

PRATHYUSHA ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INNOVATIONS

BY THE FACULTY IN TEACHING AND LEARNING

1. LEARNING WITH LIVE DEMONSTRATION OF COMPUTER HARDWARE

PRATHYUSHA ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LEARNING WITH LIVE DEMONSTRATION OF COMPUTER HARDWARE

Computer hardware includes the physical parts of a computer, such as the case, central processing unit (CPU), random access memory (RAM), monitor, mouse, keyboard, computer data storage, graphics card, sound card, speakers and motherboard.

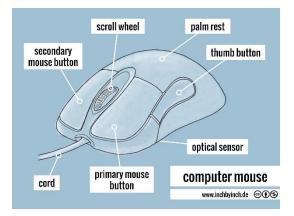
CASE:

A **computer case**, also known as a **computer chassis**, is the enclosure that contains most of the hardware of a personal computer. The components housed inside the case (such as the CPU, motherboard, memory, mass storage devices, power supply unit and various expansion cards) are referred as the internal hardware, while hardware outside the case (typically cable-linked or plug-and-play devices such as the display, speakers, keyboard, mouse and USB flash drives) are known as peripherals.

CPU(Central Processing Unit):

A central processing unit (CPU)—also called a central processor or main processor—is the most important processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs).

RAM(Random Access Memory) :


Random-access memory (RAM) is a form of computer memory that can be read and changed in any order, typically used to store working data and machine code. A random-access memory device allows data items to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory, in contrast with other direct-access data storage media (such as hard disks, CD-RWs, DVD-RWs and the older magnetic tapes and drum memory), where the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.

MONITOR:

A **computer monitor** is an output device that displays information in pictorial or textual form. A monitor comprises a visual display, support electronics, power supply, housing, electrical connectors, and external user controls. The display in modern monitors is typically an LCD with LED backlight, having by the 2010s replaced CCFL backlit LCDs. Before the mid-2000s,^[1] most monitors used a CRT. Monitors are connected to the computer via DisplayPort, HDMI, USB-C, DVI, VGA, or other proprietary connectors and signals.

MOUSE:

A computer mouse (plural **mice**, also **mouses**) is a hand-held pointing device that detects two-dimensional motion relative to a surface. This motion is typically translated into the motion of the pointer (called a cursor) on a display, which allows a smooth control of the graphical user interface of a computer.

KEYBOARD:

Keyboard keys (buttons) typically have a set of characters engraved or printed on them, and each press of a key typically corresponds to a single written symbol. However, producing some symbols may require pressing and holding several keys simultaneously or in sequence.^[3] While most keys produce characters (letters, numbers or symbols), other keys (such as the escape key) can prompt the computer to execute system commands. In a modern computer, the interpretation of key presses is generally left to the software: the information sent to the computer, the scan code, tells it only which physical key (or keys) was pressed or released.

MOTHERBOARD:

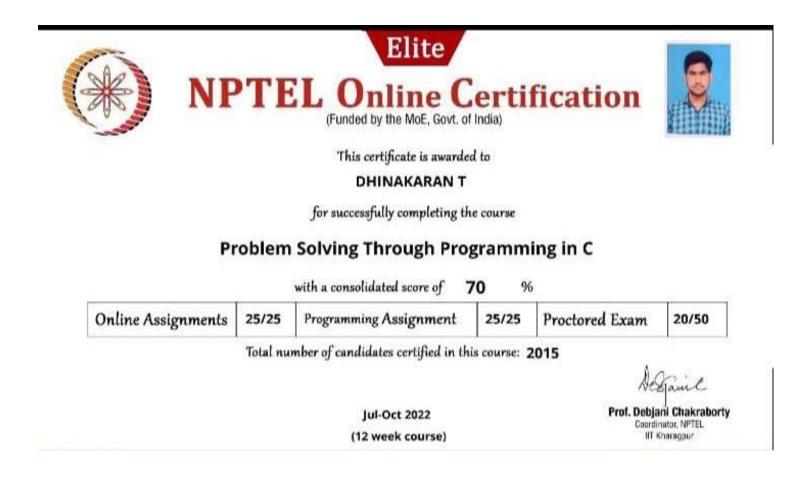
A motherboard (also called mainboard, main circuit board, MB, mboard, backplane board, base board, system board, mobo; or in Apple computers logic board) is the main printed circuit board (PCB) in general-purpose computers and other expandable systems. It holds and allows communication between many of the crucial electronic components of a system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals.

2. ONLINE COURSE

PRATHYUSHA ENGINEERING COLLEGE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING <u>NPTEL SWAYAM</u>

ACADEMIC YEAR: 2022-2023

S.No	Course Name	Name	YEAR	Certificate Type	Timeline
1	Problem Solving Through Programming In C	PRANAW O	II	Elite+Silver	Jul-Oct 2022
2	Problem Solving Through Programming In C	PRAVEEN A	II	Elite	Jul-Oct 2022
3	The Joy of Computing using Python	Dhanalakshmi G	III	Elite	Jul-Oct 2022
4	Problem Solving Through Programming In C	Dhinakaran T	III	Elite	Jul-Oct 2023
5	Enhancing Soft Skills and Personality	R Gokul	III	Elite	Feb-Apr- 2023
6	Foundation of Cloud IoT Edge ML	Lokesh K	III	Elite	Jan-Apr 2023
7	Python for Data Science	Harisha V	Π	Elite	Jul-Aug 2022


This certificate is awarded to

DHANA LAKSHMI G

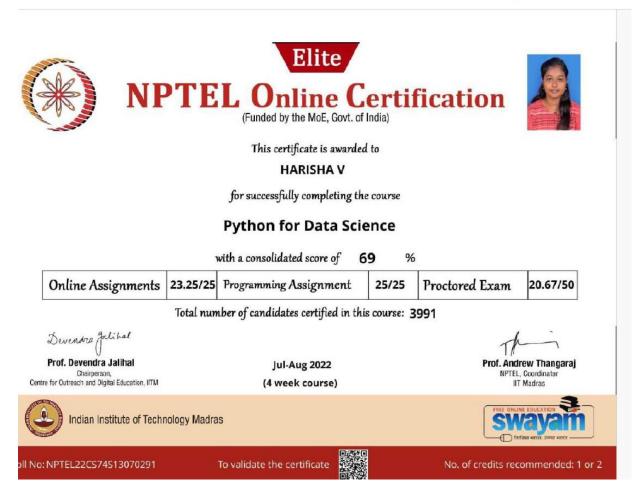
for successfully completing the course

The Joy of Computing using Python

	with a consolidated score of 73 %						
	Online Assignments	24.72/25	Programming Assignme	ent	25/25	Proctored Exam	23/50
	Total number of candidates certified in this course: 9957						
	Devendra gali hal					Th	
	Prof. Devendra Jalihal Chairperson,		Jul-Oct 2022				ew Thangaraj Coordinator
Cen	tre for Outreach and Digital Education, IITM		(12 week course	≥)			Madras
	Indian Institute of Techr	ology Madra	15				EDUCATION S ayam a MIRA, 3-MA MIRA
oll Nc	: NPTEL22CS122S64470653	1	To validate the certificate			No. of credits reco	mmended: 3 or 4

This certificate is awarded to

LOKESH K


for successfully completing the course

Foundation of Cloud IoT Edge ML

with a conso	lidated score	of 64 %	
Online Assignments	23.75/25	Proctored Exam	39.8/75

Total number of candidates certified in this course: 1649

3. LEARNING BY INDUSTRIAL VISIT

S NO	NAME OF THE COMPANY VISITED	VENUE	YEAR OF BENIFITT ED STUDENT	DATE OF VISIT
1	MONOLITH SOLUTIONS	Neela Towers, Ashok nagar, Chennai - 83	III	6.9.22 & 7.9.22
2	IMARTICUS LEARNING	East West Centre, Nelson Manickam road, Chennai - 29	IV	9.9.22
3	ICAT DESIGN & MEDIA	Santhome High Road, Mylapore, Chennai - 4	IV	15.9.22
4	GUVI GEEK NETWORK	IITM research park, module #9, D block, Tharamani, Chennai - 113	Π	22.9.22 & 23.9.22
5	U R RAO SATELLITE CENTER	Old Airport road, Vimanapura, Bangaluru, Karnataka - 560017	III	23.02.23
6	IMAGE CREATIVE PVT LTD	Arcot road, Vadapalani, Chennai - 26	II	21.04.23 & 13.05.23
7	INTEGRAL COACH FACTORY	Lakshmipuram, Perambur, Chennai - 38	Ι	27th JUNE, 4th & 11th JULY 2023

4. TEACHING THROUGH COLLABORATION (GROUP DISCUSSIONS)

PRATHYUSHA ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Academic Year:2022-2023

Year/Sem:II/IV

Subject Code/Name:CS3491/Artificial Intelligence And Machine Learning

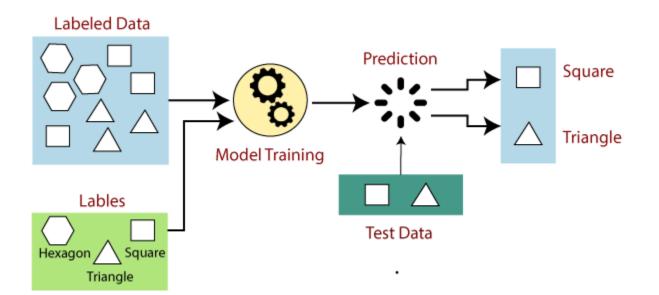
TEACHING THROUGH COLLABORATION (GROUP DISCUSSION)

Students have divided into 10 groups with 6 members in a group and had a group discussion on the following concept:

- Bayesian Networks
- Supervised Learning
- Unsupervised Learning
- Neural Networks

BAYESIAN NETWORKS:

"A Bayesian network is a probabilistic graphical model which represents a set of variables and their conditional dependencies using a directed acyclic graph."


Example: Harry installed a new burglar alarm at his home to detect burglary. The alarm reliably responds at detecting a burglary but also responds for minor earthquakes. Harry has two neighbours John and Mary, who have taken a responsibility to inform Harry at work when they hear the alarm. John always calls Harry when he hears the alarm, but sometimes he got confused with the phone ringing and calls at that time too. On the other hand, Mary likes to listen to high music, so sometimes she misses to hear the alarm. Here we would like to compute the probability of Burglary Alarm.

Burglary	E	arthquake		E=T) .02	
P(B=T) 0.01	Alarm		В	Е	P(A=T B,E)
	Alarm		Т	Т	0.95
		*	Т	F	0.94
JohnCalls	6		F	Т	0.29
JohnCalls		MaryCalls	F	F	0.001
A P(J=T A)	Α	P(M=T A)			
T 0.90	Т	0.70			
F 0.05	F	0.01			

SUPERVISED LEARNING:

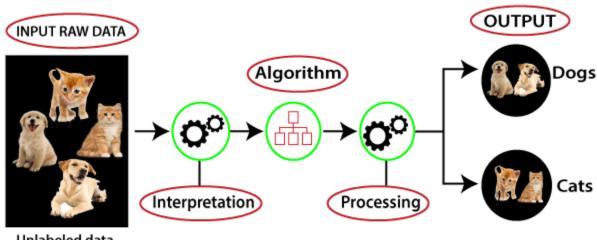
Supervised learning is the types of machine learning in which machines are trained using well "labelled" training data, and on basis of that data, machines predict the output. The labelled data means some input data is already tagged with the correct output.

1. Regression

Regression algorithms are used if there is a relationship between the input variable and the output variable.

2. Classification

Classification algorithms are used when the output variable is categorical, which means there are two classes such as Yes-No, Male-Female, True-false, etc.

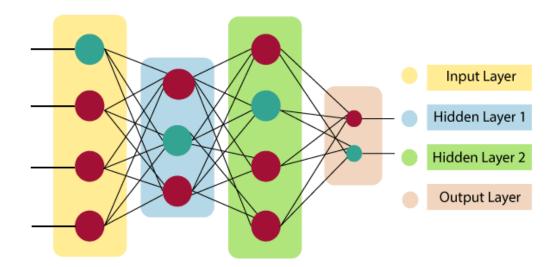

UNSUPERVISED LEARNING:

Unsupervised learning is a type of machine learning in which models are trained using unlabeled dataset and are allowed to act on that data without any supervision.

Working of Unsupervised Learning

Working of unsupervised learning can be understood by the below diagram:

Unlabeled data


NEURAL NETWORKS:

Artificial Neural Network Tutorial provides basic and advanced concepts of ANNs. Our Artificial Neural Network tutorial is developed for beginners as well as professions.

The term "Artificial neural network" refers to a biologically inspired sub-field of artificial intelligence modeled after the brain. An Artificial neural network is usually a computational network based on biological neural networks that construct the structure of the human brain. Similar to a human brain has neurons interconnected to each other, artificial neural networks also have neurons that are linked to each other in various layers of the networks. These neurons are known as nodes.

Artificial neural network tutorial covers all the aspects related to the artificial neural network. In this tutorial, we will discuss ANNs, Adaptive resonance theory, Kohonen self-organizing map, Building blocks, unsupervised learning, Genetic algorithm, etc.

Artificial Neural Network primarily consists of three layers:

Input Layer:

As the name suggests, it accepts inputs in several different formats provided by the programmer.

Hidden Layer:

The hidden layer presents in-between input and output layers. It performs all the calculations to find hidden features and patterns.

Output Layer:

The input goes through a series of transformations using the hidden layer, which finally results in output that is conveyed using this layer.

The artificial neural network takes input and computes the weighted sum of the inputs and includes a bias. This computation is represented in the form of a transfer function.

$$\sum_{i=1}^n Wi \ast Xi + b$$

It determines weighted total is passed as an input to an activation function to produce the output. Activation functions choose whether a node should fire or not. Only those who are fired make it to the output layer. There are distinctive activation functions available that can be applied upon the sort of task we are performing.

5. TEACHING THROUGH ROLE PLAY

PRATHYUSHA ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Academic Year:2022-2023

Year/Sem:II/IV

Subject Code/Name: CS3401/ALGORITHMS

TEACHING THROUGH ROLE PLAY

LINEAR SEARCH AND BINARY SEARCH

LINEAR SEARCH:

This algorithm works by sequentially iterating through the whole array or list from one end until the target element is found. If the element is found, it returns its index, else -1.

Time Complexity Analysis:

The Best Case occurs when the target element is the first element of the array. The number of comparisons, in this case, is 1. So, the time complexity is O(1).

The Average Case: On average, the target element will be somewhere in the middle of the array. The number of comparisons, in this case, will be N/2. So, the time complexity will be O(N) (the constant being ignored).

The Worst Case occurs when the target element is the last element in the array or not in the array. In this case, we have to traverse the entire array, and so the number of comparisons will be N. So, the time complexity will be O(N).

A linear search is the simplest approach employed to search for an element in a data set. It examines each element until it finds a match, starting at the beginning of the dataset, until the end. The search is finished and terminated once the target element is located.

BINARY SEARCH:

This type of searching algorithm is used to find the position of a specific value contained in a sorted array. The binary search algorithm works on the principle of divide and conquer and it is considered the best searching algorithm because it's faster to run.

It works by repeatedly dividing in half the portion of the list that could contain the item, until you have narrowed down the possible locations to just one.we used binary search in the guessing game in the introductory tutorial.

Time Complexity Analysis:

The Best Case occurs when the target element is the middle element of the array. The number of comparisons, in this case, is 1. So, the time complexity is O(1).

The Average Case: On average, the target element will be somewhere in the array. So, the time complexity will be O(logN).

The Worst Case occurs when the target element is not in the list or it is away from the middle element. So, the time complexity will be O(logN)

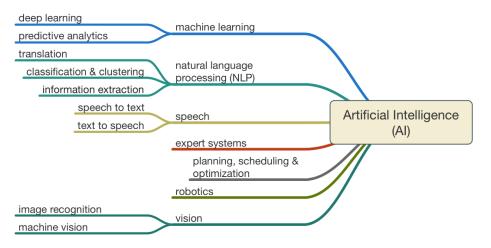
5. TEACHING THROUGH TECHNOLOGY (MIND MAP TOOLS)

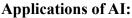
PRATHYUSHA ENGINEERING COLLEGE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

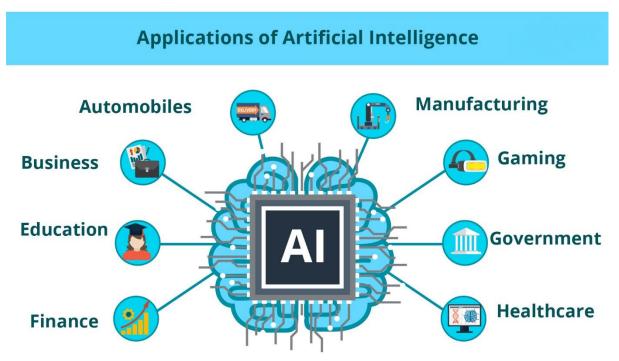
Academic Year:2022-2023

Year/Sem: II/IV

Course Code/Name: CS3491 Artificial Intelligence and

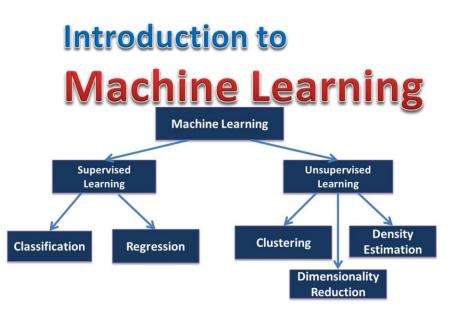

Machine Learning

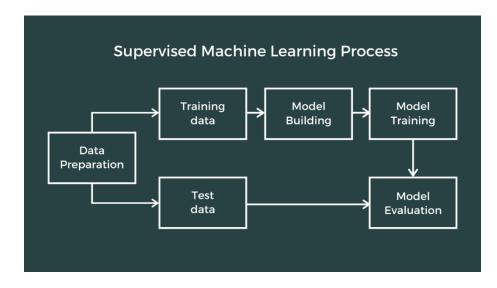

MIND MAP TOOL



Introduction to AI:

Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think and act like humans. It involves the development of algorithms and computer programs that can perform tasks that typically require human intelligence such as visual perception, speech recognition, decision-making, and language translation.




Introduction to machine learning:

Machine learning is programming computers to optimize a performance criterion using example data or past experience. We have a model defined up to some parameters, and learning is the execution of a computer program to optimize the parameters of the model using the training data or past experience. The model may be predictive to make predictions in the future, or descriptive to gain knowledge from data.

Supervised Machine Learning

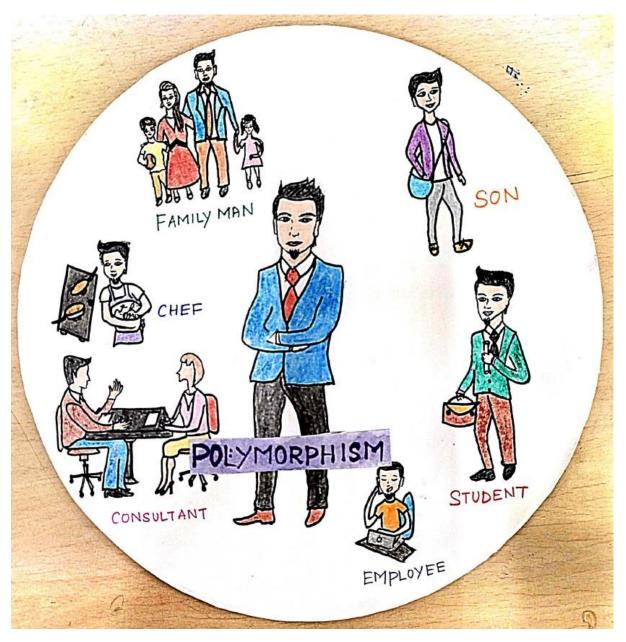
Supervised learning is a machine learning technique that is widely used in various fields such as finance, healthcare, marketing, and more. It is a form of machine learning in which the algorithm is trained on labeled data to make predictions or decisions based on the data inputs. In supervised learning, the algorithm learns a mapping between the input and output data. This mapping is learned from a labeled dataset, which consists of pairs of input and output data. The algorithm tries to learn the relationship between the input and output data so that it can make accurate predictions on new, unseen data.

Unsupervised Machine Learning:

Unsupervised learning, also known as <u>unsupervised machine learning</u>, uses machine learning algorithms to analyze and cluster unlabeled datasets. These algorithms discover hidden patterns or data groupings without the need for human intervention. Its ability to discover similarities and differences in information make it the ideal solution for exploratory data analysis, cross-selling strategies, customer segmentation, and image recognition.

6. TEACHING THROUGH SKILLRACK PORTAL

SKILLRACK STUDENT LOGIN PAGE


SkillRack (KANDULA SNEHIT Mome Reports Profile ? Programs Solved: (452) Tutorials (452) Tracks ()	' HA-111421104035@prathyusha	0 😵 124 🖡 42969 🔅 Valid Till: 31-May-2025
Learn C, Java, Python, SQL, Data Structures	Programming Challenges - Tracks	Daily Challenge (24 Hours)
Daily Test (24 Hours)	Programming Tests (Test Center)	Live Assisted Coding Sessions (LACS) Programs

7. ANIMATED VIDEO AND HANDMADE POSTER

ANIMATED VIDEO AND HANDMADE POSTER

COURSE CODE/NAME:CS3391/OBJECT ORIENTED PROGRAMMING

TOPIC: POLYMORPHISM

Animated videos:

https://drive.google.com/file/d/1ts5mL1sjXKjy_534ftod2sS8AcdriWrC/view?usp=drive_link

8. TEACHING THROUGH FLIPPING CLASSROOM

SL. NO.	COURSE NAME	TOPICS	YOUTUBE VIDEO LINK IN PEC CHANNAL
1	CLOUD COMPUTING	RECENT SECURITY CHALLENGES IN CLOUD COMPUTING	https://www.youtu be.com/watch?v=T HbQR_b-sNc
2	ADVANCED TOPICS	INTRODUCTION TO QUANTUM COMPUTING	https://www.youtu be.com/watch?v= mjL1HaQ5srw
3	FUNDAMENTANAL OF DATA SCIENCE	ROLE OF DATA SCIENCE IN AGRICULTURE	https://www.youtu be.com/watch?v=n i919sXG7nU
4	ARTIFICIAL INTELLIGENCE,ARTIFICIAL INTELLIGENCE & MACHINE LEARNING	PREDICTIVE MODELLING	https://www.youtu be.com/watch?v=1 pIkhYioo6k
5	COMPUTER NETWORKS	TCP CONGESTION CONTROL	https://www.youtu be.com/watch?v=X wUyN0HuUHk
6	ARTIFICIAL INTELLIGENCE,ARTIFICIAL INTELLIGENCE & MACHINE LEARNING	BAYESIAN NETWORKS	https://www.youtu be.com/watch?v=C yY5JXXcqN4
7	PRINCIPLES OF MANAGEMENT	SIX SIGMA	https://www.youtu be.com/watch?v=st ZHh3aF7f8
8	ARTIFICIAL INTELLIGENCE,ARTIFICIAL INTELLIGENCE & MACHINE LEARNING	DEEP LEARNING	https://www.youtu be.com/watch?v=fJ Y2QLruyXs
9	DATA STRUCTURE, DESIGN AND ANALYSIS OF ALGORITHM	DIVIDE AND CONQUER ALGORITHM	https://www.youtu be.com/watch?v=5 jof3N5vHA4
10	ARTIFICIAL INTELLIGENCE,ARTIFICIAL INTELLIGENCE & MACHINE LEARNING	RING BASED AI	https://www.youtu be.com/watch?v=J kF-o1kUCrk

11	PROGRAMMING IN C	C LOGICAL CRACKING	https://www.youtu be.com/watch?v=Q dCUzT4tQvo
12	COMPUTER GRAPHICS	AUGMENTED REALITY	https://www.youtu be.com/watch?v=z EdiOXnnhwM
13	SOFTWARE ENGINEERING	LIFE CYCLE MANAGEMENT COST	https://www.youtu be.com/watch?v=d VhHtwnpj8w
14	COMPUTER NETWORKS	ROUTING	https://www.youtu be.com/watch?v=D y7WrGo5Vkk
15	CRYPTOGRAPHY AND NETWORK SECURITY	DIGITAL SIGNATURE	https://www.youtu be.com/watch?v=d BHQQ8x_5KA
16	COMPUTER NETWORKS	MULTICAST ROUTING	https://www.youtu be.com/watch?v=- PQZ-Kvpl-k
17	COMPUTER ARCHITECHTURE	MIPS IMPLEMENTATION	https://www.youtu be.com/watch?v=t h2gABvXhpg
18	CRYPTOGRAPHY AND NETWORK SECURITY	POLYGRAPHIES SUBSTITUTION METHOD	https://www.youtu be.com/watch?v=7 1NxbuxkoDU
19	DATA STRUCTURE, DESIGN AND ANALYSIS OF ALGORITHM	OPTIMAL BINARY SEARCH	https://www.youtu be.com/watch?v=s J_io6tAID4
20	OBJECT ORIENTED PROGRAMMING	INHERITANCE	https://www.youtu be.com/watch?v=U pgh-z0V2WI
21	HUMAN COMPUTER INTERACTION	HUMAN COMPUTER INTERACTION	https://www.youtu be.com/watch?v=6 MxQo2Ep1nE
22	SOFTWARE ENGINEERING	CYCLOMATIC COMPLEXITY	https://www.youtu be.com/watch?v=6 MxQo2Ep1nE

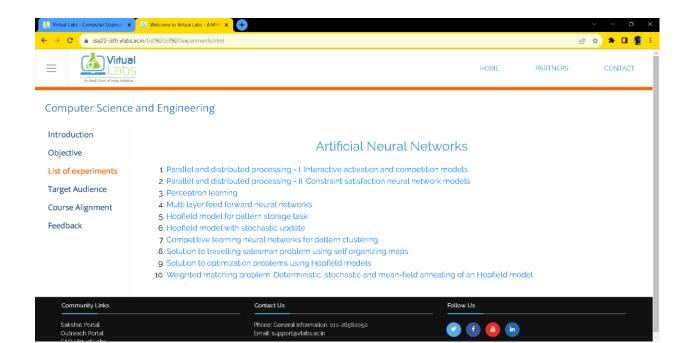
23	PROGRAMMING IN C	C BASICS FOR LOGICAL CRACKING	https://www.youtu be.com/watch?v=2 wa3FYkdAOM
24	SOFTWARE ENGINEERING	CYCLOMATIC COMPLEXITY	https://www.youtu be.com/watch?v=a 2ggxfh82xY
25	OPERATING SYSTEM	VIRTUALIZATION	https://www.youtu be.com/watch?v=i WFr7_B4ij0
26	COMPUTER NETWORKS	INTERCONNECTION NETWORKS	https://www.youtu be.com/watch?v=0 gvpnN45M4U
27	OBJECT ORIENTED ANALYSIS AND DESIGN	UNIFIED MODELLING LANGUAGE	https://www.youtu be.com/watch?v= WcYV25VPS4U
28	DISTRIBUTED COMPUTING	TASK MANAGEMENT IN DISTRIBUTED SYSTEM	https://www.youtu be.com/watch?v= WLpvR7tN-5c
29	OPERATING SYSTEM	DEADLOCK	https://www.youtu be.com/watch?v=fl fmWSOC2Ko
30	OBJECT ORIENTED PROGRAMMING	ABSTRACT CLASS	https://www.youtu be.com/watch?v=Q X2C_X_BK1g

9. TEACHING THROUGH VIRTUAL LABS

PRATHYUSHA ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

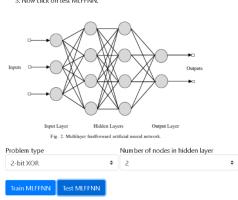
Virtual Lab


YEAR/SEM:III/VI

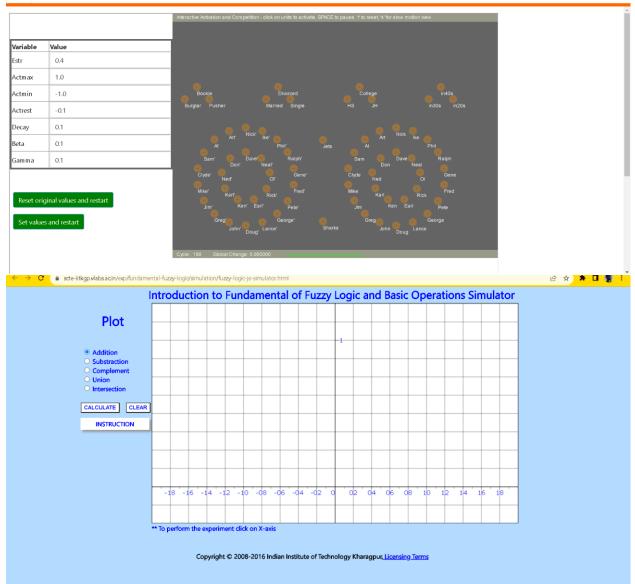
LAB NAME: ARTIFICIAL INTELLIGENCE LAB

Academic year: 2022-2023

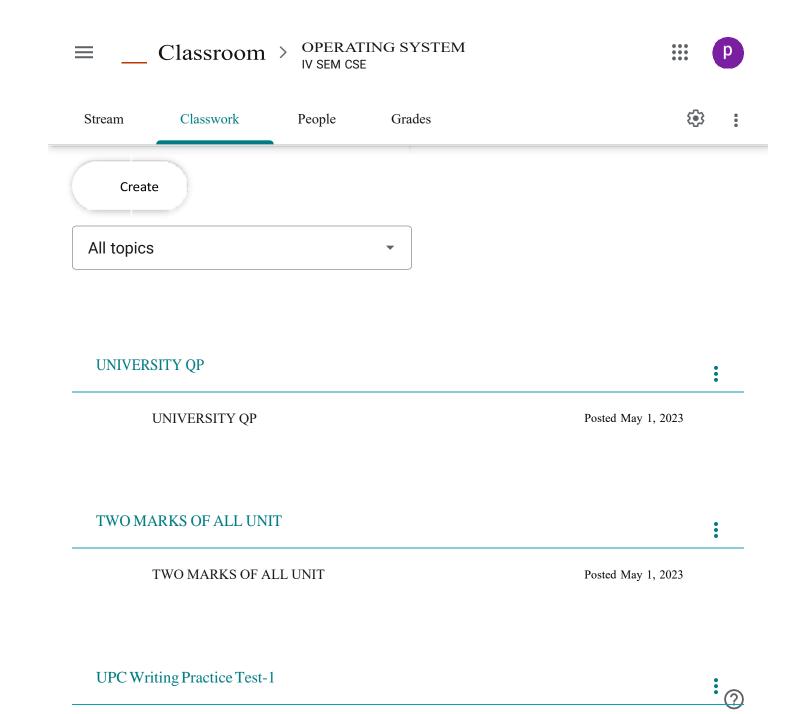
EAO Virtual Labo


🥻 Virtual Labs - Computer Science 🤅 🗙	i Virhul Labs - Computer Science 🗴 🚹 Welcome to Virhuel Labs - A MHH 🗴 🔶 🗢 🗸 🚽							
← → C 🍙 cse22-iiith.vlabr	→ C a cse22-iiith.vlabs.ac.in/Introduction.html							
	5	HOME	PARTNERS	CONTACT				
Computer Science	and Engineering							
Introduction Objective	Artificial Neural Networks							
List of experiments Target Audience Course Alignment Feedback	The objective of this lab is to provide hands-on experience in understanding the basics of ANN models, and the pattern recognition tasks they perform. Some applications of ANN for problems in optimization and image processing will also be explored through these lab experiments. Important Notes : If some or all of the tabs in this page or the experiment page are not visible, kindly try reloading or refreshing the page.							
Community Links	Some of the content uses MathJax for rendering equations. Rendering maybe slow on some systems. If the equations are not visible, you may have to refresh or reload the page. Internet explorer is not supported in the current release. ANN Lab has been checked on Firefox and Opera.							
Sakshat Portal	Phone: General Information: 011-28582050							

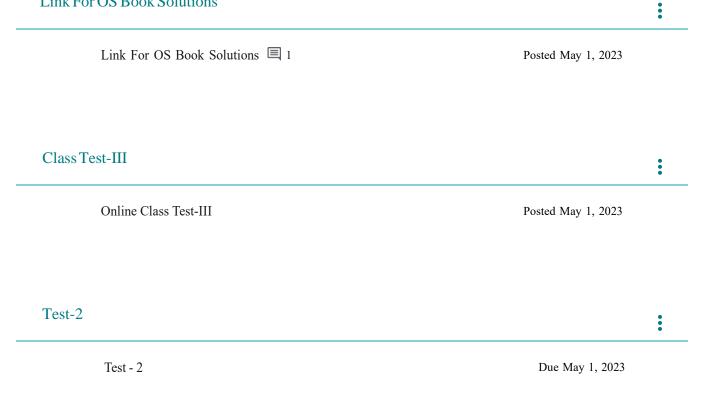
Set a gapt M of nodes M of	Graph-1: 4 nodes ¢	
We locations: Image: Length of the set of th		
The cost function to be minimized is $L[n] = \sum_{i < j} d_{ij} n_{ij} + \frac{\gamma}{2} \sum_{i} (1 - \sum_{j} n_{ij})^{2}$ where d_{ij} is the distance between points i and j , and n_{ij} denotes the link or edge between points i and j . $\Delta L[n] = (d_{ij} - \gamma + \gamma \sum_{k \neq j} n_{ik} + \gamma \sum_{k \neq j} n_{jk}) \Delta n_{ij}$ nput nodes Weighted matched pairs Hopfield Models for Solution to Optimization Problems Fraph bipartition problem Elect a graph [Sample graph 1: 4 nodes v] No to i nodes $[diges - v]$ No to i edges - v[line v]	Node locations:	
The cost function to be minimized is $L[n] = \sum_{i < j} d_{ij} n_{ij} + \frac{\gamma}{2} \sum_{i} (1 - \sum_{j} n_{ij})^{2}$ where d_{ij} is the distance between points i and j , and n_{ij} denotes the link or edge between points i and j . $\Delta L[n] = (d_{ij} - \gamma + \gamma \sum_{k \neq j} n_{ik} + \gamma \sum_{k \neq j} n_{jk}) \Delta n_{ij}$ nput nodes Weighted matched pairs Hopfield Models for Solution to Optimization Problems Fraph bipartition problem Elect a graph [Sample graph 1: 4 nodes v] No to i nodes $[diges - v]$ No to i edges - v[line v]		
$L[n] = \sum_{i < j} d_{ij} n_{ij} + \frac{\gamma}{2} \sum_{i} (1 - \sum_{j} n_{ij})^{2}$ where d_{ij} is the distance between points i and j , and n_{ij} denotes the link or eighe between points i and j . $\Delta L[n] = (d_{ij} - \gamma + \gamma \sum_{k \neq j} n_{ik} + \gamma \sum_{k \neq i} n_{jk}) \Delta n_{ij}$ nput nodes Neighted matched pairs Hopfield Models for Solution to Optimization Problems Graph bipartition problem Stelet a graph: Sample graph 1:4 nodes v No. of edges	Init Reset Anneal	
there d_{ij} is the distance between points is and j , and n_{ij} denotes the link or dge between points i and j . $\Delta L[n] = (d_{ij} - \gamma + \gamma \sum_{k \neq j} n_{jk}) \Delta n_{ij}$ nput nodes Weighted matched pairs Hopfield Models for Solution to Optimization Problems Fraph bipartition problem Helet a graph: Sample graph 1:4 nodes No. of edges upbra:	he cost function to be minimized is:	
dge between points i and j. $\Delta L[n] = (d_{ij} - \gamma + \gamma \sum_{k \neq i} n_{jk}) \Delta n_{ij}$ nput nodes Weighted matched pairs Hopfield Models for Solution to Optimization Problems Graph bipartition problem refer a graph: Sample graph 1: 4 nodes v No. of edges: upple: Detar: Image:	$L[n] = \sum_{i < j} d_{ij}n_{ij} + rac{\gamma}{2}\sum_i (1-\sum_j n_{ij})^2$	
nput nodes Veighted matched pairs Hopfield Models for Solution to Optimization Problems Fraph bipartition problem ieleet a graph: Sample graph 1: 4 nodes No. of edges: upha:	where d_{ij} is the distance between points i and j, and n_{ij} denotes the link or dge between points i and j.	
Weighted matched pairs Hopfield Models for Solution to Optimization Problems Graph bipartition problem Kelect a graph: Sample graph 1:4 nodes No. of edges: Upht: DetaT:	$\Delta L[n] = (d_{ij} - \gamma + \gamma \sum_{k \neq j} n_{ik} + \gamma \sum_{k \neq i} n_{jk}) \Delta n_{ij}$	
Hopfield Models for Solution to Optimization Problems Graph bipartition problem ielect a graph: Sample graph 1: 4 nodes ion nodes: bo of nodes: bo of nodes: bo of edges: bo betar: bo betar: bo bet		
Graph bipartition problem Select a graph: Sample graph 1: 4 nodes No of nodes No. of edges Edges Nphr: DeltaT: Init	Veighted matched pairs	
Graph bipartition problem Select a graph: Sample graph 1: 4 nodes No of nodes No. of edges Edges Nphr: DeltaT: Init		
Graph bipartition problem Select a graph: Sample graph 1: 4 nodes No of nodes No. of edges Edges Nphr: DeltaT: Init		
Graph bipartition problem Select a graph: Sample graph 1: 4 nodes No of nodes. No. of edges.		
Graph bipartition problem Select a graph: Sample graph 1: 4 nodes No of nodes. No. of edges.		v
Graph bipartition problem Select a graph: Sample graph 1: 4 nodes No of nodes: No. of edges: Npha: DeltaT: Init	Hopfield Models for Solution to Optimization Problems	
No of nodes: No. of edges:		
No of nodes: No. of edges:	Graph bipartition problem	
No of nodes: No. of edges		
Alges DeltaT: Init		
Npha: DeltaT: Init		
Anneal Input graph Bipartitioned graph	Alpha: DeltaT: Init	
	Reset Anneal Input graph Bipartitioned graph	


\equiv	Ar Hell Concl of Hells Hilledow	Hopfield Model for Pattern Storage Task
		Hirt: click on '011' and '110' to be represented as stable states 0 0 0 1 1 0 1
		Multilayer Feedforward Neural Networks
		 This is a 3 layer MLFFNN with one hidden layer, one input layer, and one output layer. Select the problem type and the number of nodes in the hidden layer, and click in train MLFFNN. Now click on test MLFFNN.

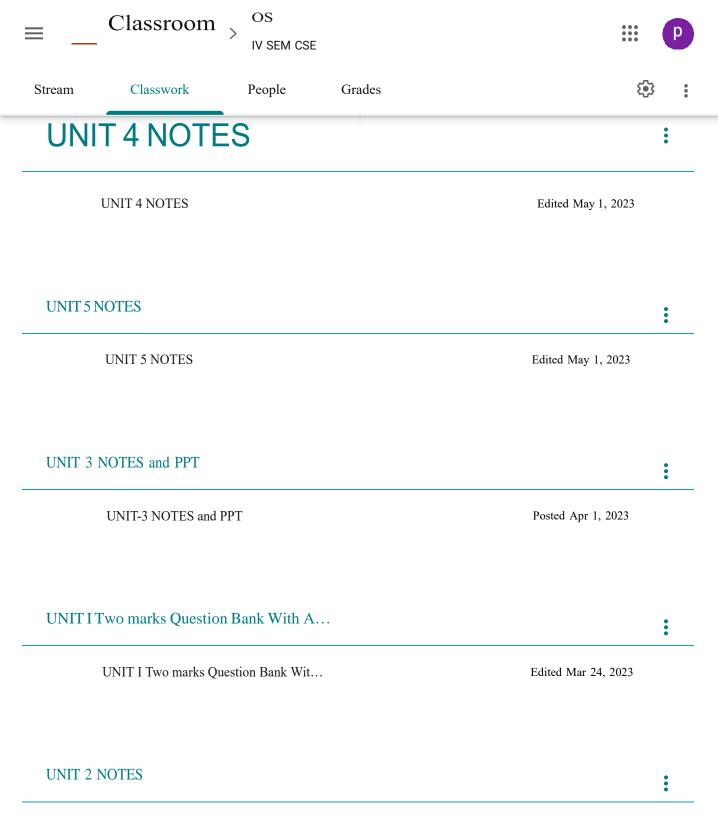
	Virtual DOS Ar Hell Could if Helle Helledine			Pe	erceptron lea	arning			
Linearly		¢ o. of iterations: 20	Sample Step Size: 1	:					
1	Step Size: ceptron Next sam	ple Next Iteration							
1. San 2. The 3. The sym 4. The	e line described by we e sample point presen n bol.	ass 2 are shown in blu ights of the perceptro ted to the perceptron eights, before and afte the two subplots.	n is shown in black. is shown by a black s	star					
≡	A Mill Ovi d Hala Hilde	I	Parallel and d	listributed p	rocessing - II	Constraint sa	tisfaction neural		
	Con					and OFFICE			
		ceiling walls door window very-large large medium small	very-small desk telephone bed typewriter book-shelf carpet books	desk-chair clock picture floor-lamp sofa easy-chair coffee-cup ash-tray	fire-place drapes stove sink refrigerator toaster cupboard coffeepot	dresser television bathub toilet scale coat-hanger computer oven			
			Click he	re for clamping descript	ors				



Parallel and distributed processing - I: Interactive activation and...



	Manual Speech Signal-to-Symbol Transformation
Part-1: Pre-segmented examples	Part-2 >>
Ex-2: Telugu v Reset	
Change subword unit. Syllable 👻	
Utterance ఈరోజు వార్తల్లోని ముఖ్యామ్మాలు	
Transliteration iirooju vaartallooni mukhyaamshaalu	
Subword units ii roo ju vaar tal loo ni mukh yaam shaa lu	
 Verify the subword unit boundaries given in the table by zooming and listeniz 2. Note that clicking on the symbol within the first column of the table automati 3. Repeat the experiment by choosing word and phoneme as the subword unit. 	
1=	SYM BEG END
0.8	SIL 1 5463
	ii 5463 7342
0.4	roo 7342 9194
=	


10. VIRTUAL TEACHING - LEARNING MANAGEMENT SYSTEM (LMS) (GOOGLE CLASS ROOM)

Link For OS Book Solutions

3

UNIT 2 NOTES and PPT

Edited Apr 10, 2023

C	≡ _	Classroom					р
	Stream	Classwork	People	Grades		ŝ	
	UNIT 1 I	Notes				:	
	UNIT-I No	otes			Posted Feb 28, 2023		

11.PROJECT BASED LEARNING

PRATHYUSHA ENGINEERING COLLEGE

DEPARTMENT OF CSE

ACADEMIC YEAR:2022-23

COURSE CODE/NAME: CS3391 / Object Oriented Programming

YEAR/SEM/SEC:II / III /A

SL. NO	REG.NO	NAME OF THE STUDENT	MINI PROJECT TITLE
1	111421104001	AKKUPALLI GOPI	
2	111421104002	ALAPAKA NAGA JASWANTH	OTP and Password generator
3	111421104003	AMBATI KIRAN BABU	
4	111421104004	ANKINAPALLI ADARSSH REDDY	
5	111421104005	AVULA GUNADEEP	Finding the word form
6	111421104006	AVULA GUNA KOUSHIK REDDY	
7	111421104007	BANDARU VENKATA MANJUNADH	
8	111421104008	BANDI POOJITHA	Application form
9	111421104009	BHARATHI S	
10	111421104010	CHANDRA PRABHA A	
11	111421104011	DEEPIKA A	Text editor
12	111421104012	DESU VISHNU VARDHAN	
13	111421104013	DEVA R	
14	111421104014	DEVI SREE T Y	sudoko puzzle
15	111421104015	DHANUSH T	
16	111421104016	DODDETIPALLI VENKATA SRIHARI	
17	111421104017	GANGAVARAPU CHANDANA	Grade Calculator
18	111421104019	GOKULAKRISHNA R S	
19	111421104020	GOLLA KAVYA	
20	111421104021	GOUTHAMAN S	Online exam
21	111421104022	HAARINI G	
22	111421104023	HARIPRASANTH S	
23	111421104024	HARIPRASATH V	Guessing a number
24	111421104025	HARISH R	

25	111421104026	HARISHA V		
26	111421104028	HASWANTH H	Tic tac toe game	
27	111421104029	JENISON VIBIN RAJ K	-	
28	111421104030	JENI SUJIKA I		
29	111421104031	KALAIYARASI M	Library management	
30	111421104032	KAMALA KANNAN S		
31	111421104033	KAMALIKA B S		
32	111421104034	KAMANI MANOGNA	Generate random password	
33	111421104035	KANDULA SNEHITHA		
34	111421104036	KARNAM BHANU PRAKASH		
35	111421104037	KARNAM JEEVAN KUMAR	- Word count using javafx application	
36	111421104038	KAVILI SAI POORNESH		
37	111421104039	K B MANOJKUMAR		
38	111421104040	KOLLI LOHITHA REDDY	Number of words finder	
39	111421104041	KOMMI HIMABINDU		
40	111421104042	KUNTRAPAKAM VISHNU VARDHAN REDDY		
41	111421104043	KURAPATI RUSHMITHA	- Dungeon game	
42	111421104044	K YUVA SHANKAR		
43	111421104045	LAKKIREDDY SURYA PRAKASH REDDY		
44	111421104046	LAKSHMI NARAYANAN N	Snake game	
45	111421104047	LOGESH S		
46	111421104048	MADESHKANTH S		
47	111421104049	MADUMITHA S	online book store	
48	111421104050	MALLEBOYINA DEEPTHI		
49	111421104051	MANDAGAPU DINESH		
50	111421104052	MANIMARAN P	ATM program	
51	111421104053	MARRI SRIHARSHA		
52	111421104054	MEDA BINDHU SREE		
53	111421104055	MEKALA HARSHAVARDHAN	Scientific Calculator	
54	111421104056	MEKALA SAI PUSHPAK YADAV		

55	111421104057	MEYYARASU S	
56	111421104058	MONISH R	Electricity bill generation
57	111421104059	MOTUPALLI POOJITHA	
58	111421104060	MUDDANA VAMSI KRISHNA	
59	111421104061	MULAGIRI SIREESHA	Currency converter
60	111421104062	MUNGAMURU CHAITRESH REDDY	
61	111421104063	MURTHYNAYANI CHARAN GANESH	
62	111421104301	AKASH	javafx Barchart Application
63	111421104303	KUBERAN	

PRATHYUSHA ENGINEERING COLLEGE

DEPARTMENT OF CSE

ACADEMIC YEAR:2022-23

COURSE CODE/NAME: CS3391 / Object Oriented Programming

YEAR/SEM/SEC:II / III /B

SL. NO	REG.NO	NAME OF THE STUDENT	MINI PROJECT TITLE
1	111421104064	NADAVADI MANASWINI	
2	111421104065	NADAVALA MYTHRESH	Tic tac toe game
3	111421104066	NAGINENI AMARESWAR CHOWDARY	

4	111421104067	NASINA NIKHILA	Number guessing game	
5	111421104068	N DEEPAK		
6	111421104069	NEGHA L		
7	111421104070	NIBRAS ADNAN BASHEER		
8	111421104071	NIDAMANURU MADHU BHAVANA	Random password generator	
9	111421104072	NIGHIL ANANTH V		
10	111421104073	PABBATHI PADMAJA		
11	111421104074	PABBATHI SREE BINDHU	Student CGPA	
12	111421104075	PACHAVA LAVANYA	_	
13	111421104076	PALEPU SUDHEER		
14	111421104077	PARAMAGURU A S	Grade calculator	
15	111421104078	PARITALA VENKATA VAIBHAV	-	
16	111421104079	PATIBANDLA VYSHNAVI	- Stock Monitoring using Line Chart	
17	111421104080	PATTIDI HEMA KEERTHI		
18	111421104081	PAVITHRA S	-	
19	111421104082	PENIGALAPATI HASWANTH		
20	111421104083	POOJA V S	employee details	
21	111421104084	POTLA DIVYA	_	
22	111421104085	POTTAPALLI ABHINAYA		
23	111421104086	PRANAW O	javafx Barchart Application	
24	111421104087	PRATHAPKUMAR K	-	
25	111421104088	PRAVEEN A		
26	111421104090	PRAVEEN S (05.11.2003)	Currency converter	
27	111421104091	PRAVEEN KUMAR A		
28	111421104092	PRIYA T		
29	111421104093	PRIYADHARSHINI N	Scientific Calculator	
30	111421104094	PUNURU PRANEETHA		
31	111421104095	PUTHETI PAVAN KALYAN	Electricity bill generation	

32	111421104096	RAJU KUSUMA		
33	111421104097	RAM PRASATH T K		
34	111421104098	R ANISH	online test project	
35	111421104099	RAYAPATI VISHNU VARDHAN BABU		
36	111421104100	RENTALA DHANUSH		
37	111421104101	ROSARIN TEENA M	Application form	
38	111421104102	RUDRAVARAM HARI BHUSHAN		
39	111421104103	SAKAVARAPU CHARAN TEJA		
40	111421104104	SANISETTY AKSHAYA		
41	111421104105	SHAKUNIYA SUNITA GIRDHARILAL	atm machine working process	
42	111421104106	SIGINAM HEMANTH		
43	111421104107	SIVASANKAR J M		
44	111421104108	SONY C	Bank management software	
45	111421104109	SRUTHI M		
46	111421104110	SURYA R		
47	111421104111	SUSHANTH D	online test of java	
48	111421104112	SWATHI V		
49	111421104113	TATIKONDA SAI VINAY CHOWDARY		
50	111421104114	TEEGALA SNEHA	OTP and Password generator	
51	111421104115	THANIKONDA NITHIN		
52	111421104116	THOTA PUSHPA		
53	111421104118	VIJAYAKUMAR C	Finding the word form	
54	111421104119	VINAY B L		
55	111421104120	VISHALI S		
56	111421104121	V S MONISH KUMAR	sudoko puzzle	
57	111421104122	YALLA PRANATHI		
58	111421104123	YASHWANTH KUMAR S	Snake game	

59	111421104124	YASMEEN RAIKHANA J	
60	111421104125	NALLURI VENKATA VINOD SAI	
61	111421104126	PULLALACHERUVU ANUSH REDDY	online book store
62	111421104304	RAMALINGAM BALAJI	

12. SOCIAL RESPONSIBILITY

Social related projects done by students

Sl. No.	Register Number	Name of the student	Project Title	Internal Guide
	111419104034	G Pallavi	Cotton Plant and	Ms.E.SHIMONA
1	111419104052	Madagalam Ammu	Leaf Detection	
	111419104054	Madala Venkata Sowmya	using Deep Learning	
2	111419104053	M Durga Mahesh	Food Donation	Dr.M.GOPIKRISHNAN
	111419104068	Natakarani Ankaiah	Application for	
	111419104102	S. Chethan	Android	
3	111419104071	P.SaiLaksmi Tejaswini	Animal Detection	Ms.T.R.SOUMYA
	111419104096	S.Sathwika	in Farms using	
	111419104107	S.Keerthana	Open CV	
	111419104074	P. Sravanthi		Ms.N.SRIPRIYA
4	111419104077	P. Pushkala Sai	Forecasting the Fires on Forest	
	111419104115	V. Madhuri	Fires on Forest	
	111419104082	Priyadharshini P	Augmented Reality based application for food menu	Dr.W.THAMBA MESHACH
5	111419104095	Ruthra M		
	111419104067	Namburu Siva		
6	111419104069	Neyvalli Santhosh	Soil Testing App	Ms.R.MEENA
	111419104103	Shaik Khaja Hussain		