ESTD. 2001

PRATHYUSHA ENGINEERING COLLEGE (An Autonomous Institution)

DEPARTMENT OF CSE- ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Course Outcomes

Regulation 2023

COURSE NAME	COURSE OUTCOMES	
SEMESTER I		
MATRICES AND CALCULUS	CO1: Use the matrix algebra methods for solving practical problems. CO2: Apply differential calculus tools in solving various application problems. CO3: Able to use differential calculus ideas on several variable functions. CO4: Apply different methods of integration in solving practical problems. CO5: Apply multiple integral ideas in solving areas, volumes and other practical problems.	
ENGINEERING PHYSICS	CO1: Understand the importance of mechanics. CO2: Express their knowledge in electromagnetic waves. CO3: Demonstrate a strong foundational knowledge in oscillations, optics and lasers. CO4: Understand the importance of quantum physics. CO5: Comprehend and apply quantum mechanical principles towards the formation of energy bands.	
ENGINEERING CHEMISTRY	CO1: To infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water. CO2:To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications. CO3:To apply the knowledge of phase rule and composites for material selection requirements. CO4:To recommend suitable fuels for engineering processes and applications. CO5:To recognize different forms of energy resources and apply them for suitable applications in energy sectors.	
COURSE NAME	COURSE OUTCOMES	

	CO1: Use BIS conventions and specifications for engineering		
ENGINEERING GRAPHICS	drawing.		
	CO2:Construct the conic curves and cycloid.		
	CO3:Solve practical problems involving projection of lines.		
	CO4:Draw the orthographic, isometric and perspective projections		
	of simple solids.		
	CO5:Draw the development of simple solids.		
	PHYSICS LABORATORY:		
	CO1: Understand the functioning of various physics laboratory		
	equipment.		
	CO2: Use graphical models to analyze laboratory data.		
	CO3: Use mathematical models as a medium for quantitative		
	reasoning and describing physical reality.		
	CO4: Access, process and analyze scientific information.		
PHYSICS AND	CO5: Solve problems individually and collaboratively.		
CHEMISTRY	CHEMISTRY LABORATORY:		
LABORATORY	CO1: To analyse the quality of water samples with respect to their		
	acidity, alkalinity, hardness and DO.		
	CO2: To determine the amount of metal ions through volumetric		
	and spectroscopic techniques		
	CO3: To analyse and determine the composition of alloys.		
	CO4: To learn simple method of synthesis of nanoparticles		
	CO5: To quantitatively analyse the impurities in solution by electro		
	analytical techniques		
	CO1:Speak effectively in group discussions held in a formal/semi		
	formal contexts.		
	CO2:Discuss, analyse and present concepts and problems from		
COMMUNICATION	various perspectives to arrive at suitable solutions		
SKILLS	CO3:Write emails, letters and effective job applications.		
LABORATORY	CO4:Write critical reports to convey data and information with		
	clarity and precision		
	CO5:Give appropriate instructions and recommendations for safe		
	execution of tasks		
	SEMESTER II		
	CO1: To compare and contrast products and ideas in technical		
	texts.		
PROFESSIONAL ENGLISH	CO2: To identify and report cause and effects in events, industrial		
	processes through technical texts		
	CO3: To analyse problems in order to arrive at feasible solutions		
	and communicate them in the written format.		
	CO4: To present their ideas and opinions in a planned and logical		
	manner		
	CO5: To draft effective resumes in the context of job search.		
COURSE NAME	COURSE OUTCOMES		
DIFFERENTIAL	CO1: Apply the concept of testing of hypothesis for small and large		
DITTERLITAL	201. Tippiy the concept of testing of hypothesis for small and large		

EQUATIONS AND	samples in real life problems.
TRANSFORM	CO2: Apply the basic concepts of classifications of design of
TECHNIQUES	experiments in the field of agriculture.
	CO3: Appreciate the numerical techniques of interpolation in
	various intervals and apply the numerical techniques of
	differentiation and integration for engineering problems.
	CO4: Understand the knowledge of various techniques and
	methods for solving first and second order ordinary differential
	equations.
	CO5: Solve the partial and ordinary differential equations with
	initial and boundary conditions by using certain techniques with
	engineering applications.
	CO1: Compute the electric circuit parameters for simple problems
BASIC ELECTRICAL	CO2: Explain the working principle and applications of electrical
AND ELECTRONICS	machines
ENGINEERING	CO3: Analyze the characteristics of analog electronic devices
Er (on (EE) (o	CO4: Explain the basic concepts of digital electronics
	CO5: Explain the operating principles of measuring instruments
	CO1: Demonstrate knowledge on C Programming constructs CO2:
	Develop simple applications in C using basic constructs
	CO3: Design and implement applications using arrays and strings
PROBLEM SOLVING	CO4: Develop and implement modular applications in C using
USING C	functions.
	CO5: Develop applications in C using structures and pointers.
	CO6: Design applications using sequential and random access file
	processing.
	CO1: Draw pipe line plan; lay and connect various pipe fittings
	used in common household plumbing work; Saw; plan; make joints
	in wood materials used in common household wood work.
	CO2: Wire various electrical joints in common household electrical wire work.
ENGINEERING	CO3: Weld various joints in steel plates using arc welding work;
PRACTICES	Machine various simple processes like turning, drilling, tapping in
LABORATORY	parts; Assemble simple mechanical assembly of common
LABORATORT	household equipments; Make a tray out of metal sheet using sheet
	metal work.
	CO4: Solder and test simple electronic circuits; Assemble and test
	simple electronic components on PCB.
	ample dictions components on I CD.
COURSE NAME	COURSE OUTCOMES
	CO1: Demonstrate knowledge on C programming constructs. CO2:
DD ODLES (GOTTES	Develop programs in C using basic constructs.
PROBLEM SOLVING	CO3: Develop programs in C using arrays.
USING C	CO4: Develop applications in C using strings, pointers, functions.
LABORATORY	CO5: Develop applications in C using structures.

CO6: Develop applications in C using file processing.		
	SEMESTER III	
DISCRETE MATHEMATICS	CO1: Have knowledge of the concepts needed to test the logic of a program. CO2: Have an understanding in identifying structures on many levels. CO3: Be aware of a class of functions which transform a finite set into another finite set which relates to input and output functions in computer science. CO4: Be aware of the counting principles. CO5: Be exposed to concepts and properties of algebraic structures such as groups, rings and fields.	
DATA SCIENCE USING PYTHON	CO1: Understand the fundamentals of python programming CO2: Use the Python Libraries for Data Manipulation. CO3: Define the data science process. CO4: understand different types of data description for data science process CO5: Gain knowledge on relationships between data	
ARTIFICIAL INTELLIGENCE	CO1: Explain intelligent agent frameworks CO2: Apply problem solving techniques CO3: Apply game playing and CSP techniques CO4: Perform logical reasoning CO5: Perform probabilistic reasoning under uncertainty	
DATA STRUCTURES COURSE NAME	CO1: Define linear and non-linear data structures. CO2: Implement linear and non-linear data structure operations. CO3: Use appropriate linear/non-linear data structure operations for solving a given problem. CO4: Apply appropriate graph algorithms for graph applications. CO5: Analyze the various searching and sorting algorithms.	
COURSE WANTE		
OBJECT ORIENTED PROGRAMMING	CO1:Apply the concepts of classes and objects to solve simple problems CO2:Develop programs using inheritance, packages and interfaces CO3:Make use of exception handling mechanisms and multithreaded model to solve real world problems CO4:Build Java applications with I/O packages, string classes, Collections and generics concepts CO5:Integrate the concepts of event handling and JavaFX components and controls for developing GUI based applications	
DATA STRUCTURES LABORATORY	CO1: Implement Linear data structure algorithms. CO2: Implement applications using Stacks and Linked lists	

	CO3: Implement Binary Search tree and AVL tree operations.
	CO4: Implement graph algorithms.
	CO5: Analyze the various searching and sorting algorithms.
OBJECT ORIENTED PROGRAMMING LABORATORY	CO1: Design and develop java programs using object oriented
	programming concepts
	CO2 : Develop simple applications using object oriented concepts
	such as package, exceptions
	CO3: Implement multithreading, and generics concepts
	CO4 : Create GUIs and event driven programming applications for
	real world problems
	CO5: Implement and deploy web applications using Java
	CO1: Make use of the python libraries for data science
DATA SCIENCE USING PYTHON LABORATORY	CO2: Make use of the basic Statistical and Probability measures for
	data science.
	CO3: Perform descriptive analytics on the benchmark data sets.
	CO4: Perform correlation and regression analytics on standard data
	sets
	CO5: Present and interpret data using visualization packages in
	Python.