = ATTRS(R), we get a horizontal fragment. Finally, if
 ≠ TRUE and L ≠ ATTRS(R), we get a mixed fragment. Notice that a relation can itself be considered a
fragment with C = TRUE and L = ATTRS(R). In the following discussion, the term fragment is used to refer
to a relation or to any of the preceding types of fragments.

A fragmentation schema of a database is a definition of a set of fragments that includes all attributes and

tuples in the database and satisfies the condition that the whole database can be reconstructed from the

fragments by applying some sequence of OUTER UNION (or OUTER JOIN) and UNION operations. It is also

sometimes useful—although not necessary—to have all the fragments be disjoint except for the

repetition of primary keys among vertical (or mixed) fragments. In the latter case, all replication and

distribution of fragments is clearly specified at a subsequent stage, separately from fragmentation.

An allocation schema describes the allocation of fragments to sites of the DDBS; hence, it is a mapping

that specifies for each fragment the site(s) at which it is stored. If a fragment is stored at more than one

site, it is said to be replicated. We discuss data replication and allocation next.

Example:

customer_id | Name | Area | Payment Type | Gender

 1 | Bob | London | Credit card | Male

 2 | Mike | Manchester | Cash | Male

 3 | Ruby | London | Cash | Female

Horizontal Fragmentation are subsets of tuples (rows)

Fragment 1

customer_id | Name | Area | Payment Type | Gender

 1 | Bob | London | Credit card | Male

 2 | Mike | Manchester | Cash | Male

Fragment 2

customer_id | Name | Area | Payment Type | Gender

 3 | Ruby | London | Cash | Female

Vertical fragmentation are subset of attributes

Fragment 1

customer_id | Name | Area | Gender

 1 | Bob | London | Male

 2 | Mike | Manchester | Male

 3 | Ruby | London Female

Fragment 2

customer_id | Payment Type

 1 | Credit card

 2 | Cash

 3 | Cash

 DATA REPLICATION AND ALLOCATION

• Replication is useful in improving the availability of data. The most extreme case is replication of the
whole database at every site in the distributed system, thus creating a fully replicated distributed
database. This can improve availability remarkably because the system can continue to operate as
long as at least one site is up. It also improves performance of retrieval for global queries because
the results of such queries can be obtained locally from any one site; hence, a retrieval query can be
processed at the local site where it is submitted, if that site includes a server module.

• The disadvantage of full replication is that it can slow down update operations drastically, since a
single logical update must be performed on every copy of the database to keep the copies
consistent. This is especially true if many copies of the database exist. Full replication makes the
concurrency control and recovery techniques more expensive than they would be if there was no
replication.

• The other extreme from full replication involves having no replication—that is, each fragment is
stored at exactly one site. In this case, all fragments must be disjoint, except for the repetition of
primary keys among vertical (or mixed) fragments. This is also called non redundant allocation.

• Between these two extremes, we have a wide spectrum of partial replication of the data—that is,
some fragments of the database may be replicated whereas others may not. The number of copies
of each fragment can range from one up to the total number of sites in the distributed system. A
special case of partial replication is occurring heavily in applications where mobile workers—such as
sales forces, financial planners, and claims adjustors—carry partially replicated databases with them
on laptops and PDAs and synchronize them periodically with the server database. A description of
the replication of fragments is sometimes called a replication schema.

• Each fragment—or each copy of a fragment—must be assigned to a particular site in the distributed
system. This process is called data distribution (or data allocation). The choice of sites and the
degree of replication depend on the performance and availability goals of the system and on the

types and frequencies of transactions submitted at each site. For example, if high availability is
required, transactions can be submitted at any site, and most transactions are retrieval only, a fully
replicated database is a good choice. However, if certain transactions that access particular parts of
the database are mostly submitted at a particular site, the corresponding set of fragments can be
allocated at that site only. Data that is accessed at multiple sites can be replicated at those sites. If
many updates are performed, it may be useful to limit replication. Finding an optimal or even a good
solution to distributed data allocation is a complex optimization problem.

 3. Explain about Transaction Management in Distributed Databases.

• The global and local transaction management software modules, along with the concurrency
control and recovery manager of a DDBMS, collectively guarantee the ACID properties of
transactions.

• An additional component called the global transaction manager is introduced for supporting
distributed transactions. The site where the transaction originated can temporarily assume the
role of global transaction manager and coordinate the execution of database operations with
transaction managers across multiple sites. Transaction managers export their functionality as an
interface to the application programs. The operations exported by this interface are , namely
BEGIN_TRANSACTION, READ or WRITE, END_TRANSACTION,

• COMMIT_TRANSACTION, and ROLLBACK (or ABORT). The manager stores book- keeping
information related to each transaction, such as a unique identifier, originating site, name, and so
on. For READ operations, it returns a local copy if valid and available. For WRITE operations, it
ensures that updates are visible across all sites containing copies (replicas) of the data item. For
ABORT operations, the manager ensures that no effects of the transaction are reflected in any
site of the distributed database. For COMMIT operations, it ensures that the effects of a write are
persistently recorded on all databases containing copies of the data item. Atomic termination
(COMMIT/ ABORT) of distributed transactions is commonly implemented using the two-phase
commit protocol .

• The transaction manager passes to the concurrency controller module the database operations
and associated information. The controller is responsible for acquisition and release of associated
locks. If the transaction requires access to a locked resource, it is blocked until the lock is
acquired. Once the lock is acquired, the operation is sent to the runtime processor, which
handles the actual execution of the database operation. Once the operation is completed, locks
are released and the transaction manager is updated with the result of the operation.

 Two-Phase Commit Protocol

The two-phase commit protocol (2PC) requires a global recovery manager, or coordinator, to
maintain information needed for recovery, in addition to the local recovery managers and the
information they maintain (log, tables). The two-phase commit protocol has certain drawbacks that
led to the development of the three-phase commit protocol.

 Three-Phase Commit Protocol

The biggest drawback of 2PC is that it is a blocking protocol. Failure of the coordinator blocks all
participating sites, causing them to wait until the coordinator recovers. This can cause
performance degradation, especially if participants are holding locks to shared resources. Other
types of problems may also occur that make the outcome of the transaction nondeterministic.
These problems are solved by the three-phase commit (3PC) protocol, which essentially divides the
second commit phase into two subphases called prepare-to-commit and commit. The prepare-to-
commit phase is used to communicate the result of the vote phase to all participants. If all
participants vote yes, then the coordinator instructs them to move into the prepare-to-commit state.

The commit subphase is identical to its two-phase counterpart. Now, if the coordinator crashes
during this subphase, another participant can see the transaction through to completion. It can
simply ask a crashed participant if it received a prepare-to-commit message. If it did not, then it
safely assumes to abort. Thus the state of the protocol can be recovered irrespective of which
participant crashes. Also, by limiting the time required for a transaction to commit or abort to a
maximum time-out period, the protocol ensures that a transaction attempting to commit via 3PC
releases locks on time-out.
The main idea is to limit the wait time for participants who have prepared to commit and are waiting
for a global commit or abort from the coordinator. When a participant receives a precommit
message, it knows that the rest of the participants have voted to commit. If a precommit message
has not been received, then the par ticipant will abort and release all locks.

 Operating System Support for Transaction Management

The following are the main benefits of operating system (OS)-supported transaction management:
■ Typically, DBMSs use their own semaphores2 to guarantee mutually exclu sive access to shared
resources. Since these semaphores are implemented in user space at the level of the DBMS application
software, the OS has no knowledge about them. Hence if the OS deactivates a DBMS process holding a
lock, other DBMS processes wanting this locked resource get blocked. Such a situation can cause serious
performance degradation. OS-level knowledge of semaphores can help eliminate such situations.
■ Specialized hardware support for locking can be exploited to reduce associated costs. This can be
of great importance, since locking is one of the most common DBMS operations.
■ Providing a set of common transaction support operations though the kernel allows application
developers to focus on adding new features to their products as opposed to reimplementing the common
functionality for each application. For example, if different DDBMSs are to coexist on the same machine and
they chose the two-phase commit protocol, then it is more beneficial to have this protocol implemented as
part of the kernel so that the DDBMS developers can focus more on adding new features to their products.

4. Explain about Query Processing and Optimization in Distributed Databases.

 Various stages of distributed database query processing are:

1. Query Mapping. The input query on distributed data is specified formally using a query language. It
is then translated into an algebraic query on global relations. This translation is done by referring to the
global conceptual schema and does not take into account the actual distribution and replication of data.
Hence, this translation is largely identical to the one performed in a centralized DBMS. It is first normalized,
analyzed for semantic errors, simplified, and finally restructured into an algebraic query.

2. Localization. In a distributed database, fragmentation results in relations being stored in separate
sites, with some fragments possibly being replicated. This stage maps the distributed query on the global
schema to separate queries on individual fragments using data distribution and replication information.

3. Global Query Optimization. Optimization consists of selecting a strategy from a list of candidates
that is closest to optimal. A list of candidate queries can be obtained by permuting the ordering of
operations within a fragment query generated by the previous stage. Time is the preferred unit for
measuring cost. The total cost is a weighted combination of costs such as CPU cost, I/O costs, and
communication costs. Since DDBs are connected by a network, often the communication costs over the
network are the most significant. This is especially true when the sites are connected through a wide area
network (WAN).

4. Local Query Optimization. This stage is common to all sites in the DDB. The techniques are similar
to those used in centralized systems.

The first three stages discussed above are performed at a central control site, 3whereas the last
stage is performed locally.

Data Transfer Costs of Distributed Query Processing

In a distributed system, several additional factors further complicate query processing. The first is
the cost of transferring data over the network. This data includes intermediate files that are
transferred to other sites for further processing, as well as the final result files that may have to be
transferred to the site where the query result is needed. Although these costs may not be very high if
the sites are connected via a high-performance local area network, they become significant in
other types of networks. Hence, DDBMS query optimization algorithms consider the goal of
reducing the amount of data transfer as an optimization criterion in choosing a distributed query
execution strategy.

Distributed Query Processing Using Semijoin

The idea behind distributed query processing using the semijoin operation is to reduce the number
of tuples in a relation before transferring it to another site. Intuitively, the idea is to send the joining
column of one relation R to the site where the other relation S is located; this column is then
joined with S. Following that, the join attributes, along with the attributes required in the result,
are projected out and shipped back to the original site and joined with R. Hence, only the joining
column of R is transferred in one direction, and a subset of S with no extraneous tuples or
attributes is transferred in the other direction. If only a small fraction of the tuples in S participate in
the join, this can be an efficient solution to minimizing data transfer.

Query and Update Decomposition
In a DDBMS with no distribution transparency, the user phrases a query directly in terms of specific

fragments. The user must also maintain consistency of replicated data items when updating a DDBMS with

no replication transparency.

On the other hand, a DDBMS that supports full distribution, fragmentation, and replication
transparency allows the user to specify a query or update request on the schema, just as though
the DBMS were centralized. For updates, the DDBMS is responsible for maintaining consistency
among replicated items by using one of the distributed concurrency control algorithms. For
queries, a query decomposition module must break up or decompose a query into subqueries that
can be executed at the individual sites. Additionally, a strategy for combining the results of the
subqueries to form the query result must be generated. Whenever the DDBMS determines that an
item referenced in the query is replicated, it must choose or materialize a particular replica during
query execution.
To determine which replicas include the data items referenced in a query, the DDBMS refers to the
fragmentation, replication, and distribution information stored in the DDBMS catalog. For vertical
fragmentation, the attribute list for each fragment is kept in the catalog. For horizontal
fragmentation, a condition, sometimes called a guard, is kept for each fragment. This is basically a
selection condition that specifies which tuples exist in the fragment; it is called a guard because
only tuples that satisfy this condition are permitted to be stored in the fragment. For mixed
fragments, both the attribute list and the guard condition are kept in the catalog.

5. Explain about Distributed Database Architectures.

Distributed database (DDB) is a collection of multiple logically interrelated databases distributed over a

computer network. Distributed database management system (DDBMS) is a software system that manages

a distributed database while making the distribution transparent to the user.

• Figure describes the generic schema architecture of a DDB, the enterprise is presented with a
consistent, unified view showing the logical structure of underlying data across all nodes. This view is
represented by the global conceptual schema (GCS), which provides network transparency.

• To accommodate potential heterogeneity in the DDB, each node is shown as having its own local
internal schema (LIS) based on physical organization details at that particular site. The logical
organization of data at each site is specified by the local conceptual schema (LCS). The GCS, LCS, and
their underlying mappings provide the fragmentation and replication transparency.

Federated Database Schema Architecture:

Typical five-level schema architecture to support global applications in the FDBS

environment is shown in Figure.

Figure . The five-level schema architecture in a federated database system (FDBS).

1) The local schema is the conceptual schema (full database definition) of a component database
2) The component schema is derived by translating the local schema into a canonical data model or

common data model (CDM) for the FDBS. Schema translation from the local schema to the
component schema is accompanied by generating mappings to transform commands on a
component schema into commands on the corresponding local schema.

3) The export schema represents the subset of a component schema that is available to the FDBS.
4) The federated schema is the global schema or view, which is the result of integrating all the

shareable export schemas.
5) The external schemas define the schema for a user group or an application.

All the problems related to query processing, transaction processing, and directory and metadata

management and recovery apply to FDBSs with additional considerations.

An Overview of Three-Tier Client-Server Architecture:

In the three-tier client-server architecture, the following three layers exist:

 Presentation layer (client). This provides the user interface and interacts with the user. The
programs at this layer present Web interfaces or forms to the client in order to interface with the
application. Web browsers are often utilized, and the languages and specifications used include
HTML, XHTML, CSS, Flash, MathML, Scalable Vector Graphics (SVG), Java, JavaScript, Adobe Flex, and

others. This layer handles user input, output, and navigation by accepting user commands and
displaying the needed information, usually in the form of static or dynamic Web pages. The latter
are employed when the interaction involves database access. When a Web interface is used, this
layer typically communicates with the application layer via the HTTP protocol.

 Application layer (business logic). This layer programs the application logic. For example, queries can
be formulated based on user input from the client, or query results can be formatted and sent to
the client for presentation. Additional application functionality can be handled at this layer, such as
security checks, identity verification, and other functions. The application layer can interact with
one or more databases or data sources as needed by connecting to the database using ODBC, JDBC,
SQL/CLI, or other database access techniques.

 Database server. This layer handles query and update requests from the application layer, processes
the requests, and sends the results. Usually SQL is used to access the database if it is relational or
object-relational and stored database procedures may also be invoked. Query results (and queries)
may be formatted into XML when transmitted between the application server and the database
server.

• Exactly how to divide the DBMS functionality between the client, application server, and database
server may vary. The common approach is to include the functionality of a centralized DBMS at the
database server level. A number of relational DBMS products have taken this approach, where an
SQL server is provided. The application server must then formulate the appropriate SQL queries and
connect to the database server when needed. The client provides the processing for user interface
interactions. Since SQL is a relational standard, various SQL servers, possibly provided by different
vendors, can accept SQL commands through standards such as ODBC, JDBC, and SQL/CLI.

Figure . The three-tier client-server architecture.

• In this architecture, the application server may also refer to a data dictionary that includes
information on the distribution of data among the various SQL servers, as well as modules for
decomposing a global query into a number of local queries that can be executed at the various sites.
Interaction between an application server and database server might proceed as follows during the
processing of an SQL query:

• The application server formulates a user query based on input from the client layer and
decomposes it into a number of independent site queries. Each site query is sent to the appropriate
database server site.

• Each database server processes the local query and sends the results to the application server site.
Increasingly, XML is being touted as the standard for data exchange, so the database server may
format the query result into XML before sending it to the application server.

• The application server combines the results of the subqueries to produce the result of the
originally required query, formats it into HTML or some other form accepted by the client, and
sends it to the client site for display.

• The application server is responsible for generating a distributed execution plan for a multisite
query or transaction and for supervising distributed execution by sending commands to servers.
These commands include local queries and transactions to be executed, as well as commands to
transmit data to other clients or servers. Another function controlled by the application server (or
coordinator) is that of ensuring consistency of replicated copies of a data item by employing
distributed (or global) concurrency control techniques. The application server must also ensure the
atomicity of global transactions by performing global recovery when certain sites fail.

• If the DDBMS has the capability to hide the details of data distribution from the application server,
then it enables the application server to execute global queries and transactions as though the
database were centralized, without having to specify the sites at which the data referenced in the
query or transaction resides. This property is called distribution transparency. Some DDBMSs do not
provide distribution transparency, instead requiring that applications are aware of the details of data
distribution.

 6. Explain about Emergence of NOSQL Systems, Characteristics of NOSQL Systems and

types of NOSQL Systems.

• Many companies and organizations are faced with applications that store vast amounts of
data. Consider a free e-mail application, such as Google Mail or Yahoo Mail or other
similar service—this application can have millions of users, and each user can have
thousands of e-mail messages. There is a need for a storage system that can manage all
these e-mails; a structured relational SQL system may not be appropriate because

 (1) SQL systems offer too many services (powerful query language, concurrency control,
etc.), which this application may not need;

 (2) A structured data model such the traditional relational model may be too restrictive.
Although newer relational systems do have more complex object-relational modeling
options, they still require schemas, which are not required by many of the NOSQL

systems.

• As another example, consider an application such as Facebook, with millions of users
who submit posts, many with images and videos; then these posts must be displayed on
pages of other users using the social media relationships among the users. User profiles,
user relationships, and posts must all be stored in a huge collection of data stores, and the
appropriate posts must be made available to the sets of users that have signed up to see
these posts. Some of the data for this type of application is not suitable for a traditional
relational system and typically needs multiple types of databases and data storage
systems.

• Some of the organizations that were faced with these data management and storage
applications decided to develop their own systems:

■ Google developed a proprietary NOSQL system known as BigTable, which is used in many of
Google’s applications that require vast amounts of data storage, such as Gmail, Google Maps, and
Web site indexing.

■ Apache Hbase is an open source NOSQL system based on similar concepts. Google’s innovation
led to the category of NOSQL systems known as column-based or wide column stores; they are also
sometimes referred to as column family stores.

■ Amazon developed a NOSQL system called DynamoDB that is available through Amazon’s
cloud services. This innovation led to the category known as key-value data stores or sometimes key-
tuple or key-object data stores.

■ Facebook developed a NOSQL system called Cassandra, which is now open source and known
as Apache Cassandra. This NOSQL system uses concepts from both key-value stores and column-based
systems.

■ Other software companies started developing their own solutions and making them available
to users who need these capabilities—for example, MongoDB and CouchDB, which are classified as
document-based NOSQL systems or document stores.

■ Another category of NOSQL systems is the graph-based NOSQL systems, or graph databases;
these include Neo4J and GraphBase, among others.

■ Some NOSQL systems, such as OrientDB, combine concepts from many of the categories discussed
above.

■ In addition to the newer types of NOSQL systems listed above, it is also possible to classify database
systems based on the object model or on the native XML model as NOSQL systems, although they may not
have the high-performance and replication characteristics of the other types of NOSQL systems.

These are just a few examples of NOSQL systems that have been developed.

 Characteristics of NOSQL Systems

The characteristics are divided into two categories—those related to distributed databases and
distributed systems, and those related to data models and query languages.

1) NOSQL characteristics related to distributed databases and distributed systems.

NOSQL systems emphasize high availability, so replicating the data is inherent in many of
these systems. Scalability is another important characteristic, because many of the
applications that use NOSQL systems tend to have data that keeps growing in volume.
High performance is another required characteristic, whereas serializable consistency
may not be as important for some of the NOSQL applications. We discuss some of these
characteristics next.

1. Scalability: There are two kinds of scalability in distributed systems: horizontal and vertical. In
NOSQL systems.

a) Horizontal scalability is generally used, where the distributed system is expanded by adding
more nodes for data storage and processing as the volume of data grows.

b) Vertical scalability refers to expanding the storage and computing power of existing nodes.
In NOSQL systems, horizontal scalability is employed while the system is operational, so techniques

for distributing the existing data among new nodes without interrupting system operation are

necessary.

2. Availability, Replication and Eventual Consistency: Many applications that use NOSQL
systems require continuous system availability. To accomplish this, data is replicated over two or more
nodes in a transparent manner, so that if one node fails, the data is still available on other nodes.
Replication improves data availability and can also improve read performance, because read requests can
often be serviced from any of the replicated data nodes. However, write performance becomes more
cumbersome because an update must be applied to every copy of the replicated data items; this can slow
down write performance if serializable consistency is required . Many NOSQL applications do not require
serializable consistency, so more relaxed forms of consistency known as eventual consistency are used.

3. Replication Models: Two major replication models are used in NOSQL sytems: master-slave and
master-master replication. Master-slave replication requires one copy to be the master copy; all write
operations must be applied to the master copy and then propagated to the slave copies, usually using
eventual consistency (the slave copies will eventually be the same as the master copy). For read, the master-
slave paradigm can be configured in various ways. One configuration requires all reads to also be at the
master copy, so this would be similar to the primary site or primary copy methods of distributed
concurrency control, with similar advantages and disadvantages. Another configuration would allow
reads at the slave copies but would not guarantee that the values are the latest writes, since writes to the
slave nodes can be done after they are applied to the master copy. The master-master replication allows
reads and writes at any of the replicas but may not guarantee that reads at nodes that store different
copies see the same values. Different users may write the same data item concurrently at different nodes
of the system, so the values of the item will be temporarily inconsistent. A reconciliation method to
resolve conflicting write operations of the same data item at different nodes must be implemented as part
of the master-master replication scheme.

4. Sharding of Files: In many NOSQL applications, files (or collections of data objects) can have many
millions of records (or documents or objects), and these records can be accessed concurrently by
thousands of users. So it is not practical to store the whole file in one node. Sharding (also known as
horizontal partitioning) of the file records is often employed in NOSQL systems. This serves to distribute
the load of accessing the file records to multiple nodes. The combination of sharding the file records and
replicating the shards works in tandem to improve load balancing as well as data availability.

5. High-Performance Data Access: In many NOSQL applications, it is necessary to find individual records
or objects (data items) from among the millions of data records or objects in a file. To achieve this,
most systems use one of two techniques: hashing or range partitioning on object keys. The majority
of accesses to an object will be by providing the key value rather than by using complex query
conditions. The object key is similar to the concept of object id (see Section 12.1). In hashing, a hash
function h(K) is applied to the key K, and the location of the object with key K is determined by the
value of h(K). In range partitioning, the location is determined via a range of key values; for example,
location i would hold the objects whose key values K are in the range Kimin ≤ K ≤ Kimax. In applications
that require range queries, where multiple objects within a range of key values are retrieved,
range partitioned is preferred. Other indexes can also be used to locate objects based on attribute
conditions different from the key K.

2) NOSQL characteristics related to data models and query languages.

NOSQL systems emphasize performance and flexibility over modeling power and complex
querying.

1. Not Requiring a Schema: The flexibility of not requiring a schema is achieved in many NOSQL
systems by allowing semi-structured, self- describing data. The users can specify a partial schema in
some systems to improve storage efficiency, but it is not required to have a schema in most of the
NOSQL systems. As there may not be a schema to specify constraints, any constraints on the data would
have to be programmed in the application programs that access the data items. There are various
languages for describing semistructured data, such as JSON (JavaScript Object Notation) and XML
(Extensible Markup Language;). JSON is used in several NOSQL systems, but other methods for
describing semi-structured data can also be used.

2. Less Powerful Query Languages: Many applications that use NOSQL systems may not require a
powerful query language such as SQL, because search (read) queries in these systems often locate
single objects in a single file based on their object keys. NOSQL systems provide a set of functions and
operations as a programming API (application programming interface), so reading and writing the data
objects is accomplished by calling the appropriate operations by the programmer. In many cases, the
operations are called CRUD operations, for Create, Read, Update, and Delete. In other cases, they are
known as SCRUD because of an added Search (or Find) operation. Some NOSQL systems also provide a
high-level query language, but it may not have the full power of SQL; only a subset of SQL querying
capabilities would be provided. In particular, many NOSQL systems do not provide join operations as
part of the query language itself; the joins need to be implemented in the application programs.

3. Versioning: Some NOSQL systems provide storage of multiple versions of the data items,
with the timestamps of when the data version was created.

 Categories of NOSQL Systems

NOSQL systems have been characterized into four major categories, with some additional
categories that encompass other types of systems. The most common categorization lists
the following four major categories:

1. Document-based NOSQL systems: These systems store data in the form of documents using
well-known formats, such as JSON (JavaScript Object Notation). Documents are accessible via their
document id, but can also be accessed rapidly using other indexes.

2. NOSQL key-value stores: These systems have a simple data model based on fast access by
the key to the value associated with the key; the value can be a record or an object or a document or
even have a more complex data structure.

3. Column-based or wide column NOSQL systems: These systems partition a table by column into
column families (a form of vertical partitioning), where each column family is stored in its own files.
They also allow versioning of data values.

4. Graph-based NOSQL systems: Data is represented as graphs, and related nodes can be
found by traversing the edges using path expressions.

Additional categories can be added as follows to include some systems that are not easily
categorized into the above four categories, as well as some other types of systems that have
been available even before the term NOSQL became widely used.

5. Hybrid NOSQL systems: These systems have characteristics from two or more of the above
four categories.

6. Object databases:

7. XML databases:

Even keyword-based search engines store large amounts of data with fast search access, so the

stored data can be considered as large NOSQL big data stores.

 7. Discuss about the CAP Theorem.

• The distributed database system (DDBS) is required to enforce the ACID properties
(atomicity, consistency, isolation, durability) of transactions that are running concurrently.
In a system with data replication, concurrency control becomes more complex because
there can be multiple copies of each data item. So if an update is applied to one copy of
an item, it must be applied to all other copies in a consistent manner. The possibility exists
that one copy of an item X is updated by a transaction T1 whereas another copy is
updated by a transaction T2, so two inconsistent copies of the same item exist at two
different nodes in the distributed system. If two other transactions T3 and T4 want to read
X, each may read a different copy of item X.

• There are distributed concurrency control methods that do not allow this inconsistency
among copies of the same data item, thus enforcing serializability and hence the isolation
property in the presence of replication. However, these techniques often come with high
overhead, which would defeat the purpose of creating multiple copies to improve
performance and availability in distributed database systems such as NOSQL. In the field
of distributed systems, there are various levels of consistency among replicated data
items, from weak consistency to strong consistency. Enforcing serializability is considered
the strongest form of consistency, but it has high overhead so it can reduce performance
of read and write operations and hence adversely affect system performance.

• The CAP theorem, which was originally introduced as the CAP principle, can be used to
explain some of the competing requirements in a distributed system with replication. The
three letters in CAP refer to three desirable properties of distributed systems with replicated
data: consistency (among replicated copies), availability (of the system for read and write
operations) and partition tolerance (in the face of the nodes in the system being partitioned
by a network fault).

• Availability means that each read or write request for a data item will either be processed
successfully or will receive a message that the operation cannot be completed.

• Partition tolerance means that the system can continue operating if the network
connecting the nodes has a fault that results in two or more partitions, where the nodes in
each partition can only communicate among each other.

• Consistency means that the nodes will have the same copies of a replicated data item
visible for various transactions.

• It is important to note here that the use of the word consistency in CAP and its use in
ACID do not refer to the same identical concept. In CAP, the term consistency refers to
the consistency of the values in different copies of the same data item in a replicated
distributed system. In ACID, it refers to the fact that a transaction will not violate the
integrity constraints specified on the database schema. However, if we consider that the
consistency of replicated copies is a specified constraint, then the two uses of the term
consistency would be related.

• The CAP theorem states that it is not possible to guarantee all three of the desirable
properties—consistency, availability, and partition tolerance—at the same time in a
distributed system with data replication. If this is the case, then the distributed system
designer would have to choose two properties out of the three to guarantee. It is generally
assumed that in many traditional (SQL) applications, guaranteeing consistency through
the ACID properties is important.

• On the other hand, in a NOSQL distributed data store, a weaker consistency level is often
acceptable, and guaranteeing the other two properties (availability, partition tolerance) is
important. Hence, weaker consistency levels are often used in NOSQL system instead of
guaranteeing serializability. In particular, a form of consistency known as eventual
consistency is often adopted in NOSQL systems.

 8. Explain about Document-Based NOSQL Systems and MongoDB.

• Document-based or document-oriented NOSQL systems typically store data as collections
of similar documents. These types of systems are also sometimes known as document
stores. The individual documents somewhat resemble complex objects or XML documents,
but a major difference between document-based systems versus object and object-
relational systems and XML is that there is no requirement to specify a schema—rather, the
documents are specified as self-describing data. Although the documents in a collection
should be similar, they can have different data elements (attributes), and new documents
can have new data elements that do not exist in any of the current documents in the
collection. The system basically extracts the data element names from the self-describing
documents in the collection, and the user can request that the system create indexes on
some of the data elements. Documents can be specified in various formats, such as XML.
A popular language to specify documents in NOSQL systems is JSON (JavaScript Object
Notation).

• There are many document-based NOSQL systems, including MongoDB and CouchDB,
among many others.

 MongoDB Data Model

• MongoDB documents are stored in BSON (Binary JSON) format, which is a variation of
JSON with some additional data types and is more efficient for storage than JSON.
Individual documents are stored in a collection. The operation create Collection is used to
create each collection. For example, the following command can be used to create a
collection called project to hold PROJECT objects from the COMPANY database.

 db.createCollection(“project”, { capped : true, size : 1310720, max : 500 })

• The first parameter “project” is the name of the collection, which is followed by an optional

document that specifies collection options. In our example, the collection is capped; this means it

has upper limits on its storage space (size) and number of documents (max). The capping

parameters help the system choose the storage options for each collection.

• For our example, we will create another document collection called worker to hold
information about the EMPLOYEEs who work on each project; for example:

 db.createCollection(“worker”, { capped : true, size : 5242880, max : 2000 }))

• Each document in a collection has a unique ObjectId field, called _id, which is
automatically indexed in the collection unless the user explicitly requests no index for the
_id field.

• The value of ObjectId can be specified by the user, or it can be system-generated if the
user does not specify an _id field for a particular document.

• System-generated ObjectIds have a specific format, which combines the timestamp when
the object is created (4 bytes, in an internal MongoDB format), the node id (3 bytes), the
process id (2 bytes), and a counter (3 bytes) into a 16-byte Id value.

• User-generated ObjectsIds can have any value specified by the user as long as it

uniquely identifies the document and so these Ids are similar to primary keys in relational
systems.

• A collection does not have a schema. The structure of the data fields in documents is
chosen based on how documents will be accessed and used, and the user can choose a
normalized design (similar to normalized relational tuples) or a denormalized design
(similar to XML documents or complex objects).

• Interdocument references can be specified by storing in one document the ObjectId or
ObjectIds of other related documents.

• Figure (a) shows a simplified MongoDB document showing some of the data from the
COMPANY database. In our example, the _id values are user-defined, and the documents
whose _id starts with P (for project) will be stored in the “project” collection, whereas those
whose _id starts with W (for worker) will be stored in the “worker” collection.

• In Figure (a), the workers information is embedded in the project document; so there is no
need for the “worker” collection. This is known as the denormalized pat tern, which is
similar to creating a complex object or an XML document . A list of values that is enclosed
in square brackets […] within a document represents a field whose value is an array.

• Another option is to use the design in Figure (b), where worker references are embedded
in the project document, but the worker documents themselves are stored in a separate
“worker” collection.

• A third option in Figure (c) would use a normalized design, similar to First Normal
Form relations. The choice of which design option to use depends on how the data will
be accessed.

• It is important to note that the simple design in Figure (c) is not the general normalized
design for a many-to-many relationship, such as the one between employees and projects;
rather, we would need three collections for “project”, “employee”, and “works_on”.

• In the design in Figure (c), an EMPLOYEE who works on several projects would be
represented by multiple worker documents with different _id values; each document
would represent the employee as worker for a particular project.

• This is similar to the design decisions for XML schema design. However, it is again important
to note that the typical document-based system does not have a schema, so the design
rules would have to be followed whenever individual documents are inserted into a
collection.

Figure. Example of simple documents in MongoDB.
Denormalized document design with embedded subdocuments.
Embedded array of document references.
Normalized documents.

 MongoDB CRUD Operations

• MongoDb has several CRUD operations, where CRUD stands for (create, read, update,
delete). Documents can be created and inserted into their collections using the insert
operation, whose format is:

 db.<collection_name>.insert(<document(s)>)

• The parameters of the insert operation can include either a single document or an array of
documents, as shown in Figure (d). The delete operation is called remove, and the format
is:

 db.<collection_name>.remove(<condition>)

• The documents to be removed from the collection are specified by a Boolean condition on
some of the fields in the collection documents. There is also an update operation, which
has a condition to select certain documents, and a $set clause to specify the update. It is
also possible to use the update operation to replace an existing document with another
one but keep the same ObjectId.

• For read queries, the main command is called find, and the format is:

 db.<collection_name>.find(<condition>)

• General Boolean conditions can be specified as <condition>, and the documents in the collection
that return true are selected for the query result. For a full discussion of the MongoDb CRUD

operations, see the MongoDB online documentation in the chapter references.

 MongoDB Distributed Systems Characteristics

• Most MongoDB updates are atomic if they refer to a single document, but MongoDB also
provides a pattern for specifying transactions on multiple documents. Since MongoDB is a
distributed system, the two-phase commit method is used to ensure atomicity and
consistency of multidocument transactions.

• Replication in MongoDB. The concept of replica set is used in MongoDB to create multiple
copies of the same data set on different nodes in the distributed system, and it uses a
variation of the master-slave approach for replication. For example, suppose that we want to
replicate a particular document collection C. A replica set will have one primary copy of the
collection C stored in one node N1, and at least one secondary copy (replica) of C stored
at another node N2. Additional copies can be stored in nodes N3, N4, etc., as needed, but
the cost of storage and update (write) increases with the number of replicas. The total
number of participants in a replica set must be at least three, so if only one secondary copy
is needed, a participant in the replica set known as an arbiter must run on the third node
N3. The arbiter does not hold a replica of the collection but participates in elections to
choose a new primary if the node storing the current primary copy fails. If the total number of
members in a rep- lica set is n (one primary plus i secondaries, for a total of n = i + 1), then n
must be an odd number; if it is not, an arbiter is added to ensure the election process works
correctly if the primary fails.

• In MongoDB replication, all write operations must be applied to the primary copy and then
propagated to the secondaries. For read operations, the user can choose the particular
read preference for their application. The default read preference processes all reads at
the primary copy, so all read and write operations are performed at the primary node. In
this case, secondary copies are mainly to make sure that the system continues operation if
the primary fails, and MongoDB can ensure that every read request gets the latest
document value. To increase read performance, it is possible to set the read preference so
that read requests can be processed at any replica (primary or secondary); however, a read
at a secondary is not guaranteed to get the latest version of a document because there
can be a delay in propagating writes from the primary to the secondaries.

• Sharding in MongoDB. When a collection holds a very large number of documents or requires a
large storage space, storing all the documents in one node can lead to performance problems,
particularly if there are many user operations accessing the documents concurrently using various
CRUD operations. Sharding of the documents in the collection—also known as horizontal
partitioning— divides the documents into disjoint partitions known as shards. This allows the
system to add more nodes as needed by a process known as horizontal scaling of the distributed
system, and to store the shards of the collection on different nodes to achieve load balancing.
Each node will process only those operations pertaining to the documents in the shard stored at
that node. Also, each shard will contain fewer documents than if the entire collection were
stored at one node, thus further improving performance.

• There are two ways to partition a collection into shards in MongoDB—range partitioning
and hash partitioning. Both require that the user specify a particular document field to be
used as the basis for partitioning the documents into shards. The partitioning field—known
as the shard key in MongoDB—must have two characteristics: it must exist in every
document in the collection, and it must have an index. The ObjectId can be used, but any
other field possessing these two character- istics can also be used as the basis for
sharding. The values of the shard key are divided into chunks either through range
partitioning or hash partitioning, and the documents are partitioned based on the chunks
of shard key values.

• Range partitioning creates the chunks by specifying a range of key values; for example, if

the shard key values ranged from one to ten million, it is possible to create ten ranges—1
to 1,000,000; 1,000,001 to 2,000,000; … ; 9,000,001 to 10,000,000—and each chunk would
contain the key values in one range. Hash partitioning applies a hash function h(K) to
each shard key K, and the partitioning of keys into chunks is based on the hash values. In
general, if range queries are commonly applied to a collection (for example, retrieving all
documents whose shard key value is between 200 and 400), then range partitioning is
preferred because each range query will typically be submit- ted to a single node that
contains all the required documents in one shard. If most searches retrieve one document
at a time, hash partitioning may be preferable because it randomizes the distribution of
shard key values into chunks.

• When sharding is used, MongoDB queries are submitted to a module called the query router,
which keeps track of which nodes contain which shards based on the particular partitioning
method used on the shard keys. The query (CRUD operation) will be routed to the nodes
that contain the shards that hold the documents that the query is requesting. If the system
cannot determine which shards hold the required documents, the query will be submitted
to all the nodes that hold shards of the collection. Sharding and replication are used
together; sharding focuses on improving performance via load balancing and horizontal
scalability, whereas replication focuses on ensuring system availability when certain nodes
fail in the distributed system.

• There are many additional details about the distributed system architecture and components
of MongoDB, but a full discussion is outside the scope of our presentation. MongoDB also
provides many other services in areas such as system administration, indexing, security,
and data aggregation, but we will not discuss these features here. Full documentation of
MongoDB is available online.

 9. Elaborate about NOSQL Key-Value Stores

• Key-value stores focus on high performance, availability, and scalability by storing data in a
distributed storage system. The data model used in key-value stores is relatively simple,
and in many of these systems, there is no query language but rather a set of operations
that can be used by the application programmers.

• The key is a unique identifier associated with a data item and is used to locate this data
item rapidly.

• The value is the data item itself, and it can have very different formats for different key-
value storage systems. In some cases, the value is just a string of bytes or an array of
bytes, and the application using the key-value store has to interpret the structure of the
data value. In other cases, some standard formatted data is allowed; for example,
structured data rows (tuples) similar to relational data, or semistructured data using JSON
or some other self-describing data format. Different key-value stores can thus store
unstructured, semistructured, or structured data items. The main characteristic of key-
value stores is the fact that every value (data item) must be associated with a unique key,
and that retrieving the value by supplying the key must be very fast.

 DynamoDB Overview

• The DynamoDB system is an Amazon product and is available as part of Amazon’s
AWS/SDK platforms (Amazon Web Services/Software Development Kit). It can be used as
part of Amazon’s cloud computing services, for the data storage component.

• DynamoDB data model. The basic data model in DynamoDB uses the concepts of tables,
items, and attributes. A table in DynamoDB does not have a schema; it holds a collection
of self-describing items. Each item will consist of a number of (attribute, value) pairs, and

attribute values can be single-valued or multivalued. So basically, a table will hold a
collection of items, and each item is a self-describing record (or object). DynamoDB also
allows the user to specify the items in JSON for- mat, and the system will convert them to
the internal storage format of DynamoDB.

• When a table is created, it is required to specify a table name and a primary key; the
primary key will be used to rapidly locate the items in the table. Thus, the primary key is
the key and the item is the value for the DynamoDB key-value store. The primary key
attribute must exist in every item in the table. The primary key can be one of the following
two types:

• A single attribute. The DynamoDB system will use this attribute to build a hash index on the items
in the table. This is called a hash type primary key. The items are not ordered in storage on the
value of the hash attribute.

• A pair of attributes. This is called a hash and range type primary key. The primary key will be a pair
of attributes (A, B): attribute A will be used for hashing, and because there will be multiple items
with the same value of A, the B values will be used for ordering the records with the same A value.
A table with this type of key can have additional secondary indexes defined on its attributes. For
example, if we want to store multiple versions of some type of items in a table, we could use ItemID
as hash and Date or Timestamp (when the version was created) as range in a hash and range type
primary key.

• DynamoDB Distributed Characteristics. Because DynamoDB is proprietary, in the next
subsection we will discuss the mechanisms used for replication, sharding, and other
distributed system concepts in an open source key-value system called Voldemort.
Voldemort is based on many of the techniques proposed for DynamoDB.

 Voldemort Key-Value Distributed Data Store

• Voldemort is an open source system available through Apache 2.0 open source licensing
rules. It is based on Amazon’s DynamoDB. The focus is on high performance and horizontal
scalability, as well as on providing replication for high availability and sharding for
improving latency (response time) of read and write requests. All three of those features—
replication, sharding, and horizontal scalability—are realized through a technique to
distribute the key-value pairs among the nodes of a distributed cluster; this distribution is
known as consistent hashing. Voldemort has been used by LinkedIn for data storage. Some
of the features of Voldemort are as follows:

■ Simple basic operations. A collection of (key, value) pairs is kept in a Voldemort store. In our
discussion, we will assume the store is called s. The basic interface for data storage and retrieval is very
simple and includes three operations: get, put, and delete. The operation s.put(k, v) inserts an item as
a key-value pair with key k and value v. The operation s.delete(k) deletes the item whose key is k from
the store, and the operation v = s.get(k) retrieves the value v associated with key k. The application can
use these basic operations to build its own requirements. At the basic storage level, both keys and
values are arrays of bytes (strings).

■ High-level formatted data values. The values v in the (k, v) items can be specified in JSON (JavaScript
Object Notation), and the system will convert between JSON and the internal storage format. Other
data object formats can also be specified if the application provides the conversion (also known as
serialization) between the user format and the storage format as a Serializer class. The Serializer class
must be provided by the user and will include oper- ations to convert the user format into a string of
bytes for storage as a value, and to convert back a string (array of bytes) retrieved via s.get(k) into the
user format. Voldemort has some built-in serializers for formats other than JSON.

■ Consistent hashing for distributing (key, value) pairs. A variation of the data distribution algorithm

known as consistent hashing is used in Volde- mort for data distribution among the nodes in the
distributed cluster of nodes. A hash function h(k) is applied to the key k of each (k, v) pair, and h(k)
determines where the item will be stored. The method assumes that h(k) is an integer value,

usually in the range 0 to Hmax = 2n−1, where n is chosen based on the desired range for the hash
values. This method is best visualized by considering the range of all possible integer hash values 0 to
Hmax to be evenly distributed on a circle (or ring). The nodes in the distributed system are then also
located on the same ring; usually each node will have several locations on the ring. The positioning of
the points on the ring that represent the nodes is done in a pseudo random manner.

An item (k, v) will be stored on the node whose position in the ring follows the position of h(k) on
the ring in a clockwise direction. In Figure (a), we assume there are three nodes in the distributed
cluster labeled A, B, and C, where node C has a bigger capacity than nodes A and B. In a typical
system, there will be many more nodes. On the circle, two instances each of A and B are placed,
and three instances of C (because of its higher capacity), in a pseudorandom manner to cover
the circle. Figure (a) indicates which (k, v) items are placed in which nodes based on the h(k)
values.

Figure . Example of consistent hashing. (a) Ring having three nodes A, B, and C, with C having greater capacity.

The h(K) values that map to the circle points in range 1 have their (k, v) items stored in node A, range 2 in node B,

range 3 in node C.

(b) Adding a node D to the ring. Items in

range 4 are moved to the node D from node B (range 2 is reduced) and node C (range 3 is reduced).

■ The h(k) values that fall in the parts of the circle marked as range 1 in Fig- ure (a) will have their (k, v)
items stored in node A because that is the node whose label follows h(k) on the ring in a clockwise
direction; those in range 2 are stored in node B; and those in range 3 are stored in node C. This
scheme allows horizontal scalability because when a new node is added to the distributed system, it
can be added in one or more locations on the ring depending on the node capacity. Only a limited
percentage of the (k, v) items will be reas- signed to the new node from the existing nodes based on
the consistent hash- ing placement algorithm. Also, those items assigned to the new node may not all
come from only one of the existing nodes because the new node can have multiple locations on the
ring. For example, if a node D is added and it has two placements on the ring as shown in Figure (b),
then some of the items from nodes B and C would be moved to node D. The items whose keys hash to
range 4 on the circle would be migrated to node D. This scheme also allows replication by placing the
number of specified replicas of an item on successive nodes on the ring in a clockwise direction. The
sharding is built into the method, and different items in the store (file) are located on different
nodes in the distributed cluster, which means the items are horizon- tally partitioned (sharded)
among the nodes in the distributed system. When a node fails, its load of data items can be
distributed to the other existing nodes whose labels follow the labels of the failed node in the ring.
And nodes with higher capacity can have more locations on the ring, as illustrated by node C in Figure
24.2(a), and thus store more items than smaller-capacity nodes.

■ Consistency and versioning. Voldemort uses a method similar to the one developed for
DynamoDB for consistency in the presence of replicas. Basically, concurrent write operations are
allowed by different processes so there could exist two or more different values associated with
the same key at dif- ferent nodes when items are replicated. Consistency is achieved when the
item is read by using a technique known as versioning and read repair. Con- current writes are
allowed, but each write is associated with a vector clock value. When a read occurs, it is possible
that different versions of the same value (associated with the same key) are read from different
nodes. If the system can reconcile to a single final value, it will pass that value to the read;
otherwise, more than one version can be passed back to the application, which will reconcile the
various versions into one version based on the application semantics and give this reconciled
value back to the nodes.

 Examples of Other Key-Value Stores

 Three other key-value stores are

■ Oracle key-value store. Oracle has one of the well-known SQL relational database systems, and
Oracle also offers a system based on the key-value store concept; this system is called the Oracle NoSQL
Database.

■ Redis key-value cache and store. Redis differs from the other systems dis- cussed here
because it caches its data in main memory to further improve perfor- mance. It offers master-
slave replication and high availability, and it also offers persistence by backing up the cache
to disk.

■ Apache Cassandra. Cassandra is a NOSQL system that is not easily categorized into one
category; it is sometimes listed in the column-based NOSQL category or in the key-value
category. If offers features from several NOSQL categories and is used by Facebook as well
as many other customers.

 10. Explain about Column-Based or Wide Column NOSQL

Systems.

■ Another category of NOSQL systems is known as column-based or wide column systems.
The Google distributed storage system for big data, known as BigTable, is a well-known
example of this class of NOSQL systems, and it is used in many Google applications that
require large amounts of data storage, such as Gmail. Big- Table uses the Google File
System (GFS) for data storage and distribution. An open source system known as Apache
Hbase is somewhat similar to Google Big- Table, but it typically uses HDFS (Hadoop
Distributed File System) for data storage. HDFS is used in many cloud computing
applications. Hbase can also use Amazon’s Simple Storage System (known as S3) for data
storage. Another well-known example of column-based NOSQL systems is Cassandra
because it can also be characterized as a key-value store.

■ BigTable (and Hbase) is sometimes described as a sparse multidimensional distributed
persistent sorted map, where the word map means a collection of (key, value) pairs (the
key is mapped to the value). One of the main differences that distinguish column-based
systems from key-value stores is the nature of the key. In column-based systems such as
Hbase, the key is multidimensional and so has several components: typically, a
combination of table name, row key, column, and timestamp. As we shall see, the column
is typically composed of two compo- nents: column family and column qualifier. We discuss
these concepts in more detail next as they are realized in Apache Hbase.

 Hbase Data Model and Versioning

■ Hbase data model. The data model in Hbase organizes data using the concepts of
namespaces, tables, column families, column qualifiers, columns, rows, and data cells. A
column is identified by a combination of (column family:column qualifier). Data is stored in
a self-describing form by associating columns with data values, where data values are
strings. Hbase also stores multiple versions of a data item, with a timestamp associated
with each version, so versions and timestamps are also part of the Hbase data model (this
is similar to the concept of attribute versioning in temporal databases.

■ As with other NOSQL systems, unique keys are associated with stored data items for fast
access, but the keys identify cells in the storage system. Because the focus is on high
performance when storing huge amounts of data, the data model includes some storage-
related concepts.

■ Tables and Rows. Data in Hbase is stored in tables, and each table name. Data in a table is stored as
self-describing rows. Each row has a unique row key, and row keys are strings that must have the
property that they can be lexicographically ordered, so characters that do not have a lexi- cographic
order in the character set cannot be used as part of a row key.

■ Column Families, Column Qualifiers, and Columns. A table is associated with one or
more column families. Each column family will have a name, and the column families associated with
a table must be specified when the table is created and cannot be changed later. Figure (a) shows how a
table may be created; the table name is followed by the names of the column fami lies associated with
the table. When the data is loaded into a table, each column family can be associated with many
column qualifiers, but the column qualifiers are not specified as part of creating a table. So the column
qualifiers make the model a self-describing data model because the qualifiers can be dynamically
specified as new rows are created and inserted into the table. A column is specified by a combination
of ColumnFamily:ColumnQualifier. Basically, column families are a way of grouping together related
columns (attributes in relational terminology) for storage purposes, except that the column qualifier
names are not specified during table creation. Rather, they are specified when the data is created and
stored in rows, so the data is self- describing since any column qualifier name can be used in a new row
of data. However, it is important that the application programmers know which column qualifiers
belong to each column family, even though they have the flexibility to create new column qualifiers
on the fly when new data rows are created. The concept of column family is somewhat similar to
vertical partitioning, because columns (attributes) that are accessed together because they belong to
the same column family are stored in the same files. Each column family of a table is stored in its own
files using the HDFS file system.

Versions and Timestamps. Hbase can keep several versions of a data item, along with the
timestamp associated with each version. The timestamp is a long integer number that represents
the system time when the version was created, so newer versions have larger timestamp values.
Hbase uses mid- night ‘January 1, 1970 UTC’ as timestamp value zero, and uses a long integer that
measures the number of milliseconds since that time as the system timestamp value (this is
similar to the value returned by the Java utility java.util.Date.getTime() and is also used in
MongoDB). It is also possible for the user to define the timestamp value explicitly in a Date format
rather than using the system-generated timestamp.

Figure. Examples in Hbase.

 (a) Creating a table called EMPLOYEE with three column families: Name, Address, and Details.

(b) Inserting some in the EMPLOYEE table; different rows can have different self-describing column qualifiers

(Fname, Lname, Nickname, Mname, Minit, Suffix, … for column family Name; Job, Review, Supervisor, Salary for

column family Details).

 (c) Some CRUD operations of Hbase.

■ Cells. A cell holds a basic data item in Hbase. The key (address) of a cell is specified by a
combination of (table, rowid, columnfamily, columnqualifier, timestamp). If timestamp is left out, the
latest version of the item is retrieved unless a default number of versions is specified, say the latest three
versions. The default number of versions to be retrieved, as well as the default number of versions that the
system needs to keep, are parameters that can be specified during table creation.
Namespaces. A namespace is a collection of tables. A namespace basically specifies a collection of one or

more tables that are typically used together by user applications, and it corresponds to a database that

contains a collection of tables in relational terminology.

 Hbase CRUD Operations

• Hbase has low-level CRUD (create, read, update, delete) operations, as in many of the
NOSQL systems. The formats of some of the basic CRUD operations in Hbase are shown
in Figure (c).

• Hbase only provides low-level CRUD operations. It is the responsibility of the application
programs to implement more complex operations, such as joins between rows in different
tables. The create operation creates a new table and specifies one or more column
families associated with that table, but it does not specify the column qualifiers, as we
discussed earlier. The put operation is used for inserting new data or new versions of
existing data items. The get operation is for retrieving the data associated with a single row

in a table, and the scan operation retrieves all the rows.

 Hbase Storage and Distributed System Concepts

• Each Hbase table is divided into a number of regions, where each region will hold a range of
the row keys in the table; this is why the row keys must be lexicographically ordered. Each
region will have a number of stores, where each column family is assigned to one store
within the region. Regions are assigned to region servers (storage nodes) for storage. A
master server (master node) is responsible for monitoring the region servers and for
splitting a table into regions and assigning regions to region servers.

• Hbase uses the Apache Zookeeper open source system for services related to man- aging
the naming, distribution, and synchronization of the Hbase data on the distributed Hbase
server nodes, as well as for coordination and replication services. Hbase also uses
Apache HDFS (Hadoop Distributed File System) for distributed file services. So Hbase is
built on top of both HDFS and Zookeeper. Zookeeper can itself have several replicas on
several nodes for availability, and it keeps the data it needs in main memory to speed
access to the master servers and region servers.

 11. Discuss about NOSQL Graph Databases and Neo4j.

In graph databases or graph- oriented NOSQL systems, the data is represented as a graph,
which is a collection of vertices (nodes) and edges. Both nodes and edges can be labeled to
indicate the types of entities and relationships they represent, and it is generally possible to store
data associated with both individual nodes and individual edges. Many systems can be
categorized as graph databases. We will focus our discussion on one particular system, Neo4j,
which is used in many applications. Neo4j is an open source system, and it is implemented in
Java.

Neo4j Data Model

• The data model in Neo4j organizes data using the concepts of nodes and relation- ships.
Both nodes and relationships can have properties, which store the data items associated
with nodes and relationships. Nodes can have labels; the nodes that have the same label
are grouped into a collection that identifies a subset of the nodes in the database graph
for querying purposes. A node can have zero, one, or several labels. Relationships are
directed; each relationship has a start node and end node as well as a relationship type,
which serves a similar role to a node label by identifying similar relationships that have the
same relationship type. Properties can be specified via a map pattern, which is made of
one or more “name : value” pairs enclosed in curly brackets; for example {Lname : ‘Smith’,
Fname : ‘John’, Minit : ‘B’}.

• In conventional graph theory, nodes and relationships are generally called vertices and
edges. The Neo4j graph data model somewhat resembles how data is repre- sented in
the ER and EER models, but with some notable differences. Comparing the Neo4j graph
model with ER/EER concepts, nodes cor- respond to entities, node labels correspond to
entity types and subclasses, relation- ships correspond to relationship instances,
relationship types correspond to relationship types, and properties correspond to
attributes. One notable difference is that a relationship is directed in Neo4j, but is not in
ER/EER. Another is that a node may have no label in Neo4j, which is not allowed in
ER/EER because every entity must belong to an entity type. A third crucial difference is
that the graph model of Neo4j is used as a basis for an actual high-performance
distributed data- base system whereas the ER/EER model is mainly used for database
design.

• Figure (a) shows how a few nodes can be created in Neo4j. There are various ways in
which nodes and relationships can be created; for example, by calling appro- priate Neo4j
operations from various Neo4j APIs. We will just show the high-level syntax for creating
nodes and relationships; to do so, we will use the Neo4j CREATE command, which is part of
the high-level declarative query language Cypher. Neo4j has many options and variations
for creating nodes and relationships using various scripting interfaces, but a full discussion
is outside the scope of our presentation.

■ Labels and properties. When a node is created, the node label can be specified. It is also possible to
create nodes without any labels. In Figure (a), the node labels are EMPLOYEE, DEPARTMENT, PROJECT, and
LOCATION, and the created nodes correspond to some of the data from the COMPANY database in Figure
5.6 with a few modifications; for example, we use EmpId instead of SSN, and we only include a small subset
of the data for illustration purposes. Properties are enclosed in curly brackets { … }. It is possible that some
nodes have multiple labels; for example the same node can be labeled as PERSON and EMPLOYEE and
MANAGER by listing all the labels separated by the colon symbol as follows: PERSON:EMPLOYEE:MANAGER.
Having multiple labels is similar to an entity belonging to an entity type (PERSON)

plus some subclasses of PERSON (namely EMPLOYEE and MANAGER) in the EER model but can
also be used for other purposes.

■ Relationships and relationship types. Figure (b) shows a few example relationships in Neo4j
based on the COMPANY database in Figure 5.6. The specifies the direction of the relationship, but
the relationship can be traversed in either direction. The relationship types (labels) in Figure (b) are
WorksFor, Manager, LocatedIn, and WorksOn; only relationships with the relationship type WorksOn
have properties (Hours) in Figure (b).

■ Paths. A path specifies a traversal of part of the graph. It is typically used as part of a
query to specify a pattern, where the query will retrieve from the graph data that matches the pattern.
A path is typically specified by a start node, followed by one or more relationships, leading to one or
more end nodes that satisfy the pattern.

■ Optional Schema. A schema is optional in Neo4j. Graphs can be created and used
without a schema, but in Neo4j version 2.0, a few schema-related functions were added. The main
features related to schema creation involve creating indexes and constraints based on the labels and
properties. For example, it is possible to create the equivalent of a key constraint on a property of a label,
so all nodes in the collection of nodes associated with the label must have unique values for that property.

■ Indexing and node identifiers. When a node is created, the Neo4j system creates
an internal unique system-defined identifier for each node. To retrieve individual nodes using other
properties of the nodes efficiently, the user can create indexes for the collection of nodes that have a
particular label. Typically, one or more of the properties of the nodes in that collection can be indexed. For
example, Empid can be used to index nodes with the EMPLOYEE label, Dno to index the nodes with the
DEPARTMENT label, and Pno to index the nodes with the PROJECT label.

 The Cypher Query Language of Neo4j

• Neo4j has a high-level query language, Cypher. There are declarative commands for creating
nodes and relationships, as well as for finding nodes and relationships based on specifying
patterns. Deletion and modification of data is also possible in Cypher. We introduced the
CREATE command in the previous section, so we will now give a brief overview of some of the
other features of Cypher.

• A Cypher query is made up of clauses. When a query has several clauses, the result from one
clause can be the input to the next clause in the query. We will give a flavor of the language
by discussing some of the clauses using examples. Our presentation is not meant to be a
detailed presentation on Cypher, just an introduction to some of the languages features. Figure
(c) summarizes some of the main clauses that can be part of a Cyber query. The Cyber
language can specify complex queries and updates on a graph database. We will give a few of

examples to illustrate simple Cyber queries in Figure (d).

Figure.

Examples in Neo4j using the Cypher language. (a) Creating some nodes. (b) Creating some relationships.

Query 1 in Figure 24.4(d) shows how to use the MATCH and RETURN clauses in a query, and
the query retrieves the locations for department number 5. Match specifies the pattern and the
query variables (d and loc) and RETURN specifies the query result to be retrieved by refering to
the query variables. Query 2 has three variables (e, w, and p), and returns the projects and
hours per week that the employee with

Empid = 2 works on. Query 3, on the other hand, returns the employees and hours per week who
work on the project with Pno = 2. Query 4 illustrates the ORDER BY clause and returns all
employees and the projects they work on, sorted by Ename. It is also possible to limit the number
of returned results by using the LIMIT clause as in query 5, which only returns the first 10 answers.

Query 6 illustrates the use of WITH and aggregation, although the WITH clause can be used to
separate clauses in a query even if there is no aggregation. Query 6 also illus- trates the WHERE
clause to specify additional conditions, and the query returns the employees who work on more than

two projects, as well as the number of projects each employee works on. It is also common to return
the nodes and relationships them- selves in the query result, rather than the property values of the
nodes as in the previ- ous queries. Query 7 is similar to query 5 but returns the nodes and
relationships only, and so the query result can be displayed as a graph using Neo4j’s visualization tool.
It is also possible to add or remove labels and properties from nodes. Query 8 shows how to add more
properties to a node by adding a Job property to an employee node.

 Neo4j Interfaces and Distributed System Characteristics

Neo4j has other interfaces that can be used to create, retrieve, and update nodes and
relationships in a graph database. It also has two main versions: the enterprise edi- tion, which
comes with additional capabilities, and the community edition. We dis- cuss some of the additional
features of Neo4j in this subsection.

■ Enterprise edition vs. community edition. Both editions support the Neo4j graph data model and
storage system, as well as the Cypher graph query language, and several other interfaces, including a
high-performance native API, language drivers for several popular programming languages, such as Java,
Python, PHP, and the REST (Representational State Transfer) API. In addition, both editions support ACID
properties. The enterprise edition supports additional features for enhancing performance, such as
caching and clustering of data and locking.

■ Graph visualization interface. Neo4j has a graph visualization interface, so that a subset of the
nodes and edges in a database graph can be displayed as a graph. This tool can be used to visualize query
results in a graph representation.

■ Master-slave replication. Neo4j can be configured on a cluster of distrib- uted system nodes
(computers), where one node is designated the master node. The data and indexes are fully replicated on
each node in the cluster. Various ways of synchronizing the data between master and slave nodes can be
configured in the distributed cluster.

■ Caching. A main memory cache can be configured to store the graph data for
improved performance.

■ Logical logs. Logs can be maintained to recover from failures.

 12. Explain about Database Security Issues.

 i) Types of Security

Database security is a broad area that addresses many issues, including the following:

■ Various legal and ethical issues regarding the right to access certain information—for example,
some information may be deemed to be private and cannot be accessed legally by unauthorized
organizations or persons. In the United States, there are numerous laws governing privacy of information.

■ Policy issues at the governmental, institutional, or corporate level regarding what kinds of
information should not be made publicly available—for example, credit ratings and personal medical
records.

■ System-related issues such as the system levels at which various security functions should be
enforced—for example, whether a security function should be handled at the physical hardware level, the
operating system level, or the DBMS level.

■ The need in some organizations to identify multiple security levels and to categorize the
data and users based on these classifications—for example, top secret, secret, confidential, and

unclassified. The security policy of the organization with respect to permitting access to various
classifications of data must be enforced.

Threats to Databases. Threats to databases can result in the loss or degradation of some or all of
the following commonly accepted security goals: integrity, avail ability, and confidentiality.

■ Loss of integrity. Database integrity refers to the requirement that information be protected
from improper modification. Modification of data includes creating, inserting, and updating data; changing
the status of data; and deleting data. Integrity is lost if unauthorized changes are made to the data by
either intentional or accidental acts. If the loss of system or data integrity is not corrected, continued use
of the contaminated system or corrupted data could result in inaccuracy, fraud, or erroneous decisions.

■ Loss of availability. Database availability refers to making objects available to a human user or a
program who/which has a legitimate right to those data objects. Loss of availability occurs when the user or
program cannot access these objects.

■ Loss of confidentiality. Database confidentiality refers to the protection of data from
unauthorized disclosure. The impact of unauthorized disclosure of confidential information can range
from violation of the Data Privacy Act to the jeopardization of national security. Unauthorized,
unanticipated, or unintentional disclosure could result in loss of public confidence, embarrassment, or
legal action against the organization.

■ Database Security: Not an Isolated Concern. When considering the threats facing
databases, it is important to remember that the database management system alone cannot be
responsible for maintaining the confidentiality, integrity, and availability of the data. Rather, the
database works as part of a network of services, including applications, Web servers, firewalls,
SSL terminators, and security monitoring systems. Because security of an overall system is only
as strong as its weakest link, a database may be compromised even if it would have been perfectly
secure on its own merits.

■ To protect databases against the threats discussed above, it is common to implement
four kinds of control measures: access control, inference control, flow control, and encryption.

■ In a multiuser database system, the DBMS must provide techniques to enable certain
users or user groups to access selected portions of a database without gaining access to the rest
of the database. This is particularly important when a large integrated database is to be used by
many different users within the same organization. For example, sensitive information such as
employee salaries or performance reviews should be kept confidential from most of the database
system’s users. A DBMS typically includes a database security and authorization subsystem that
is responsible for ensuring the security of portions of a database against unauthorized access. It
is now customary to refer to two types of database security mechanisms:

■ Discretionary security mechanisms. These are used to grant privileges to users, including the
capability to access specific data files, records, or fields in a specified mode (such as read, insert, delete, or
update).

■ Mandatory security mechanisms. These are used to enforce multilevel security by classifying
the data and users into various security classes (or levels) and then implementing the appropriate
security policy of the organi zation. For example, a typical security policy is to permit users at a certain
classification (or clearance) level to see only the data items classified at the user’s own (or lower)
classification level. An extension of this is role-based security, which enforces policies and privileges based on
the concept of organizational roles.

 ii) Control Measures

Four main control measures are used to provide security of data in databases:

■ Access control

■ Inference control

■ Flow control

■ Data encryption

■ A security problem common to computer systems is that of preventing unauthorized
persons from accessing the system itself, either to obtain information or to make malicious
changes in a portion of the database. The security mechanism of a DBMS must include
provisions for restricting access to the database system as a whole. This function, called access
control, is handled by creating user accounts and passwords to control the login process by the
DBMS.

■ Statistical databases are used to provide statistical information or summaries of values
based on various criteria. For example, a database for population statistics may provide statistics
based on age groups, income levels, household size, education levels, and other criteria.
Statistical database users such as government statisticians or market research firms are allowed
to access the database to retrieve statistical information about a population but not to access the
detailed confidential information about specific individuals. Security for statistical databases must
ensure that information about individuals cannot be accessed. It is sometimes possible to deduce
or infer certain facts concerning individuals from queries that involve only summary statistics on
groups; consequently, this must not be per- mitted either. This problem, called statistical
database security. The corresponding control measures are called inference control measures.

■ Another security issue is that of flow control, which prevents information from flowing in
such a way that it reaches unauthorized users. Covert channels are pathways on which
information flows implicitly in ways that violate the security policy of an organization.

■ A final control measure is data encryption, which is used to protect sensitive data (such
as credit card numbers) that is transmitted via some type of communications network. Encryption
can be used to provide additional protection for sensitive portions of a database as well. The data
is encoded using some coding algorithm. An unauthorized user who accesses encoded data will
have difficulty deciphering it, but authorized users are given decoding or decrypting algorithms
(or keys) to decipher the data. Encrypting techniques that are very difficult to decode without a
key have been developed for military applications. However, encrypted database records are
used today in both private organizations and governmental and military applications. In fact, state
and federal laws prescribe encryption for any system that deals with legally protected personal
information. For example, according to Georgia Law (OCGA 10-1-911):

■ “Personal information” means an individual’s first name or first initial and last name in
combination with any one or more of the following data elements, when either the name or the
data elements are not encrypted or redacted:

 Social security number;

 Driver’s license number or state identification card number;

 Account number, credit card number, or debit card number, if circum- stances exist wherein
such a number could be used without additional identifying information, access codes, or passwords;

 Account passwords or personal identification numbers or other access codes.

Because laws defining what constitutes personal information vary from state to state, systems must
protect individuals’ privacy and enforce privacy measures adequately. Discretionary access
control alone may not suffice. .

 iii) Database Security and the DBA

The database administrator (DBA) is the central authority for managing a database system. The
DBA’s responsibilities include granting privileges to users who need to use the system and

classifying users and data in accordance with the policy of the organization. The DBA has a DBA
account in the DBMS, sometimes called a system or super user account, which provides powerful
capabilities that are not made available to regular database accounts and users. DBA-privileged
commands include commands for granting and revoking privileges to individual accounts, users,
or user groups and for performing the following types of actions:

1. Account creation. This action creates a new account and password for a user or a group of
users to enable access to the DBMS.

2. Privilege granting. This action permits the DBA to grant certain privileges to certain accounts.

3. Privilege revocation. This action permits the DBA to revoke (cancel) certain privileges that were
previously given to certain accounts.

4. Security level assignment. This action consists of assigning user accounts to the appropriate
security clearance level.

The DBA is responsible for the overall security of the database system. Action 1 in the preceding
list is used to control access to the DBMS as a whole, whereas actions 2 and 3 are used to control
discretionary database authorization, and action 4 is used to control mandatory authorization.

 iv) Access Control, User Accounts, and Database Audits

Whenever a person or a group of persons needs to access a database system, the individual or
group must first apply for a user account. The DBA will then create a new account number and
password for the user if there is a legitimate need to access the database. The user must log in
to the DBMS by entering the account number and password whenever database access is
needed. The DBMS checks that the account number and password are valid; if they are, the user
is permitted to use the DBMS and to access the database. Application programs can also be
considered users and are required to log in to the database.

It is straightforward to keep track of database users and their accounts and pass- words by
creating an encrypted table or file with two fields: AccountNumber and Password. This table can
easily be maintained by the DBMS. Whenever a new account is created, a new record is inserted
into the table. When an account is canceled, the corresponding record must be deleted from the
table.

The database system must also keep track of all operations on the database that are applied by a
certain user throughout each login session, which consists of the sequence of database
interactions that a user performs from the time of logging in to the time of logging off. When a
user logs in, the DBMS can record the user’s account number and associate it with the computer
or device from which the user logged in. All operations applied from that computer or device are
attributed to the user’s account until the user logs off. It is particularly important to keep track of
update operations that are applied to the database so that, if the database is tampered with, the
DBA can determine which user did the tampering.

To keep a record of all updates applied to the database and of particular users who applied each
update, we can modify the system log. The system log includes an entry for each operation
applied to the database that may be required for recovery from a transaction failure or system
crash. We can expand the log entries so that they also include the account number of the user
and the online computer or device ID that applied each operation recorded in the log. If any
tampering with the database is suspected, a database audit is performed, which consists of
reviewing the log to examine all accesses and operations applied to the database during a
certain time period. When an illegal or unauthorized operation is found, the DBA can determine
the account number used to perform the operation. Database audits are particularly important for
sensitive databases that are updated by many transactions and users, such as a banking
database that can be updated by thousands of bank tellers. A database log that is used mainly for
security purposes serves as an audit trail.

 v) Sensitive Data and Types of Disclosures

Sensitivity of data is a measure of the importance assigned to the data by its owner for the
purpose of denoting its need for protection. Some databases contain only sensitive data
whereas other databases may contain no sensitive data at all. Handling databases that fall at
these two extremes is relatively easy because such databases can be covered by access
control, which is explained in the next section. The situation becomes tricky when some of the
data is sensitive whereas other data is not.

Several factors can cause data to be classified as sensitive:

1. Inherently sensitive. The value of the data itself may be so revealing or confidential that it
becomes sensitive—for example, a person’s salary or who a patient has HIV/AIDS.

2. From a sensitive source. The source of the data may indicate a need for secrecy—for example,
an informer whose identity must be kept secret.

3. Declared sensitive. The owner of the data may have explicitly declared it as sensitive.

4. A sensitive attribute or sensitive record. The particular attribute or record may have been
declared sensitive—for example, the salary attribute of an employee or the salary history record in a
personnel database.

5. Sensitive in relation to previously disclosed data. Some data may not be sensitive by itself but
will become sensitive in the presence of some other data—for example, the exact latitude and longitude
information for a location where some previously recorded event happened that was later deemed
sensitive.

It is the responsibility of the database administrator and security administrator to collectively
enforce the security policies of an organization. This dictates whether access should or should
not be permitted to a certain database attribute (also known as a table column or a data element)
for individual users or for categories of users. Several factors must be considered before deciding
whether it is safe to reveal the data. The three most important factors are data availability, access
acceptability, and authenticity assurance.

1. Data availability. If a user is updating a field, then this field becomes inaccessible and other
users should not be able to view this data. This blocking is only temporary and only to ensure that no user
sees any inaccurate data. This is typically handled by the concurrency control mechanism.

2. Access acceptability. Data should only be revealed to authorized users. A database
administrator may also deny access to a user request even if the request does not directly access a
sensitive data item, on the grounds that the requested data may reveal information about the sensitive
data that the user is not authorized to have.

3. Authenticity assurance. Before granting access, certain external character- istics about the user
may also be considered. For example, a user may only be permitted access during working hours. The
system may track previous queries to ensure that a combination of queries does not reveal sensitive
data. The latter is particularly relevant to statistical database queries.

The term precision, when used in the security area, refers to allowing as much as possible of the
data to be available, subject to protecting exactly the subset of data that is sensitive. The
definitions of security versus precision are as follows:

■ Security: Means of ensuring that data is kept safe from corruption and that access to it is
suitably controlled. To provide security means to disclose only nonsensitive data and to reject any query
that references a sensitive field.

■ Precision: To protect all sensitive data while disclosing or making avail- able as much
nonsensitive data as possible. Note that this definition of precision is not related to the precision of
information retrieval.

The ideal combination is to maintain perfect security with maximum precision. If we want to
maintain security, precision must be sacrificed to some degree. Hence there is typically a tradeoff
between security and precision.

 vi) Relationship between Information Security and Information Privacy

The rapid advancement of the use of information technology (IT) in industry, government, and
academia raises challenging questions and problems regarding the protection and use of personal
information. Questions of who has what rights to information about individuals for which purposes
become more important as we move toward a world in which it is technically possible to know just
about anything about anyone.

Deciding how to design privacy considerations in technology for the future includes philosophical,
legal, and practical dimensions. There is a considerable overlap between issues related to
access to resources (security) and issues related to appropriate use of information (privacy).

Security in information technology refers to many aspects of protecting a system from
unauthorized use, including authentication of users, information encryption, access control,
firewall policies, and intrusion detection. For our purposes here, we will limit our treatment of
security to the concepts associated with how well a sys- tem can protect access to information it
contains. The concept of privacy goes beyond security. Privacy examines how well the use of
personal information that the system acquires about a user conforms to the explicit or implicit
assumptions regarding that use. From an end user perspective, privacy can be considered from
two different perspectives: preventing storage of personal information versus ensuring appropriate
use of personal information.

For the purposes of this chapter, a simple but useful definition of privacy is the ability of individuals to

control the terms under which their personal information is acquired and used. In summary, security

involves technology to ensure that information is appropriately protected. Security is a required building

block for privacy. Privacy involves mechanisms to support compliance with some basic principles and other

explicitly stated policies. One basic principle is that people should be informed about information collection,

told in advance what will be done with their information, and given a reasonable opportunity to approve or

disapprove of such use of the information. A related concept, trust, relates to both security and privacy and

is seen as increasing when it is perceived that both security and privacy are provided for.

 13. Discuss about Discretionary Access Control Based on Granting and Revoking
Privileges.

The typical method of enforcing discretionary access control in a database system is based on the
granting and revoking of privileges. Let us consider privileges in the context of a relational DBMS.
Many current relational DBMSs use some variation of this technique. The main idea is to include
statements in the query language that allow the DBA and selected users to grant and revoke
privileges.

 Types of Discretionary Privileges

In SQL2 and later versions, the concept of an authorization identifier is used to refer, roughly
speaking, to a user account (or group of user accounts). For simplic- ity, we will use the words
user or account interchangeably in place of authorization identifier. The DBMS must provide
selective access to each relation in the database based on specific accounts. Operations may
also be controlled; thus, having an account does not necessarily entitle the account holder to all
the functionality provided by the DBMS. Informally, there are two levels for assigning privileges to
use the database system:

■ The account level. At this level, the DBA specifies the particular privileges that each account
holds independently of the relations in the database.

■ The relation (or table) level. At this level, the DBA can control the privilege to access each individual
relation or view in the database.

■ The privileges at the account level apply to the capabilities provided to the account itself
and can include the CREATE SCHEMA or CREATE TABLE privilege, to create a schema or
base relation; the CREATE VIEW privilege; the ALTER privilege, to apply schema changes
such as adding or removing attributes from relations; the DROP privilege, to delete relations or
views; the MODIFY privilege, to insert, delete, or update tuples; and the SELECT privilege, to
retrieve information from the database by using a SELECT query. Notice that these account
privileges apply to the account in general. If a certain account does not have the CREATE
TABLE privilege, no rela- tions can be created from that account. Account-level privileges are
not defined as part of SQL2; they are left to the DBMS implementers to define. In earlier versions
of SQL, a CREATETAB privilege existed to give an account the privilege to create tables
(relations).

■ The second level of privileges applies to the relation level, which includes base relations and
virtual (view) relations. These privileges are defined for SQL2. In the following discussion, the
term relation may refer either to a base relation or to a view, unless we explicitly specify one or
the other. Privileges at the relation level specify for each user the individual relations on which
each type of command can be applied. Some privileges also refer to individual columns
(attributes) of relations. SQL2 commands provide privileges at the relation and attribute level only.
Although this distinction is general, it makes it difficult to create accounts with limited privileges.
The granting and revoking of privileges generally follow an authorization model for discretionary
privileges known as the access matrix model, where the rows of a matrix M represent subjects
(users, accounts, programs) and the columns represent objects (relations, records, columns,
views, operations). Each position M(i, j) in the matrix represents the types of privileges (read,
write, update) that subject i holds on object j.

■ To control the granting and revoking of relation privileges, each relation R in a
database is assigned an owner account, which is typically the account that was used when the
relation was created in the first place. The owner of a relation is given all privileges on that
relation. In SQL2, the DBA can assign an owner to a whole schema by creating the schema
and associating the appropriate authorization identifier with that schema, using the CREATE
SCHEMA command. The owner account holder can pass privileges on any of the owned
relations to other users by granting privileges to their accounts. In SQL, the following types of
privileges can be granted on each individual relation R:

■ SELECT (retrieval or read) privilege on R. Gives the account retrieval privilege. In SQL, this gives
the account the privilege to use the SELECT statement to retrieve tuples from R.

■ Modification privileges on R. This gives the account the capability to modify the tuples of R. In
SQL, this includes three privileges: UPDATE, DELETE, and INSERT. These correspond to the three SQL
commands for modifying a table R. Additionally, both the INSERT and UPDATE privileges can specify that
only certain attributes of R can be modified by the account.

■ References privilege on R. This gives the account the capability to reference (or refer to) a relation R
when specifying integrity constraints. This privilege can also be restricted to specific attributes of R.

Notice that to create a view, the account must have the SELECT privilege on all relations involved
in the view definition in order to specify the query that corresponds to the view.

 Specifying Privileges through the Use of Views

The mechanism of views is an important discretionary authorization mechanism in its own right. For

example, if the owner A of a relation R wants another account B to be able to retrieve only some fields

of R, then A can create a view V of R that

includes only those attributes and then grant SELECT on V to B. The same applies can be to
limiting B to retrieving only certain tuples of R; a view V created by defining the view by means of
a query that selects only those tuples from R that A wants to allow B to access.

 Revoking of Privileges

• In some cases, it is desirable to grant a privilege to a user temporarily. For example, the
owner of a relation may want to grant the SELECT privilege to a user for a specific task and
then revoke that privilege once the task is completed. Hence, a mechanism for revoking
privileges is needed. In SQL, a REVOKE command is included for the purpose of canceling
privileges.

 Propagation of Privileges Using the GRANT OPTION

• Whenever the owner A of a relation R grants a privilege on R to another account B, the privilege
can be given to B with or without the GRANT OPTION. If the GRANT OPTION is given, this means that B
can also grant that privilege on R to other accounts. Suppose that B is given the GRANT OPTION by A
and that B then grants the privilege on R to a third account C, also with the GRANT OPTION. In this
way, privileges on R can propagate to other accounts without the knowledge of the owner of R. If the
owner account A now revokes the privilege granted to B, all the privileges that B propagated based on
that privilege should automatically be revoked by the system.

• It is possible for a user to receive a certain privilege from two or more sources. For
example, A4 may receive a certain UPDATE R privilege from both A2 and A3. In such a case, if
A2 revokes this privilege from A4, A4 will still continue to have the privilege by virtue of having
been granted it from A3. If A3 later revokes the privilege from A4, A4 totally loses the privilege.
Hence, a DBMS that allows propagation of privileges must keep track of how all the privileges
were granted in the form of some internal log so that revoking of privileges can be done
correctly and completely.

 An Example to Illustrate Granting and Revoking of Privileges

Suppose that the DBA creates four accounts—A1, A2, A3, and A4—and wants only A1 to be able
to create base relations. To do this, the DBA must issue the following GRANT command in SQL:

 GRANT CREATETAB TO A1;

The CREATETAB (create table) privilege gives account A1 the capability to create new database
tables (base relations) and is hence an account privilege. This privilege was part of earlier
versions of SQL but is now left to each individual system implementation to define. Note that A1
, A2, and so forth may be individuals, like John in IT department or Mary in marketing; but they
may also be applications or programs that want to access a database.

In SQL2, the same effect can be accomplished by having the DBA issue a CREATE SCHEMA
command, as follows:

 CREATE SCHEMA EXAMPLE AUTHORIZATION A1;

User account A1 can now create tables under the schema called EXAMPLE. To continue our example,

suppose that A1 creates the two base relations EMPLOYEE and DEPARTMENT shown in Figure ; A1 is then

the owner of these two relations and hence has all the relation privileges on each of them.

Next, suppose that account A1 wants to grant to account A2 the privilege to insert and delete tuples
in both of these relations. However, A1 does not want A2 to be able to propagate these privileges
to additional accounts. A1 can issue the following command:

 GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2;

Notice that the owner account A1 of a relation automatically has the GRANT OPTION, allowing it to grant

privileges on the relation to other accounts. However, account A2 cannot grant INSERT and DELETE

privileges on the EMPLOYEE and DEPARTMENT tables because A2 was not given the GRANT OPTION in

the preceding command.

Next, suppose that A1 wants to allow account A3 to retrieve information from either of the two
tables and also to be able to propagate the SELECT privilege to other accounts. A1 can
issue the following command:

 GRANT SELECT ON EMPLOYEE, DEPARTMENT TO A3 WITH GRANT OPTION;

The clause WITH GRANT OPTION means that A3 can now propagate the privilege to other accounts by

using GRANT. For example, A3 can grant the SELECT privilege on the EMPLOYEE relation to A4 by issuing

the following command:

 GRANT SELECT ON EMPLOYEE TO A4;

Notice that A4 cannot propagate the SELECT privilege to other accounts because the GRANT
OPTION was not given to A4.

Now suppose that A1 decides to revoke the SELECT privilege on the EMPLOYEE relation from A3; A1
then can issue this command:

REVOKE SELECT ON EMPLOYEE FROM A3;

Figure . Schemas for the two relations EMPLOYEE and DEPARTMENT.

The DBMS must now revoke the SELECT privilege on EMPLOYEE from A3, and it must also automatically

revoke the SELECT privilege on EMPLOYEE from A4. This is because A3 granted that privilege to A4,

but A3 does not have the privilege any more.

Next, suppose that A1 wants to give back to A3 a limited capability to SELECT from the
EMPLOYEE relation and wants to allow A3 to be able to propagate the privilege. The limitation is
to retrieve only the Name, Bdate, and Address attributes and only for the tuples with Dno = 5. A1

then can create the following view:

CREATE VIEW A3EMPLOYEE AS SELECT Name, Bdate, Address

FROM EMPLOYEE WHERE Dno = 5;

After the view is created, A1 can grant SELECT on the view A3EMPLOYEE to A3 as follows:

 GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION;

Finally, suppose that A1 wants to allow A4 to update only the Salary attribute of EMPLOYEE;
A1 can then issue the following command:

 GRANT UPDATE ON EMPLOYEE (Salary) TO A4;

The UPDATE and INSERT privileges can specify particular attributes that may be updated or
inserted in a relation. Other privileges (SELECT, DELETE) are not attribute specific, because this
specificity can easily be controlled by creating the appropriate views that include only the desired
attributes and granting the corresponding privileges on the views. However, because updating views
is not always possible, the UPDATE and INSERT privileges are given the option to specify the
particular attributes of a base relation that may be updated.

 Specifying Limits on Propagation of Privileges

• Techniques to limit the propagation of privileges have been developed, although they
have not yet been implemented in most DBMSs and are not a part of SQL. Limiting horizontal
propagation to an integer number i means that an account B given the GRANT OPTION can
grant the privilege to at most i other accounts. Vertical propagation is more complicated; it
limits the depth of the granting of privileges. Granting a privilege with a vertical propagation of
zero is equivalent to granting the privilege with no GRANT OPTION. If account A grants a
privilege to account B with the vertical propagation set to an integer number j > 0, this means
that the account B has the GRANT OPTION on that privilege, but B can grant the privilege to
other accounts only with a vertical propagation less than j. In effect, vertical propagation limits
the sequence of GRANT OPTIONS that can be given from one account to the next based on a
single original grant of the privilege.

• We briefly illustrate horizontal and vertical propagation limits—which are not available
currently in SQL or other relational systems—with an example. Suppose that A1 grants
SELECT to A2 on the EMPLOYEE relation with horizontal propagation equal to 1 and
vertical propagation equal to 2. A2 can then grant SELECT to at most one account because
the horizontal propagation limitation is set to 1. Additionally, A2 cannot grant the privilege to
another account except with vertical propagation set to 0 (no GRANT OPTION) or 1; this is
because A2 must reduce the vertical propagation by at least 1 when passing the privilege to
others. In addition, the horizontal propagation must be less than or equal to the originally
granted horizontal propagation. For example, if account A grants a privilege to account B with
the horizontal propagation set to an integer number j > 0, this means that B can grant the
privilege to other accounts only with a horizontal propagation less than or equal to j. As this
example shows, horizontal and vertical propagation techniques are designed to limit the depth
and breadth of propagation of privileges.

 14. Elaborate about Mandatory Access Control and Role-Based Access Control

for Multilevel Security.

• The discretionary access control technique of granting and revoking privileges on
relations has traditionally been the main security mechanism for relational data- base
systems. This is an all-or-nothing method: A user either has or does not have a certain

privilege. In many applications, an additional security policy is needed that classifies data
and users based on security classes. This approach, known as mandatory access control
(MAC), would typically be combined with the discretionary access control mechanisms. It
is important to note that most mainstream RDBMSs currently provide mechanisms only for
discretionary access control. However, the need for multilevel security exists in
government, military, and intelligence applications, as well as in many industrial and
corporate applications. Because of the overriding concerns for privacy, in many systems
the levels are determined by who has what access to what private information (also called
personally identifiable information). Some DBMS vendors—for example, Oracle—have
released special versions of their RDBMSs that incorporate mandatory access control for
government use.

• Typical security classes are top secret (TS), secret (S), confidential (C), and unclassified
(U), where TS is the highest level and U the lowest. Other more complex security
classification schemes exist, in which the security classes are organized in a lattice. For
simplicity, we will use the system with four security classification levels, where TS ≥ S ≥ C
≥ U, to illustrate our discussion. The commonly used model for multilevel security, known as
the Bell-LaPadula model, classifies each subject (user, account, program) and object
(relation, tuple, column, view, operation) into one of the security classifications TS, S, C,
or U. We will refer to the clearance (classification) of a subject S as class(S) and to the
classification of an object O as class(O). Two restrictions are enforced on data access
based on the subject/object classifications:

1. A subject S is not allowed read access to an object O unless class(S) ≥ class(O). This is known as
the simple security property.

2. A subject S is not allowed to write an object O unless class(S) ≤ class(O). This is known as the
star property (or *-property).

The first restriction is intuitive and enforces the obvious rule that no subject can read an object
whose security classification is higher than the subject’s security clearance. The second restriction
is less intuitive. It prohibits a subject from writing an object at a lower security classification than the
subject’s security clearance. Violation of this rule would allow information to flow from higher to
lower classifications, which violates a basic tenet of multilevel security. For example, a user
(subject) with TS clearance may make a copy of an object with classification TS and then write it
back as a new object with classification U, thus making it visible throughout the system.

To incorporate multilevel security notions into the relational database model, it is common to
consider attribute values and tuples as data objects. Hence, each attribute A is associated with a
classification attribute C in the schema, and each attribute value in a tuple is associated with a
corresponding security classification. In addition, in some models, a tuple classification attribute TC
is added to the relation attributes to provide a classification for each tuple as a whole. The model
we describe here is known as the multilevel model, because it allows classifications at multiple
security levels. A multilevel relation schema R with n attributes would be represented as:

R(A1, C1, A2, C2, … , An, Cn, TC)

where each Ci represents the classification attribute associated with attribute Ai.

The value of the tuple classification attribute TC in each tuple t—which is the highest of all
attribute classification values within t—provides a general classification for the tuple itself. Each
attribute classification Ci provides a finer security classification for each attribute value within the
tuple. The value of TC in each tuple t is the highest of all attribute classification values Ci within t.

The apparent key of a multilevel relation is the set of attributes that would have formed the
primary key in a regular (single-level) relation. A multilevel relation will appear to contain different
data to subjects (users) with different clearance levels. In some cases, it is possible to store a
single tuple in the relation at a higher classifica- tion level and produce the corresponding tuples

at a lower-level classification through a process known as filtering. In other cases, it is necessary
to store two or more tuples at different classification levels with the same value for the apparent
key. This leads to the concept of polyinstantiation,5 where several tuples can have the same
apparent key value but have different attribute values for users at different clearance levels.

We illustrate these concepts with the simple example of a multilevel relation shown in Figure (a),
where we display the classification attribute values next to each

Figure . A multilevel relation to illustrate multilevel security.

(a) The original EMPLOYEE tuples. (b) Appearance of EMPLOYEE after filtering for classification C users.

(c) Appearance of EMPLOYEE after filtering for classification U users.

(d) Polyinstantiation of the Smith tuple.

attribute’s value. Assume that the Name attribute is the apparent key, and consider the query
SELECT * FROM EMPLOYEE. A user with security clearance S would see the same relation shown
in Figure (a), since all tuple classifications are less than or equal to
S. However, a user with security clearance C would not be allowed to see the values for Salary of
‘Brown’ and Job_performance of ‘Smith’, since they have higher classification. The tuples would be
filtered to appear as shown in Figure 30.2(b), with Salary and Job_performance appearing as null.
For a user with security clearance U, the filtering allows only the Name attribute of ‘Smith’ to appear,
with all the other attributes appearing as null . Thus, filtering introduces null values for attribute
values whose security classification is higher than the user’s security clearance.

In general, the entity integrity rule for multilevel relations states that all attributes that are
members of the apparent key must not be null and must have the same security classification
within each individual tuple. Additionally, all other attribute values in the tuple must have a security
classification greater than or equal to that of the apparent key. This constraint ensures that a user

can see the key if the user is permitted to see any part of the tuple. Other integrity rules, called
null integrity and interinstance integrity, informally ensure that if a tuple value at some security
level can be filtered (derived) from a higher-classified tuple, then it is sufficient to store the higher-
classified tuple in the multilevel relation.

To illustrate polyinstantiation further, suppose that a user with security clearance C tries to update
the value of Job_performance of ‘Smith’ in Figure to ‘Excellent’; this corresponds to the following
SQL update being submitted by that user:

UPDATE EMPLOYEE SET Job_performance = ‘Excellent’ WHERE

 Name = ‘Smith’;

Since the view provided to users with security clearance C permits such an update, the system
should not reject it; otherwise, the user could infer that some nonnull value exists for the
Job_performance attribute of ‘Smith’ rather than the null value that appears. This is an example
of inferring information through what is known as a covert channel, which should not be permitted
in highly secure systems. However, the user should not be allowed to overwrite the existing value
of Job_performance at the higher classification level. The solution is to create a polyinstantiation
for the ‘Smith’ tuple at the lower classification level C, as shown in Figure (d). This is necessary
since the new tuple cannot be filtered from the existing tuple at classification S.

The basic update operations of the relational model (INSERT, DELETE, UPDATE) must be
modified to handle this and similar situations, but this aspect of the problem is outside the scope
of our presentation. We refer the interested reader to the Selected Bibliography at the end of this
chapter for further details.

 Comparing Discretionary Access Control and Mandatory Access Control

Discretionary access control (DAC) policies are characterized by a high degree of flexibility,
which makes them suitable for a large variety of application domains. The main drawback of DAC
models is their vulnerability to malicious attacks, such as Trojan horses embedded in application
programs. The reason for this vulnerability is that discretionary authorization models do not
impose any control on how information is propagated and used once it has been accessed by
users authorized to do so. By contrast, mandatory policies ensure a high degree of protection—in
a way, they prevent any illegal flow of information. Therefore, they are suitable for military and
high-security types of applications, which require a higher degree of protection. However,
mandatory policies have the drawback of being too rigid in that they require a strict classification
of subjects and objects into security levels, and therefore they are applicable to few environments
and place an additional bur- den of labeling every object with its security classification. In many
practical situations, discretionary policies are preferred because they offer a better tradeoff
between security and applicability than mandatory policies.

 Role-Based Access Control

• Role-based access control (RBAC) emerged rapidly in the 1990s as a proven
technology for managing and enforcing security in large-scale enterprise-wide systems.

• Its basic notion is that privileges and other permissions are associated with
organizational roles rather than with individual users. Individual users are then assigned
to appropriate roles. Roles can be created using the CREATE ROLE and DESTROY
ROLE commands. The GRANT and REVOKE commands can then be used to assign and
revoke privileges from roles, as well as for individual users when needed. For example, a
company may have roles such as sales account manager, purchasing agent, mailroom
clerk, customer service manager, and so on. Multiple individuals can be assigned to each

role. Security privileges that are common to a role are granted to the role name, and any
individual assigned to this role would automatically have those privileges granted.

• RBAC can be used with traditional discretionary and mandatory access controls; it
ensures that only authorized users in their specified roles are given access to certain data
or resources. Users create sessions during which they may activate a subset of roles to
which they belong. Each session can be assigned to several roles, but it maps to one user or
a single subject only. Many DBMSs have allowed the concept of roles, where privileges can
be assigned to roles.

• Separation of duties is another important requirement in various mainstream DBMSs. It
is needed to prevent one user from doing work that requires the involve ment of two or
more people, thus preventing collusion. One method in which separation of duties can be
successfully implemented is with mutual exclusion of roles. Two roles are said to be
mutually exclusive if both the roles cannot be used simultaneously by the user. Mutual
exclusion of roles can be categorized into two types, namely authorization time exclusion
(static) and runtime exclusion (dynamic). In authorization time exclusion, two roles that
have been specified as mutually exclusive cannot be part of a user’s authorization at the
same time. In runtime exclusion, both these roles can be authorized to one user but cannot
be activated by the user at the same time. Another variation in mutual exclusion of roles is
that of complete and partial exclusion.

• The role hierarchy in RBAC is a natural way to organize roles to reflect the organization’s
lines of authority and responsibility. By convention, junior roles at the bottom are
connected to progressively senior roles as one moves up the hierarchy. The hierarchic
diagrams are partial orders, so they are reflexive, transitive, and antisymmetric. In other
words, if a user has one role, the user automatically has roles lower in the hierarchy.
Defining a role hierarchy involves choosing the type of hierarchy and the roles, and then
implementing the hierarchy by granting roles to other roles. Role hierarchy can be
implemented in the following manner:

 GRANT ROLE full_time TO employee_type1

 GRANT ROLE intern TO employee_type2

The above are examples of granting the roles full_time and intern to two types of employees.

• Another issue related to security is identity management. Identity refers to a unique name
of an individual person. Since the legal names of persons are not necessarily unique, the
identity of a person must include sufficient additional information to make the complete
name unique. Authorizing this identity and managing the schema of these identities is
called identity management. Identity management addresses how organizations can
effectively authenticate people and manage their access to confidential information. It has
become more visible as a business require- ment across all industries affecting
organizations of all sizes. Identity management administrators constantly need to satisfy
application owners while keeping expenditures under control and increasing IT efficiency.

• Another important consideration in RBAC systems is the possible temporal con- straints
that may exist on roles, such as the time and duration of role activations and the timed
triggering of a role by an activation of another role. Using an RBAC model is a highly
desirable goal for addressing the key security requirements of Web-based applications.
Roles can be assigned to workflow tasks so that a user with any of the roles related to a
task may be authorized to execute it and may play a certain role only for a certain
duration.

• RBAC models have several desirable features, such as flexibility, policy neutrality, better
support for security management and administration, and a natural enforcement of the
hierarchical organization structure within organizations. They also have other aspects that
make them attractive candidates for developing secure Web-based applications. These

features are lacking in DAC and MAC models. RBAC models do include the capabilities
available in traditional DAC and MAC policies. Furthermore, an RBAC model provides
mechanisms for addressing the security issues related to the execution of tasks and
workflows, and for specifying user-defined and organization-specific policies. Easier
deployment over the Inter- net has been another reason for the success of RBAC models.

 Label-Based Security and Row-Level Access Control

• Many mainstream RDBMSs currently use the concept of row-level access control, where
sophisticated access control rules can be implemented by considering the data row by
row. In row-level access control, each data row is given a label, which is used to store
information about data sensitivity. Row-level access control pro- vides finer granularity of
data security by allowing the permissions to be set for each row and not just for the table
or column. Initially the user is given a default session label by the database administrator.
Levels correspond to a hierarchy of data-sensitivity levels to exposure or corruption, with
the goal of maintaining privacy or security. Labels are used to prevent unauthorized users
from viewing or altering certain data. A user having a low authorization level, usually
represented by a low number, is denied access to data having a higher-level number. If
no such label is given to a row, a row label is automatically assigned to it depending upon
the user’s session label.

• A policy defined by an administrator is called a label security policy. Whenever data
affected by the policy is accessed or queried through an application, the policy is
automatically invoked. When a policy is implemented, a new column is added to each row
in the schema. The added column contains the label for each row that reflects the
sensitivity of the row as per the policy. Similar to MAC (mandatory access control), where
each user has a security clearance, each user has an identity in label-based security. This
user’s identity is compared to the label assigned to each row to determine whether the user
has access to view the contents of that row. However, the user can write the label value
himself, within certain restrictions and guidelines for that specific row. This label can be
set to a value that is between the user’s current session label and the user’s minimum
level. The DBA has the privi- lege to set an initial default row label.

• The label security requirements are applied on top of the DAC requirements for each
user. Hence, the user must satisfy the DAC requirements and then the label security
requirements to access a row. The DAC requirements make sure that the user is legally
authorized to carry on that operation on the schema. In most applications, only some of
the tables need label-based security. For the majority of the application tables, the
protection provided by DAC is sufficient.

• Security policies are generally created by managers and human resources personnel.
The policies are high-level, technology neutral, and relate to risks. Policies are a result of
management instructions to specify organizational procedures, guiding principles, and
courses of action that are considered to be expedient, prudent, or advantageous. Policies
are typically accompanied by a definition of penalties and countermeasures if the policy is
transgressed. These policies are then interpreted and converted to a set of label-oriented
policies by the label security administrator, who defines the security labels for data and
authorizations for users; these labels and authorizations govern access to specified
protected objects.

• Suppose a user has SELECT privileges on a table. When the user executes a SELECT
statement on that table, label security will automatically evaluate each row returned by the
query to determine whether the user has rights to view the data. For example, if the user
has a sensitivity of 20, then the user can view all rows having a security level of 20 or
lower. The level determines the sensitivity of the information con- tained in a row; the
more sensitive the row, the higher its security label value. Such label security can be

configured to perform security checks on UPDATE, DELETE, and INSERT statements as
well.

 XML Access Control

• With the worldwide use of XML in commercial and scientific applications, efforts are
under way to develop security standards. Among these efforts are digital signatures and
encryption standards for XML. The XML Signature Syntax and Process- ing specification
describes an XML syntax for representing the associations between cryptographic signatures
and XML documents or other electronic resources. The specification also includes
procedures for computing and verifying XML signatures. An XML digital signature differs
from other protocols for message signing, such as OpenPGP (Pretty Good Privacy—a
confidentiality and authentication ser- vice that can be used for electronic mail and file
storage application), in its support for signing only specific portions of the XML tree rather
than the complete document. Additionally, the XML signature specification defines
mechanisms for countersigning and transformations—so-called canonicalization—to
ensure that two instances of the same text produce the same digest for signing even if
their representations differ slightly; for example, in typographic white space.

• The XML Encryption Syntax and Processing specification defines XML vocabulary and
processing rules for protecting confidentiality of XML documents in whole or in part and of
non-XML data as well. The encrypted content and additional processing information for the
recipient are represented in well-formed XML so that the result can be further processed
using XML tools. In contrast to other commonly used technologies for confidentiality, such
as SSL (Secure Sockets Layer—a leading Internet security protocol) and virtual private
networks, XML encryption also applies to parts of documents and to documents in
persistent storage. Database systems such as PostgreSQL or Oracle support JSON
(JavaScript Object Notation) objects as a data format and have similar facilities for JSON
objects like those defined above for XML.

 Access Control Policies for the Web and Mobile Appplications

Publicly accessible Web application environments present a unique challenge to database
security. These systems include those responsible for handling sensitive or private information and
include social networks, mobile application API servers, and e-commerce transaction platforms.

Electronic commerce (e-commerce) environments are characterized by any trans- actions that
are done electronically. They require elaborate access control policies that go beyond traditional
DBMSs. In conventional database environments, access control is usually performed using a set
of authorizations stated by security officers or users according to some security policies. Such a
simple paradigm is not well suited for a dynamic environment like e-commerce. Furthermore, in
an e-commerce environment the resources to be protected are not only traditional data but also
knowledge and experience. Such peculiarities call for more flexibility in specifying access control
policies. The access control mechanism must be flexible enough to support a wide spectrum of
heterogeneous protection objects.

Because many reservation, ticketing, payment, and online shopping systems process information
that is protected by law, the security architecture that goes beyond simple database access
control must be put in place to protect the information. When an unauthorized party
inappropriately accesses protected information, it amounts to a data breach, which has
significant legal and financial consequences. This unauthorized party could be an adversary that
actively seeks to steal protected information or may be an employee who overstepped his or her
role or incorrectly distributed protected information to others. Inappropriate handling of credit card
data, for instance, has led to significant data breaches at major retailers.

In conventional database environments, access control is usually performed using a set of
authorizations stated by security officers. But in Web applications, it is all too common that the

Web application itself is the user rather than a duly authorized individual. This gives rise to a
situation where the DBMS’s access control mechanisms are bypassed and the database
becomes just a relational data store to the sys- tem. In such environments, vulnerabilities like
SQL injection become significantly more dangerous because it may lead to a total data breach
rather than being limited to data that a particular account is authorized to access.

To protect against data breaches in these systems, a first requirement is a comprehensive
information security policy that goes beyond the technical access control mechanisms found in
mainstream DBMSs. Such a policy must protect not only traditional data, but also processes,
knowledge, and experience.

A second related requirement is the support for content-based access control. Content-based
access control allows one to express access control policies that take the protection object
content into account. In order to support content-based access control, access control policies
must allow inclusion of conditions based on the object content.

A third requirement is related to the heterogeneity of subjects, which requires access control
policies based on user characteristics and qualifications rather than on specific and individual
characteristics (for example, user Ids). A possible solu- tion that will allow better accounting of
user profiles in the formulation of access control policies, is to support the notion of credentials. A
credential is a set of properties concerning a user that are relevant for security purposes (for
example, age or position or role within an organization). For instance, by using credentials, one
can simply formulate policies such as Only permanent staff with five or more years of service can
access documents related to the internals of the system.

XML is expected to play a key role in access control for e-commerce applications6 because XML
is becoming the common representation language for document interchange over the Web, and
is also becoming the language for e-commerce. Thus, on the one hand, there is the need to
make XML representations secure by providing access control mechanisms specifically tailored
to the protection of XML documents. On the other hand, access control information (that is,
access control policies and user credentials) can be expressed using XML itself. The Directory
Services Markup Language (DSML) is a representation of directory service information in XML
syntax. It provides a foundation for a standard for communicating with the directory services that
will be responsible for providing and authenticating user credentials. The uniform presentation of
both protection objects and access control policies can be applied to policies and credentials
them- selves. For instance, some credential properties (such as the user name) may be
accessible to everyone, whereas other properties may be visible only to a restricted class of
users. Additionally, the use of an XML-based language for specifying credentials and access
control policies facilitates secure credential submission and export of access control policies.

 15. Explain in detail about SQL Injection.

SQL injection is one of the most common threats to a database system. Some of the other frequent
attacks on databases are:

■ Unauthorized privilege escalation. This attack is characterized by an indi- vidual attempting to
elevate his or her privilege by attacking vulnerable points in the database systems.

■ Privilege abuse. Whereas unauthorized privilege escalation is done by an unauthorized user,
this attack is performed by a privileged user. For exam- ple, an administrator who is allowed to change
student information can use this privilege to update student grades without the instructor’s permission.

■ Denial of service. A denial of service (DOS) attack is an attempt to make resources unavailable
to its intended users. It is a general attack category in which access to network applications or data is
denied to intended users by overflowing the buffer or consuming resources.

■ Weak authentication. If the user authentication scheme is weak, an attacker can impersonate
the identity of a legitimate user by obtaining her login credentials.

 SQL Injection Methods

Web programs and applications that access a database can send commands and data to the
database, as well as display data retrieved from the database through the Web browser. In an
SQL injection attack, the attacker injects a string input through the application, which changes or
manipulates the SQL statement to the attacker’s advantage. An SQL injection attack can harm
the database in various ways, such as unauthorized manipulation of the data- base or retrieval of
sensitive data. It can also be used to execute system-level commands that may cause the
system to deny service to the application.

Types of injection attacks are

1) SQL Manipulation. A manipulation attack, which is the most common type of injection
attack, changes an SQL command in the application—for example, by add- ing conditions to the
WHERE-clause of a query, or by expanding a query with addi- tional query components
using set operations such as UNION, INTERSECT, or MINUS. Other types of manipulation
attacks are also possible. A typical manipulation attack occurs during database login. For
example, suppose that a simplistic authentication procedure issues the following query and
checks to see if any rows were returned:

SELECT * FROM users WHERE username = ‘jake’ and PASSWORD = ‘jakespasswd’ ;

The attacker can try to change (or manipulate) the SQL statement by changing it as follows:

SELECT * FROM users WHERE username = ‘jake’ and (PASSWORD = ‘jakespasswd’ or ‘x’ = ‘x’) ;

As a result, the attacker who knows that ‘jake’ is a valid login of some user is able to log into the
database system as ‘jake’ without knowing his password and is able to do everything that ‘jake’
may be authorized to do to the database system.

2) Code Injection. : This type of attack attempts to add additional SQL statements or
commands to the existing SQL statement by exploiting a computer bug, which is caused
by processing invalid data. The attacker can inject or introduce code into a computer
program to change the course of execution. Code injection is a popular technique for
system hacking or cracking to gain information.

3) Function Call Injection. In this kind of attack, a database function or operating system
function call is inserted into a vulnerable SQL statement to manipulate the data or make a
privileged system call. For example, it is possible to exploit a func- tion that performs
some aspect related to network communication. In addition, functions that are contained
in a customized database package, or any custom data- base function, can be executed
as part of an SQL query. In particular, dynamically created SQL queries (see Chapter 10)
can be exploited since they are constructed at runtime.

For example, the dual table is used in the FROM clause of SQL in Oracle when a user needs to run
SQL that does not logically have a table name. To get today’s date, we can use:

SELECT SYSDATE FROM dual;

The following example demonstrates that even the simplest SQL statements can be vulnerable.

SELECT TRANSLATE (‘user input’, ‘from_string’, ‘to_string’) FROM dual;

Here, TRANSLATE is used to replace a string of characters with another string of characters.
The TRANSLATE function above will replace the characters of the ‘from_string’ with the
characters in the ‘to_string’ one by one. This means that the f will be replaced with the t, the r with
the o, the o with the _, and so on.

This type of SQL statement can be subjected to a function injection attack. Con- sider the
following example:

SELECT TRANSLATE (“ || UTL_HTTP.REQUEST (‘http://129.107.2.1/’) || ”, ‘98765432’, ‘9876’) FROM dual;

The user can input the string (“ || UTL_HTTP.REQUEST (‘http://129.107.2.1/’) ||”), where || is the
concatenate operator, thus requesting a page from a Web server. UTL_HTTP makes Hypertext
Transfer Protocol (HTTP) callouts from SQL. The REQUEST object takes a URL
(‘http://129.107.2.1/’ in this example) as a parameter, contacts that site, and returns the data
(typically HTML) obtained from that site. The attacker could manipulate the string he inputs, as
well as the URL, to include other functions and do other illegal operations. We just used a dummy
example to show conversion of ‘98765432’ to ‘9876’, but the user’s intent would be to access the
URL and get sensitive information. The attacker can then retrieve useful information from the
database server—located at the URL that is passed as a parameter—and send it to the Web
server (that calls the TRANSLATE function).

 Risks Associated with SQL Injection

SQL injection is harmful and the risks associated with it provide motivation for attackers. Some of
the risks associated with SQL injection attacks are explained below.

■ Database fingerprinting. The attacker can determine the type of database being used in the
backend so that he can use database-specific attacks that correspond to weaknesses in a particular
DBMS.

■ Denial of service. The attacker can flood the server with requests, thus denying service to valid
users, or the attacker can delete some data.

■ Bypassing authentication. This is one of the most common risks, in which the attacker can gain
access to the database as an authorized user and per- form all the desired tasks.

■ Identifying injectable parameters. In this type of attack, the attacker gathers important information
about the type and structure of the back-end database of a Web application. This attack is made possible
by the fact that the default error page returned by application servers is often overly descriptive.

■ Executing remote commands. This provides attackers with a tool to exe- cute arbitrary
commands on the database. For example, a remote user can execute stored database procedures and
functions from a remote SQL inter- active interface.

■ Performing privilege escalation. This type of attack takes advantage of logical flaws within the
database to upgrade the access level.

 Protection Techniques against SQL Injection

Protection against SQL injection attacks can be achieved by applying certain programming rules
to all Web-accessible procedures and functions. This section describes some of these
techniques.

Bind Variables (Using Parameterized Statements). The use of bind variables (also known as
parameters) protects against injection attacks and also improves performance.

Consider the following example using Java and JDBC: PreparedStatement stmt =

conn.prepareStatement(“SELECT * FROM
EMPLOYEE WHERE EMPLOYEE_ID=? AND PASSWORD=?”);

stmt.setString(1, employee_id); stmt.setString(2, password);

Instead of embedding the user input into the statement, the input should be bound to a
parameter. In this example, the input ‘1’ is assigned (bound) to a bind variable

http://129.107.2.1/
http://129.107.2.1/
http://129.107.2.1/
http://129.107.2.1/

‘employee_id’ and input ‘2’ to the bind variable ‘password’ instead of directly passing string
parameters.

Filtering Input (Input Validation). This technique can be used to remove escape characters from
input strings by using the SQL Replace function. For example, the delimiter single quote (‘) can be
replaced by two single quotes (‘’). Some SQL manipulation attacks can be prevented by using this
technique, since escape characters can be used to inject manipulation attacks. However,
because there can be a large number of escape characters, this technique is not reliable.

Function Security. Database functions, both standard and custom, should be restricted, as they
can be exploited in the SQL function injection attacks.

 16. Explain about Statistical Database Security.

Statistical databases are used mainly to produce statistics about various populations. The
database may contain confidential data about individuals; this information should be protected
from user access. However, users are permitted to retrieve statistical information about the
populations, such as averages, sums, counts, maximums, minimums, and standard deviations.
The techniques that have been developed to protect the privacy of individual information are
beyond the scope of this text. We will illustrate the problem with a very simple example, which
refers to the relation shown in Figure. This is a PERSON relation with the attributes Name, Ssn,
Income, Address, City, State, Zip, Sex, and Last_degree.

A population is a set of tuples of a relation (table) that satisfy some selection condition. Hence,
each selection condition on the PERSON relation will specify a particular population of PERSON
tuples. For example, the condition Sex = ‘M’ specifies the male population; the condition ((Sex =
‘F’) AND (Last_degree = ‘M.S.’ OR Last_degree= ‘Ph.D.’)) specifies the female population that has
an M.S. or Ph.D. degree as their highest degree; and the condition City = ‘Houston’ specifies the
population that lives in Houston.

Statistical queries involve applying statistical functions to a population of tuples. For example, we
may want to retrieve the number of individuals in a population or the average income in the
population. However, statistical users are not allowed to retrieve individual data, such as the
income of a specific person. Statistical database security techniques must prohibit the retrieval of
individual data. This can be achieved by prohibiting queries that retrieve attribute values and by
allowing

Figure . The PERSON relation schema for illustrating statistical database security.

PERSON

only queries that involve statistical aggregate functions such as COUNT, SUM, MIN, MAX, AVERAGE, and

STANDARD DEVIATION. Such queries are sometimes called statistical queries.

It is the responsibility of a database management system to ensure the confidentiality of information
about individuals while still providing useful statistical summaries of data about those individuals to
users. Provision of privacy protection of users in a statistical database is paramount; its violation is
illustrated in the following example.

Name Ssn Income Address City State Zip Sex Last_degree

In some cases it is possible to infer the values of individual tuples from a sequence of statistical
queries. This is particularly true when the conditions result in a population consisting of a small
number of tuples. As an illustration, consider the following statistical queries:

Q1: SELECT COUNT (*)FROM PERSON

WHERE <condition>;

Q2: SELECT AVG (Income) FROM PERSON

WHERE <condition>;

Now suppose that we are interested in finding the Salary of Jane Smith, and we know that she
has a Ph.D. degree and that she lives in the city of Bellaire, Texas. We issue the statistical query
Q1 with the following condition:

(Last_degree=‘Ph.D.’ AND Sex=‘F’ AND City=‘Bellaire’ AND State=‘Texas’)

If we get a result of 1 for this query, we can issue Q2 with the same condition and find the Salary
of Jane Smith. Even if the result of Q1 on the preceding condition is not 1 but is a small number—
say 2 or 3—we can issue statistical queries using the functions MAX, MIN, and AVERAGE to
identify the possible range of values for the Salary of Jane Smith.

The possibility of inferring individual information from statistical queries is reduced if no statistical
queries are permitted whenever the number of tuples in the population specified by the selection
condition falls below some threshold. Another technique for prohibiting retrieval of individual
information is to prohibit sequences of queries that refer repeatedly to the same population of tuples.
It is also possible to introduce slight inaccuracies or noise into the results of statistical queries
deliberately, to make it difficult to deduce individual information from the results. Another technique is
partitioning of the database. Partitioning implies that records are stored in groups of some
minimum size; queries can refer to any complete group or set of groups, but never to subsets of
records within a group. The interested reader is referred to the bibliography at the end of this chapter
for a discussion of these techniques.

 17. Elaborate about Flow Control.

Flow control regulates the distribution or flow of information among accessible objects. A flow
between object X and object Y occurs when a program reads values from X and writes values into
Y. Flow controls check that information contained in some objects does not flow explicitly or
implicitly into less protected objects. Thus, a user cannot get indirectly in Y what he or she cannot
get directly in X. Active flow control began in the early 1970s. Most flow controls employ some
concept of security class; the transfer of information from a sender to a receiver is allowed only if
the receiver’s security class is at least as privileged as the sender’s. Examples of a flow control include
preventing a service program from leaking a customer’s confidential data, and blocking the
transmission of secret military data to an unknown classified user.

A flow policy specifies the channels along which information is allowed to move. The simplest flow
policy specifies just two classes of information—confidential (C) and nonconfidential (N)—and allows
all flows except those from class C to class N. This policy can solve the confinement problem that
arises when a service program handles data such as customer information, some of which may be
confidential. For example, an income-tax-computing service might be allowed to retain a
customer’s address and the bill for services rendered, but not a customer’s income or deductions.

Access control mechanisms are responsible for checking users’ authorizations for resource
access: Only granted operations are executed. Flow controls can be enforced by an extended
access control mechanism, which involves assigning a security class (usually called the
clearance) to each running program. The program is allowed to read a particular memory segment
only if its security class is as high as that of the segment. It is allowed to write in a segment only if

its class is as low as that of the segment. This automatically ensures that no information
transmitted by the person can move from a higher to a lower class. For example, a military pro-
gram with a secret clearance can only read from objects that are unclassified and confidential
and can only write into objects that are secret or top secret.

Two types of flow can be distinguished: explicit flows, which occur as a consequence of assignment
instructions, such as Y:= f(X1,Xn,); and implicit flows, which are generated by conditional
instructions, such as if f(Xm+1, … , Xn) then Y:= f (X1,Xm).

Flow control mechanisms must verify that only authorized flows, both explicit and implicit, are
executed. A set of rules must be satisfied to ensure secure information flows. Rules can be
expressed using flow relations among classes and assigned to information, stating the authorized
flows within a system. (An information flow from A to B occurs when information associated with
A affects the value of information associated with B. The flow results from operations that cause
information transfer from one object to another.) These relations can define, for a class, the set of
classes where information (classified in that class) can flow, or can state the specific relations to
be verified between two classes to allow information to flow from one to the other. In general, flow
control mechanisms implement the controls by assigning a label to each object and by specifying
the security class of the object. Labels are then used to verify the flow relations defined in the
model.

 Covert Channels

A covert channel allows a transfer of information that violates the security or the policy.
Specifically, a covert channel allows information to pass from a higher classification level to a
lower classification level through improper means. Covert channels can be classified into two
broad categories: timing channels and storage. The distinguishing feature between the two is that
in a timing channel the information is conveyed by the timing of events or processes, whereas
storage channels do not require any temporal synchronization, in that information is conveyed by
accessing system information or what is otherwise inaccessible to the user.

In a simple example of a covert channel, consider a distributed database system in which two
nodes have user security levels of secret (S) and unclassified (U). In order for a transaction to
commit, both nodes must agree to commit. They mutually can only do operations that are
consistent with the *-property, which states that in any transaction, the S site cannot write or pass
information to the U site. However, if these two sites collude to set up a covert channel between
them, a transaction involving secret data may be committed unconditionally by the U site, but the
S site may do so in some predefined agreed-upon way so that certain information may be passed
from the S site to the U site, violating the *-property. This may be achieved where the transaction
runs repeatedly, but the actions taken by the S site implicitly convey information to the U site.
Measures such as locking, prevent concurrent writing of the information by users with different
security levels into the same objects, preventing the storage-type covert channels. Operating
systems and distributed databases provide control over the multiprogramming of operations,
which allows a sharing of resources without the possibility of encroachment of one program or
process into another’s memory or other resources in the system, thus preventing timing-oriented
covert channels. In general, covert channels are not a major problem in well-implemented robust
data- base implementations. However, certain schemes may be contrived by clever users that
implicitly transfer information.

Some security experts believe that one way to avoid covert channels is to disallow programmers
to actually gain access to sensitive data that a program will process after the program has been
put into operation. For example, a programmer for a bank has no need to access the names or
balances in depositors’ accounts. Programmers for brokerage firms do not need to know what
buy and sell orders exist for clients. During program testing, access to a form of real data or
some sample test data may be justifiable, but not after the program has been accepted for regular
use.

 18. Explain about Encryption and Public Key Infrastructures.

The previous methods of access and flow control, despite being strong control measures, may not
be able to protect databases from some threats. Suppose we communicate data, but our data falls
into the hands of a non legitimate user. In this situation, by using encryption we can disguise the
message so that even if the transmission is diverted, the message will not be revealed. Encryption
is the conversion of data into a form, called a cipher text, that cannot be easily understood by
unauthorized persons. It enhances security and privacy when access controls are bypassed,
because in cases of data loss or theft, encrypted data cannot be easily understood by
unauthorized persons.

With this background, we adhere to following standard definitions:

■ Cipher text: Encrypted (enciphered) data

■ Plaintext (or clear text): Intelligible data that has meaning and can be read or acted upon without
the application of decryption

■ Encryption: The process of transforming plaintext into ciphertext

■ Decryption: The process of transforming ciphertext back into plaintext

Encryption consists of applying an encryption algorithm to data using some pre- specified encryption key.

The resulting data must be decrypted using a decryption key to recover the original data.

 The Data Encryption and Advanced Encryption Standards

The Data Encryption Standard (DES) is a system developed by the U.S. government for use by
the general public. It has been widely accepted as a cryptographic standard both in the United
States and abroad. DES can provide end-to-end encryption on the channel between sender A
and receiver B. The DES algorithm is a careful and complex combination of two of the
fundamental building blocks of encryption: substitution and permutation (transposition). The
algorithm derives its strength from repeated application of these two techniques for a total of 16
cycles. Plaintext (the original form of the message) is encrypted as blocks of 64 bits. Although the
key is 64 bits long, in effect the key can be any 56-bit number. After questioning the adequacy of
DES, the NIST introduced the Advanced Encryption Standard (AES). This algorithm has a block
size of 128 bits, compared with DES’s 56-block size, and can use keys of 128, 192, or 256 bits,
com- pared with DES’s 56-bit key. AES introduces more possible keys, compared with DES, and
thus takes a much longer time to crack. In present systems, AES is the default with large key
lengths. It is also the standard for full drive encryption products, with both Apple FileVault and
Microsoft BitLocker using 256-bit or 128-bit keys. Triple DES is a fallback option if a legacy
system cannot use a modern encryption standard.

 Symmetric Key Algorithms

A symmetric key is one key that is used for both encryption and decryption. By using a
symmetric key, fast encryption and decryption is possible for routine use with sensitive data in
the database. A message encrypted with a secret key can be decrypted only with the same
secret key. Algorithms used for symmetric key encryption are called secret key algorithms.
Since secret-key algorithms are mostly used for encrypting the content of a message, they are
also called content-encryption algorithms.

The major liability associated with secret-key algorithms is the need for sharing the secret key. A
possible method is to derive the secret key from a user-supplied password string by applying the
same function to the string at both the sender and receiver; this is known as a password-based
encryption algorithm. The strength of the symmetric key encryption depends on the size of the key

used. For the same algorithm, encrypting using a longer key is tougher to break than the one using a
shorter key.

 Public (Asymmetric) Key Encryption

In 1976, Diffie and Hellman proposed a new kind of cryptosystem, which they called public key
encryption. Public key algorithms are based on mathematical functions rather than operations on
bit patterns. They address one drawback of symmetric key encryption, namely that both sender
and recipient must exchange the common key in a secure manner. In public key systems, two
keys are used for encryption/decryption. The public key can be transmitted in a nonsecure way,
whereas the private key is not transmitted at all. These algorithms—which use two related keys, a
public key and a private key, to perform complementary operations (encryption and decryption)—
are known as asymmetric key encryption algorithms. The use of two keys can have profound
consequences in the areas of confidentiality, key distribution, and authentication. The two keys
used for public key encryption are referred to as the public key and the private key. The private key
is kept secret, but it is referred to as a private key rather than a secret key (the key used in
conventional encryption) to avoid confusion with conventional encryption. The two keys are
mathematically related, since one of the keys is used to perform encryption and the other to
perform decryption. However, it is very difficult to derive the private key from the public key.

A public key encryption scheme, or infrastructure, has six ingredients:

1. Plaintext. This is the data or readable message that is fed into the algorithm as input.

2. Encryption algorithm. This algorithm performs various transformations on the plaintext.

3. Public and private keys. These are a pair of keys that have been selected so that if one is used
for encryption, the other is used for decryption. The exact transformations performed by the encryption
algorithm depend on the public or private key that is provided as input. For example, if a message is
encrypted using the public key, it can only be decrypted using the private key.

5. Ciphertext. This is the scrambled message produced as output. It depends on the plaintext and
the key. For a given message, two different keys will produce two different ciphertexts.

6. Decryption algorithm. This algorithm accepts the ciphertext and the matching key and
produces the original plaintext.

The public key of the pair is made public for others to use, whereas the private key is known only
to its owner. A general-purpose public key cryptographic algorithm relies on one key for
encryption and a different but related key for decryption. The essential steps are as follows:

1. Each user generates a pair of keys to be used for the encryption and decryption of messages.

2. Each user places one of the two keys in a public register or other accessible file. This is the public
key. The companion key is kept private.

3. If a sender wishes to send a private message to a receiver, the sender encrypts the message using
the receiver’s public key.

4. When the receiver receives the message, he or she decrypts it using the receiver’s private key.
No other recipient can decrypt the message because only the receiver knows his or her private key.

The RSA Public Key Encryption Algorithm. One of the first public key schemes was introduced in
1978 by Ron Rivest, Adi Shamir, and Len Adleman at MIT and is named after them as the RSA
scheme. The RSA scheme has since then reigned supreme as the most widely accepted and
implemented approach to public key encryption. The RSA encryption algorithm incorporates
results from number theory, combined with the difficulty of determining the prime factors of a
target. The RSA algorithm also operates with modular arithmetic—mod n.

Two keys, d and e, are used for decryption and encryption. An important property is that they can
be interchanged. n is chosen as a large integer that is a product of two large distinct prime
numbers, a and b, n = a × b. The encryption key e is a randomly chosen number between 1 and n

that is relatively prime to (a − 1) × (b − 1). The plaintext block P is encrypted as Pe where Pe = P

mod n. Because the exponentiation is performed mod n, factoring Pe to uncover the encrypted

plaintext is difficult. However, the decrypting key d is carefully chosen so that (Pe)d mod n = P. The
decryption key d can be computed from the condition that d × e = 1 mod ((a − 1) × (b − 1)). Thus,

the legitimate receiver who knows d simply computes (Pe) d mod n = P and recovers P without

having to factor Pe.

 Digital Signatures

A digital signature is an example of using encryption techniques to provide authentication services
in electronic commerce applications. Like a handwritten signature, a digital signature is a means
of associating a mark unique to an individual with a body of text. The mark should be
unforgettable, meaning that others should be able to check that the signature comes from the
originator.

A digital signature consists of a string of symbols. If a person’s digital signature were always the
same for each message, then one could easily counterfeit it by simply copying the string of
symbols. Thus, signatures must be different for each use. This can be achieved by making each
digital signature a function of the message that it is signing, together with a timestamp. To be
unique to each signer and counterfeitproof, each digital signature must also depend on some
secret number that is unique to the signer. Thus, in general, a counterfeitproof digital signature
must depend on the message and a unique secret number of the signer. The verifier of the
signature, however, should not need to know any secret number. Public key techniques are the
best means of creating digital signatures with these properties.

 Digital Certificates

A digital certificate is used to combine the value of a public key with the identity of the person or
service that holds the corresponding private key into a digitally signed statement. Certificates are
issued and signed by a certification authority (CA). The entity receiving this certificate from a CA is
the subject of that certificate. Instead of requiring each participant in an application to authenticate
every user, third-party authentication relies on the use of digital certificates.

The digital certificate itself contains various types of information. For example, both the
certification authority and the certificate owner information are included. The following list
describes all the information included in the certificate:

1. The certificate owner information, which is represented by a unique identi- fier known as the
distinguished name (DN) of the owner. This includes the owner’s name, as well as the owner’s
organization and other information about the owner.

2. The certificate also includes the public key of the owner.

3. The date of issue of the certificate is also included.

4. The validity period is specified by ‘Valid From’ and ‘Valid To’ dates, which are included in each
certificate.

5. Issuer identifier information is included in the certificate.

6. Finally, the digital signature of the issuing CA for the certificate is included. All the information
listed is encoded through a message-digest function, which creates the digital signature. The digital
signature basically certifies that the association between the certificate owner and public key is valid.

 Privacy Issues and Preservation

Preserving data privacy is a growing challenge for database security and privacy experts. In
some perspectives, to preserve data privacy we should even limit performing large-scale data

mining and analysis. The most commonly used techniques to address this concern are to avoid
building mammoth central warehouses as a single repository of vital information. This is one of
the stumbling blocks for creating nationwide registries of patients for many important diseases.
Another possible measure is to intentionally modify or perturb data.

If all data were available at a single warehouse, violating only a single repository’s security could
expose all data. Avoiding central warehouses and using distributed data mining algorithms
minimizes the exchange of data needed to develop globally valid models. By modifying,
perturbing, and anonymizing data, we can also mitigate privacy risks associated with data mining.
This can be done by removing iden tity information from the released data and injecting noise into
the data. However, by using these techniques, we should pay attention to the quality of the
resulting data in the database, which may undergo too many modifications. We must be able to
estimate the errors that may be introduced by these modifications.

Privacy is an important area of ongoing research in database management. It is complicated due
to its multidisciplinary nature and the issues related to the subjectivity in the interpretation of
privacy, trust, and so on. As an example, consider medical and legal records and transactions,
which must maintain certain privacy requirements. Providing access control and privacy for
mobile devices is also receiving increased attention. DBMSs need robust techniques for efficient
storage of security-relevant information on small devices, as well as trust negotiation techniques.
Where to keep information related to user identities, profiles, credentials, and permissions and
how to use it for reliable user identification remains an important problem. Because large-sized
streams of data are generated in such environments, efficient techniques for access control must
be devised and integrated with processing techniques for continuous queries. Finally, the privacy
of user location data, acquired from sensors and communication networks, must be ensured.

 19. Explain about the Challenges to Maintaining Database Security.

Considering the vast growth in volume and speed of threats to databases and information assets,
research efforts need to be devoted to a number of issues: data quality, intellectual property
rights, and database survivability, to name a few.

1) Data Quality

The database community needs techniques and organizational solutions to assess and attest to
the quality of data. These techniques may include simple mechanisms such as quality stamps
that are posted on Web sites. We also need techniques that provide more effective integrity
semantics verification and tools for the assessment of data quality, based on techniques such as
record linkage. Application-level recovery techniques are also needed for automatically repairing
incorrect data. The ETL (extract, transform, load) tools widely used to load data in data
warehouses are presently grappling with these issues.

 2) Intellectual Property Rights

With the widespread use of the Internet and intranets, legal and informational aspects of data are
becoming major concerns for organizations. To address these concerns, watermarking
techniques for relational data have been proposed. The main purpose of digital watermarking is
to protect content from unauthorized duplication and distribution by enabling provable ownership
of the content. Digital watermarking has traditionally relied upon the availability of a large noise
domain within which the object can be altered while retaining its essential properties. How- ever,
research is needed to assess the robustness of such techniques and to investi- gate different
approaches aimed at preventing intellectual property rights violations.

 3) Database Survivability

Database systems need to operate and continue their functions, even with reduced capabilities,

despite disruptive events such as information warfare attacks. A DBMS, in addition to making every
effort to prevent an attack and detecting one in the event of occurrence, should be able to do the
following:

■ Confinement. Take immediate action to eliminate the attacker’s access to the system and to
isolate or contain the problem to prevent further spread.

■ Damage assessment. Determine the extent of the problem, including failed functions and
corrupted data.

■ Reconfiguration. Reconfigure to allow operation to continue in a degraded mode while recovery
proceeds.

■ Repair. Recover corrupted or lost data and repair or reinstall failed system functions to
reestablish a normal level of operation.

■ Fault treatment. To the extent possible, identify the weaknesses exploited in the attack and take
steps to prevent a recurrence.

The goal of the information warfare attacker is to damage the organization’s operation and
fulfillment of its mission through disruption of its information systems. The specific target of an
attack may be the system itself or its data. Although attacks that bring the system down outright are
severe and dramatic, they must also be well timed to achieve the attacker’s goal, since attacks will
receive immediate and concentrated attention in order to bring the system back to operational
condition, diagnose how the attack took place, and install preventive measures.

Unit-5

Part-A

 1. What Constitutes a DDB

For a database to be called distributed, the following minimum conditions should be satisfied:
■ Connection of database nodes over a computer network. There are mul- tiple computers, called
sites or nodes. These sites must be connected by an underlying network to transmit data and commands
among sites.
■ Logical interrelation of the connected databases. It is essential that the information in the various
database nodes be logically related.
■ Possible absence of homogeneity among connected nodes. It is not neces- sary that all nodes be
identical in terms of data, hardware, and software.

2. Define distributed database.

Distributed database (DDB) as a collection of multiple logically interrelated databases distributed over a

computer network, and a distributed database management system (DDBMS) as a software system that

manages a distributed database while making the distribution transparent to the user.

3. What are two main types of multiprocessor system architectures?
■ Shared memory (tightly coupled) architecture. Multiple processors share secondary

(disk) storage and also share primary memory.
■ Shared disk (loosely coupled) architecture. Multiple processors share sec- ondary (disk)

storage but each has their own primary memory.

4. List the various stages of distributed database query processing.

 Various stages of distributed database query processing are

a) Query Mapping
b) Localization.
c) Global Query Optimization
d) Local Query Optimization

5. Write down the differences between NoSQL and RDBMS?

 Following is a list of the differences between NoSQL and RDBMS: –

• In terms of data format, NoSQL does not follow any order for its data format. Whereas, RDBMS is
more organized and structured when it comes to the format of its data.
When it comes to scalability, NoSQL is more very good and more scalable. Whereas, RDBMS is
average and less scalable than NoSQL.
For querying of data, NoSQL is limited in terms of querying because there is no join clause
present in NoSQL. Whereas, querying can be used in RDBMS as it uses the structured query
language.
The difference in the storage mechanism of NoSQL and RDBMS, NoSQL uses key-value pairs,
documents, column storage, etc. for storage. Whereas, RDBMS uses various tables for storing
data and relationships.

6. What do you understand by NoSQL in databases?

The database management systems which are highly scalable and flexible are known as NoSQL

databases. These databases allow us to store and process unstructured and semi-structured data which is

not possible when we make use of the Relational database management system. NoSQL can be termed

as a solution to all the conventional databases which were not able to handle the data seamlessly. It also

gives an opportunity to the companies to store massive amounts of structured and unstructured data in

real-time. In today’s time, big firms such as- Google, Facebook, Amazon, etc. use NoSQL for providing

cloud-based services for storing data in real-time.

7. List some of the features of NoSQL?

https://www.youtube.com/watch?v=gJBOgG-JbT4

Some of the features of NoSQL are listed below: –

Using NoSQL, we can store a large amount of structured, semi-structured, and unstructured data.

It supports agile sprint, quick iteration, and frequent code pushes.

It uses object-oriented programming which is frequent and is also easy to use.

It is more efficient. It has a scale-out architecture. It is cheap instead of being expensive. It has a

monolithic architecture. It can be easily accessed.

8. What are the pros and cons of a graph database under NoSQL databases?

Following are the pros and cons of a graph database which is a type of NoSQL databases: –

Pros of using graph database:

These are tailor-made for networking applications. A social network is a good example of this.

They can also be perfect for an object-oriented programming system.

Cons of using graph database:

Since the degree of interconnection between nodes is high in the graph database, so it is not suitable for

network partitioning.

Also, graph databases don’t scale out well in NoSQL databases.

9. List the different kinds of NoSQL data stores?

The variety of NoSQL data stores available which are widely distributed are categorized into four

categories. They are: –

Key-value store– it is a simple data storage key system that uses keys to access different values.

Column family store– it is a sparse matrix system. It uses columns and rows as keys.

Graph store– it is used in case of relationships-intensive problems.

Document stores- it is used for storing hierarchical data structures directly in the database.

10. What is the CAP Theorem? How is it applicable to NoSQL systems?

The CAP theorem was proposed by Eric Brewer in early 2000. In this, three system attributes have been

discussed within the distributed databases. That is-

Consistency- in this, all the nodes see the same data at the same time.

Availability- it gives us a guarantee that there will be a response for every request made to the system

about whether it was successful or not.

Partition tolerance- it is the quality of the NoSQL database management system which states that the

system will work even if a part of the system has failed or is not working.

A distributed database system might provide only 2 of the 3 above qualities.

11. What do you mean by eventual consistency in NoSQL stores?

Eventual consistency in NoSQL means that when all the service logics have been executed, the system is

left in a consistent state. For achieving high availability, this concept is used in the distributed systems. It

gives a guarantee that, if new updates are not made to a given data item, then eventually all accesses to

that item will return the last updated value. In NoSQL, it is provided in terms of BASE and RDMS are also

known as the ACID properties. Present NoSQL databases provide client applications with a guarantee of

eventual consistency. Some NoSQL databases like- MongoDB and Cassandra are eventually consistent in

some of the configurations.

12. What are the different types of NoSQL databases? Give some examples.

NoSQL database can be classified as 4 basic types:

1. Key-value store NoSQL database

2.Document store NoSQL database

3.Column store NoSQL database

4. Graph-based NoSQL database

There are many NoSQL databases. MongoDB, Cassandra, CouchDB, Hypertable, Redis, Riak, Neo4j,

HBase, Couchbase, MemcacheDB, Voldemort, RevenDB, etc. are examples of NoSQL databases.

13. Is MongoDB better than other SQL databases? If yes then how?

MongoDB is better than other SQL databases because it allows a highly flexible and scalable document

structure.

For example:

One data document in MongoDB can have five columns and the other one in the same collection can

have ten columns.

MongoDB database is faster than SQL databases due to efficient indexing and storage techniques.

14. Why MongoDB is known as the best NoSQL database?

MongoDB is the best NoSQL database because it is:

1. Document Oriented

2. Rich Query language

3. High Performance

4. Highly Available

5. Easily Scalable

 15. Explain the structure of ObjectID in MongoDB.

ObjectID is a 12-byte BSON type. These are:

1. 4 bytes value representing seconds

2. 3-byte machine identifier

3. 2-byte process id

4.3 byte counter

16. What are Indexes in MongoDB?

In MongoDB, Indexes are used to execute queries efficiently. Without indexes, MongoDB must perform a

collection scan, i.e. scan every document in a collection, to select those documents that match the query

statement. If an appropriate index exists for a query, MongoDB can use the index to limit the number of

documents it must inspect.

17. What is a Namespace in MongoDB?

A namespace is a concatenation of the database name and the collection name. Collection, in which

MongoDB stores BSON objects.

18. How to do Transaction/locking in MongoDB?

MongoDB doesn’t use traditional locking or complex transaction with Rollback. MongoDB is designed to

be lightweight, fast and predictable to its performance. It keeps transaction support simply to enhance

performance.

34) Why 32-bit version of MongoDB is not preferred?

Because MongoDB uses memory-mapped files so when you run a 32-bit build of MongoDB, the total

storage size of the server is 2 GB. But when you run a 64-bit build of MongoDB, this provides virtually

unlimited storage size. So 64-bit is preferred over 32-bit.

19. What is the importance of covered queries?

Covered query makes the execution of the query faster because indexes are stored in RAM or

sequentially located on disk. It makes the execution of the query faster.

Covered query makes the fields are covered in the index itself, MongoDB can match the query condition

as well as return the result fields using the same index without looking inside the documents.

20. What is sharding in MongoDB?

In MongoDB, Sharding is a procedure of storing data records across multiple machines. It is a MongoDB

approach to meet the demands of data growth. It creates a horizontal partition of data in a database or

search engine. Each partition is referred to as a shard or database shard.

21. What is a replica set in MongoDB?

A replica can be specified as a group of mongo instances that host the same data set. In a replica set, one

node is primary, and the other is secondary. All data is replicated from primary to secondary nodes.

22. What is the primary and secondary replica set in MongoDB?

In MongoDB, primary nodes are the nodes that can accept write. These are also known as master nodes.

The replication in MongoDB is a single master so, only one node can accept write operations at a time.

Secondary nodes are known as slave nodes. These are read-only nodes that replicate from the primary.

23. What is CRUD in MongoDB?

MongoDB supports following CRUD operations:

1. Create

2. Read

3. Update

4. Delete

24. What is DynamoDB?

• Amazon DynamoDB is a fully managed proprietary NoSQL database service that provides fast and
predictable performance with seamless scalability.

• It supports key-value and document data structures

• DynamoDB allows users to create tables for your database to store and retrieve any data volume
and to support any request traffic level.

 25. What is NO-SQL Key-Value Stores?

• Key-value stores focus on high performance, availability, and scalability by storing data in a
distributed storage system. The data model used in key-value stores is relatively simple,
and in many of these systems, there is no query language but rather a set of operations

that can be used by the application programmers.

• The key is a unique identifier associated with a data item and is used to locate this data
item rapidly.

• The value is the data item itself, and it can have very different formats for different key-
value storage systems. In some cases, the value is just a string of bytes or an array of
bytes, and the application using the key-value store has to interpret the structure of the
data value. In other cases, some standard formatted data is allowed; for example,
structured data rows (tuples) similar to relational data, or semistructured data using JSON
or some other self-describing data format. Different key-value stores can thus store
unstructured, semistructured, or structured data items. The main characteristic of key-
value stores is the fact that every value (data item) must be associated with a unique key,
and that retrieving the value by supplying the key must be very fast.

26. What is BigTable and HBase?

BigTable (and Hbase) is sometimes described as a sparse multidimensional distributed
persistent sorted map, where the word map means a collection of (key, value) pairs (the key is
mapped to the value). One of the main differences that distinguish column-based systems from
key-value stores is the nature of the key. In column-based systems such as Hbase, the key is
multidimensional and so has several components: typically, a combination of table name, row
key, column, and timestamp. As we shall see, the column is typically composed of two compo-
nents: column family and column qualifier. We discuss these concepts in more detail next as
they are realized in Apache Hbase.

27. What is graph database?

In graph databases or graph- oriented NOSQL systems, the data is represented as a graph,
which is a collection of vertices (nodes) and edges. Both nodes and edges can be labeled to
indicate the types of entities and relationships they represent, and it is generally possible to store
data associated with both individual nodes and individual edges. Many systems can be
categorized as graph databases. We will focus our discussion on one particular system, Neo4j,
which is used in many applications. Neo4j is an open source system, and it is implemented in
Java.

28. What is difference between MongoDB and DynamoDB?

MongoDB DynamoDB

MongoDB is designed and developed by MongoDB

Inc.

DynamoDB is designed and

developed by Amazon.com.

MongoDB uses JSON-like documents. DynamoDB uses tables, items

and attributes.

MongoDB is difficult to configure and install it. That

is because it does not have provide guidance to

perform. In order to make it easier to use MongoDB,

they have provided MongoDB Atlas which is a cloud

hosted.

Setting up and installation of

DynamoDB is very easy since it

is a web service provided by

Amazon.com.

MongoDB supports more data types and has fewer size

restrictions.

DynamoDB supports limited

data types and smaller item

sizes.

MongoDB is not so secure, because by default it keeps

authentication off while installing MongoDB.

DynamoDB security is better

and is usually supported by the

security measure provided by

AWS.

29. Define SQL injection attack.

In an SQL injection attack, the attacker injects a string input through the application, which
changes or manipulates the SQL statement to the attacker’s advantage. An SQL injection attack
can harm the database in various ways, such as unauthorized manipulation of the data- base or
retrieval of sensitive data. It can also be used to execute system-level commands that may cause
the system to deny service to the application.

30. What are Types of injection attacks?
Types of injection attacks are

• SQL Manipulation

• Code Injection

• Function Call Injection

 31. What are the Risks Associated with SQL Injection?

SQL injection is harmful and the risks associated with it provide motivation for attackers. Some of
the risks associated with SQL injection attacks are explained below.
■ Database fingerprinting. The attacker can determine the type of database being used in the
backend so that he can use database-specific attacks that correspond to weaknesses in a particular
DBMS.
■ Denial of service. The attacker can flood the server with requests, thus denying service to valid
users, or the attacker can delete some data.
■ Bypassing authentication. This is one of the most common risks, in which the attacker can gain
access to the database as an authorized user and per- form all the desired tasks.
■ Identifying injectable parameters. In this type of attack, the attacker gathers important information
about the type and structure of the back-end database of a Web application. This attack is made possible
by the fact that the default error page returned by application servers is often overly descriptive.
■ Executing remote commands. This provides attackers with a tool to exe- cute arbitrary
commands on the database. For example, a remote user can execute stored database procedures and
functions from a remote SQL inter- active interface.
Performing privilege escalation. This type of attack takes advantage of logical flaws within the database to

upgrade the access level.

32. What is flow control?

Flow control regulates the distribution or flow of information among accessible objects. A flow between

object X and object Y occurs when a program reads values from X and writes values into Y. Flow controls

check that information contained in some objects does not flow explicitly or implicitly into less protected

objects. Thus, a user cannot get indirectly in Y what he or she cannot get directly in X.

33. What is covert channel?

Covert channel allows information to pass from a higher classification level to a lower classification level

through improper means. Covert channels can be classified into two broad categories: timing channels

and storage. The distinguishing feature between the two is that in a timing channel the information is

conveyed by the timing of events or processes, whereas storage channels do not require any temporal

synchronization, in that information is conveyed by accessing system information or what is otherwise

inaccessible to the user.

34. Define secret key algorithms.

A symmetric key is one key that is used for both encryption and decryption. By using a symmetric key,

fast encryption and decryption is possible for routine use with sensitive data in the database. A

message encrypted with a secret key can be decrypted only with the same secret key. Algorithms used

for symmetric key encryption are called secret key algorithms.

35. Define asymmetric key encryption algorithms.

Public key algorithms are based on mathematical functions rather than operations on bit patterns. They

address one drawback of symmetric key encryption, namely that both sender and recipient must

exchange the common key in a secure manner. In public key systems, two keys are used for

encryption/decryption. The public key can be transmitted in a nonsecure way, whereas the private key is

not transmitted at all. These algorithms—which use two related keys, a public key and a private key, to

perform complementary operations (encryption and decryption)—are known as asymmetric key

encryption algorithms.

36. Define digital certificate.

A digital certificate is used to combine the value of a public key with the identity of the person or
service that holds the corresponding private key into a digitally signed statement. Certificates are
issued and signed by a certification authority (CA). The entity receiving this certificate from a CA is
the subject of that certificate. Instead of requiring each participant in an application to authenticate
every user, third-party authentication relies on the use of digital certificates.

37. Define plaintext, cipher text, private key , public key, encryption algorithm, decryption algorithm.

• Plaintext. This is the data or readable message that is fed into the algorithm as input.

• Encryption algorithm. This algorithm performs various transformations on the plaintext.

• Public and private keys. These are a pair of keys that have been selected so that if one is used
for encryption, the other is used for decryption. The exact transformations performed by the
encryption algorithm depend on the public or private key that is provided as input. For example,
if a message is encrypted using the public key, it can only be decrypted using the private key.

• Ciphertext. This is the scrambled message produced as output. It depends on the plaintext and
the key. For a given message, two different keys will produce two different ciphertexts.

• Decryption algorithm. This algorithm accepts the ciphertext and the matching key and produces
the original plaintext.

38 . What is digital signature?

Digital signature is a means of associating a mark unique to an individual with a body of text. The
mark should be unforgettable, meaning that others should be able to check that the signature
comes from the originator.
A digital signature consists of a string of symbols. If a person’s digital signature were always the same for

each message, then one could easily counterfeit it by simply copying the string of symbols. Thus,

signatures must be different for each use.

Part-B

1. Explain about Distributed Database Concepts, characteristics and the advantages.

2. Discuss about Data Fragmentation, Replication, and Allocation Techniques for Distributed

Database Design.

3. Explain about Transaction Management in Distributed Databases.

4. Explain about Query Processing and Optimization in Distributed Databases.

5. Explain about Distributed Database Architectures.

6. Explain about Emergence of NOSQL Systems, Characteristics of NOSQL Systems and types of

NOSQL Systems.

7. Discuss about the CAP Theorem.

8. Explain about Document-Based NOSQL Systems and MongoDB.

9. Elaborate about NOSQL Key-Value Stores.

10. Explain about Column-Based or Wide Column NOSQL Systems.

11. Discuss about NOSQL Graph Databases and Neo4j.

12. Explain about Database Security Issues.

13. Discuss about Discretionary Access Control Based on Granting and Revoking Privileges.

14. Elaborate about Mandatory Access Control and Role-Based Access Control for Multilevel

Security.

15. Explain in detail about SQL Injection.

16. Explain about Statistical Database Security.

17. Elaborate about Flow Control.

18. Explain about Encryption and Public Key Infrastructures.

19. Explain about the Challenges to Maintaining Database Security.

