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CS3401 ALGORITHMS   

 
 

COURSE OBJECTIVES: 

• To understand and apply the algorithm analysis techniques on searching and sorting algorithms 

• To critically analyze the efficiency of graph algorithms 

• To understand different algorithm design techniques 

• To solve programming problems using state space tree 

• To understand the concepts behind NP Completeness, Approximation algorithms and 

randomized algorithms. 

 

UNIT I 

 

  INTRODUCTION 

 

Algorithm analysis: Time and space complexity - Asymptotic Notations and its properties Best 

case, Worst case and average case analysis – Recurrence relation: substitution method - Lower 

bounds – searching: linear search, binary search and Interpolation Search, Pattern search: The naïve 

string- matching algorithm - Rabin-Karp algorithm - Knuth-Morris-Pratt algorithm. Sorting: 

Insertion sort – heap sort  
 

UNIT II GRAPH ALGORITHMS  

Graph algorithms: Representations of graphs - Graph traversal: DFS – BFS - applications - 

Connectivity, strong connectivity, bi-connectivity - Minimum spanning tree: Kruskal’s and Prim’s 

algorithm- Shortest path: Bellman-Ford algorithm - Dijkstra’s algorithm - Floyd-Warshall 

algorithm Network flow: Flow networks - Ford-Fulkerson method – Matching: Maximum bipartite 

matching  
 

 

UNIT III ALGORITHM DESIGN TECHNIQUES  

Divide and Conquer methodology: Finding maximum and minimum - Merge sort - Quick sort 

Dynamic programming: Elements of dynamic programming — Matrix-chain multiplication - Multi 

stage graph — Optimal Binary Search Trees. Greedy Technique: Elements of the greedy strategy 

- Activity-selection problem –- Optimal Merge pattern — Huffman Trees.  
 

UNIT IV STATE SPACE SEARCH ALGORITHMS  

Backtracking: n-Queens problem - Hamiltonian Circuit Problem - Subset Sum Problem – Graph 

colouring problem Branch and Bound: Solving 15-Puzzle problem - Assignment problem - 

Knapsack Problem - Travelling Salesman Problem  

 

UNIT V NP-COMPLETE AND APPROXIMATION ALGORITHM  

Tractable and intractable problems: Polynomial time algorithms – Venn diagram representation - 

NP- algorithms - NP-hardness and NP-completeness – Bin Packing problem - Problem reduction: 

TSP – 3- CNF problem. Approximation Algorithms: TSP - Randomized Algorithms: concept and 

application - primality testing - randomized quick sort - Finding kth smallest number  
 

45 PERIODS 

 



PRACTICAL EXERCISES: 30 PERIODS 

 

Searching and Sorting Algorithms 

1. Implement Linear Search. Determine the time required to search for an element. Repeat the 

experiment for different values of n, the number of elements in the list to be searched and plot a 

graph of the time taken versus n. 

2. Implement recursive Binary Search. Determine the time required to search an element. Repeat 

the experiment for different values of n, the number of elements in the list to be searched and plot 

a graph of the time taken versus n. 

 

3. Given a text txt [0...n-1] and a pattern pat [0...m-1], write a function search (char pat [ ], char 

txt [ ]) that prints all occurrences of pat [ ] in txt [ ]. You may assume that n > m. 

4. Sort a given set of elements using the Insertion sort and Heap sort methods and determine the 

time required to sort the elements. Repeat the experiment for different values of n, the number of 

elements in the list to be sorted and plot a graph of the time taken versus n.  
 

Graph Algorithms 

1. Develop a program to implement graph traversal using Breadth First Search 

2. Develop a program to implement graph traversal using Depth First Search 

3. From a given vertex in a weighted connected graph, develop a program to find the shortest 

paths to other vertices using Dijkstra’s algorithm. 

4. Find the minimum cost spanning tree of a given undirected graph using Prim’s algorithm. 

5. Implement Floyd’s algorithm for the All-Pairs- Shortest-Paths problem. 

6. Compute the transitive closure of a given directed graph using Warshall's algorithm.  
 

Algorithm Design Techniques 

1. Develop a program to find out the maximum and minimum numbers in a given list of n 

numbers using the divide and conquer technique. 

2. Implement Merge sort and Quick sort methods to sort an array of elements and determine the 

time required to sort. Repeat the experiment for different values of n, the number of elements in 

the list to be sorted and plot a graph of the time taken versus n.  
 

State Space Search Algorithms 

1. Implement N Queens problem using Backtracking.  
 

Approximation Algorithms Randomized Algorithms 

1. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and 

then solve the same problem instance using any approximation algorithm and determine the error 

in the approximation. 

2. Implement randomized algorithms for finding the kth smallest number. The programs can be 

implemented in C/C++/JAVA/ Python.  
 

COURSE OUTCOMES: At the end of this course, the students will be able to: 

CO1: Analyze the efficiency of algorithms using various frameworks  

CO2: Apply graph algorithms to solve problems and analyze their efficiency.  

CO3: Make use of algorithm design techniques like divide and conquer, dynamic programming 

and greedy techniques to solve problems  

CO4: Use the state space tree method for solving problems.  

CO5: Solve problems using approximation algorithms and randomized algorithms  
 



TOTAL: 75 PERIODS 

 

TEXT BOOKS: 

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction 

to Algorithms", 3rd Edition, Prentice Hall of India, 2009.  

2. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran “Computer Algorithms/C++” Orient 

Blackswan, 2nd Edition, 2019.  
 

REFERENCES: 

1. Anany Levitin, “Introduction to the Design and Analysis of Algorithms”, 3rd Edition, Pearson 

Education, 2012.  

2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", 

Reprint Edition, Pearson Education, 2006.  

3. S. Sridhar, “Design and Analysis of Algorithms”, Oxford university press, 2014.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

UNIT I INTRODUCTION  

Algorithm analysis: Time and space complexity - Asymptotic Notations and its properties Best case, 

Worst case and average case analysis – Recurrence relation: substitution method - Lower bounds – 

Searching: linear search, binary search and Interpolation Search, Pattern search: The naïve string- 

matching algorithm - Rabin-Karp algorithm - Knuth-Morris-Pratt algorithm. Sorting: Insertion sort – 

heap sort 

 

Definition: Algorithm 

An algorithm is a sequence of unambiguous instruction for solving a problem, for obtaining a required 

output for any legitimate input in a finite amount of time. 

“Algorithmic is more than the branch of computer science. It is the core of computer science, and, in 

all fairness, can be said to be relevant it most of science, business and technology” 

 

Characteristics of an algorithm: 

i. Non – ambiguity / Precise : Each step in an algorithm should be non- ambiguous. i.e each 

instruction should be clear and precise. 

ii. Finiteness: The algorithm should be finite. The algorithm must be terminated in a specified 

time. 

iii. Uniqueness: The algorithm must be specified a required output. 

iv. Input: Algorithm receives input 

v. Output: Algorithm produces output 

vi. Generality: The algorithm must works for all set of inputs. 

 

Notion of an Algorithm 

An algorithm is a sequence of unambiguous instruction for solving a problem, for obtaining a required 

output for any legitimate input in a finite amount of time. 

➢ The nonambiguity requirement for each step of an algorithm cannot be compromised.  

➢ The range of inputs for which an algorithm works has to be specified carefully.  

➢ The same algorithm can be represented in several different ways.  

➢ There may exist several algorithms for solving the same problem. 

Problem 

                                                                                     
Algorithm 

                

 

Input                       Output 

1) Consecutive integer checking algorithm for computing gcd(m, n)  

Step 1 Assign the value of min{m, n} to t.  

Step 2 Divide m by t. If the remainder of this division is 0, go to Step 3; otherwise, go to Step 4.  

Step 3 Divide n by t. If the remainder of this division is 0, return the value of t as the answer and stop; 

otherwise, proceed to Step 4. 

Step 4 Decrease the value of t by 1. Go to Step 2. 

 

2) Middle-school procedure for computing gcd(m, n)  

Step 1 Find the prime factors of m.  

Step 2 Find the prime factors of n.  



Step 3 Identify all the common factors in the two prime expansions found in Step 1 and Step 2.  

Step 4 Compute the product of all the common factors and return it as the greatest common divisor of 

the numbers given.  

Thus, for the numbers 60 and 24, 

 we get  60 = 2 . 2 . 3 . 5  

24 = 2 . 2 . 2 . 3  

gcd(60, 24) = 2 . 2 . 3 = 12 

 

3) Euclid’s algorithm for computing gcd(m, n)  

Step 1 If n = 0, return the value of m as the answer and stop; otherwise, proceed to Step 2.  

Step 2 Divide m by n and assign the value of the remainder to r.  

Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.  

PSEUDOCODE:  

ALGORITHM Euclid(m, n)  

//Computes gcd(m, n) by Euclid’s algorithm 

 //Input: Two nonnegative, not-both-zero integers m and n  

//Output: Greatest common divisor of m and n  

while n = 0 do  

r ← m mod n  

m ← n  

n ← r  

return m 

 

ASYMPTOTIC NOTAIONS 

Asymptotic notations are mathematical tools used to analyze the algorithm in terms of time efficiency. 

 

Types Asymptotic Notations: 

1. O Notation (Big Oh) 

2. Ω Notation (Big Omega) 

3. θ Notation (Big Theta) 

1. O Notation (Big Oh): 

Definition: A function f(n) is said to be in O(g(n)), denoted f(n) ∈ O(g(n)), if f(n) is bounded above by 

some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some 

nonnegative integer n0 such that 

f(n) ≤ cg(n) for all n ≥ n0 and c > 0. 

O notation analyses the worst case for the given function. 

The definition is illustrated in the following figure. 

 
Here n is size of an input &f(n) is a function of n. 

When the input size increases, then the time is also increases. 



Example: 

Let take f(n)=3n+2 and g(n)=n. 

We have to prove f(n) 

∈O(g(n)). By the definition, 

f(n)≤c g(n) 

3n+2≤ c * n where c>0, n0≥1. 

We can substitute any value for c. The best option is, 

When c=4, 3n+2≤ 4 * n. 

Most of the cases, 4*n is greater than  3n+2. Where n≥2. 

Reason for taking n≥2: 

If n=1, 3(1)+2 ≤ 4(1)=> 5≤4=> Becomes False. 

If n=2, 3(2)+2 ≤ 4(2)=> 8≤8=> Becomes True. 

If n=3, 3(3)+2 ≤ 4(3)=> 11≤12=> Becomes True. If n=4, 3(4)+2 ≤ 

4(4)=> 14≤16=> Becomes True. And so on. 

Therefore 3n+2 ∈ O(n). 

2. Ω Notation (Big Omega): 

Definition: A function f(n) is said to be in Ω(g(n)), denoted f(n) ∈ Ω(g(n)), if f(n) is bounded below by some 

positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some 

nonnegative integer n0 such that 

f(n) ≥ cg(n) for all n ≥ n0 and c > 0. 

Ω notation analyses the best case for the given function. 

The definition is illustrated in the following figure. 

 
If n=1, 3(1)+2 ≥1(1)=> 5≥1=> Becomes True. 

 If n=2, 3(2)+2 ≥1(2)=> 8≥2=> Becomes True.  

If n=3, 3(3)+2 ≥1(3)=> 11≥3=> Becomes True. And so on. 

Therefore 3n+2 ∈ Ω(n). 

3. θ Notation (Big Theta): 

Definition: A function f(n) is said to be in θ(g(n)), denoted f(n) ∈ θ(g(n)), if f(n) is bounded both above 

and below by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive constants 

c1 and c2 and some nonnegative integer n0 such that c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0. θ notation analyses 

the average case for the given function. 



 
Here n is size of an input &f(n) is a function of n. 

When the input size increases, then the time is also increases. c1 and c2 are different constants. 

f(n) is bounded by both upper and lower i.e) c1g(n) ≤ f(n) ≤ c2g(n). 

Example: 

Let take f(n)=3n+2 and g(n)=n. 

We have to prove f(n) ∈θ(g(n)). By the definition, 

c1g(n) ≤ f(n) ≤ c2g(n) 

The definition is illustrated in the following figure. 

c1 * n ≤ 3n+2 ≤ c2 * n 3n+2 ≤ c2 * n when 

c2=4and 3n+2≥ c1 * n when c1=1. 

Such that, 1*n ≤ 3n+2 ≤ 4*n. Where n≥2. Therefore 3n+2 

=θ(n). 

 

Useful Property Involving the Asymptotic Notations  

Property 1: 

If t1(n) ∈ O(g1(n)) and t2(n) ∈ O(g2(n)), then t1(n) + t2(n) ∈ O(max{g1(n), g2(n)}). 

 

PROOF: 

The proof extends to orders of growth the following simple fact about four arbitrary real numbers a1, 

b1, a2, b2: if a1 ≤ b1 and a2 ≤ b2, then a1 + a2 ≤ 2 max{b1, b2}.  

Since t1(n) ∈ O(g1(n)), there exist some positive constant c1 and some nonnegative integer n1 such that 

t1(n) ≤ c1g1(n) for all n ≥ n1. 

 Similarly, since t2(n) ∈ O(g2(n)),  

t2(n) ≤ c2g2(n) for all n ≥ n2. 

Let us denote c3 = max{c1, c2} and consider n ≥ max{n1, n2} so that we can use both inequalities. 

Adding them yields the following: 

 t1(n) + t2(n) ≤ c1g1(n) + c2g2(n) 

 ≤ c3g1(n) + c3g2(n) = c3[g1(n) + g2(n)] ≤ c32 max{g1(n), g2(n)}.  

Hence, t1(n) + t2(n) ∈ O(max{g1(n), g2(n)}), with the constants c and n0 required by 

the O definition being 2c3 = 2 max{c1, c2} and max{n1, n2}, respectively. 

Limits for Comparing Orders of Growth 

 
L’Hopital’s rule  



 

 

 
Basic Efficiency Classes 

 



  

ALGORITHM ANALYSIS: 

♦ There are two kinds of efficiency 

♦ Time efficiency - indicates how fast an algorithm in question runs. 

♦ Space efficiency - deals with the extra space the algorithm requires. 

➢ MEASURING AN INPUT SIZE : 

♦ An algorithm's efficiency as a function of some parameter n indicating the algorithm's input size. 

♦ In most cases, selecting such a parameter is quite straightforward. 

♦ For example, it will be the size of the list for problems of sorting, searching, finding the list's 

smallest element, and most other problems dealing with lists. 

♦ For the problem of evaluating a polynomial p(x) = a n x n+ . . . + a 0 of degree n, it will be the 

polynomial's degree or the number of its coefficients, which is larger by one than its degree. 

♦ There are situations, of course, where the choice of a parameter indicating an input size does matter. 

♦ Example - computing the product of two n-by-n matrices. 

♦ There are two natural measures of size for this problem. 

♦ The matrix order n. 

♦ The total number of elements N in the matrices being multiplied. 

♦ Since there is a simple formula relating these two measures, we can easily switch from one to the 

other, but the answer about an algorithm's efficiency will be qualitatively different depending on 

which of the two measures we use. 

♦ The choice of an appropriate size metric can be influenced by operations of the algorithm in 

question. For example, how should we measure an input's size for a spell- checking algorithm? If 

the algorithm examines individual characters of its input, then we should measure the size by the 

number of characters; if it works by processing words, we should count their number in the input. 

♦ We should make a special note about measuring size of inputs for algorithms involving properties 

of numbers (e.g., checking whether a given integer n is prime). 

♦ For such algorithms, computer scientists prefer measuring size by the number b of bits in the n's 

binary representation: 

b= log2n +1 

♦ This metric usually gives a better idea about efficiency of algorithms in question. 

 

➢ UNITS FOR MEASURING RUN TIME: 

♦ We can simply use some standard unit of time measurement-a second, a millisecond, and so on-to 

measure the running time of a program implementing the algorithm. 

♦ There are obvious drawbacks to such an approach. They are Dependence on the speed of a particular 

computer.Dependence on the quality of a program implementing the algorithm 

♦ The compiler used in generating the machine code.The difficulty of clocking the actual running time of 

the program. 

♦ Since we are in need to measure algorithm efficiency, we should have a metric that  does not depend 

on these extraneous factors. 

♦ One possible approach is to count the number of times each of the algorithm's operations is 

executed. This approach is both difficult and unnecessary. 

♦ The main objective is to identify the most important operation of the algorithm, called the basic 

operation, the operation contributing the most to the total running time, and compute the number 

of times the basic operation is executed. 

➢ WORST CASE, BEST CASE AND AVERAGE CASE EFFICIENCES 

♦ It is reasonable to measure an algorithm's efficiency as a function of a parameter indicating the size 

of the algorithm's input. 



♦ But there are many algorithms for which running time depends not only on an input  size but also 

on the specifics of a particular input. 

♦ Example, sequential search. This is a straightforward algorithm that searches for a given item 

(some search key K) in a list of n elements by checking successive elements of the list until either 

a match with the search key is found or the list is exhausted. 

 

♦ Here is the algorithm's pseudo code, in which, for simplicity, a list is implemented as  an array. (It 

also assumes that the second condition A[i] i= K will not be checked if the first one, which checks 

that the array's index does not exceed its upper bound, fails.) 

ALGORITHM Sequential Search(A[0..n -1], K) 

//Searches for a given value in a given array by sequential search 

//Input: An array A[0..n -1] and a search key K 

//Output: Returns the index of the first element of A that matches K 

// or -1 if there are no matching elements i←0 

while i < n and A[i] ≠ K do 

i←i+1 

if i < n return i 

else return -1 

 

➢ Worst case efficiency 

♦ The worst-case efficiency of an algorithm is its efficiency for the worst-case input of size n, which 

is an input (or inputs) of size n for which the algorithm runs the longest among all possible inputs 

of that size. 

♦ In the worst case, when there are no matching elements or the first matching element happens to be 

the last one on the list, the algorithm makes the largest number of key comparisons among all 

possible inputs of size n: 

Cworst (n) = n. 

♦ To analyze the algorithm to see what kind of inputs yield the largest value of the basic operation's 

count C(n) among all possible inputs of size n and then compute this worst- case value C worst (n) 

♦ The worst-case analysis provides very important information about an algorithm's efficiency by 

bounding its running time from above. In other words, it guarantees that for any instance of size n, 

the running time will not exceed C worst (n) its running time on the worst-case inputs. 

➢ Best case Efficiency 

♦ The best-case efficiency of an algorithm is its efficiency for the best-case input of size n, which is 

an input (or inputs) of size n for which the algorithm runs the fastest among all possible inputs of 

that size. 

♦ We can analyze the best case efficiency as follows. 

♦ First, determine the kind of inputs for which the count C (n) will be the smallest among all possible 

inputs of size n. (Note that the best case does not mean the smallest input; it means the input of size 

n for which the algorithm runs the fastest.) 

♦ Then ascertain the value of C (n) on these most convenient inputs. 

♦ Example- for sequential search, best-case inputs will be lists of size n with their first elements equal 

to a search key; accordingly, Cbest(n) = 1. 

 

 

 

➢ Average case efficiency 

♦ It yields the information about an algorithm about an algorithm‘s behaviour on a 



―typical‖ and ―random‖ input. 

♦ To analyze the algorithm's average-case efficiency, we must make some assumptions 

about possible inputs of size n. 

The average number of key comparisions Cavg(n) can be computed as follows, 

♦ let us consider again sequential search. The standard assumptions are, 

♦ In the case of a successful search, the probability of the first match occurring in the ith position of 

the list is pin for every i, and the number of comparisons made by the algorithm in such a situation 

is obviously i. 

♦ In the case of an unsuccessful search, the number of comparisons is n with the probability of such 

a search being (1 - p). Therefore, 

 
♦ Example, if p = 1 (i.e., the search must be successful), the average number of key comparisons 

made by sequential search is (n + 1) /2. 

♦ If p = 0 (i.e., the search must be unsuccessful), the average number of key comparisons will be n 

because the algorithm will inspect all n elements on all such inputs. 

Recapitulation of the Analysis Framework  

➢ Both time and space efficiencies are measured as functions of the algorithm’s input size.  

➢ Time efficiency is measured by counting the number of times the algorithm’s basic 

operation is executed. Space efficiency is measured by counting the number of extra 

memory units consumed by the algorithm.  

➢ The efficiencies of some algorithms may differ significantly for inputs of the same size. 

➢ The framework’s primary interest lies in the order of growth of the algorithm’s running 

time (extra memory units consumed) as its input size goes to infinity. 

 

Recurrence relation: substitution method 

 A recurrence is an equation or inequality that describes a function in terms of its values on smaller 

inputs. To solve a Recurrence Relation means to obtain a function defined on the natural numbers that 

satisfy the recurrence. 

 
There are four methods for solving Recurrence: 

1) Substitution Method. 

a) Backward Substitution.  eg) X(n) = X(n-1) + 5 

b) Forward Substitution   eg) X(n) = X(n+1) + 5 

2) Recursion Tree Method. 

3) Master Theorem Method. 

 



1. Substitution Method: 

The Substitution Method Consists of two main steps: 

1. Guess the Solution. 

2. Use the mathematical induction to find the boundary condition and shows that the guess is correct. 

Forward substitution: 

One of the simplest methods for solving simple recurrence relations is using forward substitution. In this 

method, we solve the recurrence relation for n=0,1,2,…until we see a pattern. Then we make a guesswork 

and predict the running time. The final and important step in this method is we need to verify that our 

guesswork is correct by using the induction.  

Example:  

T (n) = 1  if n=1   

             = 2T (n-1) +1 if n>1  

Solution: 

 T(1)= 1 

 T(2) = 2 T(2-1) +1 = 2T(1)+1=2(1)+1=3 

 T(3) = 2 T(3-1)+1=2T(2)+1=2(3)+1=7 

 T(4) = 2 T(4-1)+1=2T(3)+1=2(7)+1=15 

 T(n) = 2n-1 

Backward substitution: 

In backward substitution, we do the opposite i.e. we put n=n,n−1,n−2,.. or n=n,n/2,n/4,… until we see 

the pattern. After we see the pattern, we make a guesswork for the running time and we verify the 

guesswork. 

Example: 

 X(n) = X(n-1) + 5  for n>1 X(1)=0 

Solution: 

X(n)=X(n-1)+5   -(1) 

X(n-1)=X(n-2)+5  -(2) 

Substitute (2) in (1) 

X(n)=X(n-2)+5+5  -(3) 

X(n-2)=X(n-3)+5  -(4) 

Substitute (4) in (3) 

X(n)=X(n-3)+3x5  

 X(n)= X(n-i) + i x 5 

n-i = 1 as per initial condition 

i= n-1 

 X(n)= X(n-(n-1))+(n-1)x5 



     =X(1)+5(n-1) 

X(n)=5(n-1)    where X(1)=0 

2.Recursive Tree Method: 

1. Recursion Tree Method is a pictorial representation of an iteration method which is in the form of a tree 

where at each level nodes are expanded. 

2. In general, we consider the second term in recurrence as root. 

3. It is useful when the divide & Conquer algorithm is used. 

4. It is sometimes difficult to come up with a good guess. In Recursion tree, each root and child represents the 

cost of a single subproblem. 

5. We sum the costs within each of the levels of the tree to obtain a set of pre-level costs and then sum all pre-

level costs to determine the total cost of all levels of the recursion. 

6. A Recursion Tree is best used to generate a good guess, which can be verified by the Substitution Method. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Solution: The Recursion tree for the above recurrence is 

 



 

Master Theorem:  

 

 

 

 

If, C(n) = 2C(n/2) + Cmerge(n)    for n > 1,  C(1) = 0. 

for the worst case, Cmerge(n) = n − 1, and we have the recurrence 

Cwor st (n) = 2Cwor st (n/2)  + n − 1   for n > 1,  Cwor st (1) = 0 

a=2,b=2,d=0, then, C(n)= θ(n log n) 

Lower bounds: 

Lower bound in algorithms refers to the minimum amount of resources (such as time or space) that 

an algorithm must take to solve a particular problem. Lower bounds are used to establish a lower 

limit on the performance of any algorithm for a specific problem, which helps to determine if a 

given algorithm is optimal or if there is room for improvement. 

There are several ways to establish lower bounds, including: 

1. Information-theoretic lower bounds: These lower bounds are based on the information-theoretic 

limits of computation, and are independent of the specific algorithm being used. For example, the 

lower bound for sorting n items is Ω(n log n). 

2. Computational lower bounds: These lower bounds are based on the assumption that certain 

computational problems are hard, and that any algorithm for solving those problems must take a 

certain amount of time. 



3. Adversarial lower bounds: These lower bounds are based on the worst-case scenario, where an 

adversary is trying to make the algorithm perform as poorly as possible. For example, the lower 

bound for searching an unsorted list of n items is Ω(n). 

 

The lower bound provides a baseline for the performance of any algorithm, and helps to determine 

the best possible solution for a given problem. By knowing the lower bound, researchers and 

practitioners can evaluate different algorithms and determine which one is the most efficient for a 

specific problem. 

 

Searching : 

Searching is an operation or a technique that helps finds the place of a given element or value 

in the list. Any search is said to be successful or unsuccessful depending upon whether the element 

that is being searched is found or not. Some of the standard searching technique that is being 

followed in data structure is listed below: 

1. Linear Search 

 

2. Binary Search 

LINEAR SEARCH 

Linear search is a very basic and simple search algorithm. In Linear search, we search an 

element or value in a given array by traversing the array from the starting, till the desired element or 

value is found. 

It compares the element to be searched with all the elements present in the array and when the 

element is matched successfully, it returns the index of the element in the array, else it return -1. 

Linear Search is applied on unsorted or unordered lists, when there are fewer elements in a list. For 

Example, 

 

 



Advantages of Linear Searching: 

• It is simple to implement. 

• It does not require specific ordering before applying the method 

Disadvantages of Linear searching: 

• It is less efficient 

Time Complexity: 

The best-case inputs for sequential search are lists of size n with their first element equal to a search 

key; accordingly, Cbest(n) = 1 

In the case of an unsuccessful search, the number of comparisons will be n with the probability of such 

a search being (1 − p). Therefore 

 

Features of Linear Search Algorithm 

1. It is used for unsorted and unordered small list of elements. 

2. It has a time complexity of O(n), which means the time is linearly dependent on the 

number of elements, which is not bad, but not that good too. 

3. It has a very simple implementation. 

 

BINARY SEARCH 

Binary Search is used with sorted array or list. In binary search, we follow the following steps: 

1. We start by comparing the element to be searched with the element in the middle of the list/array. 

2. If we get a match, we return the index of the middle element. 

3. If we do not get a match, we check whether the element to be searched is less or greater than in 

value than the middle element. 

4. If the element/number to be searched is greater in value than the middle number, then we pick 

the elements on the right side of the middle element(as the list/array is sorted, hence on the right, 

we will have all the numbers greater than the middle number), and start again from the step 1. 

5. If the element/number to be searched is lesser in value than the middle number, then we pick the 

elements on the left side of the middle element, and start again from the step 1. 

 

Features of Binary Search 

1. It is great to search through large sorted arrays. 

2. It has a time complexity of O(log n) which is a very good time complexity. It has a 

simple implementation. 

Binary search is a fast search algorithm with run-time complexity of Ï(log n). This search 

algorithm works on the principle of divide and conquers. For this algorithm to work properly, the 

data collection should be in the sorted form. 

Binary search looks for a particular item by comparing the middle most item of the collection. If 

a match occurs, then the index of item is returned. If the middle item is greater than the item, then 

the item is searched in the sub-array to the left of the middle item. Otherwise, the item is searched 



for in the sub-array to the right of the middle item. This process continues on the sub- array as well 

until the size of the sub array reduces to zero. 

How Binary Search Works? 

For a binary search to work, it is mandatory for the target array to be sorted. We shall learn the 

process of binary search with a pictorial example. The following is our sorted array and let us assume 

that we need to search the location of value 31 using binary search. 

 

 
10 14 19 26 27 31 33 35 42 44 

0 1 2 3 4 5 6 7 8 9 

 

First, we shall determine half of the array by using this formula - mid 

= low + (high - low) / 2 

Here it is, 0 + (9 - 0 ) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array. 

 
10 14 19 26 27 31 33 35 42 44 

0 1 2 3 4 5 6 7 8 9 

Now we compare the value stored at location 4, with the value being searched, i.e. 31. We 

find that the value at location 4 is 27, which is not a match. As the value is greater than 27 and we 

have a sorted array, so we also know that the target value must be in the upper portion of the array. 

 

 
10 14 19 26 27 31 33 35 42 44 

0 1 2 3 4 5 6 7 8 9 

We change our low to mid + 1 and find the new mid value again. low 

= mid + 1 

mid = low + (high - low) / 2 

Our new mid is 7 now. We compare the value stored at location 7 with our target value 31. 

 
10 14 19 26 27 31 33 35 42 44 

0 1 2 3 4 5 6 7 8 9 

The value stored at location 7 is not a match, rather it is more than what we are looking for. 

So, the value must be in the lower part from this location. 

 
10 14 19 26 27 31 33 35 42 44 

0 1 2 3 4 5 6 7 8 9 

Hence, we calculate the mid again. This time it is 5. 
10 14 19 26 27 31 33 35 42 44 

0 1 2 3 4 5 6 7 8 9 

We compare the value stored at location 5 with our target value. We find that it is a match. 



 

 

 

 

We change our low to mid + 1 and find the new mid value again. low 

= mid + 1 

mid = low + (high - low) / 2 

Our new mid is 7 now. We compare the value stored at location 7 with our target value 31. 

 

The value stored at location 7 is not a match, rather it is more than what we are looking for. 

So, the value must be in the lower part from this location. 

 
10 14 19 26 27 31 33 35 42 44 

0 1 2 3 4 5 6 7 8 9 

Hence, we calculate the mid again. This time it is 5. 

 

 

 

 
10 14 19 26 27 31 33 35 42 44 

0 1 2 3 4 5 6 7 8 9 

We compare the value stored at location 5 with our target value. We find that it is a match. 

 

 
10 14 19 26 27 31 33 35 42 44 

0 1 2 3 4 5 6 7 8 9 

We conclude that the target value 31 is stored at location 5. 

10 14 19 26 27 31 33 35 42 44 

0 1 2 3 4 5 6 7 8 9 

10 14 19 26 27 31 33 35 42 44 

0 1 2 3 4 5 6 7 8 9 



 

 

 

 

 

  
Interpolation Search: 

Interpolation search is an improved variant of binary search. This search algorithm works on the probing 

position of required value. For this algorithm to work properly the data collection should be in sorted form and 

equally distributed.  

Binary search has huge advantage of time complexity over linear search. Linear search has worstcase 

complexity of Ο(n) whereas binary search has Ο(logn). There are cases where the location of target data may 

be known in advance.  

For example, in case of telephone directory, if we want to search telephone number of Morphius. Here, linear 

search and even binary search will seem slow as we can directly jump to memory space where names start from 

'M' are stored. 

Position Probing in Interpolation Search 

 Interpolation search search a particular item by computing the probe position. Initially probe position is the 

position of the middle most item of the collection.  

 



  
If match occurs then index of item is returned. To split the list into two parts we use the following method  

 
 

If middle item is greater than item then probe position is again calculated in the sub-array to the right of the 

middle item other wise item is search in sub-array to the left of the middle item. This process continues on sub-

array as well until the size of subarray reduces to zero. Runtime complexity of interpolation search algorithm 

is Οlog(logn) as compared to Οlogn of BST in favourable situations 

 

Algorithm: 

 
 

Pseudocode: 



 
 

Pattern search/ Pattern Searching or String matching 

String matching algorithms are normally used in text processing. Normally text processing is done in 

compilation of program. 

In software design or system design also text processing is a vital activity. 

Given a string of n characters called the text and a string of m characters (m ≤ n) called the pattern, find a 

substring of the text that matches the pattern.  

To put it more precisely, we want to find i—the index of the leftmost character of the first matching substring 

in the text—such that ti = p0,...,ti+j = pj ,...,ti+m−1 = pm−1: 

 
 

Different string matching Algorithms are, 

1. The naïve string- matching algorithm 

2. Rabin-Karp algorithm  

3. Knuth-Morris-Pratt algorithm 
 

The naïve string- matching algorithm: 



 
The naive string-matching procedure as sliding a “template” containing the pattern over the text, noting for 

which shifts all of the characters on the template equal the corresponding characters in the text.  

The for loop of lines 3–5 considers each possible shift explicitly. The test in line 4 determines whether the 

current shift is valid; this test implicitly loops to check corresponding character positions until all positions 

match successfully or a mismatch is found. Line 5 prints out each valid shift s.  

Procedure NAIVE-STRING-MATCHER takes time O((n - m +1)m), and this bound is tight in the worst case. 

For example, consider the text string an (a string of n a’s) and the pattern am. For each of the nmC1 possible 

values of the shift s, the implicit loop on line 4 to compare corresponding characters must execute m times to 

validate the shift.  

 

The Rabin-Karp algorithm: 

The Rabin – Karp method is based on hashing technique. The algorithm assumes each character to be a digit 

in radix-d notation. It makes use of equivalence of two numbers modulo a third number. 

Given a pattern P[1..m], let p denote its corresponding decimal value. In a similar manner, given a text T[1..n], 

let ts denote the decimal value of the length-m substring T[s+1..s+m], for s =0,1….n - m. Certainly, ts=p if and 

only if T[s+1..s+m]=P[1..m] thus, s is a valid shift if and only if ts=p. 



 

Algorithm: 

 

The Knuth-Morris-Pratt algorithm: 



• In pattern matching algorithms, we often compare the pattern characters that do not match in the text 

and on occurrence of mismatch we simply through away the information and restart the comparison, 

for another set of characters from the text. 

• Thus again and again with next incremental position of the text, the characters from pattern are matched. 

This ultimately reduces the efficiency of the pattern matching algorithm. Hence Knuth- Morris- Pratt 

algorithm came up which avoids the repeated comparison of characters. 

• The algorithm is named after the scientists Knuth, Morris and Pratt. 

• The basic idea behind the algorithm is to build Prefix table. It is also called array or failure function 

table. 

• This prefix table is build using prefix and suffix information of pattern. 

• The overlapping prefix and suffix is used in KMP algorithm. 

 

Given text: abcxabcdabxabcdabcdabcy 

Given pattern : abcdabcy 

 

 

 

 

Step 1: we will construct the prefix table for the given pattern as follows. 

0 1 2 3 4 5 6 7 

a b c D a b c Y 

0 0 0 0 1 2 3 0 

 

Step2: now start matching search for pattern against the text with the help of prefix table. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

a b c x a b c d a b x a b c d a b c d a B c Y 

√ √ √ x                    

a b c d a b c y                

 

The pattern[3] is not matching with text[3]. Hence we find the position using the formula, 

Text index of unmatched character – prefixtable[pattern index – 1] 

=3 – prefixtable[3-1] 

=3- 0 

= 3 

That means shift pattern at starting index 3. 

Step 3:  



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

a b c x a b c d a b X a b c d a b c d a B c Y 

   x                    

   a b c d a b c Y             

 

As pattern[0] is not matching with text[3], so shift pattern by one position. 

Step 4:  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

a b c x a b c d a b X a b c d a b c d a B c Y 

    √ √ √ √ √ √ x             

    a b c d a b c y            

Text index of unmatched character – prefixtable[pattern index – 1] 

=10 – prefixtable[6-1] 

=10- 2 

= 8 

Step 5:  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

a b c x a b c d a b X a b c d a b c d a B c Y 

        √ √ x             

        a b c d a b c y        

 

Text index of unmatched character – prefixtable[pattern index – 1] 

=10 – prefixtable[2-1] 

=10- 0 

= 10 

Step 6:  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

a b c x a b c d a b X a b c d a b c d a B c Y 

          x             

          a b c d a b c y      

 

Text[10] is not matching with pattern[0]. Hence shift one position next. 

Step 7:  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

a b c x a b c d a b X a b c d a b c d a B c Y 

           √ √ √ √ √ √ √ x     



           a b c d a b c y     

 

Text index of unmatched character – prefixtable[pattern index – 1] 

=18 – prefixtable[7-1] 

=18- 3 

= 15 

Step 8:  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

a b c x a b c d a b X a b c d a b c d a B c Y 

               √ √ √ √ √ √ √ √ 

               a b c d a B c Y 

 

Thus we found the pattern at starting position 15 in text string. 

 

Insertion sorting: 

Insertion sort is usually done by scanning the sorted subarray from right to left until the first element smaller 

than or equal to A[n − 1] is encountered to insert A[n − 1] right after that element. Starting with A[1] and 

ending with A[n − 1], A[i]is inserted in its appropriate place among the first i elements of the array that have 

been already sorted. 

 

 



 

 

Heap sort: 

Heapsort is a comparison-based sorting algorithm that works by building a binary heap data structure and 

extracting the maximum element from the heap. 

Here is a step-by-step algorithm for the heapsort process: 

1. Build a binary heap from the input data: 

• Start by treating the input data as a complete binary tree. 

• Compare the value of each node with its children and swap the node with the larger child, if necessary, to 

maintain the "max heap" property. 

• Repeat the above step for each node in the tree until the root node holds the largest value. 

2. Extract the maximum element from the heap: 

• Swap the root node with the last element in the heap. 

• Remove the last element from the heap, as it is now in its correct position in the sorted data. 

• Compare the value of the root node with its children and swap the node with the larger child, if necessary, 

to maintain the "max heap" property. 

• Repeat the above step until the heap is a complete binary tree with all nodes in the correct order. 

3. Repeat the above steps until all elements have been extracted and placed in their correct position in the sorted 

data. 

The running time of heapsort is O(n log n), making it a fast and efficient sorting algorithm for large datasets. 

 

  



UNIT II GRAPH ALGORITHMS 

Graph algorithms: Representations of graphs - Graph traversal: DFS – BFS - 

applications - Connectivity,strong connectivity, bi-connectivity - Minimum spanning 

tree: Kruskal’s and Prim’s algorithm- Shortest path: Bellman-Ford algorithm - 

Dijkstra’s algorithm - Floyd-Warshall algorithm Network flow: Flow networks - Ford-

Fulkerson method – Matching: Maximum bipartite matching 

 

Representations of graphs : 

A graph can be represented in several ways, including: 

1. Adjacency matrix / Incidence Matrix 

2. Adjacency Linked List/ Incidence Linked List 

Adjacency Matrix: It is a two-dimensional matrix of size V x V, where V is the number of 

vertices in the graph, and each cell a_{i,j} represents the weight of an edge between vertex i and 

vertex j. If there is no edge between vertex i and vertex j, then the value of a_{i,j} is set to infinity. 

For directed graph 

A[u][v]= {   1, if there is edge from u to v 

0        otherwise        } 

For undirected graph 

A[u][v]= {   1, if there is edge between u and v 

0        otherwise        } 

For weighted graph 

A[u][v]= { value , if there is edge from u to v 

∞, if no edge between u and v } 

 
Adjacency List: In this representation, each vertex is stored as an object that contains a list of its 

neighbors along with the weight of the edges connecting it to them. This representation is useful 

when the graph is sparse, i.e., it has a small number of edges compared to the number of vertices. 



 

Graph Traversal: 
 

Visiting of each and every vertex in the graph only once is called as Graph traversal. 

 
There are two types of Graph traversal. 

 
1. Depth First Traversal/ Search (DFS) 

2. Breadth First Traversal/ Search (BFS) 

Depth First Traversal/ Search 

(DFS) 

Depth-first search is a generalization of preorder traversal. Starting at some vertex, v, 

we process v and then recursively traverse all vertices adjacent to v. If this process is performed 

on a tree, then all tree vertices are systematically visited in a total of O(|E|) time, since |E| = (|V|). 

We need to be careful to avoid cycles. To do this, when we visit a vertex v, we mark it 

visited, since now we have been there, and recursively call depth-first search on all adjacent 

vertices that are not already marked. 

The two important key points of depth first search 

1. If path exists from one node to another node walk across the edge – exploring the edge 

2. If path does not exist from one specific node to any other nodes, return to the previous node where 

we have been before – backtracking 

Procedure for DFS 
 

Starting at some vertex V, we process V and then recursively traverse all the vertices adjacent 

to V. This process continues until all the vertices are processed. If some vertex is not processed 

recursively, then it will be processed by using backtracking. If vertex W is visited from V, then 

the vertices are connected by means of tree edges. If the edges not included in tree, then they are 

represented by back edges. At the end of this process, it will construct a tree called as DFS tree. 



Routine to perform a depth-first 

search void 
 

void dfs( vertex v ) 

{ 

visited[v] = TRUE; 

for each w adjacent to v 

if( !visited[w] ) 

dfs( w ); 

} 

The (global) boolean array visited[ ] is initialized to FALSE. By recursively calling the 

procedures only on nodes that have not been visited, we guarantee that we do not loop 

indefinitely. 

* An efficient way of implementing this is to begin the depth-first search at v1. If we need to 

restart the depth-first search, we examine the sequence vk, vk + 1, . . . for an unmarked 

vertex,where vk - 1 is the vertex where the last depth-first search was started. 

An undirected graph 
 

 
Steps to construct depth-first spanning tree 

 

a.  We start at vertex A. Then we mark A as visited and call dfs(B) recursively. dfs(B) marks 

B as visited and calls dfs(C) recursively. 

b. dfs(C) marks C as visited and calls dfs(D) recursively. 

c.  dfs(D) sees both A and B, but both these are marked, so no recursive calls are made. dfs(D) 

also sees that C is adjacent but marked, so no recursive call is made there, and dfs(D) returns 

back to dfs(C). 

d.  dfs(C) sees B adjacent, ignores it, finds a previously unseen vertex E adjacent, and thus 

calls dfs(E). 

e. dfs(E) marks E, ignores A and C, and returns to dfs(C). 

f. dfs(C) returns to dfs(B). dfs(B) ignores both A and D and returns. 

g. dfs(A) ignores both D and E and returns. 



 

 

 

 

 

 

 

 

 

 

 
---------> Back edge 

 
Tree edge 

                                         Depth Frist Search of the Graph 

 

 

The root of the tree is A, the first vertex visited. Each edge (v, w) in the graph is present in 

the tree. If, when we process (v, w), we find that w is unmarked, or if, when we process (w, v), 

we find that v is unmarked, we indicate this with a tree edge. 

If when we process (v, w), we find that w is already marked, and when processing (w, v), we find 

that v is already marked, we draw a dashed line, which we will call a back edge, to indicate that 

this "edge" is not really part of the tree. 

Breadth First Traversal (BFS) 
 

Here starting from some vertex v, and its adjacency vertices are processed. After all the adjacency 

vertices are processed, then selecting any one the adjacency vertex and process will continue. If 

the vertex is not visited, then backtracking is applied to visit the unvisited vertex. 

Routine: Example: BFS of the 

above graph 
 

void BFS (vertex v) 

{ 

visited[v]= true; 

For each w adjacent to v 

If (!visited[w]) 

visited[w] = true; 

} 

 

 

 

 

 

 

A 

B 
D E 

C 



 

 

Difference between DFS & BFS 
 

S. No DFS BFS 

1 Back tracking is possible from a dead 

end. 

Back tracking is not possible. 

2 Vertices from which exploration is 

incomplete are processed in a LIFO 

order. 

The vertices to be explored are 

organized as a FIFO queue. 



3 Search is done in 

direction at the time. 

one particular The vertices in the same level are 

maintained parallel. (Left to right) ( 

alphabetical ordering) 

4  
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Order of traversal: 

A→B→C→D→E 
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Order of traversal: 

A→B→C→D→E→F→G→H 

 

 

Minimum spanning tree 

 

DEFINITION A spanning tree of an undirected connected graph is its connected acyclic 

subgraph (i.e., a tree) that contains all the vertices of the graph. If such a graph has weights 

assigned to its edges, a minimum spanning tree is its spanning tree of the smallest weight, where 

the weight of a tree is defined as the sum of the weights on all its edges. The minimum spanning 

tree problem is the problem of finding a minimum spanning tree for a given weighted connected 

graph 

 

 

 

 

Algorithms for Minimum Spanning 

Tree: 
 

1. Prim’s algorithm 

 
2. Kruskal’s algorithm 



Prim’s algorithm 
 

Prim's algorithm is a greedy algorithm used to find the minimum spanning tree of a graph. The 

algorithm starts with a random vertex and adds edges to the tree until all vertices are included 

in the tree. The edges are chosen in such a way that the sum of their weights is minimized. 

Here's the steps to implement Prim's algorithm: 

 
1. Create a set to keep track of all the vertices that have been added to the tree. Initially, this 

set only contains the starting vertex. 

2. Create a priority queue to store the edges that connect the vertices in the tree to the 

vertices outside the tree. The priority of each edge is determined by its weight. 

3. While the set of vertices in the tree is not equal to the total number of vertices in the 

graph, repeat the following steps: 

a. Remove the edge with the smallest weight from the priority queue. 

 
b. If both vertices of the edge are not in the set of vertices in the tree, add the edge to 

the tree and add both vertices to the set. 

c. For each vertex that was just added to the set, add all edges that connect that 

vertex to a vertex outside the set to the priority queue. 

4. The final set of edges is the minimum spanning tree. 

 
• Move u∗ from the set V − VT to the set of tree vertices VT . 

 

• For each remaining vertex u in V − VT that is connected to u∗ by a shorter edge than the u’s current 

distance label, update its labels by u∗ and the weight of the edge between u∗ and u, respectively. 

 



 
 
 



Krushkal’s algorithm 
 

Kruskal's algorithm is a popular algorithm for finding the minimum spanning tree (MST) in a 

graph. An MST is a tree that spans all the vertices of a graph and has the minimum total edge 

weight among all possible spanning trees of the graph. 

 

 

 

 
 

 
Kruskal's algorithm works as 

follows: 

 
1. Sort all the edges of the graph in non-descending order based on their weights. 

2. Start building the MST by adding edges one by one, taking care to avoid the creation of 

cycles in the tree. 

3. To check if adding an edge creates a cycle, Kruskal's algorithm uses a disjoint-set data 

structure. This data structure keeps track of which vertices are connected and helps in 

detecting cycles. 

4. The algorithm continues adding edges until all the vertices are connected and forms a 

tree. 

Kruskal's algorithm is a greedy algorithm and is known 

to run in O(E log E) time, where E is the number of 

edges in the graph. 

It is important to note that Kruskal's algorithm only works for undirected, connected, and non- 

cyclic graphs. 



 
 

 

 



Shortest path: Bellman-Ford 

algorithm 
 

The Bellman-Ford algorithm is a widely used algorithm for finding the shortest path in a 

weighted graph. It's similar to Dijkstra's algorithm, but it's more versatile as it can handle graphs 

with negative edge weights, which Dijkstra's algorithm cannot handle. 

The algorithm works by relaxing the edges of the graph one by one and updating the distance 

of each vertex from the source. A vertex's distance is relaxed if a new path to that vertex is found 

which is shorter than the previous one. This process is repeated |V|-1 times, where |V| is the 

number of vertices in the graph. After the relaxation process, if we still find any vertex with a 

distance that can be improved, this means that the graph has a negative weight cycle, and the 

algorithm returns an error. 

The algorithm has a time complexity of O(|V|*|E|), where |E| is the number of edges in the graph. 

This means that it's slower than Dijkstra's algorithm, which has a time complexity of O(|E| + 

|V|log|V|) when using a heap data structure. However, the Bellman-Ford algorithm is still widely 

used due to its versatility and its simplicity of implementation. 

Input: A weighted graph G and a source node s. 
 

Output: The shortest path from the source node s to all other nodes in the graph, or a report of 

the presence of negative weight cycles in the graph. 

Set the distance of the source node s to itself as 0, and the distance of all other nodes as infinity. 

For i from 1 to V-1, where V is the number of vertices in the graph: 

For each edge (u, v) in the graph: 
 

If the distance to the destination node v through edge (u, v) is shorter than the current distance to 

v, update the distance to v with the shorter distance. 

Check for the presence of negative weight cycles: 
 

For each edge (u, v) in the graph: 
 

If the distance to the destination node v through edge (u, v) is shorter than the current distance to 

v, report the presence of a negative weight cycle in the graph. 

If there is no negative weight cycle, return the distance of the shortest path from the source node 

s to all other nodes in the graph. 

Warshall’s algorithm 
 

 



 
 

 

 

 
 

 

 

 
 

 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 



   
 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 



 
 

 

 
 

 

 



 
 

 

 

Dijikstra’s Algorithm: 

The single-source shortest-paths problem: for a given vertex called the source in a weighted 

connected graph, find shortest paths to all its other vertices. 

The single-source shortest-paths problem asks for a family of paths, each leading from the source 

to a different vertex in the graph, though some paths may, of course, have edges in common. The 

best-known algorithm for the single-source shortest-paths problem, called Dijkstra’s algorithm. 



 
 
 

 



 
 

 

 

 

 



 
 

 
 



 



 



 



 
 

 

 

 



 



 



 
 

 

 

 

Maximum Matching in Bipartite 

Graph 
 
 



 
 



 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



`UNIT III ALGORITHM 

DESIGN TECHNIQUES 

Divide and Conquer methodology: Finding maximum and minimum - Merge sort - Quick 

sort 

Dynamic   programming: Elements of dynamic programming — Matrix-chain 

multiplication - Multi stage graph —Optimal Binary Search Trees. 

Greedy Technique: Elements of the greedy strategy - Activity-selection problem –- 

Optimal Merge pattern — Huffman Trees. 

 
 

DIVIDE AND CONQUER 

APPROACHES 

Divide-and-conquer is probably the best -known general a l g o r i t h m   design technique. 

Divide-and-conquer algorithms wo r k according to  the following general plan: 

1. A problem is divided into several subproblems of the same type, ideally of about equal size. 

2. The subproblems are solved. 

3. If necessary, the solutions to the subproblems are combined to get a solution to the original problem. 

As an example, let us consider the problem of computing the sum of n numbers a0 , . . .  , an−1. If 

n > 1, we can divide the problem into two instances of the same problem: to compute the sum of the 

first n/2 numbers and to compute the sum of the remaining n/2 numbers. 

Once each of these two sums is computed by applying the same method recursively, we can add their 

values to get the sum in question: 

a0 + . .  . + an−1 = (a0 + . .  . + a n/2 −1) + (a n/2 + . .  . + an−1). 
 



As mentioned above, in the most typical case of divide-and-conquer a problem’s instance of size 

n is divided into two instances of size n/2. More generally, an instance of size n can be divided 

into  b instances  of size n/b,  with a of them needing  to be solved.  (Here, a and b are constants; 

a ≥ 1 and b > 1.) 

Assuming that size n is a power of b to simplify our analysis, we get the following recurrence for the 

running time T (n): 

T (n) = aT (n/b) + f (n), (a) 

where f (n) is a function that accounts for the time spent on dividing an instance of size n into 

instances of size n/b and combining their solutions. (For the sum example above, a = b = 2 and 

f (n) = 1.) Recurrence (a) is called the general divide-and-conquer recurrence. Obviously, the 

order of growth of its solution T (n) depends on the values of the constants a and b and the order 

of growth of the function f (n). 

 

 
 

 
Finding maximum and 

minimum: 

Divide and conquer is a common algorithmic technique that can be used to find the maximum and 

minimum elements in an array. The general idea is to split the array into smaller sub-arrays, recursively 

find the maximum and minimum values in each sub-array, and then combine the results to obtain the 

maximum and minimum values for the original array. 

Here is a general outline of how the divide and conquer algorithm works: 

 
1. Divide the array into two equal halves. 



2. Recursively find the maximum and minimum values in each half. 

3. Compare the maximum and minimum values from each half to obtain the overall maximum 

and minimum values for the entire array. 

Here is the pseudo-code for the 

algorithm: 

 
function find_max_min(arr, left, right): 

if left == right: 

# Only one element in the array 

return arr[left], arr[left] 

elif left == right - 1: 

 
# Two elements in the array 

 
return max(arr[left], arr[right]), min(arr[left], arr[right]) 

else: 

# More than two elements in the array 

mid = (left + right) // 2 

max_left, min_left = find_max_min(arr, left, mid) 

max_right, min_right = find_max_min(arr, mid+1, right) 

return max(max_left, max_right), min(min_left, min_right) 

 

 
In this code, the function find_max_min takes an array arr, a left index left, and a right index right. If 

there is only one element in the array (i.e., left == right), the function returns that element as both the 

maximum and minimum. If there are two elements in the array (i.e., left == right - 1), the function 

compares the two elements and returns the maximum and minimum values. If there are more than two 

elements in the array, the function recursively calls itself on the left and right halves of the array and 

combines the results to obtain the maximum and minimum values for the entire array. 



The time complexity of this algorithm is O(n log n), where n is the size of the array. This is because the 

algorithm recursively divides the array in half log n times and performs constant time operations on 

each half. Therefore, the total number of operations is proportional to n log n. 

 

 
Mergesort 

Mergesort is a perfect example  of a successful application of the divide-and- conquer technique. 

It sorts a given array A[0..n − 1] by dividing it into two halves A[0.. n/2 − 1] and A[ n/2 ..n − 1], 

sorting each of them recursively,   and then merging the two smaller sorted arrays into a single 

sorted one. 

ALGORITHM Mergesort(A[0..n − 1] ) 

//Sorts array A[0..n − 1] by recursive mergesort 

//Input: An array A[0..n − 1] of orderable elements 

//Output: Array A[0..n − 1] sorted in nondecreasing order 

if n > 1 

copy A[0.. n/2 − 1] to B[0.. n/2 − 1] 

copy A[ n/2 ..n − 1] to C[0.. n/2   − 1] 

Mergesort(B [0.. n/2 − 1] ) 

Mergesort(C[0.. n/2 − 1] ) 

Merge(B, C, A) //see below 

 
The merging of two sorted arrays can be done as follows. Two pointers (array indices) are 

initialized  to point  to the first elements of the arrays  being merged. The elements pointed 

to are compared, and the smaller of them is added to a new array being constructed; after that, 

the index of the smaller element is incremented to point to its immediate successor in the 

array it was copied from. This operation is repeated until one of the two given arrays is 

exhausted, and then the remaining elements of the other array are copied to the end of the 

new array. 

 
ALGORITHM Merge(B [0..p − 1], C[0..q − 1], A[0..p + q − 1] ) 

//Merges two sorted arrays into one sorted array 

//Input: Arrays B[0..p − 1] and C[0..q − 1] both sorted 

//Output: Sorted array A[0..p + q − 1] of the elements of B and C 

i ← 0; j ← 0; k ← 0 



while i < p and j < q do 

if B[i] ≤ C[j ] 

A[k] ← B[i]; 

i ← i + 1 

else A[k] ← C[j ]; 

j ← j + 1 

k ← k + 1 

if i = p 

copy C[j..q − 1] to A[k..p + q − 1] 

else 

copy B[i..p − 1] to A[k..p + q − 1] 

 

 

 
The operation of the algorithm on the list 8, 3, 2, 9, 7, 1, 5, 4 is illustrated below 

 

 



How efficient is mergesort? Assuming for simplicity that n is a power of 2, the 

recurrence relation for the number of key comparisons C(n) is 

C(n) = 2C(n/2) + Cmerge(n) for n > 1, C(1) = 0. 

 

Therefore, for the worst case, Cmerge(n) = n − 1, and we have the recurrence 

Cwor st (n) = 2Cwor st (n/2) + n − 1 for n > 1, Cwor st (1) = 0 

 

 

Quicksort 

Quicksort is the other important sorting algorithm that is based on the divide-and- 

conquer approach. Unlike mergesort, which divides its input elements according to their 

position in the array,  quicksort divides them according to their value. 

A   partition is an   arrangement of the   array’s elements so that   all the elements to the 

left of some element A[s] are less than or equal to A[s], and all the elements to the 

right of A[s] are greater than or equal to it: 

 

Obviously, after a partition is achieved,  A[s] will be in its final position  in the sorted  array, and 

we can continue sorting the two subarrays to the left and to the  right  of  A[s] independently 

(e.g., by the same method). Note the difference with mergesort: there, the division of the problem 

into two subproblems is immediate and the entire work happens in combining their solutions; 

here, the entire work happens in the division stage, with no work required to combine the 

solutions  to the subproblems. 

Here is pseudocode of quicksort: call Quicksort(A[0..n − 1] ) 

 
 

ALGORITHM   Quicksort(A[l..r ] ) 

//Sorts a subarray by quicksort 

//Input: Subarray of array A[0..n − 1], defined by its left and right 

// indices l and r 

//Output: Subarray A[l..r ] sorted in nondecreasing order 



if l < r 

s ←Partition(A[l..r ] ) //s is a split position 

Quicksort(A[l..s − 1] ) 

Quicksort(A[s + 1..r ] ) 

 

As before, we start by selecting a pivot—an element with respect to whose value we are going 

to divide the subarray. There are   several   different strategies for selecting   a pivot; we 

will return to this issue when we analyze the algorithm’s efficiency. For now, we use the 

simplest strategy of selecting the subarray’s first element: p = A[l]. 

 
We will now scan the subarray from both ends, comparing  the subarray’s  elements to the pivot. 

The left-to-right scan, denoted below by index pointer i, starts with the second element. Since 

we want elements smaller than the pivot to be in the left part of the subarray, this scan skips over 

elements that are smaller than the pivot and stops upon encountering the  first element greater 

than or equal to the pivot. The right-to-left scan, denoted below by index pointer j, starts  with 

the  last  element of the  subarray. Since  we want elements larger  than the pivot to be in the 

right part  of the subarray, this scan skips over elements that  are larger than the pivot and stops 

on encountering the first element smaller than or equal to the pivot. 

 
After both scans stop, three situations may arise, depending on whether or not the scanning 

indices have crossed. If scanning indices i and j have not crossed, i.e., i < j, we simply exchange 

A[i] and A[j ] and resume the scans by incrementing i and decrementing j, respectively: 

 
 

p all are ≤ p ≥ p . . ≤ p all are ≥ p 

 

 

If the scanning indices have crossed over, i.e., i > j, we will have partitioned the subarray after 

exchanging the pivot with A[j ]: 

 
 

p all are ≤ p ≤ p ≥ p all are ≥ p 

 

Finally, if the scanning indices stop while pointing to the same element, i.e., i = j,the value they are 

pointing  to must  be equal  to p (why?).  Thus,  we have  the subarray partitioned, with the split 

position s = i = j : 



p all are ≤ p = p all are ≥ p 

 

We can combine the last case with the case of crossed-over indices (i > j ) by exchanging the 

pivot with A[j ] whenever i ≥ j . 

 
Here is pseudocode implementing this partitioning procedure. 

ALGORITHM Partition(A[l..r ] ) 

//Partitions a subarray by Hoare’s algorithm, using the first element as a pivot 

//Input: Subarray of array A[0..n − 1], defined by its left and right indices l and 

r (l < r) 

//Output: Partition of A[l..r ], with the   split   position returned as this 

function’s value 

p ← A[l]; i ← l; j ← r + 1 

repeat 

repeat i ← i + 1 until A[i] ≥ p 

repeat j ← j − 1 until A[j ] ≤ p 

swap(A[i], A[j ] ) 

until i ≥ j 

swap(A[i], A[j ] ) //undo last swap when i ≥ j 

swap(A[l], A[j ] ) 

return j 

. The number of key comparisons in the best case satisfies the recurrence 

Cbest (n) = 2Cbest (n/2) + n for n > 1, Cbest (1) = 0. 

According to the Master Theorem, Cbest (n) ∈ (n log2 n); solving it exactly 

for 

n = 2k yields Cbest (n) = n log2 n. 



 
 

 

 

 

Dynamic programming: 

 
Dynamic programming is a technique in computer science and mathematics that can be used to solve 

optimization problems by breaking them down into smaller subproblems and reusing solutions to those 

subproblems to solve the larger problem more efficiently. 

The following are the key elements of dynamic programming: 

 
1. Overlapping subproblems: A problem is said to have overlapping subproblems if the same 

subproblem is solved multiple times during the course of solving the larger problem. In dynamic 

programming, the solutions to these subproblems are stored in a table or cache, so that they can 

be reused later. 

2. Optimal substructure: A problem is said to have optimal substructure if the optimal solution 

to the problem can be constructed from the optimal solutions to its subproblems. In other 



words, if we know the optimal solutions to the subproblems, we can combine them to obtain 

the optimal solution to the larger problem. 

3. Memoization: Memoization is a technique in dynamic programming where the solutions to 

subproblems are stored in a table or cache so that they can be reused later. This can significantly 

reduce the time complexity of the algorithm, especially for problems with overlapping 

subproblems. 

4. Recurrence relation: A recurrence relation is a way of expressing a solution to a problem in 

terms of solutions to its subproblems. In dynamic programming, the recurrence relation is used 

to build the table or cache of solutions to the subproblems. 

5. Bottom-up approach: In a bottom-up approach, we start by solving the subproblems and then 

combine the solutions to obtain the solution to the larger problem. This is in contrast to a top- 

down approach, where we start with the larger problem and recursively break it down into 

subproblems. 

6. State transition: State transition is the process of moving from one state to another in the course 

of solving a dynamic programming problem. Each state represents a particular subproblem, and 

the state transition defines the relationship between the subproblems. 

Optimal binary search tree 

 
Optimal binary search tree (OBST) is a binary search tree that minimizes the expected cost of searching 

for a given set of keys. It is also known as a weight-balanced binary search tree or a dynamic binary 

search tree. OBST is a classic example of dynamic programming and can be solved using the dynamic 

programming approach. 

The problem of constructing an 

OBST can be formulated as 

follows: 

 
Given a sorted array of n keys (K1, K2, ..., Kn) with associated probabilities of search (p1, p2, ..., pn), 

construct an OBST that minimizes the expected cost of searching. 

The expected cost of searching for a key Ki in the binary search tree can be defined as: 

Cost(i, j) = Summation of (p[k]) from k=i to j + Cost(i, k-1) + Cost(k+1, j) 

where i and j are the starting and ending indices of a subtree and k is the index of the root node of that 

subtree. 



 
 

 
 



 

 
 

 

 

 



 

 
 

 

Greedy Technique: 

 
Elements of the greedy strategy 

 
In computer science and optimization, a greedy strategy is a method that makes locally optimal choices 

at each step with the hope of finding a global optimum. The strategy is based on the idea that making 

the best decision at each step will lead to an overall optimal solution. However, the strategy may not 

always work and can sometimes lead to suboptimal solutions. 



Here are some elements of a 

greedy strategy: 

 
1. Greedy choice property: A greedy strategy works by making locally optimal choices at each step. 

This means that at each step, we choose the best possible option without considering the future 

consequences. The choice that appears to be the best at the moment is made, without worrying about 

whether this choice will lead to the best overall solution. 

2. Optimal substructure property: A problem exhibits optimal substructure if an optimal solution to 

the problem contains optimal solutions to its subproblems. This means that we can break down the 

problem into smaller subproblems, solve each subproblem optimally, and then combine the solutions 

to get the overall optimal solution. 

3. Greedy algorithm: A greedy algorithm is a method for finding an optimal solution that uses a 

greedy strategy. The algorithm starts with an empty solution and iteratively adds elements to the 

solution, always choosing the element that appears to be the best at the moment. Once all the 

elements have been added, the solution is complete. 

4. Proof of correctness: To prove that a greedy algorithm is correct, we need to show that it always 

produces an optimal solution. This can be done using either a direct proof or an exchange argument, 

where we show that any suboptimal solution can be transformed into an optimal solution without 

violating the greedy choice property. 

Examples of problems that can be solved using a greedy strategy: Some examples of problems that can 

be solved using a greedy strategy include the coin change problem, the activity selection problem, and 

the Huffman coding problem. 



 

 



 
 

 

 

 

 
 



Multistage Graph 
 



 
 

Optimal Merge Pattern 
 



Activity Selection Problem: 

 
The Activity Selection Problem is an optimization problem which deals with the selection of non- 

conflicting activities that needs to be executed by a single person or machine in a given time frame. 

Each activity is marked by a start and finish time. Greedy technique is used for finding the solution 

since this is an optimization problem. 

 
What is Activity Selection Problem? 

Let's consider that you have n activities with their start and finish times, the objective is to find 

solution set having maximum number of non-conflicting activities that can be executed in a single 

time frame, assuming that only one person or machine is available for execution. 

 

• It might not be possible to complete all the activities, since their timings can collapse. 

• Two activities, say i and j, are said to be non-conflicting if si >= fj or sj >= 

fi where si and sj denote the starting time of activities i and j respectively, and fi and fj refer to 

the finishing time of the activities i and j respectively. 

• Greedy approach can be used to find the solution since we want to maximize the count of 

activities that can be executed. This approach will greedily choose an activity with earliest 

finish time at every step, thus yielding an optimal solution. 

Input Data for the Algorithm: 

 
• act[] array containing all the activities. 

• s[] array containing the starting time of all the activities. 

• f[] array containing the finishing time of all the activities. 

Ouput Data from the Algorithm: 

 
• sol[] array refering to the solution set containing the maximum number of non-conflicting 

activities. 

 
Steps for Activity Selection Problem 

 
Following are the steps we will be following to solve the activity selection problem, 

Step 1: Sort the given activities in ascending order according to their finishing time. 

Step 2: Select the first activity from sorted array act[] and add it to sol[] array. 

Step 3: Repeat steps 4 and 5 for the remaining activities in act[]. 



Step 4: If the start time of the currently selected activity is greater than or equal to the finish time of 

previously selected activity, then add it to the sol[] array. 

 

Step 5: Select the next activity in act[] array. 

 

Step 6: Print the sol[] array. 

Activity Selection Problem Example 

Let's try to trace the steps of above algorithm using an example: 

 

In the table below, we have 6 activities with corresponding start and end time, the objective is to 

compute an execution schedule having maximum number of non-conflicting activities: 
 

 
 

Step 2: Select the first activity from sorted array act[] and add it to the sol[] array, thus sol = {a2}. Step 3: 

Repeat the steps 4 and 5 for the remaining activities in act[]. 

Step 4: If the start time of the currently selected activity is greater than or equal to the finish time of the 

previously selected activity, then add it to sol[]. 



 

Step 5: Select the next activity in act[] For the 

data given in the above table, 

A. Select activity a3. Since the start time of a3 is greater than the finish time of a2 (i.e. s(a3) > f(a2)), we 

add a3 to the solution set. Thus sol = {a2, a3}. 

B. Select a4. Since s(a4) < f(a3), it is not added to the solution set. 

C. Select a5. Since s(a5) > f(a3), a5 gets added to solution set. Thus sol = {a2, a3, a5} 

D. Select a1. Since s(a1) < f(a5), a1 is not added to the solution set. 

E. Select a6. a6 is added to the solution set since s(a6) > f(a5). Thus sol = {a2, a3, a5, a6}. Step 6: At 

last, print the array sol[] 

Hence, the execution schedule of maximum number of non-conflicting activities will be: 

 

 

  



UNIT IV STATE SPACE SEARCH ALGORITHMS 9 

Backtracking: n-Queens problem - Hamiltonian Circuit Problem - Subset Sum Problem – Graph 

colouring problem Branch and Bound: Solving 15-Puzzle problem - Assignment problem - 

Knapsack Problem - Travelling Salesman Problem 
 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
  

   

 

 

 
 

 

 

 

 
 

   

 

 
  

 



 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 
 



 



 
 

 
 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 
 

 

 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

 

 

 
 

 

 

 

 

 
 

   

       

 
 

 
 

 
 

 
 

 

 
    

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

  
 

 
 

 

 

 

 

 

 

 
 

 



 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Branch and Bound – 15 – Puzzle Problem 

The 15 puzzle problem is a well-known sliding puzzle game where a player has to move tiles 

numbered from 1 to 15 on a 4x4 grid to reach a target configuration. The goal is to reach the target 

configuration in the minimum number of moves possible. 

Branch and Bound is a search algorithm that solves combinatorial optimization problems by 

systematically exploring the space of possible solutions. It is often used to solve the 15 puzzle 

problem and other similar problems. 

The Branch and Bound algorithm works by exploring the search space in a systematic way, 

keeping track of the best solution found so far, and pruning branches of the search tree that are 

guaranteed to lead to suboptimal solutions. 

To apply the Branch and Bound algorithm to the 15 puzzle problem, we start with the initial 

configuration of the puzzle and generate all possible moves from that configuration. Each move 

generates a new configuration, and we add these new configurations to a priority queue ordered by 

the estimated distance from the target configuration. 

We then pick the configuration with the lowest estimated distance from the target 

configuration and explore its children, repeating this process until we reach the target configuration. 

As we explore the search space, we keep track of the best solution found so far and prune 

branches that are guaranteed to lead to worse solutions than the best solution found so far. This is 

done by maintaining an upper bound on the cost of the best solution that can be found in each branch 

of the search tree. 

By combining the Branch and Bound algorithm with efficient heuristics for estimating the 

distance to the target configuration, it is possible to find optimal solutions to the 15 puzzle problem 

and other similar problems in reasonable time. 

 

 

Stage 1: 



 

Stage 2: 
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Tractable and intractable problems: Polynomial time algorithms – Venn diagram representation – 

NPalgorithms – NP-hardness and NP-completeness – Bin Packing problem – Problem reduction: 

TSP – 3CNF problem. Approximation Algorithms: TSP – Randomized Algorithms: concept and 

application- Primality testing – randomized quick sort – Finding kth smallest number 
 

Tractable and Intractable 

Problems 

In computer science, the classification of problems into tractable and intractable is a crucial aspect 

of algorithm design and analysis. A tractable problem is one that can be solved efficiently, while an 

intractable problem is one that cannot be solved efficiently, at least not with our current 

understanding of computer algorithms. 

For instance, the problem of finding the greatest common divisor of two integers is a tractable 

problem, since there is a simple and efficient algorithm to solve it, namely the Euclidean 

algorithm. On the other hand, the problem of factoring a large composite number into its prime 

factors is currently believed to be an intractable problem, meaning that there is no known 

algorithm that can solve it efficiently for large numbers. 

The distinction between tractable and intractable problems is important because it allows us to 

focus our algorithmic efforts on the problems that can be solved efficiently and to avoid wasting 

time on problems that are likely to be intractable. 

 

 

 

 

Venn Diagrams 

Representation 

 
Venn diagrams are a type of diagram used to represent sets and their relationships. They consist 

of a rectangle representing the universe of discourse, and circles or other shapes representing 

sets within that universe. The diagram can be used to show the relationships between sets, such 

as their 

intersections or unions. 

For example, consider the sets A and B where A={1,2,3}, B={2,3,5,6}. A Venn diagram for these 

sets would consist of two circles, one for each set, with the regions of intersection showing the 

elements that are in more than one set. The diagram would look like a collection of overlapping 

circles, with the region of overlap showing the elements that are In all three sets. 



 
 
 

Venn diagrams are useful for visualizing set relationships and can be used in a variety of contexts, 

from basic mathematics to data analysis and statistics. 
 

Polynomial Time Algorithms 

 
A polynomial time algorithm is one that can solve a problem in time that is proportional to some 

polynomial function of the size of the input. For example, an algorithm that takes time O(n^2) to 

sort an array of n numbers is a polynomial time algorithm. 

Polynomial time algorithms are important because they are typically considered to be efficient. 

While the running time of a polynomial time algorithm may still grow quite large for very large 

input sizes, the growth rate is generally manageable, and the algorithm can be used to solve 

problems that are too large for brute force methods but too small to require more specialized 

algorithms. 
 

NP Algorithms 
 
 

 
 

NP (nondeterministic polynomial time) algorithms are a class of algorithms that can solve 

problems in polynomial time on a theoretical computer that can perform a certain type of 

nondeterministic computation. These algorithms are often used to solve problems that are difficult 

or impossible to solve efficiently with deterministic algorithms. 



For example, the problem of finding a Hamiltonian cycle in a graph is an NP problem, meaning 

that no known algorithm can solve it efficiently for all instances of the problem. However, there 

is an NP algorithm called the traveling salesman algorithm that can solve the problem efficiently 

for many 

instances. 

NP algorithms are important because they allow us to solve many important problems that would 

otherwise be intractable. However, they are generally not considered to be efficient in practice, 

since they require significant computational resources and are often difficult to implement. 

 

 

NP-Hard and NP-

Completeness 
 
 

 
 

 
NP-hard and NP-complete problems are a class of problems that are at least as difficult as NP 

problems, meaning that they are likely to be intractable 

NP-hard problems are those that can be reduced to any other NP problem in polynomial time. In 

other words, if we can solve 

 

 

Reduction of np problem to 

NP-Hard and np-complete 

Reduction is a technique used in computational complexity theory to show that one problem is 

no harder than another. Specifically, it involves demonstrating that a problem A can be 

transformed into 



problem B in such a way that any solution to problem B can be used to solve problem A. In this 

answer, we will focus on the reduction of NP problems to NP-hard and NP-complete problems, 

which are two 

important classes of problems in computational complexity theory 

The steps involved in reducing an NP problem to an NP-hard problem: 

 
Step 1: Choose an NP-hard problem, such as the Knapsack Problem, that you want to reduce your 

NP problem to. 

Step 2: Construct a reduction algorithm that takes an instance of your NP problem and converts it 

into an instance of the NP-hard problem. This algorithm should run in polynomial time. 

Step 3: Prove that the reduction algorithm is correct by showing that any solution to the NP-hard 

problem can be used to solve the original NP problem. 

Step 4: Prove that the reduction algorithm runs in polynomial time by showing that it takes a 

polynomial amount of time to transform an instance of the original problem into an instance of the 

NP-hard problem 

The steps involved in reducing an NP problem to an NP-hard problem: 

Step 1: Choose an NP-hard problem, such as the Knapsack Problem, that you want to reduce your 

NP problem to. 

Step 2: Construct a reduction algorithm that takes an instance of your NP problem and converts it 

into an instance of the NP-hard problem. This algorithm should run in polynomial time. 

Step 3: Prove that the reduction algorithm is correct by showing that any solution to the NP-hard 

problem can be used to solve the original NP problem. 

Step 4: Prove that the reduction algorithm runs in polynomial time by showing that it takes a 

polynomial amount of time to transform an instance of the original problem into an instance of the 

NP-hard 

problem. 
 

Bin Packing Problem 

The bin packing problem is a classic optimization problem in which items of varying sizes must be 

packed into a set of containers, or “bins”, in a way that minimizes the number of bins required. The 

problem can be stated as follows: 

Given a set of items with sizes s1, s2, …, sn, and a set of bins with capacity C, find the minimum 

number of bins required to pack all the items, subject to the constraint that the sum of the sizes of 

the items in each bin must not exceed the bin capacity. 

The bin packing problem Is known to be NP-hard, which means that there is no known algorithm 

that can solve it efficiently for all cases. However, there are a number of approximation 

algorithms and heuristics that can be used to find near-optimal solutions in a reasonable amount 

of time. These algorithms typically involve sorting the items by size and then iteratively adding 

them to bins in a way that minimizes the number of bins required. 

There are several types of bin packing algorithms, including: 



• First Fit (FF) algorithm: This algorithm places items into the first available bin that can accommodate 

them, starting from the first bin. 

• Next Fit (NF) algorithm: This algorithm is similar to the First Fit algorithm, but instead of starting 

from the first bin every time, it starts from the last bin used in the previous iteration. 

• Best Fit (BF) algorithm: This algorithm places items into the bin that has the least amount of extra space 

left after accommodating the item. 

• Worst Fit (WF) algorithm: This algorithm places items into the bin that has the most amount of extra 

space left after accommodating the item. 

OFFLINE ALGORITHMS 

• First Fit Decreasing (FFD) algorithm: This algorithm first sorts the items in decreasing order of size, 

and then applies the First Fit algorithm. 

• Best Fit Decreasing (BFD) algorithm: This algorithm first sorts the items in decreasing order of size, 

and then applies the Best Fit algorithm. 

• Largest Area Fit (LAF) algorithm: This algorithm considers the area of the remaining space in the bin 

and places the item in the bin that has the largest remaining area. 

Each algorithm has its own advantages and disadvantages, and the best algorithm to use depends on 

the specific requirements and constraints of the problem at hand. 

Applications: The bin packing problem has a wide range of applications in logistics, 

transportation, and manufacturing, where it is often necessary to pack items efficiently to 

minimize shipping costs or maximize warehouse space utilization. 
 

TSP and 3CNF Reduction 

The Traveling Salesman Problem (TSP) and the 3-Satisfiability Problem (3CNF) are two well-

known problems in computer science. The TSP is an optimization problem that seeks to find the 

shortest possible route that visits a set of cities and returns to the starting city. The 3CNF problem 

is a decision problem that asks whether there is a satisfying assignment of variables that satisfies a 

set of clauses in conjunctive normal form (CNF) where each clause contains exactly three literals. 

To reduce TSP to 3CNF, we can start by assuming that we have a TSP instance with a set of 

cities and distances between each pair of cities. We can then construct a set of boolean variables 

that correspond to each possible route between the cities. For each variable, we can assign the 

value “true” if the 

corresponding route is included in the optimal TSP tour and “false” otherwise. 

Next, we need to construct a set of clauses that encode the constraints of the TSP problem. 

Specifically, we need to ensure that each city is visited exactly once, that the tour is closed (i.e., it 

returns to the starting city), and that the length of the tour is minimized. To encode these 

constraints, we can construct clauses that ensure that each city is visited exactly once, that each 

city is visited by exactly one incoming and one outgoing edge, and that the sum of the lengths of 

the edges in the tour is minimized. 



To reduce 3CNF to TSP, we can start by assuming that we have a 3CNF instance with a set of 

boolean variables and a set of clauses. We can then construct a set of cities that correspond to 

each possible assignment of the boolean variables. For each assignment, we can assign a 

distance of 1 if the 

assignment satisfies the clause and a distance of 2 otherwise. 

Next, we need to construct a distance matrix that encodes the distances between each pair of 

cities. Specifically, we can assign a distance of 0 between two cities if they correspond to the same 

assignment of variables, a distance of 1 if they differ by one variable assignment, and a distance of 

2 if they differ by two or more variable assignments. 

Finally, we can solve the TSP problem on this distance matrix to find the shortest possible tour 

that satisfies all of the clauses in the 3CNF instance. If the length of the tour is equal to the 

number of assignments that satisfy all of the clauses, then the 3CNF instance is satisfiable. 

Otherwise, it is unsatisfiable. 
 

Randomized algorithms 

Randomized algorithms are algorithms that use randomness, typically through the generation of 

random numbers, to solve computational problems. They are particularly useful in situations where 

a 

deterministic algorithm may take too much time or memory to solve a problem, or where there is 

no known deterministic algorithm that can solve the problem efficiently. 

There are two main types of randomized algorithms: 

• Las Vegas algorithms 

• Monte Carlo algorithms 
 

Las Vegas algorithms 

Las Vegas algorithms are randomized algorithms that always return the correct answer, but the 

running time can vary depending on the input. An example of a Las Vegas algorithm is quicksort, 

where the pivot element is chosen randomly and the expected running time is O(nlogn). 
 

Monte Carlo algorithms 

Monte Carlo algorithms, on the other hand, may return an incorrect answer with a certain 

probability, but the running time is typically fixed. They are often used in situations where the 

cost of obtaining a correct answer is very high, or where a probabilistic answer is sufficient. An 

example of a Monte Carlo algorithm is the Miller-Rabin primality test, which is used to determine 

whether a number is prime or composite with a certain probability. 

Applications: Randomized algorithms are used in a wide range of applications, including 

cryptography, machine learning, computational biology, and optimization. They have been shown 

to be very effective in practice, and have led to many breakthroughs in computer science and 

related fields. 
 

Primality testing 

Primality testing is the process of determining whether a given number is prime or composite. A 

prime number is a positive integer greater than 1 that has no positive integer divisors other than 1 

and itself. 



There are several types of primality testing algorithms, each with different time and space 

complexity, and different tradeoffs between speed and accuracy. 

• Trial division: This is the simplest and most straightforward primality testing algorithm. It involves 

checking whether the number is divisible by any integer between 2 and the square root of the 

number. If no divisor is found, the number is prime. However, this algorithm is slow for large 

numbers. 

For example, let’s say we want to test whether the number 37 is a prime number using trial division. 

The first prime number is 2, and the square root of 37 is approximately 6.08. Therefore, we only 

need to test divisibility by 2, 3, and 5. 

• 37 is not divisible by 2, since it is an odd number. 

• 37 is not divisible by 3, since the sum of its digits (3 + 7) is not divisible by 3. 

• 37 is not divisible by 5, since it does not end in 0 or 5. 

Since we have tested all the primes less than or equal to the square root of 37, and none of them 

divide 37 evenly, we can conclude that 37 is a prime number. 

• Fermat’s little theorem: This theorem states that if p is a prime number and a is any positive integer not 

divisible by p, then a raised to the power of p-1 is congruent to 1 modulo p. This means that if we pick a 

random value of a and check whether a^(p-1) is congruent to 1 modulo p, we can determine with high 

probability whether p is prime or not. However, this algorithm can give false positives for certain 

composite numbers that satisfy the theorem. 

Here's an example: let's say we want to test if n = 17 is prime. We can choose a few random integers, 

say a = 2, 3, and 5, and check if: 

2^(16) mod 17 = 1 

3^(16) mod 17 = 1 

5^(16) mod 17 = 1 

In this case, all three values are equal to 1, so we can conclude that 17 is likely to be prime. 

However, it’s important to note that this is only a preliminary test and does not provide absolute 

certainty that n is prime. More rigorous methods, such as the Miller-Rabin test or AKS algorithm, 

may be needed for larger numbers. 

• Miller-Rabin: This algorithm is a probabilistic primality testing algorithm that is based on the same idea 

as Fermat’s little theorem. It involves picking a random value of a and checking whether a^(n-1) is 

congruent to 1 modulo n, where n is the number we want to test for primality. If not, we keep raising a to 

successive powers until we find a value of k such that a^(2^k * (n-1)) is congruent to 1 modulo n. If k is 0 

or a power of 2, then n is probably prime. Otherwise, n is composite. This algorithm has a very high 

probability of correctly identifying primes, and can be made arbitrarily accurate by running multiple tests 

with different random values of a. 

Example:Suppose we want to test if the number 27 is prime or composite using the Miller-Rabin 

algorithm. 



Step 1: Write 27-1 as 26 = 2^1 * 13. 

Step 2: Choose a random base, say a=2. 

Step 3: Compute a^d mod n for d = 13, 6, 3, and 2. 

A^d mod n = 2^13 mod 27 = 

2 A^(d/2) mod n = 2^6 mod 

27 = 1 A^(d/4) mod n = 2^3 

mod 27 = 8 A^(d/8) mod n = 

2^2 mod 27 = 4 

Step 4: Check if any of the computed values are equal to n-1 = 26. 

In this case, none of the computed values are equal to 26, so we can conclude that 27 is composite. 

Note: The Miller-Rabin algorithm is a probabilistic algorithm, which means that there is a small 

chance that it might give a false positive result (i.e., declare a composite number as prime). The 

probability of a false positive can be made arbitrarily small by repeating the test with different 

random bases. 

• AKS: This algorithm is a deterministic primality testing algorithm that was discovered in 2002. It is 

based on a polynomial-time algorithm for testing whether two polynomials are identical. By using this 

algorithm to test whether certain polynomials are identical modulo n, we can determine with 

certainty whether n is prime or composite. However, this algorithm is relatively slow compared to 

the probabilistic algorithms, and is only practical for relatively small numbers. 

Example: 

 

 

 

Randomized Quick Sort 

Randomized Quick Sort is a popular sorting algorithm that uses the divide and conquer approach. 

It is an efficient algorithm that sorts an array in ascending or descending order by selecting a pivot 

element and partitioning the array into two parts: the left part containing elements less than the pivot, 

and the right 



part containing elements greater than or equal to the pivot. The algorithm then recursively sorts the 

left and right parts until the entire array is sorted. 

The algorithm works as follows: 

1. Choose a random pivot element from the array. 

2. Partition the array into two parts: the left part containing elements less than the pivot, and the right 

part containing elements greater than or equal to the pivot. 

3. Recursively sort the left and right parts using the same algorithm until the entire array is sorted. 

Example: Consider the following array of integers: [5, 3, 7, 2, 8, 4, 1, 6] 

Step 1: Choose a random pivot element from the array. Let’s say we choose 4. 

Step 2: Partition the array into two parts: the left part containing elements less than the pivot (3, 2, 

1), and the right part containing elements greater than or equal to the pivot (5, 7, 8, 6). 

Step 3: Recursively sort the left and right parts using the same algorithm. 

★Sorting the left part [3, 2, 1]: 

• Choose a random pivot element from the array. Let’s say we choose 2. 

• Partition the array into two parts: the left part containing elements less than the pivot (1), and the right 

part containing elements greater than or equal to the pivot (3, 2). 

• Recursively sort the left and right parts using the same algorithm. 

★Sorting the left part [1]: 

The array is already 

sorted. Sorting the right 

part [3, 2]: 

• Choose a random pivot element from the array. Let’s say we choose 3. 

• Partition the array into two parts: the left part containing elements less than the pivot (2), and the right 

part containing elements greater than or equal to the pivot (3). 

• Recursively sort the left and right parts using the same algorithm. 

★Sorting the left part [2]: 

The array is already sorted. 

★Sorting the right part [3]: 

The array is already sorted. 

Therefore, the left part [3, 2, 1] is sorted to [1, 2, 3]. 

★Sorting the right part [5, 7, 8, 6]: 



• Choose a random pivot element from the array. Let’s say we choose 7. 

• Partition the array into two parts: the left part containing elements less than the pivot (5, 6), and the 

right part containing elements greater than or equal to the pivot (7, 8). 

• Recursively sort the left and right parts using the same algorithm. 

★Sorting the left part [5, 6]: 

The array is already sorted. 

★Sorting the right part [7, 8]: 

The array is already sorted. 

Therefore, the right part [5, 7, 8, 6] is sorted to [5, 6, 7, 8]. 

Finally, we concatenate the sorted left and right parts to obtain the sorted array: [1, 2, 3, 4, 5, 6, 7, 8] 
 

Finding kth smallest 

number 

The problem of finding the kth smallest element in an unsorted array or list is a common problem 

in computer science and is often used in design analysis and algorithms. The goal is to find the kth 

smallest element, where k is a positive integer and is less than or equal to the length of the array or 

list. 

One common solution to this problem is to use a sorting algorithm to sort the array or list in 

ascending order, and then return the element at the kth position. This solution has a time complexity 

of O(nlogn) in the worst case, where n is the size of the array or llist 

Another solution to this problem is to use a selection algorithm. A selection algorithm is an 

algorithm that finds the kth smallest element in an unsorted array or list without sorting the entire 

array or list. One example of a selection algorithm is the Quickselect algorithm, which is an 

efficient and commonly used algorithm for this problem. The Quickselect algorithm has a time 

complexity of O(n) in the average case, where n is the size of the array or list. 

The Quickselect algorithm works by selecting a pivot element from the array or list, partitioning the 

array or list into two subarrays, and recursively selecting a new pivot element from the subarray 

that contains the kth smallest element. The algorithm repeats this process until the kth smallest 

element is found. 

Here are the steps for the Quickselect algorithm: 

1. Select a pivot element from the array or list. 

2. Partition the array or list into two subarrays: one subarray contains all elements less than the pivot, 

and the other subarray contains all elements greater than or equal to the pivot. 

3. If the kth smallest element is in the subarray that contains elements less than the pivot, recursively 

apply the algorithm to that subarray. 

4. If the kth smallest element is in the subarray that contains elements greater than or equal to the pivot, 

recursively apply the algorithm to that subarray. 

5. If the pivot is the kth smallest element, return the pivot. 



6. If the kth smallest element is not in either subarray, return an error. 

The Quickselect algorithm has a worst-case time complexity of O(n^2) in the worst case, but this can be 

avoided by selecting a good pivot element. In practice, the Quickselect algorithm has been found to be very 

efficient and is often used in applications where finding the kth smallest element is a common operation. 

Example: 

• Input: [7, 4, 6, 3, 9, 1] k = 2. 

• Output: k'th smallest aííay element is 3. 

• Input: [7, 4, 6, 3, 9, 1] k = 1. 

• Output: k'th smallest aííay element is 1. 

c  
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PART - A 

 

1. What do you mean by algorithm? (Nov/Dec 2008) (May/June 2013) (Apr/May 17) 

(U) 

An algorithm is a sequence of unambiguous for solving a problem i.e., for obtaining a 

required output for any legitimate input in a finite amount of time. In addition, all 

algorithms must satisfy the following criteria: 
1) Input 

2) Output 

3) Definiteness 

4) Finiteness 

5) Effectiveness. 

 

2. What is performance measurement? (R) 

Performance measurement is concerned with obtaining the space and the time 

requirements of a particular algorithm. 

 

3. Give the diagram representation of Notion of algorithm. (C) 

 

PROBLEM 

 
ALGORITHM 

INPUT OUTPUT 

 

 
 

4. What are the types of algorithm efficiencies? (R) 

The two types of algorithm efficiencies are 

Time efficiency: indicates how fast the algorithm runs. 

Space efficiency: indicates how much extra memory the algorithm needs. 



5. What is space complexity? (Nov/Dec 2012) (R) 

Space Complexity indicates how much extra memory the algorithm needs. Basicallyit has 

three components. They are instruction space, data space and environment space. 

 

6. What is time complexity? (Nov/Dec 2012) (R) 

Time Complexity indicates how fast an algorithm runs. T (P) =Compile Time + Run 

Time.(Tp) ,Where Tp is no of add, sub, mul... 

 

7. What is an algorithm design technique? (R) 

An algorithm design technique is a general approach to solving problems algorithmically 
that is applicable to a variety of problems from different areas of computing. 

 

8. What is pseudo code? (R) 

A pseudo code is a mixture of a natural language and programming language constructs 

to specify an algorithm. A pseudo code is more precise than a natural language and its 

usage often yields more concise algorithm descriptions. 

 
9. What are the types of algorithm efficiencies? (R) 

The two types of algorithm efficiencies are 

Time efficiency: indicates how fast the algorithm runs 

Space efficiency: indicates how much extra memory the algorithm needs. 

 
10. What do you mean by “worst-case efficiency” of and algorithm? (R) (Nov 17) 

The worst case efficiency of an algorithm, its efficiency for the worst-case input of size n, 

which is an input or inputs of size n for which the algorithm runs the longest among all 

possible inputs of that size. 

 
11. What is best-case efficiency? (R) 

The best-case efficiency of an algorithm is its efficiency for the best-case input of size n, 

which is an input or inputs for which the algorithm runs the fastest among all possible 

inputs of that size. 

 

12. What is average case efficiency? (May 2008) (R) 

The average case efficiency of an algorithm is its efficiency for an averagecase input of 

size n. It provides information about an algorithm behavior on a “typical” or “random” 

input. 

 
13. Define asymptotic notations. (R) 

To choose best algorithm, we need to check efficiency of each algorithm the efficiency can 

be measured by computing time complexity of each algorithm. Asymptotic notation is 

shorthand way to represent the time complexity 

The various notations are Big “Oh”, Big Omega, and Theta. 

 

14. Define the asymptotic notation “Big oh” (0)(May 2008)(April/May 2012&2013) (R) 

Let, f(n) and g(n) be two non-negative functions. Let, n0 and constant c are two integers 

such that no denotes some value of input similarly c is constant such that c > 0. We can 

write 



 
 

F(n) <= c*g(n) For all n ≥ n0 

A function t(n) is said to be in O(g(n)) denoted t(n) ε O (g(n)), if t(n) is bounded above by 

some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c 

and some non-negative integer n0 such that 

T (n) < c g (n) for n > n0 

 
15. Define the asymptotic notation “Omega” ( Ω). (R) 

A function f(n) is said to be in Ω (g(n)) if f(n) is bounded below by some 

positive constant multiple of g(n) such that 
f(n) ≥ c * g(n) For all n ≥ n0 

 
16. Define the asymptotic notation “theta” (θ) (R) 

Let, f(n) and g(n) be two non negative functions. There are two positive constants namely 

c1 and c2 such that c1 ≤ g(n) ≤ c2 g(n) 
Then we can say that, f(n) ε Θ (g(n)) 

 

 
17. What is recursive algorithm? (R) 

An algorithm is said to be recursive if the same algorithm is invoked in the body. An 

algorithm that calls itself is direct recursive. 

 

18. Define recurrence. (May2010) (R) 

A recurrence is an equation or inequality that describes a function in terms of its value on 

smaller inputs. The complexity of many interesting algorithms is easily expressed as a 

recurrence, especially divide and conquer algorithms. The complexity of recursive 

algorithms is readily expressed as a recurrence. 

Example :(i)Linear search of a list 
 

T (n) = 
1

 
T(n -1) +1 

(ii) Binary search 

for n 1 

otherwise 



 
T (n) = 

1
 

T(n/2) + 1 

for n 1 

otherwise 

 

19. Define Linear Search. (Nov/Dec 2011) (April/May 2010&2012) (R) 

In computer science, linear search or sequential search is a method for finding aparticular 

value in a list, which consists in checking every one of its elements, one at atime and in 

sequence, until the desired one is found. 

 
20. What are the Best, Worst and Average Case complexity of Linear Search? (R) 
✓ Best Case – O(1) 

✓ Average Case – O(N) 

✓ Worst Case – O(N) 

 
21. Difference between Best Case and Worst Case Complexities.(AN) 

The best case complexity of an algorithm is its efficiency for the best case input 

ofsize N, which is an input of size N for which the algorithm runs fastest among all possible 

inputs of that size. 

The worst case complexity of an algorithm is its efficiency for the worst case 

inputof size N, which is an input of size N for which the algorithm runs longest among all 

possible inputs of that size. 

 
22. What is binary search? (R) 

Binary search is a remarkably efficient algorithm for searching in a sorted 

array. It works by comparing a search key K with the arrays middle element A[m]. if they 

match the algorithm stops; otherwise the same operation is repeated recursively for the first 

half of the array if K < A[m] and the second half if K > A[m]. 
a. A[0]………A[m-1] A[m] A[m+1]………A[n-1] 

 
23. Give computing time for Binary search?(APRIL/MAY 2012) (E) 

In conclusion we are now able completely describe the computing time of binary search by 

giving formulas that describe the best, average and worst cases. 

Successful searches 

Best-(1) average-(logn)  worst -(Logn) 

unsuccessful searches best, average, worst- (logn) 

 
24. Write the algorithm for Iterative binary search? (A) 

Algorithm BinSearch(a,n,x) 

//Given an array a[1:n] of elements in nondecreasing 

// order, n>0, determine whether x is present 

{ 

low : = 1; 

high : = n; 
while (low < high) do 

{ 

mid : = [(low+high)/2]; 

if(x a[mid]) then high:= mid-1; 

else if (x a[mid]) then low:=mid + 1; 



else return mid; 

} 

return 0; 

} 

 
 

25. Give the general plan for analyzing non recursive algorithm. (R) 

• Decide a parameter indicating an Input’s Size. 

• Identify the algorithms Basic Operation 

• Check whether the number of times the basic operation is executed only on thesize of 
an input. If it also depends on some additional property, the worst case, average case, 

and if necessary, best case efficiencies have to be investigated separately. 

• Using standard formulas and rules of sum manipulation either find a closedformula for 
the count or, at the very least, establish its order of growth. 

 

26. What is validation of algorithm? (Nov/Dec 2012) (R) 

The process of measuring the effectiveness of an algorithm before it is coded to know the 

algorithm is correct for every possible input. This process is called validation. 

 
 

27. What are all the methods available for solving recurrence relations? (R) 

✓ Forward Substitution 

✓ Backward Substitution 

✓ Smoothness Rule 

✓ Master Theorem 

 

28. Write down the problem types.(April/May 2008) (R) 

✓ Sorting 

✓ Searching 

✓ String Processing 

✓ Graph Problem 

✓ Combinational Problem 

✓ Geometric Problem 

✓ Numerical Problem 

 

29. What are the types of recurrence relations? (R) 
✓ Homogeneous recurrence relation. 

✓ Non homogeneous recurrence relation. 

 

30. Define Substitution Method. (April /May 2010) (R) 

Substitution method is a method of solving a system of equations wherein one of 

theequations is solved for one variable in terms of the other variables. 

 

31. Give the general plan for analyzing recursive algorithm. (R) 
✓ Decide a parameter indicating an Input’s Size. 

✓ Identify the algorithms Basic Operation 



✓ Check whether the number of times the basic operation is executed only on thesize of an input. 

If it also depends on some additional property, the worst case,average case, and if necessary, 

best case efficiencies have to be investigatedseparately. 

✓ Set up a recurrence relation, with an appropriate initial condition, for thenumber of times basic 

operation is executed. 

 

32. Define Recurrence Relation. (APRIL/MAY 2010) (Nov/Dec 2016) (R) 

The equation defines M (N) not explicitly, ie.., is a function of n, but implicitly as afunction 

of its value at another point, namely N-1. Such equations are calledrecurrence relation. 

 
33. Give the General Plan for the Empirical Analysis of Algorithm Time Efficiency? (C) 

1. Understand the experiment’s purpose. 

2. Decide on the efficiency metric M to be measured and the measurement unit (an 

operation count vs. a time unit). 

3. Decide on characteristics of the input sample (its range, size, and so on). 

4. Prepare a program implementing the algorithm (or algorithms) for the experimentation. 

5. Generate a sample of inputs. 

6. Run the algorithm (or algorithms) on the sample’s inputs and record the data observed. 

7. Analyze the data obtained. 

 
34. Write down the properties of asymptotic notations?(MAY 2015) (R) 

If t1(n)Ɛ O(g1(n)) and t2(n)Ɛ O(g2(n)), then 

t1(n)+t2(n)Ɛ O(max{g1(n),g2(n)}) 

 

35. Give the Euclid algorithm for computing gcd(m, n) (MAY/JUN 2016) (Apr/May 17) 

(APR 17) (C) 
ALGORITHM Euclid_gcd(m, n) 

//Computes gcd(m, n) by Euclid’s algorithm 

//Input: Two nonnegative, not-both-zero integers m and n 

//Output: Greatest common divisor of m and n 

while n ≠ 0 do 

r ←m mod n 

m←n 
n←r 

return m 

Example: gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12. 

 

36. Design an algorithm for computing area and circumference of the circle. 

(NOV/DEC 2016) (C) 

//Computes area and circumference of the circle 

//Input: One non-negative integer radius 

//Output: Area and Circumference of the circle 

 

Area = PI * rad * rad; 

Ci = 2 * PI * rad; 

return area, ci 



37. How to measure an algorithm running time? (NOV/DEC 2017) (R) 

One possible approach is to count the number of times each of the algorithm’s operation is 

executed. The thing to do is identify the most important operation of the algorithm called 

as basic operation and compute the number of times the basic operation is executed. 

T(n)  Cop C(n) 

 

38. What is a basic operation? (APR/MAY 2018) (R) 

The process of identify the most important operation of the algorithm called as basic 
operation 

 

39. Define best,worst,average case time complexity. (NOV/DEC 2018) 

Best case: In the best case analysis, we calculate lower bound on running time of an 

algorithm. We must know the case that causes minimum number of operations to be 

executed. 

Worst case: In the worst case analysis, we calculate upper bound on running time of an 

algorithm. We must know the case that causes maximum number of operations to be 

executed. 

Averge case: In average case analysis, we take all possible inputs and calculate computing 

time for all of the inputs. Sum all the calculated values and divide the sum by total number 

of inputs. 

 
40. How do you measure the efficiency of an algorithm. (APR/MAY 2019) 

Time efficiency - a measure of amount of time for an algorithm to execute. 

Space efficiency - a measure of the amount of memory needed for an algorithm to 

execute. 

 
41. Prove that the if f(n)=O(g(n)) and g(n)=O(f(n)),then f(n)= θg (n) (APR/MAY 2019) 

 

42. What do you mean bt interpolation search? 

Interpolation search finds a particular item by computing the probe position. Initially, the 

probe position is the position of the middle most item of the collection. 
 

If a match occurs, then the index of the item is returned. To split the list into two parts, we 

use the following method − 

mid = Lo + ((Hi - Lo) / (A[Hi] - A[Lo])) * (X - A[Lo]) 

 

where − 

A = list 

Lo = Lowest index of the list 

Hi = Highest index of the list 



A[n] = Value stored at index n in the list 

 

43. Define naïve string matching alogorithm. 

The naïve approach tests all the possible placement of Pattern P [1. ..... m] relative to text 

T [1......n]. We try shift s = 0, 1.......n-m, successively and for each shift s. Compare T 

[s+1.......s+m] to P [1 ..... m]. 

 

The naïve algorithm finds all valid shifts using a loop that checks the condition P 

[1.......m] = T [s+1. ..... s+m] for each of the n - m +1 possible value of s. 

 
 

NAIVE-STRING-MATCHER (T, P) 

1. n ← length [T] 

2. m ← length [P] 

3. for s ← 0 to n -m 

4. do if P [1.....m] = T [s + 1....s + m] 

5. then print "Pattern occurs with shift" s 

 

44. Define Rabin-Karp algorithm. 

 

The Rabin-Karp string matching algorithm calculates a hash value for the pattern, as well as 

for each M-character subsequences of text to be compared. If the hash values are unequal, 

the algorithm will determine the hash value for next M-character sequence. If the hash values 

are equal, the algorithm will analyze the pattern and the M-character sequence. In this way, 

there is only one comparison per text subsequence, and character matching is only required 

when the hash values match. 

 
RABIN-KARP-MATCHER (T, P, d, q) 

1. n ← length [T] 

2. m ← length [P] 

3. h ← dm-1 mod q 

4. p ← 0 

5. t0 ← 0 

6. for i ← 1 to m 

7. do p ←  (dp + P[i]) mod q 

8. t0 ← (dt0+T [i]) mod q 

9. for s  ← 0 to n-m 

10. do if p = ts 

11. then if P [1.....m] = T [s+1. ... s + m] 

12. then "Pattern occurs with shift" s 

13. If s < n-m 

14. then ts+1 ← (d (ts-T [s+1]h)+T [s+m+1])mod q 



45. Define Knuth-Morris-Pratt algorithm. 

Knuth-Morris and Pratt introduce a linear time algorithm for the string matching 

problem. A matching time of O (n) is achieved by avoiding comparison with an element 

of 'S' that have previously been involved in comparison with some element of the pattern 

'p' to be matched. i.e., backtracking on the string 'S' never occurs 

 

46. Write the advantage of insertion sort? (NOV/DEC 2017) 

1.Simple implementation 

2.Efficient for small data sets 

3.Adaptive 

4. More efficient in practice than most other simple quadratic, i.e. O(n2) algorithms such 

as Selection sort or bubble sort; the best case (nearly sorted input) is O(n) 
5. Stable - does not change the relative order of elements with equal keys 

 

47. Define Heap sort? 

Heap Sort is one of the best sorting methods being in-place and with no quadratic worst- 

case running time. Heap sort involves building a Heap data structure from the given array 

and then utilizing the Heap to sort the array. 

 

48. What are the properties of heap structure? 

 

The special heap properties given below: 

 

Shape Property: Heap data structure is always a Complete Binary Tree, which means all 
 

levels of the tree are fully filled. 
 

Heap Property: All nodes are either greater than or equal to or less than or equal to 

each of its children. If the parent nodes are greater than their child nodes, heap is called a 

Max-Heap, and if the parent nodes are smaller than their child nodes, heap is called Min- 

Heap. 

 



49. What are the two basic parts of Heap sort ? 

• Creating a Heap of the unsorted list/array. 

• Then a sorted array is created by repeatedly removing the largest/smallest element 

from the heap, and inserting it into the array. The heap is reconstructed after each 
removal. 

 

50. What is the Complexity Analysis of Heap Sort? 

Worst Case Time Complexity: O(n*log n) 

Best Case Time Complexity: O(n*log n) 

Average Time Complexity: O(n*log n) 

Space Complexity : O(1) 

 

51. What are the advantages of Heap sort ? 

 

Heap sort is not a Stable sort, and requires a constant space for sorting a list. 

Heap Sort is very fast and is widely used for sorting 

 
 

PART B 
 

1. Define the asymptotic notations used for best case average case and worst case analysis? 

(APIRL/MAY2009) (APRIL/MAY-2008)(R) (Apr 18) 

2. How do you evaluate the performance of the algorithms? (E) 

3. Explain properties of BIG (oh) Notation.(8) (MAY 2016) (R) (Nov 17) 

4. What is meant by recurrence? Give one example to solve recurrence equations. 

(APRIL/MAY 2012) (r) 

5. (i) Distinguish between Big Oh, Theta and Omega natation. (NOV/DEC 2012) (AN) 

(ii) Analyze the best, worst and average case analysis for linear search. 

 
6. Find complexity of algorithm C (n) of the algorithm for the best, worst, average 

case,(evaluate average case complexity of n=3 n mean number of inputs.) (E) 

7. (i) Define Asymptotic notations. Distinguish between Asymptotic notation and Conditional 

asymptotic notation. (10)(APRIL/MAY 2010)(APRIL/MAY 2011) (Apr/May 17) 

ii) Explain how the removing condition is done from the conditional asymptotic notation 

with an example. (6)(NOV/DEC 2011) (R) 

8. (i) Explain how analysis of linear search is done with a suitable illustration. (10) 

(ii) Define recurrence equation and explain how solving recurrence equations are 

done.(6) (NOV/DEC 2011) (R) 

9. Explain how Time Complexity is calculated. Give an example. (APRIL/MAY 2010) (E) 
 

10. Discuss all the asymptotic notations in detail. (APRIL/MAY 2012)(R) 
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11. Write an algorithm for finding maximum element of an array, perform best, worst and 

average case complexity with appropriate order notations. (APRIL/MAY 2008) (R) 

12. Write an algorithm to find mean and variance of an array perform best, worst and average 

case complexity, defining the notations used for each type of analysis. (APRIL/MAY 

2008) (AN) 

13. (i)Briefly explain the time complexity, space complexity estimation.(6) (MAY/JUNE 

2013) 

(ii) Write the linear search algorithm and analyze its time complexity.(10) (Nov/Dec 2016) 

 
14.  (i)Find the time complexity and space complexity of the following problems. Factorial 

using recursion and Compute nth Fibonacci number using Iterative statements. (C) 

(ii) Solve the following recurrence relations: (NOV/DEC 2012) (A) 
 

 

 

1).T(n) = 2T (
n
) + 3n > 2 

2 n = 2 
𝗅 

 

 

2)T(n) = { 
2T (

n
) + cn n > 1 

2 

a n = 1 

 
Where a and c are constants. 

15. Solve the following inequalities are correct (MAY/JUNE 2013) (A) 
 

(i)5n2 − 6n = ∅(n2) 

(ii) n!=O(nn) 

(iii)n3 + 10n2 = 𝜃(n3) 

(iv)2n22n + nlogn = 𝜃(n22n) 

 
16. If you have to solve the searching problem for a list of n numbers, how can you take 

advantage of the fact that the list is known to be sorted? Give separate answer for 

(i) List represented as arrays 

(ii) List represented as linked lists 

Compare the time complexities involved in the analysis of both the algorithms.(MAY 

2015) (AN) 

17. (i) Derive the worst case analysis of merge sort using suitable illustrations.(8)(MAY 

2015) 

(ii) Derive a loose bound on the following equation (8) (A) 

F(x) =35x8 -22x7 +14x5 – 2x4-4x2+x-15 



18. Give an algorithm to check whether all the Elements in a given array of n elements are 

distinct. Find the worst case complexity of the same.(8) (MAY / JUNE 2016) (A) 

 

19. Give the recursive algorithm which finds the number of binary digits in the binary 

representation of a positive decimal integer. Find the recurrence relation and complexity. 

(MAY / JUNE 2016) (A) 

 

20. State the general plan for analyzing the time efficiency of non-recursive algorithm and 

explain with an example. (8) (Nov/Dec 2016) (AN) 

 

21. Solve the following recurrence relation. (A) 

• x(n)=x(n-1)+5 for n>1 x(1)=0 

• x(n)=3x(n-1) for n>1 x(1)=4 

• x(n)=x(n-1)+n for n>1 x(0)=0 

• x(n)=x(n/2)+n for n>1 x(1)=1 (solve for n=2k) 

• x(n)=x(n/3)+1 for   n>1   x(1)=1   (solve for   n=3k) (16) (Nov/Dec   2016) 

 
22. Briefly explain the mathematical analysis of recursive and non-recursive algorithm. (8) 

(Apr/May 2017) (R) 

23. Discuss the steps in mathematical analysis for recursive algorithms. Do the same for 

finding the factorial of the number. (NOV/DEC 2017) 

24. Give the general plan for analyzing the time efficiency of recursive algorithm and use 

recurrence to find number of moves Towers of Hanoi problem. (APR/MAY 18) 

25. Consider the problem of finding the smallest and largest elements in an array of n 

numbers. (APR/MAY 18) 

(i) Design a presorting-  based algorithm for  solving this problem and determine its 

efficiency class. (7) 

(ii) Compare the efficiency of the three algorithms: (8) 
 

(A) the brute force algorithm (B) this presorting based algorithm (C) the divide and conquer 

algorithm. 
26. (i)Prove that if g(n) is Ω(f(n)) then f(n) is O(g(n)). (5) (NOV/DEC 2018) 

(ii) Discuss vrious methods used for mathematical analysis of recursive algorithms.(8) 

(NOV/DEC 2018) 

27. Write the asymptotic notations used for best case,average case and worst case analysi of 

lgorithms. Writa an algorithm for finding maximum elements in an array. Give best,worst 

and average case complexities. (NOV/DEC 2018) 

 

28. Solve the following recurrence relation: (APR/MAY 2019) 

(1) T(n)=T(n/2)+1, where n=2k for all k> 0 (4) 

(2) T(n)=T(n/3)+T(2n/3)+cn, where ‘c’ is a constant and ‘n’ is the input size. 
 

29. Explains the steps involved in problem solving. (APR/MAY 2019) 

30. What do you mean bt interpolation search? 



V1   
V 

V    V 

31. Explain in detail about naïve string matching alogorithm. 

32. Explain in detail about Rabin-Karp algorithm. 

33. Explain in detail about Knuth-Morris-Pratt algorithm. 

34. Explain in detail about insertion sort? (NOV/DEC 2017) 

 

 

UNIT II 

 

GRAPH ALGORITHMS 

Graph algorithms: Representations of graphs - Graph traversal: DFS – BFS - applications 

- Connectivity, strong connectivity, bi-connectivity - Minimum spanning tree: Kruskal’s 

and Prim’s algorithm- Shortest path: Bellman-Ford algorithm - Dijkstra’s algorithm - 

Floyd-Warshall algorithm Network flow: Flow networks - Ford-Fulkerson method – 

Matching: Maximum bipartite matching 

 
1. Define a graph. (April/May 2007) - U 

A graph G=(V, E) consists of a set of vertices(V) and set of edges(E). 
 

In general, A graph is a collection of nodes (also called vertices) and edges (also called 

arcs or links) each connecting a pair of nodes. 
 

Example: 
 

 

 

 

2. What are the different types of Graph? - 

There are two types of Graphs. They are: 

 
1. Directed Graphs. 

2. Undirected Graphs. 

Example for Directed Graph: Example for undirected Graph: 
 
 

3. What is complete graph? - U 

If an undirected graph of n vertices consists of n(n-1)/2 number of edges it is called as 

complete graph. 

Example: 

V1 V2 

 
V3 



V1 V2 

V3 

 

4. What is sub graph? - U 

A subgraph G’ of graph G is a graph such that the set of vertices and set of edges of 

G’ are proper subset of the set of edges of G. 

Example: 

 

 

 

 

 

 

 
G Grapth G’ Sub Graph 

 
5. What is connected graph? - U 

An directed graph is said to be connected if for every pair of distinct vertices Vi and 

Vj in V(G) there is a graph from Vi to Vj in G. 

Example: V1 V2 

 

 

 
V3 V4 

 

 

6. What are directed graphs? - U 

Directed graph is a graph which consists of directed edges, where each edge in E is 

unidirectional. It is also referred as Digraph. If (v,w) is a directed edge then (v,w) ≠ (w,v 

 

 

(v1,v2) ≠ (v2,v1) 

V1 V2 

V3 

V2 

V3 



V V 

V 

7. What are undirected graphs? - U 

An undirected graph is a graph, which consists of undirected edges. If (v,w) is an 

undirected edge then (v,w) = (w,v) 

 

 

(v1,v2) = (v2,v1) 

 
8. Define cycle. - U 

A cycle in a graph is a path in which first and last vertex are the same. 

 
Path is 1 -> 2 -> 3 -> 1 

1 2 
 
 
 
 

3 

A graph which has a cycle is referred to as cyclic graph. 

 
9. Define Acyclic graph. - U 

A directed graph is said to be acyclic when there is no cycle path in it. It is also called 

DAG(Directed Acyclic Graph). 

Example Path: A -> C -> D 
A 

 
 
 

B C 
 
 
 

D E 
 

 

10. Define weighted graph. - U 

A graph is said to be weighted graph if every edge in the graph is assigned a weight 

or value. It can be directed or undirected graph. 

Ex: 1 

1 2 
 
 
 

3 

1 
1 1 

2 

3 



A C 

B D 

2 1 2 1 

 

 

 
11. Define strongly connected graph. - U 

A directed graph is said to be strongly connected, if for every pair of vertex, there 

exists a path 

Diagram: V1 V2 

 

V3 

 

 

 

 

 

 

12. What is weakly connected graph. (May/June 2012) - U 

A digraph is weakly connected if all the vertices are connected to each other. 
 

Diagram: V2 

 

 

 
V4 V3 

 

13. Define path in a graph. - U 

A path in a graph is a sequence of vertices such that from each of its vertices there is 

an edge to the next vertex in the sequence. A path may be infinite, but a finite path always 

has a first vertex, called its start vertex, and a last vertex, called its end vertex. Both of them 

are called end or terminal vertices of the path. The other vertices in the path are internal 

vertices. A cycle is a path such that the start vertex and end vertex are the same. 

 
14. What is the degree of a graph? - U 

The number of edges incident on a vertex determines its degree. The degree of the 

vertex V is written as degree(V). 

 

 
Example: 

V4 

V5 

V5 V1 



Degree (A) = 0 

Degree (C) = 1 

Degree (D) = 3 

15. Define indegree, outdegree in a graph.     (April/May 2010) - U 

The indegree is the numbers of edges entering in to the vertex V. 

 
The out degree is the numbers of edges that are exiting or leaving from the vertex V. 

 
 

V1 V2 
Indegree(V1) = 1 

 

Outdegree (V1) = 2 
 

 

 

V3 V4 

 
 

16. What is adjacent node? - U 

Adjacency node is the node which is connected to the other nodes in the graph. 

 
Example: 

 

 

 

 

 

 

 
In the above diagram, C is an adjacent node to E 

 
17. What are the applications of graphs? - R 

The various applications of graphs are: 

• In computer networking such LAN, WAN etc., internetworking of computer systems is 

done using graph concept. 

• In telephone cabling, graph theory is effectively used. 

• In job scheduling algorithms, the graph is used. 

Solution: a b c d 

A C 

E 

B D 



18. Prove that the number of odd degree vertices in a connected graph should be even. 

(May/June 2007) - An 

Consider a graph with odd degree vertices. 
 

 

Degree =1 

 
No. of vertices = 2 Degree = 3 No. of vertices = 4 

 
This implies that the no. of vertices is even for odd degree graphs. 

 
19. What is a single source shortest path problem? - U 

The single source shortest path problem finds the minimum cost from single source 

vertex to all other vertices. Dijkstra’s algorithm is used to solve this problem which follows 

the greedy technique. 

20. What is unweighted shortest path? -- U 

The unweighted shortest path is the path in unweighted graph which is equal to number 

of edges traveled from source to destination. 

 

Example: 

V V 
 

 

aV V V V V z 

 
 

V V V 

The paths from a to z are as below: 
 

 

 

 

S.No Path Number 

of edges 

1 V1-V2-V3- 3 

2 V1-V4-V5- 4 

3 V1-V7-V8- 4 

V1-V2-V3-V10 is the shortest path. 



21. What are the different kinds of graph traversals? -R 

• Depth-first traversal 

• Breadth-first traversal 

 

22. What is depth-first traversal? Give an example. -- U 

Depth-first search (DFS) is a graph search algorithm that begins at the root and 

explores as far as possible along each branch before backtracking. 

Note: Backtracking is finding a solution by trying one of several choices. If the choice 

proves incorrect, computation backtracks or restarts at the point of choice and tries another 

choice. 

 

Example: 

 

The Depth-first traversal is 1 – 2 – 4 – 3 

 

 

 

 

23. What is breadth-first traversal? Give an example. - U 

Breadth-first search (BFS) is a graph search algorithm that begins at the root node and 

explores all the neighboring nodes. Then for each of those nearest nodes, it explores their 

unexplored neighbor nodes, and so on, until it finds the goal. 

 

 

Example: 

 

 

The breadth-first Traversal is 1 – 2 – 3 – 4 

1 

2 3 

4 

1 

2 3 

4 

http://en.wikipedia.org/wiki/Node_(computer_science)


24. What is biconnectivity? – U 

Biconnected graphs are the graphs which cannot be broken into two disoconnected 

graphs by disconnecting single edge. 

Example 
 

 
 

 

 

 

In the given example, after removing edge E1 the graph does not become disconnected. 

 
25. What is a Spanning Tree? 

 

Given an undirected and connected graph G=(V,E), a spanning tree of the graph G is a tree 

that spans G (that is, it includes every vertex of G) and is a subgraph of G (every edge in 

the tree belongs to G) 

 

26. Define prims algorithm. 

 

Prim's Algorithm is a greedy algorithm that is used to find the minimum spanning tree 

from a graph. Prim's algorithm finds the subset of edges that includes every vertex of the 

graph such that the sum of the weights of the edges can be minimized. 
 

Prim's algorithm starts with the single node and explores all the adjacent nodes with all the 

connecting edges at every step. The edges with the minimal weights causing no cycles in 

the graph got selected. 

 

27. Define Kruskal algorithm. 

 

Kruskal's Algorithm is used to find the minimum spanning tree for a connected weighted 

graph. The main target of the algorithm is to find the subset of edges by using which we 

can traverse every vertex of the graph. It follows the greedy approach that finds an optimum 

solution at every stage instead of focusing on a global optimum. 

 
28. Define Bellman Ford algorithm. 

 

Bellman Ford algorithm helps us find the shortest path from a vertex to all other vertices 

of a weighted graph.It can work with graphs in which edges can have negative weights. 



29. Define Dijkstra’s algorithm. 

 

Dijkstra's Algorithm finds the shortest path between a given node (which is called the 

"source node") and all other nodes in a graph.This algorithm uses the weights of the edges 

to find the path that minimizes the total distance (weight) between the source node and all 

other nodes. 

 

30. Define Floyd-Warshall algorithm. 

 

The all pair shortest path algorithm is also known as Floyd-Warshall algorithm is used to 

find all pair shortest path problem from a given weighted graph. As a result of this 

algorithm, it will generate a matrix, which will represent the minimum distance from any 

node to all other nodes in the graph. 

 

 
At first the output matrix is same as given cost matrix of the graph. After that the output 

matrix will be updated with all vertices k as the intermediate vertex. 

 
 

31. Give the Floyd’s algorithm (C) (Nov 17) 

ALGORITHM Floyd(W[1..n,1..n]) 

//Implements Floyd’s algorithm for the all-pair shortest–path problem 

//Input The weight matrix W of a graph 

//Output The distance matrix of the shortest paths’ lengths 

D <- W 

for k = 1 to n do 

for i =1 to n do 

for j =1 to n do 

D[I,j] = min{D[I,j], D[I,k] + D[k,j] 

 
32. Define Prims Algorithm. (R) 

Prim’s algorithm constructs a minimum spanning tree through a sequenceof 

expanding subtrees. The initial subtree in such a sequence consists of a singlevertex 

selected arbitrarily from the set V of the graph’s vertices. On each iteration,the algorithm 

expands the current tree in the greedy manner by simply attaching toit the nearest vertex 

not in that tree. 



33. Write down the optimization technique used for Warshalls algorithm. State the 

rules and assumptions which are implied behind that. (MAY 2015) (R) 

Warshalls algorithm constructs the transitive closure of given digraph with n 

vertices through a series of n-by-n Boolean matrices. The computations in warshalls 

algorithm are given by following sequences, 

R(0),…,R(k-1),…,R(k),…,R(n) 

Rules: 

1. Start with computation of R(0). In R(0) any path with intermediate veritices is not allowed. 

That means only direct edges towards the vertices are considered. In other words the path 

length of one edge is allowed in R(0). Thus R(0) is adjacency matrix for the digraph. 

2. Construct R(1) in which first vertex is used as intermediate vertex and a path length of 

two edge is allowed. Note that R(1) is build using R(0)which is already computed. 

3. Go on building R(k) by adding one intermediate vertex each time and with more path 

length. Each R(k) has to be built from R(k-1) 

4. The last matrix in this series is R(1), in this R(n) all the n vertices are used as intermediate 

vertices. And the R(n) which is obtained is nothing but the transitive closure of given 

digraph. 

 
34. Define the single source shortest path problem. (MAY\JUNE 2016) (R) 

Dijkstra’s algorithm solves the single source shortest path problem of finding 

shortest paths from a given vertex( the source), to all the other vertices of a weighted graph 

or digraph. 
Dijkstra’s algorithm provides a correct solution for a graph with non-negative weights. 

 

35. How to calculate the efficiency of dijkstra’s algorithm. (NOV/DEC 16) (R) 

The time efficiency depends on the data structure used for implementing the 

priority queue and for representing the input graph. It is in θ (|V|)2 for graphs represented 

by their weight matrix and the priority queue implemented as an unordered array. For 

graphs represented by their adjacency linked lists and the priority queue implemented as 

a min_heap it is in O(|E|log|V|). 

 
36. Define transitive closure of a directed graph. (APR/MAY 2018) 

The transitive closure of a directed graph with n vertices can be defined as the “n- 

by-n” Boolean matrix T={tij} in which,the element in the ith row (1<i<n) and the jth 

column (1<j<n) exists a non-trival directed path from the Ith vertex to the jth 

vertex,otherwise tij  is 0. 

 
37. Write short notes on the Maximum-Flow problem. (R) 

Maximum-flow algorithms require processing edges in both directions, it is 

convenient to modify the adjacency matrix representation of a network as follows. If there 

is a directed edge from vertex i to vertex j of capacity uij ,then the element in the ith row 

and the jth column is set to uij , and the element in the jth row and the ith column is 



set to −uij; if there is no edge between vertices i and j , both these elements are set to zero. 

Outline a simple algorithm for identifying a source and a sink in a network presented by 

sucha matrix and indicate its time efficiency. 

 
38. Define maximum matching. (R) 

In many situations we are faced with a problem of pairing elements of two sets.The 

traditional example is boys and girls for a dance, but you can easily thinkof more serious 

applications. It is convenient to represent elements of two givensets by vertices of a graph, 

with edges between vertices that can be paired. Amatching in a graph is a subset of its 

edges with the property that no two edgesshare a vertex. A maximum matching— more 

precisely, a maximum cardinalitymatching—is a matching with the largest number of 

edges. 

39. Define maximum cardinality. (R) (NOV/DEC 2016) (R) (Apr 18) 

Maximum cardinality matching—is a matching with the largest number of edges. 

The maximum-matching problem is the problem offinding a maximum matching in a given 

graph. For an arbitrary graph, this is arather difficult problem. It was solved in 1965 by 

Jack Edmonds. 

 
40. Define maximum flow problem. (R) 

The maximum flow problem can be seen as a special case of more complex 

network flow problems, such as the circulation problem. The maximum value of an s-t 

flow (i.e., flow from source s to sink t) is equal to the minimum capacity of an s-t cut 

(i.e., cut severing s from t) in the network, as stated in the max-flow min-cut theorem. 

 

41. Define Bipartite Graphs? (R) (Nov 17) 

A bipartite graph, also called a bigraph, is a set of graph vertices decomposed into 

two disjoint sets such that no two graph vertices within the same set are adjacent. A 

bipartite graph is a special case of a k-partite graphwith . The illustration above 

shows some bipartite graphs, with vertices in each graph colored based on to which of the 

two disjoint sets they belong. 

 

 
42. What do you meant by perfect matching in bipartite graph? (APR/MAY 2017) (R) 

When there are an equal number of nodes on each side of a bipartite graph, a perfect 

matching is an assignment of nodes on the left to nodes on the right, in such a way that 

i)each node is connected by an edge to the node it is assigned to, and 

ii)no two nodes on the left are assigned to the same node on the right 

http://en.wikipedia.org/wiki/Circulation_problem
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Direction
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Direction
http://en.wikipedia.org/wiki/Cut_(graph_theory)
http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
http://mathworld.wolfram.com/GraphVertex.html
http://mathworld.wolfram.com/GraphVertex.html
http://mathworld.wolfram.com/k-PartiteGraph.html


43. Define flow cut. (R) 

Cut is a collection of arcs such that if they are removed there is no path from s to 

t. A cut is said to be minimum in a network whose capacity is minimum over all cuts of 

the network. 
 

44. How is a transportation network represented? (R)(APR/MAY 18) 
 

The transportation network can be represented by a connected weighted digraph with 

n vertices numbered from 1 to n and a set of edges E, with the following properties: 

 

• It contains only one vertex with no entering edges called as source and assumed to be 1. 

• It contains only one vertex at end with no leaving edges called as sink and assumed as n. 

• The weight uij of each directed edge (i, j) is a positive integer, called as edge capacity. 

 
45. Define the constraint in the context of maximum flow problem. (APR/MAY 2019) 

It represents the maximum amount of flow that can pass through an edge. ... , for each 
(capacity constraint: the flow of an edge cannot exceed its capacity); , for each 
(conservation of flows: the sum of the flows entering a node must equal the sum of the 
flows exiting a node, except for the source and the sink nodes). 

 

PART –B 

1. Write an algorithm for all pairs shortest path algorithm and what are the time and space 

complexity of the algorithm. (APIRL/MAY2009) (APRIL/MAY 2012) (R) 

2. Explain Floyd algorithm with example. Write down and explain the algorithm to solve all 

pairs shortest paths problem. (APRIL/MAY 2010)(MAY/JUNE 2013). (R) 

3. With a suitable example, explain all-pair shortest paths problem. (R) 

4. How do you construct a minimum spanning tree using Kruskals algorithm? Explain?(4) 

(MAY 2015) (R) 

 
5. Discuss about the algorithm and pseudocode to find the Minimum Spanning Tree using 

Prim’s Algorithm. Find the Minimum Spanning Tree for the graph. Discuss about the 

efficiency of the algorithm.(MAY\JUNE 2016) (C) (Apr 18) 
 

6. Solve the all-Pairs shortest-path problem for the diagraph with the following weight 



 

 

 

 

matrix: (NOV/DEC 2016) (A) 

 
7. Apply Kruskal’s algorithm to find a minimum spanning tree of the following graph. 

(NOV/DEC 2016) (A)  

8. Explain the Dijkstra’s shortest path algorithm and its efficiency.( R) (NOV/DEC 2017) 

 
 

9. Write down the Dijkstra’s algorithm and explain it with an example (8) 

(APR/MAY 11) – Ap 

10. Explain Dijkstra’s algorithm with example.(May/June 2012, Nov/Dec 2012) – Ap 

 
11. Write suitable ADT operation for shortest path problem. Show the simulation of shortest 

path with an example graph. (April/May 2008) – Ap 

 

12. What is single source shortest path problem? Discuss Dijkstra’s single source shortest 

path 

algorithm with an example. (8) (April/May 2007) –Ap 

 
13. Explain Depth – first & Breadth – First Traversal algorithms. – U 

 

14. Explain depth first search on a graph with necessary data structures. (8) 

 
 

2008) – U 

15. Write short notes on Biconnectivity? – U 

 

(April/May 



  

 

  

16. Explain Dijkstra’s algorithm using the following graph. Find the shortest path between 

v1, v2, v3, v4, v5, v6 & v7. 2 

(May/June 2007) - Ap 

 

 

 

 

 

 

 

 

 

 

 

 
1 

 

 
 

17. Distinguish between breadth first search and depth first search with example.(13) 

(NOV/DEC 2018) 

18. Explain the algorithm for Maximum Bipartite Matching. (R) 

19. How do you compute maximum flow for the following graph using Ford-Fulkerson 

method? (MAY 2015) (E) 

 

 

 

 

 

 

 

 
20. State and Prove Maximum Flow Min cut Theorem. (MAY\JUNE 2016) (R) 

21. Apply the   shortest   Augmenting   Path   algorithm   to   the   network   shown   below. 

(MAY\JUNE 

2016) (A) 
 

 

 

 

 

22. Explain KMP string 

V1 
V2 

4 1 3 10 

2 
V4 

7 

V3 
V5 

5 8 4 6 

V6 
V7 



 

matching algorithm for finding a pattern on the text, a analysis the algorithm.(APR/MAY 

2017) (R) 
23. Determine the max-flow in the following network.(13) (APR/MAY 2019) 

 

 
 

UNIT III 
 

ALGORITHM DESIGN TECHNIQUES 

 
Divide and Conquer methodology: Finding maximum and minimum - Merge sort - Quick 

sort Dynamic programming: Elements of dynamic programming — Matrix-chain 

multiplication - Multi stage graph — Optimal Binary Search Trees. Greedy Technique: 

Elements of the greedy strategy - Activity-selection problem –- Optimal Merge pattern — 

Huffman Trees. 

PART A 

 

1. Give the general plan for divide-and-conquer algorithms. (APRIL/MAY 2008) 

(NOV/DEC 2008) (MAY/JUNE 2016) (R) (Nov 17) 
The general plan is as follows. 

A problems instance is divided into several smaller instances of the same problem, 

ideally about the same size. 
The smaller instances are solved, typically recursively. 

If necessary the solutions obtained are combined to get the solution of the original 

problem. 

 

2. List the advantages of Divide and Conquer Algorithm. 
Solving difficult problems, Algorithm efficiency, Parallelism, Memory access, Round off 

control. 

3. Give the recurrence relation of divide-and-conquer? (R) 

The recurrence relation is 

g(n) 

T(n) = t(n1) + t(n2) + ..... + t(nk) + f (n) 
g(n)

 



4. Define of feasibility. 

A feasible set (of candidates) is promising if it can be extended to produce not merely a 

solution, but an optimal solution to the problem. 

 
5. Define Quick Sort. 

Quick sort is an algorithm of choice in many situations because it is not difficult to 

implement, it is a good \"general purpose\" sort and it consumes relatively fewer resources 

during execution. 

 
6. List out the Disadvantages in Quick Sort 

1. It is recursive. Especially if recursion is not available, the implementation is 

extremely complicated. 

2. It requires quadratic (i.e., n2) time in the worst-case. 

3.  It is fragile i.e., a simple mistake in the implementation can go unnoticed and cause 

it to perform badly. 

 
7. What is the difference between quicksort and mergesort? 

Both quicksort and mergesort use the divide-and-conquer technique in which the given array 

is partitioned into subarrays and solved. The difference lies in the technique that the arrays 

are partitioned. For mergesort the arrays are partitioned according to their position and in 

quicksort they are partitioned according to the element values. 

 
 

8. Define merge sort. (R) 

b. Mergesort sorts a given array A[0..n-1] by dividing it into two halves a[0..(n/2)-1] 

and A[n/2..n-1] sorting each of them recursively and then merging the twosmaller 

sorted arrays into a single sorted one. 

 
9. List the Steps in Merge Sort 

 

Divide Step: If given array A has zero or one element, return S; it is already sorted. 

Otherwise, divide A into two arrays, A1 and A2, each containing about half of the 

elements of A. 

 

Recursion Step: Recursively sort array A1 and A2. 

 

Conquer Step: Combine the elements back in A by merging the sorted arrays A1 and A2 

into a sorted sequence 

 
10. List out Disadvantages of Divide and Conquer Algorithm 

Conceptual difficulty 

Recursion overhead 

Repeated subproblems 

 

11. List out the Advantages in Quick Sort 

• It is in-place since it uses only a small auxiliary stack. 

• It requires only n log(n) time to sort n items. 

• It has an extremely short inner loop 



This algorithm has been subjected to a thorough mathematical analysis, a very precise 

statement can be made about performance issues. 

 

12. Describe the recurrence relation of merge sort? (R) 

If the time for the merging operation is proportional to n, then the computing time 

of merge sort is described by the recurrence relation 
T(n)= a 

2T(n/2)+n n = 1, a constant 

 
 

13. State Master’s theorem. (APR/MAY 18) 

If f(n) θ(nd) where d ³ 0 in recurrence equation T(n) = aT(n/b)+f(n), then 

θ (nd) if a<bd T(n) θ (ndlog n) if a=bd 

θ (nlog ba) if a>bd 

The efficiency analysis of many divide-and-conquer algorithms is greatly simplified by the 

use of Master theorem. 

 
 

14. List out the Disadvantages in Quick Sort 

• It is recursive. Especially if recursion is not available, the implementation is 

extremely complicated. 

• It requires quadratic (i.e., n2) time in the worst-case. 

• It is fragile i.e., a simple mistake in the implementation can go unnoticed and cause 

it to perform badly. 

 

15. What are the differences between dynamic programming and divide and conquer 

approaches? (NOV/DEC 2018) 

Divide and Conquer 

Divide and Conquer works by dividing the problem into sub-problems, conquer each sub- 

problem recursively and combine these solutions. 

Dynamic Programming 

Dynamic Programming is a technique for solving problems with overlapping subproblems. 

Each sub-problem is solved only once and the result of each sub-problem is stored in a table 

( generally implemented as an array or a hash table) for future references. These sub-

solutions may be used to obtain the original solution and the technique of storing the sub-

problem solutions is known as memoization. 

 
 

16. What is the time and space complexity of Merge sort? (APR/MAY 2019) 

Time complexity = θ(n log n) 

Space complexity = n+log2n 
=θ(n) 

 

17. Define dynamic programming. (APR/MAY 2017) (R) 

Dynamic programming is an algorithm design method that can be used when 

asolution to the problem is viewed as the result of sequence of decisions. 



18. What are the features of dynamic programming? (R) 

➢ Optimal solutions to sub problems are retained so as to avoid re-computing their 

values. 

➢ Decision sequences containing subsequences that are sub optimal are not considered. 

➢ It definitely gives the optimal solution always. 

 
19. What are the drawbacks of dynamic programming? (R) 

➢ Time and space requirements are high, since storage is needed for all level. 

➢ Optimality should be checked at all levels. 

 
20. Write the general procedure of dynamic programming.(APR/MAY 2017) (R) 

The development of dynamic programming algorithm can be broken into a 

sequence of 4 steps. 

1. Characterize the structure of an optimal solution. 

2. Recursively defines the value of the optimal solution. 

3. Compute the value of an optimal solution in the bottom-up fashion. 

4. Construct an optimal solution from the computed information. 

 
21. Write the difference between the Greedy method and Dynamic 

programming.(APRIL/MAY 2011)(NOV/DEC 2012) (AN) 

 

1.Only one sequence of decision is 

generated. 

1.Many number of  decisions 

are 

2.It does not guarantee to give an 

optimal solution always. 

2.It definitely gives an 

optimal 

 

 
22. Define the principle of optimality. (APR/MAY 2012) (NOV/DEC 2016) (R) (Nov 

17) 

It states that in an optimal sequence of decisions, each sub sequence must be 

optimal. Touse dynamic programming the problem must observe the principle of 

optimality thatwhatever the initial state is, remaining decisions must be optimal with regard 

the statefollowing from the first decision. 

 
23. What is the difference between dynamic programming and greed 

algorithm?(APRIL/MAY 2012) (AN) 

GREEDY ALGORITHM DYNAMIC PROGRAMMING 

1. GA computes the solution in 

bottom up 

technique. It  computes the solution 

from smaller sub-routines and tries 

many possibilities and choices before 

DA computes its solution by making its 

choices in a serial fashion (never look back 

irrevocable). 



it arrives at   the   optimal   set   of 

choices. 

 

It does not use the principle of 

optimality, i.e. there is no test by 

which one can tell GA will lead to an 

optimal solution. 

It uses the principle of optimality. 

 

24. Define Optimal Binary Search Trees? (R) 

A binary search tree is one of the most important data structures in computer 

science. One of its principal applications is to implement a dictionary, a set of elements 

with the operations of searching, insertion, and deletion. If probabilities of searching for 

elements of a set are known e.g., from accumulated data about past searches - it is natural 

to pose a question about an optimal binary search tree for which the average number of 

comparisons in a search is the smallest possible. 

 
25. List out the memory functions used under Dynamic programming. (MAY 2015) 

(R) 

Memory functions solve in a top-down manner only sub problems that are 

necessary. Memory functions are an improvement of dynamic programming because they 

only solve sub problems that are necessary and do it only once. However they require more 

because it makes recursive calls which require additional memory. 

• Greedy Algorithm 

• Branch and Bound 

• Genetic Algorithm 

 
26. State the general principle of greedy algorithm. (NOV/DEC 16) (R) 

A greedy algorithm is an algorithmic paradigm that follows the problem solving 

heuristic of making the locally optimal choice at each stage with the hope of finding a 

global optimum. 

 

27. Define Optimization function ? 

Every set of s that satisfies the constraints is a feasible solution. 
Every feasible solution that maximizes is an optimal solution. 

 

29. Define Greedy Methodology? 

Greedy algorithms are simple and straightforward. 

They are shortsighted in their approach 

A greedy algorithm is similar to a dynamic programming algorithm, but the difference is 

that solutions to the sub problems do not have to be known at each stage, instead a 

"greedy" choice can be made of what looks best for the moment. 

 
30. Define an optimization problem? 

Given a problem instance, a set of constraints and an objective function. 

https://en.wikipedia.org/wiki/Algorithmic_paradigm
https://en.wikipedia.org/wiki/Problem_solving
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/Global_optimum


Find a feasible solution for the given instance for which the objective function has an 

optimal value. 

Either maximum or minimum depending on the problem being solved.A feasible 

solution that does this is called optimal solution. 

 

31. Write all the Greedy Properties? 

It consists of two property, 

1. "greedy-choice property" ->It says that a globally optimal solution can be arrived at by 

making a locally optimal choice. 

2. "optimal substructure" ->A problem exhibits optimal substructure if an optimal 
solution to the problem contains optimal solutions to the sub-problems. 

are two ingredients in the problem that lend to a greedy strategy. 

 
32. State feasible and consrtraint  ? 

Feasible: A feasible solution satisfies the problem’s constraints 

Constraints: The constraints specify the limitations on the required solutions 

 

33. Write the Pseudo-code for Greedy Algorithm 

Algorithm Greedy (a,n) 

//a[1:n]contains the n inputs. 

{ 

solution:=0;//initialize the solution. 

for i:=1 to n do 

{ 

x:=Select(a); 

if Feasible( solution, x) then 
solution:=Union(solution,x); 

} 

return solution 

 

34. Compare With Dynamic Programming ? 

Greedy And Dynamic Programming are methods for solving optimization problems. 

Greedy algorithms are usually more efficient than DP solutions. However, often you 

need to use dynamic programming since the optimal solution cannot be guaranteed by a 

greedy algorithm. 

DP provides efficient solutions for some problems for which a brute force approach 

would be very slow. 

 
35. Differentiate PROS AND CONS 

PROS: 

• They are easier to implement, 

• They require much less computing resources, 

• They are much faster to execute. 

• Greedy algorithms are used to solve optimization problems 
CONS: 

• Their only disadvantage being that they not always reach the 

global optimum solution; 



• on the other hand, even when the global optimum solution is not reached, most of 

the times the reached sub-optimal solution is a very good solution 

 

36. Comment on merge pattern? 

 

Merge a set of sorted files of different length into a single sorted file. We need to find an 

optimal solution, where the resultant file will be generated in minimum time. 
 

If the number of sorted files are given, there are many ways to merge them into a single 

sorted file. This merge can be performed pair wise. Hence, this type of merging is called 

as 2-way merge patterns. 

 

37. Define multistage graphs. Give an example. (NOV/DEC 2018) 

 

A multistage graph G = (V, E) is a directed graph where vertices are partitioned into 

k (where k > 1) number of disjoint subsets S = {s1,s2,…,sk} such that edge (u, v) is in E, 

then u Є si and v Є s1 + 1 for some subsets in the partition and |s1| = |sk| = 1. 

The vertex s Є s1 is called the source and the vertex t Є sk is called sink. 
 

 

 
 

38. State the principle of optimality. (APR/MAY 2019) 

 

In an optimal sequence of decisions or choices, each subsequence must also be optimal. 

When it is not possible to apply the principle of optimality it is almost impossible to obtain 

the solution using the dynamic programming approach. 

Example: Finding of shortest path in a given graph uses the principle of optimality. 

 
 

PART-B 

1. Define divide and conquer to apply the technique in binary search algorithm and to 

analysis it. (APR/MAY 2006) (APR/MAY 2017) (R) 

2. Explain in detail in merge sort give an example (APR/MAY 2008) (MAY 2016). (R) 

3. What is divide and conquer strategy and explain the binary search with suitable example 

problem.(NOV/DEC 2011) (R) 



4. Distinguish between Quick sort and Merge sort, and arrange the following numbers in 

increasing order using merge sort. (18, 29, 68, 32, 43, 37, 87, 24, 47, 50) (NOV/DEC 2011) 

(MAY/JUNE 2013). (A) 

5. Trace the steps of Mergesort algorithm for the elements 122,25,70,175,89,90,95,102,123 

and also compute its time complexity.(NOV/DEC 2012) (A) (Nov 17) (Apr 18) 

6. Write an algorithm to perform binary search on a sorted list of elements. Analyze the 

algorithm for the best case, average case and worst case.(APR/MAY 2011). (AN) 

7. Using the divide and conquer approach to find the maximum and minimum in a set of ‘n’ 

elements. Also find the recurrence relation for the number of elements compared and solve 

the same.(APR/MAY 2011). (A) 

8. Trace maximum and minimum (using divide and conquer) algorithm for the following set 

of numbers. 20, 35, 18, 8, 14, 41, 3, 39,-20. (A) 

 

9. Write a pseudo code using divide and conquer technique for finding the position of the 

largest element in an array of N numbers. (A) 

 
 

10. Sort the following set of elements using merge sort: 12, 24, 8, 71, 4, 23, 6, 89, and 56. 

(A) 

11. Explain in detail quick sorting method. Provide a complete analysis of quick sort. 

(APR/MAY 2008) (Nov/Dec 2016) (APR/MAY 2017) (AN) 

12. A pair contains two numbers and its second number is on the right side of the first one in 

an array. The difference of a pair is the minus result while subtracting the second number 

from the first one. Implement a function which gets the maximal difference of all pairs in 

an array (using divide and conquer method). (MAY/JUNE 2015) ® 

13. Write the algorithm for quick sort. Provide a complete analysis of quick sort for the given 

set of numbers 12,33,23,43,44,55,64,77 and 76. (13)(NOV/DEC 2018) 

14. Write the quick sort algorithm and explain it with an example. Derive the worst case and 

average case time complexity. (5+4+4) (APR/MAY 2019) 

15. (i)Write an algorithm to construct the optimal binary search tree (or) Discuss the 

algorithm for finding a minimum cost binary search trees.(8) 

(ii) Explain how dynamic programming is applied to solve travelling salesperson 

problem. (APR/MAY 2010)(NOV/DEC 2012)(8) (R) 

16. Using Dynamic approach programming, solve the following graph using the backward 

approach.(APRIL/MAY2011) (A) 



 

 

17. (i) Let A ={l/119,m/96,c/247,g/283,h/72,f/77,k/92,j/19} be the letters and its frequency of 

distribution in a text file. Compute a suitable Huffman coding to compress the data 

effectively. (8) (MAY 2015) 

(ii)Write an algorithm to construct the optimal binary search tree given the roots r(i,j) 

,0≤i≤j≤n. Also prove that this could be performed in time O(n). (8) (MAY 2015) (AN) 

 

18. Write the Huffman’s Algorithm. Construct the Huffman’s tree for the following data and 

obtain its Huffman’s Code. (APR/AMY 2017) (A) 

 

Characters A B C D E _ 

Probability 0.5 0.35 0.5 0.1 0.4 0.2 

 

19. Explain the steps in building a Huffman Tree. Find the codes for the alphabets given 

below as according to frequency (NOV/DEC 2017) 

 

A 2 

E 5 

H 1 

I 2 

L 2 

M 2 

P 2 

R 1 

S 2 

X 1 

 
20. (i) Write the Huffman code algorithm and derive its time complexity. (5+2) (APR/MAY 

2019) 



(ii) Generate the Huffman code for the following data comprising of alphabet and their 

frequency.(6) (APR/MAY 2019) 

a:1,b:1,c:2,d:3,e:5,f:8,g:13,h:21 
 
 

 
UNIT IV 

STATE SPACE SEARCH ALGORITHMS 

Lower - Bound Arguments - P, NP NP- Complete and NP Hard Problems. Backtracking – n- Queen 

problem - Hamiltonian Circuit Problem – Subset Sum Problem. Branch and Bound – LIFO Search 

and FIFO search - Assignment problem – Knapsack Problem – Travelling Salesman Problem - 

Approximation Algorithms for NP-Hard Problems – Travelling Salesman problem – Knapsack 

problem. 

PART - A 

 

1. Differentiate backtracking and Exhaustive search.  (AN) 

S.No Backtracking Exhaustive search 

1. Backtracking is to build up the 

solution vector one component at a 

time and to use modified criterion 

Function Pi(x1,..,xi) (sometimes 

called bounding function) to test 

whether the vector being formed has 

any chance of success. 

Exhaustive search is simply a “brute 

– force” approach to combinatorial 

problems. It suggests generating 

each and every element of the 

problem’s domain, selecting those of 

them that satisfy the problem’s 

constraints, and 

then finding a desired element. 

2. Backtracking makes it possible to 

solve many large instances of NP- 

hard problems in an acceptable 

amount of time. 

Exhaustive search is impractical for 

large instances, however applicable 

for small instances of problems. 

 
2. What are the factors that influence the efficiency of the backtracking 

algorithm?(APRIL/MAY 2008) (R) 

The efficiency of the backtracking algorithm depends on the following four 

factors. They are: 

i. The time needed to generate the next xk 

ii. The number of xk satisfying the explicit constraints. 

iii. The time for the bounding functions Bk 

iv. The number of xk satisfying the Bk. 



3. What is backtracking?(Nov/Dec 2011) (R) 

Backtracking constructs solutions one component at a time and such partially constructed 

solutions are evaluated as follows ._If a partially constructed solution can be developed further 

without violating the problem’s constraints, it is done by taking the first remaining legitimate 

option for the next component. ._If there is no legitimate option for the next component, no 

alternatives for the remaining component need to be considered. In this case, the algorithm 

backtracks to replace the last component of the partially constructed solution with its next option. 

 
4. What is n-queens problem? (R) 

The problem is to place ‘n’ queens on an n-by-n chessboard so thatno two queens attack 

each other by being in the same row or in the column orin the same 

 
5. Draw the solution for the 4-queen problem. (R) 

 

 Q   

   Q 

Q    

  Q  

6. Define the Hamiltonian cycle.(NOV/DEC 2012) (R) 

The Hamiltonian is defined as a cycle that passes through all the vertices of the graph exactly 

once. It is named after the Irish mathematician Sir William Rowan Hamilton (1805- 1865).It is a 

sequence of n+1 adjacentverticesvi0, vi1… vin-1, vi0 where the first vertex of the sequence is 

same as the last one while all the other n-1 vertices are distinct. 

 
7. What is the subset-sum problem?( Nov/Dec 2012) (R) 

Find a subset of a given set S={s1,………,sn} of ‘n’ positive integers whose sum is equal to 

a given positive integer ‘d’. 

 
8. When can a node be terminated in the subset-sum problem?(NOV/DEC 2008) (R) 

The sum of the numbers included are added and given as the value for the root as s’. The 

node can be terminated as a non-promising node if either of the two equalities holds: 

s’+si+1>d (the sum s’ is too large) 

 

n 

j =i _ 1 
sj  d (the sum s’ is too small) 

 

9. How can the output of a backtracking algorithm be thought of? (R) 

The output of a backtracking algorithm can be thought of as an n-tuple(x1, …xn) where 

each coordinate xi is an element of some finite linearlyordered set Si. If such a tuple (x1, …xi) is 

not a solution, the algorithm finds thenext element in Si+1 that is consistent with the values of (x1, 

…xi) and theproblem’s constraints and adds it to the tuple as its (I+1)st coordinate. If suchan 

element does not exist, the algorithm backtracks to consider the next valueof xi, and so on. 

 



10. Give a template for a generic backtracking algorithm.(APRIL/MAY 2012) (R) 

ALGORITHM Backtrack(X [1..i]) 

//Gives a template of a generic backtracking algorithm 

//Input X[1..i] specifies the first I promising components of a solution 

//Output All the tuples representing the problem’s solution 

if X[1..i] is a solution write X[1..i] 

else 

for each element x Si+1 consistent with X[1..i] and the constraints do 

X[i+1] = x 

Backtrack(X[1..i+1]) 

11. What is the method used to find the solution in n-queen problem by symmetry? (R) 

The board of the n-queens problem has several symmetries so thatsome solutions can be 

obtained by other reflections. Placements in the lastn/2 columns need not be considered, because 

any solution with the first queen in square can be obtained by reflection from a solutionwith the 

first queen in square (1,n-i+1) 

 
12. State m color-ability decision problem.(NOV/DEC 2012) (R) 

Let G be a graph and m be a given positive integer. We want to discover whether thenodes 

of G can be colored in such a way that no two adjacent nodes have the same color yet only m 

colors are used. 

 
13. What are the two types of constraints used in Backtracking? (R) 

✓ Explicit constraints 

✓ Implicit constraints 

 
14. Define implicit constraint.(APR/MAY 2010& 2012) (R) 

They are rules that determine which of the tuples in the solution space of I satisfy the 

criteria function. It describes the way in which the xi must relate to each other. 

 
15. Define explicit constraint. (APR/MAY 2010& 2012) (R) 

They are rules that restrict each xi to take on values only from a give set. They depend on 

the particular instance I of the problem being solved. All tuples that satisfy the explicit 

constraints define a possible solution space. 

 
16. What is a promising node in the state-space tree? (R) (Nov 17) 

A node in a state-space tree is said to be promising if it corresponds toa partially 

constructed solution that may still lead to a complete solution. 

 
17. What is a non-promising node in the state-space tree? (R) (Nov 17) 

A node in a  state-space tree  is said to be promising if it corresponds toa partially 

constructed solution that may still lead to a complete solution; 

otherwise it is called non-promising. 



18. What do leaves in the state space tree represent? (R) 

Leaves in the state-space tree represent either non-promising deadends or complete solutions 

found by the algorithm. 

 
19. Define state space tree. (R) 

The tree organization of the solution space is referred to as state space tree. 

 
20. Define a live node.(APR/MAY 2010) (R) 

A node which has been generated and all of whose children have not yet been 

generated is called as a live node. 

 
21. Define a dead node. (APR/MAY 2010) (R) 

22. Dead node is defined as a generated node, which is to be expanded further all of whose 

children have been generated. 

23. Compared to backtracking and branch and bound?(APRIL/MAY 2008) (AN) 

Backtracking Branch and bound 

State-space tree is constructed using 

depth-first search 

State-space tree is constructed using 

best-first search 

Finds solutions for combinatorial non 

optimizationproblems 

Finds solutions for combinatorial 

optimization problems 

No bounds are associated with the 

nodes in the state-space tree 

Bounds are associated with the each 

and every node in the state-space 

tree 

 

24. When can a search path are terminated in a branch-and-bound technique. (R) 

A search path at the current node in a state-space tree of a branch and-bound algorithm can 

be terminated if the value of the node’s bound is not better than the value of the best solution seen 

so far the node represents no feasible solution because the constraints of the problem are already 

violated. The subset of feasible solutions represented by the node consists of asingle point in this 

case compare the value of the objective function for this feasible solution with that of the best 

solution seen so far andupdate the latter with the former if the new solution is better. 

 
25. Give the formula used to find the upper bound for knapsack problem. 

A simple way to find the upper bound ‘ub’ is to add ‘v’, the total valueof the items already 

selected, the product of the remaining capacity of theknapsack W-w and the best per unit payoff 

among the remaining items, whichis vi+1/wi+1, ub = v + (W-w)( vi+1/wi+1) 

 
26. Define bounding. (R) 

✓ Branch-and-bound method searches a state space tree using any search mechanism in 

which all children of the E-node are generated before another node becomes the E-node. 



✓ Each answer node x has a cost c(x) and we have to find a minimum-cost answer node. 

Common strategies include LC, FIFO, and LIFO. 

✓ Use a cost function ˆc(·) such that ˆc(x)  c(x) provides lower bound on the solution 

obtainable from any node x. 

 
27. Define Hamiltonian circuit problem. (R) 

Hamiltonian circuit problem Determine whether a given graph has a Hamiltonian circuit—

a path that starts and ends at the same vertex and passes through all the other vertices exactly once. 

28. State Assignment problem. (MAY\JUNE 2016) (R) 

There are n people who need to be assigned to execute n jobs, one person per job. (That is, 

each person is assigned to exactly one job and each job is assigned to exactly one person.) The 

cost that would accrue if the ith person is assigned to the jth job is a known quantity [ , ] for each 

pair , = 1, 2, . . . , . The problem is to find an assignment with the minimum total cost. 

 

29. What is state space tree? (MAY\JUNE 2016) (R) 

Backtracking and branch bound are based on the construction of a state space tree, whose 
nodes reflect specific choices made for a solution’s component .Its root represents an initial state 
before the search for a solution begins. The nodes of the first level the tree represent the made for 
the first component of solution, the nodes of the second evel represent the Choices for the second 
components & so on. 

 

30. Give the purpose of lower bound. (MAY\JUNE 2016) (R) 

The elements are compared using operator < to make selection. 

Branch and bound is an algorithm design technique that uses lower bound 

comparisons. 
Main purpose is to select the best lower bound. 

Example: Assignment problem and transportation problem. 

 
 

31. What is The Euclidean minimum spanning tree problem? (MAY\JUNE 2016) (R) (Apr 

18) 
The Euclidean minimum spanning tree or EMST is a minimum spanning tree of a set of n 

Points in the plane where the weight of the edge between each pair of points is the Euclidean 
distance between those two points. In simpler terms, an EMST connects a set of dots using lines 
such that the total length of all the lines is minimized and any dot can be reached from any other 
by following the lines. 

 

32. What is an articulation point in the graph? (APR/MAY 2017) (R) 
In a graph, a vertex is called an articulation point if removing it and all the edges associated 

with it results in the increase of the number of connected components in the graph. 
 

33. Write the formula for decision tree for searching a sorted array? (NOV/DEC 2016) (R) 



 
 

34. State the reason for terminating search path at the current node in branch and bound 

algorithm. (NOV/DEC 2016) (R) 

• The value of the node‘s bound is not better than the value of the best solution seen so 

far. 

• The node represents no feasible solutions because the constraints of the problem are 
already violated. 

• The subset of feasible solutions represented by the node consists of a single point (and 

hence no further choices can be made)—in this case we compare the value of the 

objective function for this feasible solution with that of the best solution seen so far 

and update the latter with the former if the new solution is better. 

 
35. Differentiate feasible solution and optimal solution. (NOV/DEC 2017) 

A solution (set of values for the decision variables) for which all of the constraints in the 

Solver model are satisfied is called a feasible solution. An optimal solution is a feasible solution 

where the objective function reaches its maximum (or minimum) value. 

 
36. How is lower bound found by problem reduction? (APR/MAY 2018) 

 
37. What are tractable and non-tractable problems? (APR/MAY 2018) 

Generally we think of problems that are solvable by polynomial time algorithms as being 

tractable, and problems that require super polynomial time as being intractable. 

 
38. Give an example for sum-of-subset problem. (NOV/DEC 2018) 

Subset sum problem is to find subset of elements that are selected from a given set whose sum 

adds up to a given number K. We are considering the set contains non-negative values. It is 

assumed that the input set is unique (no duplicates are presented). 

 
39. State Hamiltonian circuit problem. (APR/MAY 2019) 

 
PART –B 

 

1. Explain the n-Queen’s problem & discuss the possible solutions.(APRIL/MAY2008) 

(APIRL/MAY2009)(NOV/DEC 2008) (R) 

2. Apply backtracking technique to solve the following instance of subset sum problem : 

S={1,3,4,5} and d=11(NOV/DEC 2006) (AN) 



3. Explain subset sum problem & discuss the possible solution strategies using backtracking. 

(R) 

 

4. Write a recursive backtracking algorithm to find all the Hamiltonian cycles of a given graph. 

(APIRL/MAY2009) (NOV/DEC 2008) (E) 

5. What is backtracking explain detail (APR/MAY 2007) (R) 
 

6. Explain graph coloring in detail. (APIRL/MAY2009) (R) 
 

7. Give the backtracking algorithm for knapsack problem. (R) 
 

8. Explain the algorithm for finding all m-colorings of a graph.(APRIL/MAY 2012) (R) 
 

9. Describe the backtracking solution to solve 8-Queens problem.(APRIL/MAY 2010) 

(APRIL/MAY2012) (APR/MAY 2017) (A) 

10. With an example, explain Graph Coloring Algorithm.(APRIL/MAY 2010) (R) 

 
11. Explain the n-Queen’s problem and trace it for n=6.(APRIL/MAY 2011) (A) 

 

12.(i)Explain Hamiltonian cycles. (NOV/DEC 2012) (8) (R) 
 

(ii) With an example, explains Graph Coloring Algorithm (8) (R) 

` 

13. (i)Explain the control abstraction for Backtracking method. Describe the backtracking 

solution to solve 8-Queens problem. (8)(NOV/DEC 2012) (A) 

(ii) Let w= {5, 7, 10, 12, 15, 18, 20} and m=35.Find all possible subset of w whose sum is 

equivalent to m.Draw the portion of state space tree for this problem. (8) (A) 

 
14. How backtracking works on 8-Queens problem with suitable example? (MAY/JUNE 2013) 

(A) 

 
15.(i) Give the backtracking algorithm for knapsack problem. (MAY/JUNE 2013) (8) 

(ii) Explain elaborately recursive backtracking algorithm. (8) (R) 

 
16. Using backtracking, find the optimal solution to a knapsack problem for the knapsack instance

n=8, m=110,(p1…p7)=(11,21,31,33,43,53,55,65) and 

(w1…w7)=(1,11,21,33,43,53,55,65). (A) 

 
17. Write an algorithm to determine Hamiltonian cycle in a given graph using back tracking. For 

the following graph determine the Hamiltonian cycle. (A) 



 

18. Write an algorithm to determine the Sum of Subsets for a given sum and a Set of numbers. 

Draw the tree representation to solve the subset sum problem given the numbers set as {3, 5, 

6, 7, 2} with the sum=15. Derive all the subsets. (A) 

 
19. Write an algorithm for N QUEENS problem and Trace it for n=6. (R) 

 

20. What is Branch and bound? Explain in detail.(MAY/JUNE 07) (APIRL/MAY2009) 

(NOV/DEC 2008) (APR/MAY 2017) (R) 

21. (i)Suggest an approximation algorithm for travelling salesperson problem. Assume that the 

cost function satisfies the triangle inequality. (MAY 2015) (R) 

(ii)Explain how job assignment problem could be solved, given n tasks and n agents where 

each agent has a cost to complete each task, using branch and bound. (MAY 2015) (AN) 

22. (i)The knight is placed on the first block of an empty board and, moving according to the rules 

of chess, must visit each square exactly once. Solve the above problem using backtracking 

procedure. (MAY 2015) (AN) 

(ii)Implement an algorithm for Knapsack problem using NP-Hard approach. (MAY 2015) (R) 

23. State the subset-sum problem and Complete state-space tree of the backtracking algorithm 

applied to the instance A={3, 5, 6, 7} and d=15 of the subset-sum problem.(MAY\JUNE 2016) 

(A) 

24. (i) Draw a decision tree and find the number of key comparisons in the worst and average cases 

for the three element bubble sort. (8) (NOV/DEC 2016) (AN) 

(ii) Write backtracking algorithm for 4 queen’s problem and discuss the possible solution. (8) 

(NOV/DEC 2016) (R) 

25. Solve the following instance of knapsack problem by branch and bound algorithm W= 15.(16) 

(NOV/DEC 2016) (AN) 

A B 

C F 

D E 



ITEMS WEIGHT 
PROFIT 

1 5 
40 

2 7 
35 

3 2 
18 

4 4 
4 

5 5 
10 

6 1 
2 

 

 

 

 

26. Apply Branch and bound algorithm to solve the travelling salesman problem. (NOV/DEC 

2016) (A) 

 

 

 

 

27. Give the methods for Establishing Lower Bound. (NOV/DEC 17) 

 

28. Find the optimal solution using branch and bound for the following assignment problem. 
 

29. Elaborate on the nearest-neighbor algorithm and multifragment- heuristic algorithm for TSP 

problem. (APR/MAY 2018) 

30. Consider the travelling salesperson instances defined by the following cost matrix. 

(NOV/DEC 2018) 

 

Draw the state space and show the reduced matrices corresponding to each of the node. 

(13)(NOV/DEC 2018) 

 

31. Write an algorithm for subset sum and explain with an example. (13)(APR/MAY 2019) 



32. Explain the 4-queens problem using backtracking. Write the algorithms . Giv the estimated 

cost for all possible solutions of 4-queens problem.Specify the implicit and explicit constrints. 

(APR/MAY 2019) 

 

 
UNIT V 

 
NP-COMPLETE AND APPROXIMATION ALGORITHM 

Tractable and intractable problems: Polynomial time algorithms – Venn diagram representation 

- NP- algorithms - NP-hardness and NP-completeness – Bin Packing problem - Problem 

reduction: TSP – 3-CNF problem. Approximation Algorithms: TSP - Randomized 

Algorithms: concept and application - primality testing - randomized quick sort - Finding kth 

smallest number 

 

 
1. What are NP- hard and NP-complete problems? (R) 

The problems whose solutions have computing times are bounded by polynomials of 

small degree. 

 
2. Define bounding. (R) 

✓ Branch-and-bound method searches a state space tree using any search mechanism in 

which all children of the E-node are generated before another node becomes the E-node. 

✓ Each answer node x has a cost c(x) and we have to find a minimum-cost answer node. 

Common strategies include LC, FIFO, and LIFO. 

✓ Use a cost function ˆc(·) such that ˆc(x)  c(x) provides lower bound on the solution 

obtainable from any node x. 

 
3. List example of NP hard problem. (R) 

NP hard graph problem 

✓ clique decision problem(CDP) 

✓ Node cover decision problem(NCDP). 

 
4. What is meant by NP hard and NP complete problem?(NOV/DEC 2011&NOV/DEC 

2012) (R) 

✓ NP-Hard Problem: A problem L is NP-hard if any only if satisfy ability reduces to L. 

✓ NP- Complete: A problem L is NP-complete if and only if L is NP-hard and L є NP. 

There are NP-hard problems that are not NP-complete. 

Halting problem is NP-hard decision problem, but it is not NP-complete. 

 
5. An NP-hard problem can be solved in deterministic polynomial 

time,how?(NOV/DEC 2012) 



✓ If there is a polynomial algorithm for any NP-hard problem, then there are polynomial 

algorithms for all problems in NP, and hence P = NP. 

✓ If P ≠ NP, then NP-hard problems cannot be solved in polynomial time, while P = NP 

does not resolve whether the NP-hard problems can be solved in polynomial time. 

 

6. How NP-Hard problems are different from NP-Complete? (R) 

These are the problems that are even harder than the NP-complete problems. Note 

that NP-hard problems do not have to be in NP, and they do not have to be decision 

problems. 

The precise definition here is that a problem X is NP-hard, if there is an NP- complete 

problem Y, such that Y is reducible to X in polynomial time. 

But since any NP-complete problem can be reduced to any other NP-complete 

problem in polynomial time, all NP-complete problems can be reduced to any NP-hard 

problem in polynomial time. Then, if there is a solution to one NP-hard problem in 

polynomial time, there is a solution to all NP problems in polynomial time. 
 

7. Define P and NP problems. (APR/MAY 2017) (R) 
P- Polynomial time solving . Problems which can be solved in polynomial time, 

which take time like O(n), O(n2), O(n3). Eg: finding maximum element in an array or to 
check whether a string is palindrome or not. so there are many problems which can be 
solved in polynomial time. 

 

NP- Non deterministic Polynomial time solving. Problem which can't be solved in 

polynomial time like TSP( travelling salesman problem) 

 

8. What are tractable and non-tractable problems? (APR/MAY 2018) 

Generally we think of problems that are solvable by polynomial time algorithms as being 

tractable, and problems that require super polynomial time as being intractable. 

 
9. Define P and NP problems. (NOV/DEC 2018) 

All problems in P can be solved with polynomial time algorithms, whereas all problems 

in NP - P are intractable. 

It is not known whether P = NP. However, many problems are known in NP with the 
property that if they belong to P, then it can be proved that P = NP. 

If P ≠ NP, there are problems in NP that are neither in P nor in NP-Complete. 

The problem belongs to class P if it’s easy to find a solution for the problem. The problem 

belongs to NP, if it’s easy to check a solution that may have been very tedious to find. 

 

10. Define NP completeness and NP hard.(APR/MAY 2019) 

NP-complete problems are the hardest problems in NP set. A decision problem L is NP- 

complete if: 

1) L is in NP (Any given solution for NP-complete problems can be verified quickly, but 



there is no efficient known solution). 

2) Every problem in NP is reducible to L in polynomial time (Reduction is defined below). 

A problem is NP-Hard if it follows property 2 mentioned above, doesn’t need to follow 

property 1. Therefore, NP-Complete set is also a subset of NP-Hard set. 

 
11. What do you meant by primality testing? 

The basic structure of randomized primality tests is as follows: 

• Randomly pick a number a. 

• Check equality (corresponding to the chosen test) involving a and the given 

number n. If the equality fails to hold true, then n is a composite number and a is 
a witness for the compositeness, and the test stops. 

• Get back to the step one until the required accuracy is reached. 

After one or more iterations, if n is not found to be a composite number, then it can be 
declared probably prime. 

 

12. What is Kth smallest number? 

Given an array and a number k where k is smaller than the size of the array, we need to find 

the k’th smallest element in the given array. It is given that all array elements are distinct. 

 

 
13. How quick sort using random pivoting? 

In QuickSort we first partition the array in place such that all elements to the left of the pivot 

element are smaller, while all elements to the right of the pivot are greater than the pivot. 

Then we recursively call the same procedure for left and right subarrays. 

Unlike merge sort, we don’t need to merge the two sorted arrays. Thus Quicksort requires 

lesser auxiliary space than Merge Sort, which is why it is often preferred to Merge Sort. 

Using a randomly generated pivot we can further improve the time complexity of QuickSort. 

PART –B 

 

1. Suggest an approximation algorithm for travelling salesperson problem. Assume that the 

cost function satisfies the triangle inequality. (MAY 2015) (R) 

2. Implement an algorithm for Knapsack problem using NP-Hard approach. (MAY 2015) (R) 

3. Discuss the approximation algorithm for NP hard problem? (NOV/DEC 2016) (R) 

 

4. What is class NP? Discuss about any five problems for which no polynomial time for TSP 

problem. (APR/MAY 2018) 

5. Elaborate on the nearest-neighbor algorithm and multifragment- heuristic algorithm for TSP 

problem. (APR/MAY 2018) 

6. Discuss the approximation algorithm for NP-hard problem. (13)(NOV/DEC 2018) 

https://en.wikipedia.org/wiki/Probable_prime
https://www.geeksforgeeks.org/merge-sort/


7. Write an algorithm to solve the travelling salesman problem and prove that it is a 2 time 

approximation algorithm.(13)(APR/MAY 2019) 
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Course Name : CS3401 - DESIGN AND ANALYSIS OF ALGORITHMS 

Year/Semester : II/ IV 

Year of Study : 2022 –2023 (R – 2021) 

On Completion of this course student will be able to 

COURSE OUTCOMES 

 

 

 

 

 

 

 

 

 

 

 

 
CO-PO MATRIX: 

 

 
CO 

 
PO1 

 
PO2 

 
PO3 

 
PO4 

 
PO5 

 
PO6 

 
PO7 

 
PO8 

 
PO9 

 
PO10 

 
PO11 

 
PO12 

CO.1 
2 1 3 2 - - - - 2 1 2 3 

CO.2 
2 1 1 1 1 - - - 1 3 3 3 

CO.3 1 3 3 3 1 - - - 1 2 1 2 

CO.4 
1 3 3 3 1 - - - 1 2 1 2 

CO.5 1 2 2 3 - - - - 2 3 3 1 

CO.6 1 2 3 2 3 - - - 3 1 3 3 

CO 1 2 2 2 2 - - - 2 2 2 2 

CO DESCRIPTION 

CO1 Analyze the efficiency of algorithms using various frameworks 

CO2 Apply graph algorithms to solve problems and analyze their efficiency. 

CO3 Make use of algorithm design techniques like divide and conquer and dynamic 
programming 

CO4 Use design techniques like greedy technique to solve a problem. 

CO5 Use the state space tree method for solving problems 

CO6 Solve problems using approximation algorithms and randomized algorithms 

 



CO – PSO MATRIX: 
 

CO PSO1 PSO2 PSO3 

CO.1 2 1 1 

CO.2 2 3 3 

CO.3 2 1 2 

CO.4 2 1 2 

CO.5 3 1 3 

CO.6 1 3 3 

CO 2 2 2 

 


