ESTD. 2001

PRATHYUSHA ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE ANI{é@‘IGINEERING
g
QO
LAB MANU
for&
CS3491-ARTIFICIAL INTELLIGENCE ﬁ/MACHINE LEARNING LABORATORY
©
(Regulation 2021, IV Semester)
%Q\?}Even Semester)
N

Qy/&CADEMIC YEAR: 2023 - 2024
R

PREPARED BY
MEENA,
Assistant Professor / CSE

COURSE OBJECTIVES:

Study about uninformed and Heuristic search techniques.
Learn techniques for reasoning under uncertainty
Introduce Machine Learning and supervised learning algorithms

Study about ensembling and unsupervised learning algorithms

o N

Learn the basics of deep learning using neural networks

EXPERIMENTS LIST COQ/
1. Implementation of Uninformed search algorithms (BFS, DFS) Q/

2. Implementation of Informed search algorithms (A*, memox@ﬁnded A¥)

g\@

4. Implement Bayesian Networks Q/Q.

3. Implement naive Bayes models

5. Build Regression models Q/
NB

6. Build decision trees and random fc@i@

7. Build SVM models Q/

8. Implement ensemblini@ues
9. Implement cluste@@«al gorithms

10. Implemen]%L or Bayesian networks
11. Build S%ple NN models

12. Build deep learning NN models

COURSE OUTCOMES:

On completion of the course, students will be able to:

CO1: Use appropriate search algorithms for problem solving
CO2: Apply reasoning under uncertainty

CO3: Build supervised learning models

CO4: Build ensembling and unsupervised models COS5: Q/
TEXT BOOKS: \>/

1. Stuart Russell and Peter Norvig, “Artificial Intelligence — A M@}m Approach”, Fourth

Build deep learning neural network models

Edition, Pearson Education, 2021.
2. Ethem Alpaydin, “Introduction to Machine Lear@, MIT Press, Fourth Edition,

2020. \k((/((/
REFERENCES: (:9\

1. Dan W. Patterson, “Introduction to %‘%ﬁal Intelligence and Expert Systems”, Pearson
Education,2007

2. Kevin Night, Elaine Rich, and N@?B“, “Artificial Intelligence”, McGraw Hill, 2008

3. Patrick H. Winston, "Artifici telligence", Third Edition, Pearson Education, 2006

4. Deepak Khemani, “Artiﬁ.cia telligence”, Tata McGraw Hill Education, 2013
(http://nptel.ac.in/)

5. Christopher M. Bi , “Pattern Recognition and Machine Learning”, Springer, 2006.

6. Tom Mitchel ‘lechine Learning”, McGraw Hill, 3rd Edition,1997.

7. Charu C. Aggarwal, “Data Classification Algorithms and Applications”, CRC Press, 2014
8. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, “Foundations of Machine
Learning”, MIT Press, 2012.

9. Ian Goodfellow, Yoshua Bengio, Aaron Courville, “Deep Learning”, MIT Press

INDEX
1. Implementation of Uninformed search algorithms (BFS, DFS)

Aim:
To implement uninformed search algorithms such as BFS and DFES.

Algorithm:
Step 1:= Initialize an empty list called 'visited' to keep track of the nodes visited during the
traversal.
Step 2:= Initialize an empty queue called 'queue’ to keep track of the nodes to be traversed in
the future.
Step 3:= Add the starting node to the 'visited' list and the 'queue’.

Step 4:= While the 'queue’ is not empty, do the following:
a. Dequeue the first node from the 'queue’ and store it in a variable ca @fﬁent
b. Print 'current'. Q/

c. For each of the neighbours of 'current’ that have not been visit d‘yc.t, o the following:
1. Mark the neighbour as visited and add it to the 'queue’. (:‘?
Step 5:= When all the nodes reachable from the starting node h v visited, terminate
the algorithm.

Breadth First Search : Q..
(</(</
Program : %
N

graph = {
151 . [v3v,|?|], O
131 . [v2v, v4v]’ Q/%
1?1 . [vgv]’

2 [, \237“
481,
8) \5%

}

visited =[] &‘2\

queue = []
def bfs(visited, ﬁ?node)

visited.append(tode)
queue.append(node)
while queue:
m = queue.pop(0)
print (m,end =" ")
for neighbour in graph[m]:
if neighbour not in visited:
visited.append(neighbour)
queue.append(neighbour)

print("Following is the Breadth-First Search")
bfs(visited, graph, 'S')
Output:

Following is the Breadth-First Search
537248

Depth first Search:

Algorithm:
Step 1:= Initialize an empty set called 'visited' to keep track of the nodes visited during the
traversal.
Step 2:= Define a DFS function that takes the current node, the graph, and the 'visited' set as
input.
Step 3:= If the current node is not in the 'visited' set, do the following:

a. Print the current node.

b. Add the current node to the 'visited' set.

c. For each of the neighbours of the current node, call the DFS function recursively with
the neighbour as the current node. %/
Step 4:= When all the nodes reachable from the starting node have been vi@ , terminate

the algorithm. Q/

v
graph = { o)
9's B, (:)

312, '41, (:?
7' ['8'],
4" ['8'], (</
i \§</
| €
visited = set() Q/%

def dfs(visited, graph, node):
if node not in visited: \2:?“

print (node)
visited.add(node) (\)
for neighbour in gr@mde]:

dfs(visited, gra& eighbour)

print("Followin& Depth-First Search")
dfs(visited, graphy 'S")

Output:

Following is the Depth-First Search

~ 00 = oW

Result:

Thus the uninformed search algorithms such as BES and DFS have been executed
successfully and the output got verified

2. Implementation of Informed search algorithm (A*)
Aim:

To implement the informed search algorithm A*.
Algorithm:

1. Initialize the distances dictionary with float('inf") for all vertices in the graph except
for the start vertex which is set to 0.

2. Initialize the parent dictionary with None for all vertices in the graph.

Initialize an empty set for visited vertices.

4. Initialize a priority queue (pq) with a tuple containing the sum of the heuristic value
and the distance from start to the current vertex, the distance from start to the current
vertex, and the current vertex.

5. While pq is not empty, do the following: @

a. Dequeue the vertex with the smallest f-distance (sunw%ﬁe heuristic value

and the distance from start to the current vertex). N\
i:ﬁ

ol

b. If the current vertex is the destination vertex, distances and parent.
c. If the current vertex has not been visited, a@ o the visited set.
d. For each neighbor of the current vertex e following:

1. Calculate the distance from star%@iﬁ' eighbor (g) as the sum of the
distance from start to the current vertex e edge weight between the current
vertex and the neighbor.

i1. Calculate the f-distance (f = g@ for the neighbor.
ii1. If the f-distance for the @bor 1s less than its current distance in the
distances dictionary, update @stances dictionary with the new distance and the
parent dictionary with the cufeént vertex as the parent of the neighbor.
iv. Enqueue the neighBbor with its f-distance, distance from start to neighbor, and
the neighbor itself ingd-the priority queue.
6. Return distances parent.

Program : /\‘2\
. X
import heapq Q

def a_star(graph, start, dest, heuristic):
distances = {vertex: float('inf") for vertex in graph} distances[start] =0

parent = {vertex: None for vertex in graph}
visited = set()

pq = [(O + heuristic[start], O, start)] # E space
while pq:
curr_f, curr_dist, curr_vert = heapq.heappop(pq)
if curr_vert not in visited:
visited.add(curr_vert)
for nbor, weight in graph[curr_vert].items():

distance = curr_dist + weight # distance from start (g)
f distance = distance + heuristic[nbor] #f=g +h

Only process new vert if it's f_distance is lower
if f_distance < distances[nbor]:

distances[nbor] = f_distance

parent[nbor] = curr_vert

if nbor == dest:
we found a path based on heuristic
return distances, parent

heapq.heappush(pq, (f_distance, distance, nbor)) #logE time

return distances, parent
def generate_path_from_parents(parent, start, dest): Q/
path =[] (’9
curr = dest Q/
while curr: \v/
Vv

path.append(curr) O
curr = parent[curr] (:)

return ->'join(path[::-1]) \@0

‘A" {B"5, 'C5), @)
B" {'A"5,'C4, D"3 }, Q/\k
C" {'A"5, B4, D7, E7, 'H'8)

D' {'B"3,'C":7, H"11, K"16, 4_2.1%" M"14},
B {'C-7, 'F:4, H'5),

F: {'E4, 'G"9}, \§9

G (F:9,N"12), <\

H: {E'S, 'C:8, DA XT3 },

T: ('H'3, T4},

T {T:4, N3 Qy‘

K {'D'16 X5, P4, 'N'7},

L {'D:13, M9, ‘04, K"5],

M. {'D"14, 'L"9, '0"5},

N ('G:12, T3, P"7},

0 (M5, L4},

P (K4, T8, N7},

heuristic = {
'A": 16,
B I7,
'C:13,
Dk 16,
'E" 16,
20,
'G": 17,
HY 11,
T: 10,

T8,
'K": 4,
] B2 40
'™M": 10,
NEA,
'0" 5,
P 0
}

start = 'A’

dest="P'

distances,parent = a_star(graph, start, dest, heuristic)

print('distances => ', distances)

print('parent => ', parent)

print(‘optimal path => ', generate_path_from_parents(parent,start,dest)) Q/
©

&

O

distances => {'A" 0, 'B": 22,'C" 18, 'D" 24, 'E": 28, 'F": 36, 'G" @Q{': 24, 'T: 26, J": 28, 'K": 28,
'L'": 28, 'M": 32, 'N": 30, 'O": 30, 'P": 28}

parent => {'A': None, 'B":'A', 'C: 'A’, D" 'B', 'E": 'C’, F@ : None, 'H: 'C', T: 'H', J": T, 'K":
DY, L D, M DL NG 10 T, P R Q}

optimal path => A->B->D->K->P ((/

Output:

\g
&

Thus the program to implement informed search algorithm have been executed
successfully and output got verified.

Result:

3. Implement Naive Bayes models.
Aim:
To diagnose the climate dataset withNaive Bayes Classifier Algorithm.
Algorithm:

1. Import the required libraries: numpy, matplotlib.pyplot, pandas, seaborn.

2. Load the dataset from the given CSV file "NaiveBayes.csv" using the pandas
"read_csv()" function.

3. Separate the input and output variables from the dataset by using "iloc" and "values'
methods and assign them to "X" and "y" variables respectively.

4. Split the dataset into training and testing datasets using the "trai '%ﬂ_split()"
function from the "sklearn.model_selection" module. Assign@/ plit data to
"X _train", "X_test", "y_train" and "y_test" variables.

5. Standardize the input data using the "StandardScaler()’; Wnétion from the
"sklearn.preprocessing" module. Scale the training (@5 d testing data separately
and assign them to "X _train" and "X_test" varia ;

6. Create a Bernoulli Naive Bayes classifier objgmlg the "BernoulliNB()" function

from the "sklearn.naive_bayes" module g.‘ n it to the "classifer” variable.

7. Train the Bernoulli Naive Bayes classifi€pusing the "fit()" method of the "classifer"
object by passing the "X_train" and &m" variables as arguments.

8. Predict the output values for the tg aset using the "predict()" method of the
"classifer" object and assign th 'y_pred" variable.

9. Calculate the accuracy score e model by passing the predicted output values
"y_pred" and actual output vatlies "y_test" to the "accuracy_score()" function from
the "sklearn.metrics" le and print the result.

10. Create a Gaussian Narve Bayes classifier object using the "GaussianNB()" function
from the "smeaﬁ%’h@re_bayes" module and assign it to the "classifer]"” variable.

11. Train the Gauys$siah Naive Bayes classifier using the "fit()" method of the
"classiferl L%ikct by passing the "X_train" and "y_train" variables as arguments.

12. Predict %ﬁtput values for the test dataset using the "predict()" method of the
"clas%ﬁ’" object and assign them to "y_pred1" variable.

13. Calculate the accuracy score of the model by passing the predicted output values
"y_predl" and actual output values "y_test" to the "accuracy_score()" function from
the "sklearn.metrics" module and print the result.

Program:

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

dataset = pd.read_csv('NaiveBayes.csv')

split the data into inputs and outputs

X = dataset.iloc[:, [0,1]].values

y = dataset.iloc[:, 2].values

from sklearn.model_selection import train_test_split
assign test data size 25%

X_train, X_test, y_train, y_test =train_test_split(X,y,test_size= 0.25, random_state=0)
from sklearn.preprocessing import StandardScaler

scalling the input data

sc_X = StandardScaler()

X_train = sc_X.fit_transform(X_train)

X_test = sc_X.fit_transform(X_test)

from sklearn.naive_bayes import BernoulliNB

initializaing the NB

classifer = BernoulliNB()

training the model

classifer.fit(X_train, y_train)

testing the model

y_pred = classifer.predict(X_test)

from sklearn.metrics import accuracy_score

printing the accuracy of the model

print(accuracy_score(y_pred, y_test))

from sklearn.naive_bayes import GaussianNB OQ/
create a Gaussian Classifier Q/
classifer] = GaussianNB() N/

training the model O\/
classiferl.fit(X_train, y_train) (:)

testing th del 0
testing the mode \é

y_predl = classiferl.predict(X_test) Q"
from sklearn.metrics import accuracy_score Q/

printing the accuracy of the model

print(accuracy_score(y_test,y_predl)) \QQ/
Q
(5\
Result ’ ?“

Thus the program wit @;ﬁ Bayes Classifier Algorithm have been executed
successfully and o got verified

NS
\g
&

3. Implement Bayesian Networks

Aim:
To construct a Bayesian network, to demonstrate the diagnosis of heart
patientsusing standard Heart Disease Data Set.

Algorithm:

Step 1: Import required modules
Step 2: Define network structure
Step 3: Define the parameters using CPT
Step 4: Associate the parameters with the model structure
Step 5: Check if the cpds are valid for the model
Step 6: View nodes and edges of the model Q/
Step 7: Check independencies of a node Q/CO
Step 8: List all Independencies \>/
O

Program: (:)
O

from pgmpy.models import BayesianNetwork
from pgmpy.inference import VariableEliminatimQ}

Defining network structure Q/
alarm_model = BayesianNetwork C§

(
[({5\
("Burglary”, "Alarm"),
("Earthquake", "Alarm") ?“

("Alarm", "JohnCalls")
("Alarm", "MaryCalls"),
]
) &\2\

Defining t %’ameters using CPT
from pgmpy.factors.discrete import TabularCPD

cpd_burglary = TabularCPD(
variable="Burglary", variable_card=2, values=[[0.999], [0.001]]
)
cpd_earthquake = TabularCPD(
variable="Earthquake", variable_card=2, values=[[0.998], [0.002]]
)
cpd_alarm = TabularCPD(
variable="Alarm",
variable card=2,
values=[[0.999, 0.71, 0.06, 0.05], [0.001, 0.29, 0.94, 0.95]],
evidence=["Burglary", "Earthquake"],
evidence_card=[2, 2],
)
cpd_johncalls = TabularCPD(
variable="JohnCalls",
variable card=2,
values=[[0.95, 0.1], [0.05, 0.9]],

evidence=["Alarm"],
evidence_card=[2],

)

cpd_marycalls = TabularCPD(
variable="MaryCalls",
variable card=2,
values=[[0.1, 0.7], [0.9, 0.3]],
evidence=["Alarm"],
evidence_card=[2],

)

Associating the parameters with the model structure
alarm_model.add_cpds(
cpd_burglary, cpd_earthquake, cpd_alarm, cpd_johncalls, cpd_maryc%s/

)

Checking if the cpds are valid for the model Q/O

alarm_model.check_model() v/
O\/

Viewing nodes of the model O

alarm_model.nodes()

Viewing edges of the model Q}é
alarm_model.edges() @

Checking independcies of a node \Q
alarm_model.local_independencies("B @ry")

\Z

Listing all Independencies Y?“
alarm_model.get_independ: s()

K\

Output: /\\2\

True Q:?\
%

NodeView(('Burglary', 'Alarm’, 'Earthquake’, 'JohnCalls', 'MaryCalls'))
OutEdgeView([('‘Burglary', 'Alarm’), (‘'Alarm’, 'JohnCalls'), ('Alarm’', 'MaryCalls'),
('Earthquake’, 'Alarm’)])

(Burglary L Earthquake)

(MaryCalls L Earthquake, Burglary, JohnCalls | Alarm) (MaryCalls L Burglary,
JohnCalls | Earthquake, Alarm)

(MaryCalls L Earthquake, JohnCalls | Burglary, Alarm)

(MaryCalls L Earthquake, Burglary | JohnCalls, Alarm)

(MaryCalls L JohnCalls | Earthquake, Burglary, Alarm)

(MaryCalls L Burglary | Earthquake, JohnCalls, Alarm)

(MaryCalls L Earthquake | Burglary, JohnCalls, Alarm)

(JohnCalls L Earthquake, Burglary, MaryCalls | Alarm)

(JohnCalls L Burglary, MaryCalls | Earthquake, Alarm)

(JohnCalls L Earthquake, MaryCalls | Burglary, Alarm)

(JohnCalls L Earthquake, Burglary | MaryCalls, Alarm)

(JohnCalls 1L MaryCalls | Earthquake, Burglary, Alarm)

(JohnCalls L Burglary | Earthquake, MaryCalls, Alarm)
(JohnCalls L Earthquake | Burglary, MaryCalls, Alarm)
(Earthquake L Burglary)

(Earthquake L MaryCalls, JohnCalls | Alarm)
(Earthquake 1L MaryCalls, JohnCalls | Burglary, Alarm)
(Earthquake L JohnCalls | MaryCalls, Alarm)
(Earthquake L MaryCalls | JohnCalls, Alarm)
(Earthquake L JohnCalls | Burglary, MaryCalls, Alarm)
(Earthquake L MaryCalls | Burglary, JohnCalls, Alarm)
(Burglary L Earthquake)

(Burglary L MaryCalls, JohnCalls | Alarm)

(Burglary 1L MaryCalls, JohnCalls | Earthquake, Alarm)
(Burglary L JohnCalls | MaryCalls, Alarm) (Z)Q/
(Burglary L MaryCalls | JohnCalls, Alarm) Q/
(Burglary L JohnCalls | Earthquake, MaryCalls, Alarm) \>/
(Burglary L MaryCalls | Earthquake, JohnCalls, Alarm) C}O

Result: @
Thus the program to implement a bayesian n és‘ have been executed successfully
and the output got verified.

N3

4. Build Regression models

Aim:

To build regression models such as locally weighted linear regression and plot the

necessary graphs.

Algorithm:

1. Read the Given data Sample to X and the curve (linear or non-linear) to Y

2. Set the value for Smoothening parameter or Free parameter say T
3. Set the bias /Point of interest set x0 which is a subset of X
4. Determine the weight matrix using :

(x—x0)*> @Q/
w(x,x,) =e 2%

5. Determine the value of model term parameter B using(:}\/

~

B(x,) = XTWX) 2XTWy
Ny
6. Prediction = x0*P. Q/Q‘
&
Program: %
o

from math import ceil %
import numpy as np

from scipy import linalg \2\?“
&

def lowess(x, y, f, iteration }b
n = len(x)
r = int(ceil(f * n)) &\2\
h = [np.sort(n ?ﬁ? - x[i]))[r] for i in range(n)]
w = np.clip(nfZabs((x[:, None] - x[None, :]) / h), 0.0, 1.0)
w=(1-w** *% 3
yest = np.zeros(n)
delta = np.ones(n)
for iteration in range(iterations):
foriin range(n):
weights = delta * w[;, i]
b = np.array([np.sum(weights * y), np.sum(weights * y * x)])

A = np.array([[np.sum(weights), np.sum(weights * x)],[np.sum(weights * x),

np.sum(weights * x * x)]1)
beta = linalg.solve(A, b)
yest[i] = beta[0] + beta[1] * x([i]

residuals =y - yest
s = np.median(np.abs(residuals))

delta = np.clip(residuals / (6.0 * s), -1, 1)
delta = (1 - delta ** 2) ** 2

return yest

import math

n =100

x = np.linspace(0, 2 * math.pi, n)

y = np.sin(x) + 0.3 * np.random.randn(n)
f=0.25

iterations=3

yest = lowess(x, y, f, iterations)

import matplotlib.pyplot as plt Q/
plt.plot(x,y,"r.") 0
plt.plot(x,yest,"b-") \g/
\Y%
Output: O
G

15 - " ®C?

10 1

05 4

Result

Thus the program to implement non-parametric Locally Weighted Regression
algorithm in order to fit data points with a graph visualization have been executed
successfully.

5. Build decision trees and random forests.
Aim:

To implement the concept of decision trees with suitable dataset from real world
problems using CART algorithm.

Algorithm:

Steps in CART algorithm:
1. It begins with the original set S as the root node.
2. On each iteration of the algorithm, it iterates through the very unused attribute of
the set S and calculates Gini index of this attribute.
3. Gini Index works with the categorical target variable "Success”&@ailure”. It

performs only Binary splits.

4. The set S is then split by the selected attribute to produce gﬁset of the data.

5. The algorithm continues to recur on each subset, considexing only attributes never
selected before. (;)

. O
Program: @

import numpy as np Q‘

import matplotlib.pyplot as plt %Q/Q/
©

import pandas as pd

data = pd.read_csv{'Social_Network_@v')
data.head() \e\g‘?.
feature_cols = ['Age’, 'Estimeg:@alary'l

x = data.iloc[;, [2, 3]].values,
y = data.iloc[:, 4].vahy§é\

from sklearn.mofiet~selection import train_test_split
x_train, x_test, % _train, y_test = train_test_split(x, y, test_size=0.25, random_state=0)

from sklearn.preprocessing import StandardScaler
sc_x = StandardScaler()

x_train = sc_x.fit_transform(x_train)

X_test = sc_x.transform(x_test)

from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier()

classifier = classifier.fit(x_train, y_train)

y_pred = classifier.predict(x_test)

from sklearn import metrics
print('Accuracy Score:', metrics.accuracy_score(y_test, y_pred))

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)

from matplotlib.colors import ListedColormap
x_set, y_set =x_test, y_test

x1, x2 = np.meshgrid(np.arange(start=x_set[:, 0].min()-1, stop=x_set[:, 0].max()+1,
step=0.01), np.arange(start=x_set[:, 1].min()-1, stop=x_set[:, 1].max()+1, step=0.01))
plt.contourf(x1,x2, classifier.predict(np.array([x1.ravel(), x2.ravel()]).T).reshape(x1.shape),

alpha=0.75, cmap=ListedColormap(("red", "green"))) Q/
plt.xlim(x1.min(), x1.max()) (:Q
plt.ylim(x2.min(), x2.max()) Q/

fori, j in enumerate(np.unique(y_set)): \>/

plt.scatter(x_set[y_set ==j, 0], x_set[y_set ==, 1], c=ListedCot§aLp(("red", "green"))(i),
label=j)

plt.title("Decision Tree(Test set)") Q&
plt.xlabel("Age")
plt.ylabel("Estimated Salary")

<&
plt.legend() {:Q\%Q/
plt.show()
%?\
h

from sklearn.tree import export_grg z
from six import StringlO

from IPython.display import indge
import pydotplus W},\

dot_data = StringlO ‘2\
export_graphviz(¢lassifier, out_file=dot_data, filled=True, rounded=True,

special_characters=True, feature_names=feature_cols, class_names=['0’, '1'])
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.write_png('decisiontree.png’))

classifier = DecisionTreeClassifier(criterion="gini", max_depth=3)
classifier = classifier.fit(x_train, y_train)

y_pred = classifier.predict(x_test)

print("Accuracy:", metrics.accuracy_score(y_test, y_pred))

dot_data = StringlO()

export_graphviz(classifier, out_file=dot_data, filled=True, rounded=True,
special_characters=True, feature_names=feature_cols, class_names=['0’, '1'])
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.write_png(‘'opt_decisiontree_gini.png'))

Output of decision tree without pruning:

Result:
Thus the program to implement the concept of decision trees with suitable datasetfrom
real world problems using CART algorithm have been executed successfully.

