

PRATHYUSHA

ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

REGULATION R2021

III YEAR - V SEMESTER

CCS375 - WEB TECHNOLOGIES

CCS375 - WEB TECHNOLOGIES

COURSE OBJECTIVES:

 To understand different Internet Technologies

 To learn java-specific web services architecture

 To Develop web applications using frameworks

UNIT I WEBSITE BASICS, HTML 5, CSS 3, WEB 2.0 7

Web Essentials: Clients, Servers and Communication – The Internet – World wide web – HTTP

Request Message – HTTP Response Message – Web Clients – Web Servers – HTML5 – Tables

– Lists – Image – HTML5 control elements – Drag and Drop – Audio – Video controls - CSS3

– Inline, embedded and external style sheets – Rule cascading – Inheritance – Backgrounds –

Border Images – Colors – Shadows – Text – Transformations – Transitions – Animations.

Bootstrap Framework

UNIT II CLIENT SIDE PROGRAMMING 6

Java Script: An introduction to JavaScript–JavaScript DOM Model-Exception Handling-

Validation- Built-in objects-Event Handling- DHTML with JavaScript- JSON introduction –

Syntax – Function Files.

UNIT III SERVER SIDE PROGRAMMING 5

Servlets: Java Servlet Architecture- Servlet Life Cycle- Form GET and POST actions- Session

Handling- Understanding Cookies- DATABASE CONNECTIVITY: JDBC. 121

UNIT IV PHP and XML 6

An introduction to PHP: PHP- Using PHP- Variables- Program control- Built-in functions-

Form Validation. XML: Basic XML- Document Type Definition- XML Schema, XML

Parsers and Validation, XSL ,

UNIT V INTRODUCTION TO ANGULAR and WEB APPLICATIONS

FRAMEWORKS 6

Introduction to AngularJS, MVC Architecture, Understanding ng attributes, Expressions and

data binding, Conditional Directives, Style Directives, Controllers, Filters, Forms, Routers,

Modules, Services; Web Applications Frameworks and Tools – Firebase- Docker- Node JS-

React- Django- UI & UX.

COURSE OUTCOMES:

CO1: Construct a basic website using HTML and Cascading Style Sheets

CO2: Build dynamic web page with validation using Java Script objects and by applying

different event handling mechanisms.

CO3: Develop server side programs using Servlets and JSP.

CO4: Construct simple web pages in PHP and to represent data in XML format.

CO5: Develop interactive web applications.

TEXTBOOKS

1. Deitel and Deitel and Nieto, Internet and World Wide Web - How to Program, Prentice

Hall, 5th Edition, 2011.

2. Jeffrey C and Jackson, Web Technologies A Computer Science Perspective, Pearson

Education, 2011.

3. Angular 6 for Enterprise-Ready Web Applications, Doguhan Uluca, 1st edition, Packt

Publishing

REFERENCES:

1. Stephen Wynkoop and John Burke “Running a Perfect Website”, QUE, 2nd Edition,1999.

2. Chris Bates, Web Programming – Building Intranet Applications, 3rd Edition, Wiley

Publications, 2009.

CCS375 WEB TECHNOLOGIES

UNIT I WEBSITE BASICS, HTML 5, CSS 3, WEB 2.0 9

Web Essentials: Clients, Servers and Communication – The Internet – Basic Internet protocols –

World wide web – HTTP Request Message – HTTP Response Message – Web Clients – Web Servers – HTML5

– Tables – Lists – Image – HTML5 control elements – Semantic elements – Drag and Drop – Audio – Video controls

- CSS3 – Inline, embedded and external style sheets – Rule cascading – Inheritance – Backgrounds – Border

Images – Colors – Shadows – Text – Transformations – Transitions – Animations.

WEB ESSENTIALS

Web Essentials:

Server:

The software that distributes the information and the machine where the

information and software reside is called the server.

• provides requested service to client

• e.g., Web server sends requested Web page

Client:

The software that resides on the remote machine, communicates with the

server, fetches the information, processes it, and then displays it on the remote

machine is called the client.

• initiates contact with server (―speaks first‖)

• typically requests service from server

• Web: client implemented in browser

Web server:

Software that delivers Web pages and other documents to browsers using the HTTP protocol

Web Page:

A web page is a document or resource of information that is suitable for the World

Wide Web and can be accessed through a web browser.

Website:

A collection of pages on the World Wide Web that is accessible from the same URL

and typically residing on the same server.

URL:

Uniform Resource Locator, the unique address which identifies a resource on

the Internet for routing purposes.

Client-server paradigm:

IThe Client-Server paradigm is the most prevalent model for distributed computing protocols. It

is

the basis of all distributed computing paradigms at a higher level of abstraction. It is

service-oriented, and employs a request-response protocol.

A server process, running on a server host, provides access to a service. A client

process, running on a client host, accesses the service via the server process.The

interaction of the process proceeds according to a protocol.

The primary idea of a client/server system is that you have a central repository of

information—some kind of data, often in a database—that you want to distribute on

demand to some set of people or machines.

The Internet:

• Medium for communication and interaction in inter connected network.

• Makes information constantly and instantly available to anyone with a connection.

Web Browsers:

• User agent for Web is called a

browser: o Internet Explorer

o Firefox

Web Server:

• Server for Web is called Web server:

o Apache (public domain)

o MS Internet Information Server

Protocol:

Protocols are agreed formats for transmitting data

between devices. The protocol determines:

i. The error checking required

ii. Data compression method used

iii. The way the end of a message is signalled

iv. The way the device indicates that it has received the message

Internet Protocol:

There are many protocols used by the Internet and the WWW:

o TCP/IP

o HTTP

o FTP

o Electronic mail protocols IMAP

o POP

TCP/IP

The Internet uses two main protocols (developed by Vincent Cerf and Robert

Kahn) Transmission control protocol (TCP):Controls disassembly of message into

packets at the origin reassembles at the destination

Internet protocol (IP):Specifies the addressing details for each packet Each packet

is labelled with its origin and destination.

Hypertext Transfer Protocol (HTTP)

• The hypertext transfer protocol (HTTP) was developed by Tim Berners-Lee in 1991

• HTTP was designed to transfer pages between machines

• The client (or Web browser) makes a request for a given page and the Server is

responsible for finding it and returning it to the client

• The browser connects and requests a page from the server

• The server reads the page from the file system, sends it to the

client and terminates the connection.

Electronic Mail Protocols:

• Electronic mail uses the client/server model

• The organisation has an email server devoted to

handling email o Stores and forwards email messages

• Individuals use email client software to read and

send email o (e.g. Microsoft Outlook, or Netscape

Messenger)

• Simple Mail Transfer Protocol (SMTP)

o Specifies format of mail messages

• Post Office Protocol (POP) tells the email server to:

o Send mail to the user’s computer and delete it from the server

o Send mail to the user’s computer and do not delete it from the server

o Ask whether new mail has arrived.

Interactive Mail Access Protocol (IMAP)

Newer than POP, provides similar functions with additional features.

o e.g. can send specific messages to the client rather than all the

messages. A user can view email message headers and the

sender’s name before downloading the entire message.

Allows users to delete and search mailboxes held on the email server.

The disadvantage of POP: You can only access messages from one PC.

The disadvantage of IMAP :Since email is stored on the email server, there is a need for

more and more expensive (high speed) storage space.

 World Wide Web: comprises software (Web server and browser) and data (Web sites).

Internet Protocol (IP) Addresses:

- Every node has a unique numeric address

- Form: 32-bit binary number

- New standard, IPv6, has 128 bits (1998)

- Organizations are assigned groups of IPs for their computers

- Domain names

- Form: host-name. domain-names

- First domain is the smallest (Google)

- Last domain specifies the type of organization (.com)

- Fully qualified domain name - the host name and all of the domain names

- DNS servers - convert fully qualified domain names to IPs

HTTP:

transfer hypertext documents.

 ith references (hyperlinks) to

other text that the reader can immediately follow, usually by a mouse HTTP is behind

every request for a web document or graph, every click of a hypertext link, and every

submission of a form.

returning it to the client.

 the page from the file system and sends it to the client

and then terminates the connection

HTTP Transactions

request data, and how servers respond to these requests.

HTTP Message:

HTTP message is the information transaction between the client and server.

Two types of HTTP Message:

1. Requests

a. Client to server

2. Responses

a. Server to client

Fields

· Request line or Response line

· General header

· Request header or Response header

· Entity header

· Entity body

.10 Request Message:

Request Line:

• A request line has three parts, separated by

spaces o a method name

o the local path of the requested resource

o the version of HTTP being used

• A typical request line is:

o GET /path/to/file/index.html HTTP/1.1

• Notes:

o GET is the most common HTTP method; it says "give me this

resource". Other methods include POST and HEAD. Method names

are always uppercase

o The path is the part of the URL after the host name, also called the request URI

o The HTTP version always takes the form "HTTP/x.x", uppercase.

Request Header:

.11 Response Message:

Response Line:

• A request line has three parts, separated by

spaces o the HTTP version,

o a response status code that gives the result of the request, and

o an English reason phrase describing the status code

• Typical status lines are:

o HTTP/1.0 200 OK or

o HTTP/1.0 404 Not Found

• Notes:

o The HTTP version is in the same format as in the request line, "HTTP/x.x".

o The status code is meant to be computer-readable; the reason phrase is

meant to be human-readable, and may vary.

HTTP Request Header:

EXAMPLE

HTTP Method:

• HTTP method is supplied in the request line and specifies the operation that

the client has requested.

Some common methods:

• Options

• Get

• Head

• Post

• Put

• Move

• Delete

Two methods that are mostly used are the GET and POST:

o GET for queries that can be safely repeated

o POST for operations that may have side effects (e.g. ordering a book from an on-line store).

The GET Method

• It is used to retrieve information from a specified URI and is assumed to be a

safe, repeatable operation by browsers, caches and other HTTP aware

components

• Operations have no side effects and GET requests can be re-issued.

• For example, displaying the balance of a bank account has no effect on the

account and can be safely repeated.

• Most browsers will allow a user to refresh a page that resulted from a GET,

without displaying any kind of warning

• Proxies may automatically retry GET requests if they encounter a temporary

network connection problem.

• GET requests is that they can only supply data in the form of parameters

encoded in the URI (known as a Query String) – [downside]

• Cannot be unused for uploading files or other operations that require large

amounts of data to be sent to the server.

The POST Method

• Used for operations that have side effects and cannot be safely repeated.

• For example, transferring money from one bank account to another has side

effects and should not be repeated without explicit approval by the user.

• If you try to refresh a page in Internet Explorer that resulted from a POST,

it displays the following message to warn you that there may

The POST request message has a content body that is normally

used to send parameters and data

• The IIS server returns two status codes in its response for a POST request

o The first is 100 Continue to indicate that it has successfully received the POST request

o The second is 200 OK after the request has been processed.

HTTP response status codes

• Informational (1xx)

• Successful (2xx)

• Redirection (3xx)

o 301: moved permanently

• Client error (4xx)

o 403 : forbidden

o 404: Not found

• Server error (5xx)

o 503: Service unavailable

o 505: HTTP version not supported

1.12 HTTP

 Features

• Persistent TCP Connections: Remain open for multiple requests

• Partial Document Transfers: Clients can specify start and stop positions

• Conditional Fetch: Several additional conditions

• Better content negotiation

• More flexible authentication.

Web Browsers :

• Mosaic - NCSA (Univ. of Illinois), in early 1993 First to use a GUI, led to

Explosion of Web use Initially for X-Windows, under UNIX, but was ported to

other platforms by late 1993

• Browsers are clients - always initiate, servers react (although sometimes

servers require responses)

• Most requests are for existing documents, using Hypertext Transfer Protocol

• (HTTP) But some requests are for program execution, with the

output being returned as a document.

Browser: A web browser is a software application for retrieving,

presenting, and traversing information resources on the World Wide

Web.

Web Servers:

- Provide responses to browser requests, either existing documents or dynamically Built

documents.

- Browser-server connection is now maintained through more than one request- Response cycle

- All communications between browsers and servers use Hypertext Transfer Protocol

- Web servers run as background processes in the operating system.

- Monitor a communications port on the host, accepting HTTP messages

when they appear All current Web servers came from either

1. The original from CERN

2. The second one, from NCSA

- Web servers have two main directories:

1. Document root (servable documents)

2. Server root (server system software)

- Document root is accessed indirectly by clients

- Its actual location is set by the server Configuration file

- Requests are mapped to the actual location

- Virtual document trees

- Virtual hosts

- Proxy servers

- Web servers now support other Internet protocols

- Apache (open source, fast, reliable)

- IIS

- Maintained through a program with a GUI interface.

HTML 5

 HTML is the main markup language for describing the structure of web pages.

 HTML stands for Hypertext Markup Language.

 HTML is the basic building block of World Wide Web.

 Hypertext is text displayed on a computer or other electronic device with references to

other text that the user can immediately access, usually by a mouse click or key press.

 Apart from text, hypertext may contain tables, lists, forms, images, and other

presentational elements. It is an easy-to-use and flexible format to share information over

the Internet.

 Markup languages use sets of markup tags to characterize text elements within a

document, which gives instructions to the web browsers on how the document should

appear.

 HTML was originally developed by Tim Berners-Lee in 1990.

 He is also known as the father of the web. In 1996, the World Wide Web Consortium

(W3C) became the authority to maintain the HTML specifications. HTML also

became an international standard (ISO) in 2000. HTML5 is the latest version of

HTML.

 HTML5 provides a faster and more robust approach to web development.

HTML Tags and Elements

HTML is written in the form of HTML elements consisting of markup tags.

 These markup tags are the fundamental characteristic of HTML.

 Every markup tag is composed of a keyword, surrounded by angle brackets, such as

 <html>, <head>, <body>, <title>, <p>, and so on.

HTML tags normally come in pairs like <html> and </html>.

The first tag in a pair is often called the opening tag (or start tag), and the second tag is

called the closing tag (or end tag).

An opening tag and a closing tag are identical, except a slash (/) after the opening angle

bracket of the closing tag, to tell the browser that the command has been completed.

HTML5 IMAGE:

Inserting Images into Web Pages

Images enhance visual appearance of the web pages by making them more interesting and

colorful.

The tag is used to insert images in the HTML documents. It is an empty element and

contains attributes only. The syntax of the tag can be given with:

Attributes Description

src Specifes the path to the image

alt Specifies an alternate text

height Specifies the height of an image

width Specifies the width

ismap Specifies an image as a server-side

image map

usemap Define a valid map name

The following example inserts three images on the web page:

Example:

<html><head></head>

<body>

</body></html>

OUTPUT:

 Each image must carry at least two attributes: the src attribute, and an alt attribute.

The src attribute tells the browser where to find the image. Its value is the URL of the image file.

Whereas, the alt attribute provides an alternative text for the image, if it is unavailable or

cannot be displayed for some reason. Its value should be a meaningful substitute for the

image.

 Using Image as Hyperlink:

By using image as hyperlinks, web developers can create graphical web pages that link to

other resources.

Tag <a> anchor-We can use hyperlinks by using attributes.

Href specifies the URL.By default links will appear as follows in all browser.

<html> <head > </head>

<body>

 </body> </html>

Link.html

<html> <head> </head>

<body> <h1> Using Image as hyperlink....</h1>

</body> </html>

Output:

Hyperlink

 Link act as a pointer to some web page or documents and image. Both text and image can be

acts as hyperlinks.

 Links are created using the (a) anchor element. Attribute used is href specifies the URL.

 An unvisited link is blue.

 A visited link is purple.

 An active link is red.

Example:

<html>

<head></head>

<body>

Yahoo!!!

GOOGLE !!!

</body></html>

Output:

 Hyperlink to an E-Mail address:Anchor can link to e-mail address using a mailto:url

Format : deitel@deitel.com

HTML Lists

HTML lists are used to present list of information in well formed and semantic way.

There are three different types of list in HTML and each one has a specific purpose and

meaning.

 Unordered list — Used to create a list of related items, in no particular order.

 Ordered list — Used to create a list of related items, in a specific order.

 Description list — Used to create a list of terms and their descriptions.

 HTML Unordered Lists

An unordered list created using the element, and each list item starts with the

element. The list items in unordered lists are marked with bullets.

… Specifies an unordered list

… Specifies list item

<ul type=”circle” > Display the circular bullets

<ul type=”disc”> Display the solid round bullets

<ul type=”square”> Display the squared bullets

Here's an example:

<ul type=”disc”>

Chocolate Cake

Black Forest Cake

Pineapple Cake

— The output of the above example will look something like this:

 Chocolate Cake

 Black Forest Cake

 Pineapple Cake

mailto:url
mailto:deitel@deitel.com%3c/a

 HTML Ordered Lists

An ordered list created using the element, and each list item starts with the

element. Ordered lists are used when the order of the list's items is important.

The list items in an ordered list are marked with numbers.

… Specifies an ordered list

… Specifies list item

<ul type=”A” > Display the list in the following

A,B...

<ul type=”I”> Display the list in the following

I,II…

<ul type=”i”> Display the list in the following i,

ii..

<ul type=”1”> Display the list in the following

1,2…

Example:

<ol type=”1”>

Fasten your seatbelt

Starts the car's engine

Look around and go

— The output of the above example will look something like this:

1. Fasten your seatbelt

2. Starts the car's engine

3. Look around and go

 HTML Definition list:

 Specifically used for lists in which each element is labeled with a word rather than a bullet

or number.

Tag Description

<dl>..</dl> Specifies a description list

<dt>…</dt> Specifies the term in a description list

<dd>..</dd> Specifies description of term a

description list

 Ex:

 <h1> Abbrevation</h1>

 <dl>

 <dt>HTML </dt>

 <dd> Hypertext Markup Language….</dd>

 <dt>CSS </dt>

 <dd> Cascading Style sheet</dd>

 </dl>

 Output:

 Abbrevation

 HTML

 Hypertext Markup language

 CSS

 Cascading Style sheet.

HTML Tables

Creating Tables in HTML

HTML table allows you to arrange data into rows and columns. They are commonly used to

display tabular data like product listings, customer's details, financial reports, and so on.

You can create a table using the <table> element. Inside the <table> element, you can use

the <tr> elements to create rows, and to create columns inside a row you can use the <td>

elements. You can also define a cell as a header for a group of table cells using the <th>

element.

The following example demonstrates the most basic structure of a

table.

<table>

<tr>

<th>No.</th>

<th>Name</th>

<th>Age</th>

</tr>

<tr>

<td>1</td>

<td>Peter Parker</td>

<td>16</td>

</tr>

<tr>

<td>2</td>

<td>Clark Kent</td>

<td>34</td>

</tr>

</table>

Tables do not have any borders by default. You can use the CSS border property to add

borders to the tables. Also, table cells are sized just large enough to fit the contents by

default. To add more space around the content in the table cells you can use the CSS

padding property.

 Rowspan and colspan:

 Used to categorize the information properly in sub rows and sub columns.

 Rowspan Used to extend the row vertically.

 Colspan Used to extend the column horizontally.

When rowspan =2 then the row can be extended vertically by 2 cells.

Example

https://www.tutorialrepublic.com/css-reference/css-border-property.php
https://www.tutorialrepublic.com/css-reference/css-padding-property.php

Example:

<html>

<head>

</head>

<body><center>

<table border="6">

 Rowspan

 <tr>

 <th rowspan="2">First</th>

 <td>Second</td> </tr>

 <tr> <td>Third</td> </tr>

 </table>

</center>

</body>

</html>

OUTPUT:

 When colspan =2 then the row can be extended horizontally by 2 cells.

Example:

<html>

 <head>

 <title> colspan </title>

 </head>

 <body>

 <center>

 <table border="3">

 Colspan

 <tr>

 <th colspan="2">First</th>

 </tr>

 <tr>

 <td>Second</td>

 <td>Third</td>

 </tr>

 </table>

 </center>

 </body>

</html>

OUTPUT:

Defining a Table Header, Body, and Footer

HTML provides a series of tags <thead>, <tbody>, and <tfoot> that helps you to

create more structured table, by defining header, body and footer regions,

respectively.

The following example demonstrates the use of these elements.

<table>

<thead>

<tr>

<th>Items</th>

<th>Expenditure</th>

</tr>

</thead

>

<tbody>

<tr>

<td>Stationary</td>

<td>2,000</td>

</tr>

<tr>

<td>Furniture</td>

<td>10,000</td>

</tr>

</tbody

>

Example

https://www.tutorialrepublic.com/html-reference/html-thead-tag.php
https://www.tutorialrepublic.com/html-reference/html-tbody-tag.php
https://www.tutorialrepublic.com/html-reference/html-tfoot-tag.php

<tfoot>

<tr>

<th>Total</th>

<td>12,000</td>

</tr>

</tfoot>

</table>

HTML5 Image

HTML Images Syntax

In HTML, images are defined with the tag.

The tag is empty, it contains attributes only, and does not have a closing tag.

The src attribute specifies the URL (web address) of the image:

EXAMPLE

<!DOCTYPE html>

<html>

<body>

<h2>HTML Image</h2>

</body>

</html>

OUTPUT

HTML Image

HTML Form

HTML Forms are required to collect different kinds of user inputs, such as contact

details like name, email address, phone numbers, or details like credit card information,

etc.

Forms contain special elements called controls like inputbox, checkboxes, radio-buttons,

submit buttons, etc. Users generally complete a form by modifying its controls e.g. entering

text, selecting items, etc. and submitting this form to a web server for further processing.

The <form> tag is used to create an HTML form. Here's a simple example of a login form:

<form>

<label>Username: <input type="text"></label>

<label>Password: <input type="password"></label>

<input type="submit" value="Submit">

</form>

The following section describes different types of controls that you can use in your form.

Input Element

This is the most commonly used element within HTML forms.

It allows you to specify various types of user input fields, depending on the type attribute.

An input element can be of type text field, password field, checkbox, radio button, submit

button, reset button, file select box, as well as several new input types introduced in

HTML5.

The most frequently used input types are described below.

Text Fields

Text fields are one line areas that allow the user to input text.

Single-line text input controls are created using an <input> element, whose type attribute

has a value of text. Here's an example of a single-line text input used to take username:

<form>

<label for="username">Username:</label>

<input type="text" name="username" id="username">

</form>

— The output of the above example will look something like this:

Password Field

Password fields are similar to text fields. The only difference is; characters in a password

field are masked, i.e. they are shown as asterisks or dots. This is to prevent someone else

from reading the password on the screen. This is also a single-line text input controls

created using

an <input> element whose type attribute has a value of password.

Example

Example

https://www.tutorialrepublic.com/html-reference/html-form-tag.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

<form>

<label for="user-pwd">Password:</label>

<input type="password" name="user-password" id="user-pwd">

</form>

— The output of the above example will look something like this:

Radio Buttons

Radio buttons are used to let the user select exactly one option from a pre-defined set of

options. It is created using an <input> element whose type attribute has a value of radio.

<form>

<input type="radio" name="gender" id="male">

<label for="male">Male</label>

<input type="radio" name="gender" id="female">

<label for="female">Female</label>

</form>

— The output of the above example will look something like this:

Checkboxes

Checkboxes allows the user to select one or more option from a pre-defined set of

options. It is created using an <input> element whose type attribute has a value of

checkbox.

<form>

<input type="checkbox" name="sports" id="soccer">

<label for="soccer">Soccer</label>

<input type="checkbox" name="sports" id="cricket">

Example

Example

Try this code »

Example

https://www.tutorialrepublic.com/codelab.php?topic=html&file=radio-button

<label for="cricket">Cricket</label>

<input type="checkbox" name="sports" id="baseball">

<label for="baseball">Baseball</label>

</form>

— The output of the above example will look something like this:

File Select box

The file fields allow a user to browse for a local file and send it as an attachment with the

form data. Web browsers such as Google Chrome and Firefox render a file select input field

with a Browse button that enables the user to navigate the local hard drive and select a file.

This is also created using an <input> element, whose type attribute value is set to file.

<form>

<label for="file-select">Upload:</label>

<input type="file" name="upload" id="file-select">

</form>

— The output of the above example will look something like this:

Textarea

Textarea is a multiple-line text input control that allows a user to enter more than one line

of text. Multi-line text input controls are created using an <textarea> element.

<form>

<label for="address">Address:</label>

<textarea rows="3" cols="30" name="address" id="address"></textarea>

</form>

— The output of the above example will look something like this:

Example

Example

Select Boxes

A select box is a dropdown list of options that allows user to select one or more option from

a pull- down list of options. Select box is created using the <select> element and <option>

element.The <option> elements within the <select> element define each list item.

<form>

<label for="city">City:</label>

<select name="city" id="city">

<option value="sydney">Sydney</option>

<option value="melbourne">Melbourne</option>

<option value="cromwell">Cromwell</option>

</select>

</form>

— The output of the above example will look something like this:

Submit and Reset Buttons

A submit button is used to send the form data to a web server. When submit button is

clicked the form data is sent to the file specified in the form's action attribute to process

the submitted data.

A reset button resets all the forms control to default values. Try out the following example by

typing your name in the text field, and click on submit button to see it in action.

<form action="action.php" method="post">

<label for="first-name">First Name:</label>

<input type="text" name="first-name" id="first-name">

<input type="submit" value="Submit">

<input type="reset" value="Reset">

</form>

Example

Example

HTML5 Colors

<!DOCTYPE html> <html>

<body>

<h1 style="background-color:Tomato;">Tomato</h1>

<h1 style="background-color:Orange;">Orange</h1>

<h1 style="background-color:DodgerBlue;">DodgerBlue</h1>

<h1 style="background-color:MediumSeaGreen;">MediumSeaGreen</h1>

<h1 style="background-color:Gray;">Gray</h1>

<h1 style="background-color:SlateBlue;">SlateBlue</h1>

<h1 style="background-color:Violet;">Violet</h1>

<h1 style="background-color:LightGray;">LightGray</h1>

</body>

</html>

OUTPUT

Tomato

Orange

DodgerBlue

MediumSeaGreen

Gray

SlateBlue

Violet

LightGray

HTML5 Audio

Embedding Audio in HTML Document

Inserting audio onto a web page was not easy before, because web browsers did not have a

uniform standard for defining embedded media files like audio.

Using the HTML5 audio Element

The newly introduced HTML5 <audio> element provides a standard way to embed

audio in web pages. However, the audio element is relatively new but it works in most

of the modern web browsers.

The following example simply inserts an audio into the HTML5 document, using the

browser default set of controls, with one source defined by the src attribute.

<audio controls="controls" src="media/birds.mp3">

Your browser does not support the HTML5 Audio element.

</audio>

An audio, using the browser default set of controls, with alternative sources.

<audio controls="controls">

<source src="media/birds.mp3" type="audio/mpeg">

<source src="media/birds.ogg" type="audio/ogg">

Your browser does not support the HTML5 Audio element.

</audio>

HTML5 Video

Embedding Video in HTML Document

Inserting video onto a web page was not relatively easy, because web browsers did not

have a uniform standard for defining embedded media files like video.

Using the HTML5 video Element

The newly introduced HTML5 <video> element provides a standard way to embed

video in web pages. However, the video element is relatively new, but it works in most

of the modern web browsers.

The following example simply inserts a video into the HTML document, using the browser

default set of controls, with one source defined by the src attribute.

<video controls="controls" src="media/shuttle.mp4">

Your browser does not support the HTML5 Video element.

</video>

A video, using the browser default set of controls, with alternative sources.

<video controls="controls">

<source src="media/shuttle.mp4" type="video/mp4">

<source src="media/shuttle.ogv" type="video/ogg">

Example

Example

Example

Example

Your browser does not support the HTML5 Video element.

</video>

New HTML5 Elements

The most interesting new HTML5 elements are:

New semantic elements like <header>, <footer>, <article>, and

<section>. New attributes of form elements like number, date,

time, calendar, and range.

New graphic elements: <svg> and <canvas>.

New multimedia elements: <audio> and <video>.

What are Semantic Elements?

A semantic element clearly describes its meaning to both the browser and the developer.

Examples of non-semantic elements: <div> and - Tells nothing about its content.

Examples of semantic elements: <form>, <table>, and <article> - Clearly defines its content.

New Semantic Elements in HTML5

Many web sites contain HTML code like:

<div id="nav"> <div class="header"> <div

id="footer"> to indicate navigation, header,

and footer.

HTML5 offers new semantic elements to define different parts of a web page:

 <article>

 <aside>

 <details>

 <figcaption>

 <figure>

 <footer>

 <header>

 <main>

 <mark>

 <nav>

 <section>

 <summary>

 <time>

HTML5 <section> Element

The <section> element defines a section in a document.

According to W3C's HTML5 documentation: "A section is a thematic grouping of content,

typically with a heading."

A home page could normally be split into sections for introduction, content, and contact

information.

Example

<section>

<h1>WWF</h1>

<p>The World Wide Fund for Nature (WWF) is </p>

</section>

HTML5 <article> Element

The <article> element specifies independent, self-contained content.

An article should make sense on its own, and it should be possible to read it independently

from the rest of the web site.

Examples of where an <article> element can be used:

 Forum post

 Blog post

 Newspaper article

Example

<article>

<h1>What Does WWF Do?</h1>

<p>WWF's mission is to stop the degradation of our planet's

natural environment, and build a future in which humans live in

harmony with nature.</p>

</article>

HTML5 <header> Element

The <header> element specifies a header for a document or section.

The <header> element should be used as a container for introductory content.

You can have several <header> elements in

one document. The following example defines

a header for an article:

Example

<article>

<header>

<h1>What Does WWF Do?</h1>

<p>WWF's mission:</p>

</header>

<p>WWF's mission is to stop the degradation of our planet's

natural environment, and build a future in which humans live in

harmony with nature.</p>

</article>

HTML5 <footer> Element

The <footer> element specifies a footer for a document or section.

A <footer> element should contain information about its containing element.

A footer typically contains the author of the document, copyright information, links to terms of

use, contact information, etc.

You may have several <footer> elements in one document.

Example

<footer>

<p>Posted by: Hege Refsnes</p>

<p>Contact information:

someone@example.com.</p>

</footer>

HTML5 <figure> and <figcaption> Elements

The purpose of a figure caption is to add a visual explanation to an image.

In HTML5, an image and a caption can be grouped together in a <figure> element:

mailto:someone@example.com
mailto:someone@example.com

Example

<figure>

<figcaption>Fig1. - Trulli, Puglia, Italy.</figcaption>

</figure>

OUTPUT

Places to Visit

Puglia's most famous sight is the unique conical houses (Trulli) found in the area

around Alberobello, a declared UNESCO World Heritage Site.

Fig.1 - Trulli, Puglia, Italy.

Semantic Elements in HTML5

Below is an alphabetical list of the new semantic

elements in HTML5. The links go to our complete

HTML5 Reference.

Tag

Description

<article>

Defines an article

<aside>

Defines content aside from the page content

https://www.w3schools.com/tags/default.asp
https://www.w3schools.com/tags/tag_article.asp
https://www.w3schools.com/tags/tag_aside.asp

<details>

Defines additional details that the user can view or

hide

<figcaption>

Defines a caption for a <figure> element

<figure>

Specifies self-contained content, like

illustrations, diagrams, photos, code

listings, etc.

<footer>

Defines a footer for a document or section

<header>

Specifies a header for a document or section

<main>

Specifies the main content of a document

<mark>

Defines marked/highlighted text

<nav>

Defines navigation links

<section>

Defines a section in a document

<summary>

Defines a visible heading for a <details> element

<time>

Defines a date/time

HTML5 Drag and Drop

Drag the W3Schools image into the rectangle.

https://www.w3schools.com/tags/tag_details.asp
https://www.w3schools.com/tags/tag_figcaption.asp
https://www.w3schools.com/tags/tag_figure.asp
https://www.w3schools.com/tags/tag_footer.asp
https://www.w3schools.com/tags/tag_header.asp
https://www.w3schools.com/tags/tag_main.asp
https://www.w3schools.com/tags/tag_mark.asp
https://www.w3schools.com/tags/tag_nav.asp
https://www.w3schools.com/tags/tag_section.asp
https://www.w3schools.com/tags/tag_summary.asp
https://www.w3schools.com/tags/tag_time.asp

Drag and Drop

Drag and drop is a very common feature. It is when you "grab" an object and drag it to

a different location. In HTML5, drag and drop is part of the standard: Any element can

be draggable.

HTML Drag and Drop Example

The example below is a simple drag and drop example:

Example

<!DOCTYPE HTML>

<html>

<head>

<script>

function

allowDrop(ev) {

ev.preventDefault()

;

}

function drag(ev) {

ev.dataTransfer.setData("text",

ev.target.id);

}

function drop(ev)

{

ev.preventDefau

lt();

var data = ev.dataTransfer.getData("text");

ev.target.appendChild(document.getElementById(data));

}

</script>

</head>

<body>

<div id="div1" ondrop="drop(event)" ondragover="allowDrop(event)"></div>

<img id="drag1" src="img_logo.gif" draggable="true" ondragstart="drag(event)" width="336"

height="69">

</body>

</html>

OUTPUT

Drag the W3Schools image into the rectangle:

HTML5 <nav> Element

The <nav> element defines a set of navigation links.

Example

<nav>

HTML |

CSS |

JavaScript |

jQuery

</nav>

What Is CSS3 And Why Is It Used?

To help build highly interactive online pages, CSS3 is invariably used due to its importance

in providing greater options in the design process. When marketing products and services,

web design plays a vital part; a site should be created in a manner that will draw potential

customers to explore and revisit a website more often. Many web design firms are

developing and enhancing websites through the use of CSS3 as this is a great form of web

development. This article will help define CSS3 and will point out its advantages.

Definition

The acronym CSS stands for Cascading Style Sheets which is used to augment the

functionality, versatility. and efficient performance of site content. It allows for the creation

of content-rich websites that do not require much weight or codes; this translates into more

interactive graphics and animation, superior user- interface, and significantly more

organization and rapid download time.

It is used with HTML to create content structure, with CSS3 being used to format structured

content. It is responsible for font properties, colors, text alignments, graphics, background

images, tables and other components. This tool provides extra capabilities such as absolute,

fixed and relative positioning of various elements. The increasing popularity of CSS3 when

used by web design firms stimulates major browsers such as Google Chrome, Firefox, Safari,

and IE9 to adopt and embrace this programming language.

Advantages

Although CSS3 is not the only web development solution, it does allow provide greater

advantages for several reasons.

 Customization – A web page can be customized and alterations created in the

Notice that NOT all links of a document should be inside a <nav> element. The <nav> element is intended only for

major block of navigation links.

https://www.webunlimited.com/css3-used/

design by simply changing a modular file.

 Bandwidth Requirements – It decreases server bandwidth requirements, giving rapid

download time when a site is accessed with desktop or hand-held devices, providing an

improved user experience.

 Consistency – It delivers consistent and accurate positioning of navigational elements on the

website.

 Appealing – It makes the site more appealing with adding videos and graphics easier.

 Viewing – It allows online videos to be viewed without the use of third-party plug-ins.

 Visibility – It delivers the opportunity to improve brand visibility by designing effective

online pages.

 Cost Effective – It is cost-effective, time-saving, and supported by most browsers.

Since the introduction of CSS3, there is greater control of the presentation of content and

various elements on a website; however it is not really responsible for overall design as it

only specifies the structure and content presentation of certain web pages.

External, internal, and inline CSS styles

Cascading Style Sheets (CSS) are files with styling rules that govern how your website

is presented on screen. CSS rules can be applied to your website’s HTML files in

various ways. You can use

an external stylesheet, an internal stylesheet, or an inline style. Each method has

advantages that suit particular uses.

An external stylesheet is a standalone .css file that is linked from a web page. The

advantage of external stylesheets is that it can be created once and the rules applied to

multiple web pages. Should you need to make widespread changes to your site design, you

can make a single change in the stylesheet and it will be applied to all linked pages, saving

time and effort.

An internal stylesheet holds CSS rules for the page in the head section of the HTML file.

The rules only apply to that page, but you can configure CSS classes and IDs that can be

used to style multiple elements in the page code. Again, a single change to the CSS rule will

apply to all tagged elements on the page.

Inline styles relate to a specific HTML tag, using a style attribute with a CSS rule to style

a specific page element. They’re useful for quick, permanent changes, but are less flexible

than external and internal stylesheets as each inline style you create must be separately

edited should you decide to make a design change.

Using external CSS stylesheets

An HTML page styled by an external CSS stylesheet must reference the .css file in the

document head. Once created, the CSS file must be uploaded to your server and linked in the

HTML file with code such as:

<link href="style.css" rel="stylesheet" type="text/css">

You can name your stylesheet whatever you wish, but it should have a .css file extension.

Using internal CSS stylesheets

Rather than linking an external .css file, HTML files using an internal stylesheet include a

set of rules in their head section. CSS rules are wrapped in <style> tags, like this:

<head>

<style type="text/css">

h1 {

color:#fff

margin-left: 20px;

}

p{

Using inline styles

Inline styles are applied directly to an element in your HTML code. They use the style

attribute, followed by regular CSS properties.

For example:

<h1 style="color:red;margin-left:20px;">Today’s Update</h1>

Conflicting rules

 CSS stands for Cascading Style Sheets, and that first word cascading is incredibly important

to understand

— the way that the cascade behaves is key to understanding CSS.

 At some point, we will find that the CSS have created two rules which could potentially

apply to the same element.

 The cascade, and the closely-related concept of specificity, is mechanisms that control

which rule applies when there is such a conflict.

 Which rule is styling your element may not be the one you expect, so you need to

understand how these mechanisms work.

 Also significant here is the concept of inheritance, which means that some CSS properties

by default inherit values set on the current element's parent element, and some don't. This

can also cause some behavior that you might not expect.

The cascade

Stylesheets cascade — at a very simple level this means that the order of CSS rules matter;

when two rules apply that have equal specificity the one that comes last in the CSS is the one

that will be used.

EXAMPLE

In the below example, we have two rules that could apply to the h1. The h1 ends up being

colored blue — these rules have an identical selector and therefore carry the same

font-family: Arial, Helvetica, Sans Serif;

}

</style>

</head>

Rule Cascading

Cascade and inheritance

specificity, so the last one in the source order wins.

h1 {

color: red;

}

h1 {

color: blue;

}

<h1>This is my heading.</h1>

OUTPUT

Specificity

Specificity is how the browser decides which rule applies if multiple rules have different

selectors, but could still apply to the same element. It is basically a measure of how specific a

selector's selection will be:

 An element selector is less specific — it will select all elements of that type that appear

on a page — so will get a lower score.

 A class selector is more specific — it will select only the elements on a page that have a

specific class attribute value — so will get a higher score.

Example time! Below we again have two rules that could apply to the h1. The below h1 ends

up being colored red — the class selector gives its rule a higher specificity, and so it will be

applied even though the rule with the element selector appears further down in the source

order.

EXAMPLE

This is my heading.

main-heading {

color: red;

}

h1 {

color: blue;

}

. <h1 class="main-heading">This is my heading.</h1>

OUTPUT

Inheritance

Inheritance also needs to be understood in this context — some CSS property values set on

parent elements are inherited by their child elements, and some aren't.

For example, if you set a color and font-family on an element, every element inside it will

also be styled with that color and font, unless you've applied different color and font values

directly to them.

Some properties do not inherit — for example if you set a width of 50% on an element, all

of its descendants do not get a width of 50% of their parent's width. If this was the case, CSS

would be very frustrating to use!

OUTPUT

This is my heading.

body {
color: blue;

}

span {

color: black;

}

<p>As the body has been set to have a color of blue this is inherited through the

descendants.</p>

<p>We can change the color by targetting the element with a selector,

such as this

span.</p>

https://developer.mozilla.org/en-US/docs/Web/CSS/width

BACKGROUND:

 CSS provides control over the backgrounds of block-level elements. CSS can set a back- ground color

or add background images to HTML5 elements.

 background-image Property

 The background-image property specifies the image URL for the image flower.png in the

format url(fileLocation).

 background-position Property

 The background-position property places the image on the page. The keywords top, bottom,

center, left and right are used individually or in combination for vertical and horizontal positioning. You

can position an image using lengths by specifying the hor- izontal length followed by the vertical length.

 For example, to position the image as hori- zontally centered (positioned at 50 percent of the distance

across the screen) and 30 pixels from the top, use

 background-position: 50% 30px;

 background-repeat Property

 The background-repeat proper controls background image tiling, which place- es multiple copies

of the image next to each other to fill the background. Here, we set the tiling to no-repeat to display

only one copy of the background image.

 Other values in- clude repeat (the default) to tile the image vertically and horizontally,

 repeat-x to tile the image only horizontally or

 repeat-y to tile the image only vertically.

background-attachment: fixed Property

 The next property setting, background-attachment: fixed fixes the image in the position specified

by background-position.

Example:

<html>

 <head>

 <style type="text/css">

 body

 {

 background-image:url(yellowflowers.png);

 background-position:left;

 background-attachment:fixed;

 background-repeat:repeat-y;

 }

 </style>

 </head>

 <body>

As the body has been set to have a color of blue this is inherited through

the descendants.

We can change the color by targetting the element with a selector, such as

this span.

 </body>

</html>

Output:

BORDER IMAGES:

The CSS3 border-image property uses images to place a border around any block-level element.

 Stretching an Image Border

 The border-image property has six values:

 border-image-source—the URL of the image to use in the border (in this case,

url(border.png)).

 border-image-slice—expressed with four space-separated values in pixels (in this case, 80 80 80 80).

These values are the inward offsets from the top, right, bot tom and left sides of the image. Since our

original image is square, we used the same value for each.

 The border-image-slice divides the image into nine regions: four corners, four sides and middle,

which is transparent unless other- wise specified. These regions may overlap.

 If you use values that are larger than the actual image size, the border-image-slice values will be

interpreted as 100%. You may not use negative values.

 We could express the border-image-slice in two values—80 80—in which case the first value would

represent the top and bottom, and the second value the left and right.

 The border-image-slice may also be ex- pressed in percentages.

border-image-repeat—specifies how the regions of the border image are scaled and tiled (repeated).

By indicating stretch just once, we create a border that will stretch the top, right, bottom and left regions to

fit the area.

 You may specify two values for the border-image-repeat property.

Stretch ,repeat, the top and bottom regions of the image border would be stretched, and the right and

left regions of the border would be repeated (i.e., tiled) to fit the area.

 Other possible values for the border-image-repeat property in- clude round and space.

 If you specify round, the regions are repeated using only whole tiles, and the border image is scaled

to fit the area. If you specify space, the regions are repeated to fill the area using only whole tiles,

and any excess space is distributed evenly around the tiles.

 Repeating an Image Border

 We create an image border by repeating the regions to fit the space. The border-image property

includes four values:

 border-image-source—the URL of the image to use in the border (once again,url(border.png)).

 border-image-slice—in this case, we provided two values expressed in percent- ages (34% 34%) for the

top/bottom and left/right, respectively.

 border-image-repeat—the value repeat specifies that the tiles are repeated to fit the area, using partial

tiles to fill the excess space.

Example:

<html>

 <head>

 <style>

 #borderimg1 {

 border: 10px solid transparent;

 border-image-source: url(border.png);

 border-image-repeat: round;

 border-image-slice: 30;

 border-image-width: 10px;

 }

 #borderimg2 {

 border: 10px solid transparent;

 border-image-source: url(border.png);

 border-image-repeat: stretch;

 border-image-slice: 20;

 border-image-width:10px;

 }

 #borderimg3 {

 border: 10px solid transparent;

 border-image-source: url(border.png);

 border-image-repeat: space;

 border-image-slice: 30;

 border-image-width: 10px;

 }

 </style>

 </head>

 <body>

 <p id = "borderimg1">This is image boarder with borderimage1 style .</p>

<p id = "borderimg2">This is image boarder with borderimage2 style</p>

<p id = "borderimg3">This is image boarder with borderimage3 style</p>

 </body>

</html>

Output:

COLORS:

 CSS3 allows you to express color in several ways in addition to standard color names (such as Aqua) or

hexadecimal RGB values (such as #00FFFF for Aqua).

 RGB (Red, Green, Blue) or RGBA (Red, Green, Blue, Alpha) gives you greater control over the

exact colors in your web pages.

 The value for each color—red, green and blue—can range from 0 to 255. The alpha value—

which represents opacity—can be any value in the range 0.0 (fully transparent) through 1.0 (fully

opaque). For example, if you were to set the background color as follows:

 background: rgba(255, 0, 0, 0.5);

the resulting color would be a half-opaque red.

 Using RGBA colors gives you far more op- tions than using only the existing HTML color

names—there are over 140 HTML color names, whereas there are 16,777,216 different

RGB colors (256 x 256 x 256) and varying opacities of each.

 CSS3 also allows you to express color using HSL (hue, saturation, lightness) or HSLA (hue,

saturation, lightness, alpha) values.

 The hue is a color or shade expressed as a value from 0 to 359 representing the degrees on a

color wheel (a wheel is 360 degrees).

 The colors on the wheel progress in the order of the colors of the rainbow—red, orange,

yellow, green, blue, indigo and violet.

 The value for red, which is at the beginning of the wheel, is 0. Green hues have values

around 120 and blue hues have values around 240. A hue value of 359, which is just left of 0

on the wheel, would result in a red hue.

 The satu ration—the intensity of the hue—is expressed as a percentage, where 100% is fully

saturated (the full color) and 0% is gray. Lightness—the intensity of light or luminance of

the hue— is also expressed as a percentage.

 A lightness of 50% is the actual hue. If you decrease the amount of light to 0%, the color

appears completely dark (black). If you increase the amount of light to 100%, the color

appears completely light (white).

 For example, if you wanted to use an hsla value to get the same color red as in our example of an rgba

value, you would set the background property as follows:

 background: hsla(0, 100%, 50%, 0.5);

Example:

<!DOCTYPE html>

<html>

 <head>

 <style type="text/css">

 h5{color:red;}

 h2{color:FF0000;}

 h3{color:rgb(255,0,0);}

 h4{color:rgba(255,0,0,0.5);}

 h1{color:hsla(0,100%,50%,1.5);}

 </style>

 </head>

 <body>

 <h5> color name</h5>

 <h2 style="font-size:20pt"> hexa </h2>

 <h3>RGB </h3>

 <h4 style="font-size:20pt">RGBA </h4>

 <h1> HSLA</h1>

 </body>

</html>

Output:

SHADOWS:

 Text shadow:

 The CSS3 text-shadow property makes it easy to add a text shadow effect to any text . First we

add a text-shadow property to our styles . The property has four values: -4px, 4px, 6px and

DimGrey, which represent:

 Horizontal offset of the shadow—the number of pixels that the text-shadow will appear to the left

or the right of the text. In this example, the horizontal offset of the shadow is -4px. A negative value

moves the text-shadow to the left; a positive value moves it to the right.

 Vertical offset of the shadow—the number of pixels that the text-shadow will be shifted up or

down from the text. In this example, the vertical offset of the shadow is 4px. A negative value moves

the shadow up, whereas a positive value moves it down.

 blur radius—the blur (in pixels) of the shadow. A blur-radius of 0px would result in a shadow with

a sharp edge (no blur). The greater the value, the greater the blurring of the edges. We used a

blur radius of 6px.

 color—determines the color of the text-shadow. We used dimgrey.

Example:

<!DOCTYPE html>

<html>

 <head>CSS3 Shadow

 <style type="text/css">

 h1

 {

 text-shadow:7px 7px 6px blue;

 }

 h2

 {

 text-shadow:-6px -6px 6px green;

 }

 </style>

 <head>

 <body>

 <h1> TEXT SHADOW...</h1>

 <h2>TEXT SHADOW..</h2>

 </body>

</html>

Output:

 Box shadow:

You can shadow any block-level element in CSS3. Next, we add the box-shadow property with four

values :

 Horizontal offset of the shadow (25px)—the number of pixels that the box-shadow will appear to

the left or the right of the box. A positive value moves the box-shadow to the right.A negative values

moves the box-shadow to the left.

 Vertical offset of the shadow (25px)—the number of pixels the box-shadow will be shifted up or

down from the box. A positive value moves the box-shadow down. A negative values moves the

box-shadow to the up.

 Blur radius—A blur-radius of 0px would result in a shadow with a sharp edge (no blur). The

greater the value, the more the edges of the shadow are blurred. We used a blur radius of 10px.

 Color—the box-shadow’s color .

Example:

<!DOCTYPE html>

<html>

<head>

<style>

 #bs1

 {

 width:400px;

 height:150px;

 background-color:pink;

 box-shadow:10px 20px 5px blue;

 }

 #bs2

 {

 width:400px;

 height:150px;

 background-color:yellow;

 box-shadow:-10px -20px 5px red;

 }

</style>

</head>

 <body>

 <div id="bs1"> BOX-SHADOW</div>

 <div id="bs2">BOX-SHADOW</div>

 </body>

</html>

Output:

TRANSFORMATION:

 It is a property by which the object can be rotated, scaled or skewed.

The 2D transformation:

 Translate Property:

 translate () : It moves an element from its current position.

 Syntax : transform: translate (30px,100px);

 rotate () : It is used to rotate the element in clockwise or anticlockwise manner to given

degree.

 Syntax : transform : rotate(45deg);

 scale () : It used to increment or decrement the size of the element.

 scaleX () : Method increases or decreases the width of element.

 Syntax : scaleX(3);

 scaleY () : Method increases or decreases the height of element.

 Syntax : scaleY (4);

 skew () :Method skew the element along X and Y axis.

 Syntax : transform: skew (30deg,45deg);

Example:

<!DOCTYPE html>

<html>

<head>

<style>

 div

 {

 width:170px;

 height:30px;

 background-color:pink;

 }

 div:hover

 {

 transform:translate(30px,100px);

 }

</style>

</head>

 <body>

 <div> Transformation...</div>

 </body>

</html>

Output:

- div is hover 30px along the x-axis and 170px along the y-axis.

Example: scale()

<!DOCTYPE html>

<html>

<head>

<style>

 div

 {

 width:100px;

 height:30px;

 background-color:pink;

 }

 div:hover

 {

 transform:scale(4,5); /* scaled to x=4 and y=5 */

 }

</style>

</head>

 <body>

<center>

 <div> Transformation...</div></center>

 </body>

</html>

Output:

 div is scaled to x=4,y=5…

TRANSITIONS:

CSS Transitions is a module of CSS that lets you create gradual transitions between the

values of specific CSS properties. The behavior of these transitions can be controlled by

specifying their timing function, duration, and other attributes.

Properties

 transition

 transition-delay

 transition-duration

 transition-property

 transition-timing-function

https://developer.mozilla.org/en-US/docs/Web/CSS/transition
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-delay
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-duration
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-property
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-timing-function

 transition –timing-function Specifies the speed curve of the transition effect.

 ease – Specifies the transition effect slow start, then fast end slowly.

 linear – same speed from start to end.

 ease-in – slow start.

 ease-out – slow end.

 ease-in-out –slow start and end.

Example:

#div1

 { transition-timing-function: linear;}

#div2

{ transition-timing-function: ease;}

Example:

<! DOCTYPE html>

<html>

<head>

<style>

 div

 {

 width:100px;

 height:30px;

 background-color:red;

 transition:width 2s;

 }

 div:hover

 {

 width 300px;

 }

</style>

</head>

 <body>

<center>

 <div> Transition...</div></center>

 </body>

</html>

OUTPUT:

ANIMATION:

CSS allows animation of HTML elements without using JavaScript or Flash!

What are CSS Animations?

 An animation lets an element gradually change from one style to another. You can change as

many CSS properties you want, as many times you want.

 To use CSS animation, you must first specify some keyframes for the animation. Keyframes

hold what styles the element will have at certain times.

 The @keyframes Rule

 When you specify CSS styles inside the @keyframes rule, the animation will

gradually change from the current style to the new style at certain times.

To get an animation to work, you must bind the animation to an element.

CSS Animation Properties

The following table lists the @keyframes rule and all the CSS animation properties:

Property Description

@keyframes Specifies the animation code

animation A shorthand property for setting all the animation

properties

animation-delay Specifies a delay for the start of an animation

animation-direction Specifies whether an animation should be played

forwards, backwards or in alternate cycles

animation-duration Specifies how long time an animation should take to

complete one cycle

animation-fill-mode Specifies a style for the element when the

animation is not playing (before it starts, after it

ends, or both)

animation-iteration-count Specifies the number of times an animation should be

played

animation-name Specifies the name of the @keyframes animation

animation-play-state Specifies whether the animation is running or paused

https://www.w3schools.com/cssref/css3_pr_animation-keyframes.asp
https://www.w3schools.com/cssref/css3_pr_animation.asp
https://www.w3schools.com/cssref/css3_pr_animation-delay.asp
https://www.w3schools.com/cssref/css3_pr_animation-direction.asp
https://www.w3schools.com/cssref/css3_pr_animation-duration.asp
https://www.w3schools.com/cssref/css3_pr_animation-fill-mode.asp
https://www.w3schools.com/cssref/css3_pr_animation-iteration-count.asp
https://www.w3schools.com/cssref/css3_pr_animation-name.asp
https://www.w3schools.com/cssref/css3_pr_animation-play-state.asp

animation-timing-function Specifies the speed curve of the animation

Example:

/* The animation

code */ @keyframes

example {

 from {background-

color:red;} to {background-

color: yellow;}

}

/* The element to apply the

animation to */ div {

width:

100px;

height:

100px;

background-color:

red; animation-name:

example; animation-

duration: 4s;

}

Note: The animation-duration property defines how long time an animation should take to

complete. If

the animation-duration property is not specified, no animation will occur, because the

default value is 0s (0 seconds).

In the example above we have specified when the style will change by using the keywords

"from" and "to" (which represents 0% (start) and 100% (complete)).

It is also possible to use percent. By using percent, you can add as many style changes as you

like.

The following example will change the background-color of the <div> element when the

animation is 25% complete, 50% complete, and again when the animation is 100%

complete:

 Example

/* The animation

code */ @keyframes

example {

0% {background-color: red;}

25% {background-color: yellow;}

50% {background-color: blue;}

100% {background-color: green;}

https://www.w3schools.com/cssref/css3_pr_animation-timing-function.asp

}

/* The element to apply the

animation to */ div {

width:

100px;

height:

100px;

background-color:

red; animation-name:

example; animation-

duration: 4s;

}

Example: Create the following time table using HTML tags.

TIME TABLE:

<html>

 <head>

 <title> TIME TABLE </title>

 </head>

 <body>

 <table border="2" align=center>

 <caption align=bottom>

 Class Time Table

 </caption>

 <tr algin=center>

 <th rowspan=2>Day</th>

 <th colspan=9>Lecture Timings</th>

 </tr>

 <tr>

 <th> 8.30 - 9.20</th>

 <th> 9.20 - 10.10</th>

 <th rowspan=6>T
e
a

T
 i
m
 e

 </th>

 <th>10.20 -11.10</th>

 <th>11.10 -12.00</th>

 <th>12.00 -12.50</th>

<th rowspan=6>L
 u
n
c
h

 T
i
m
e
</th>

 <th>1.35-2.25</th>

 <th>2.25-3.15</th>

 </tr>

 <tr align=center>

 <th>Monday </th>

 <th>CD</th>

 <th>IP </th>

 <th>MC </th>

 <th>DS</th>

 <th>AI</th>

<th colspan=2> Activity hours

 </tr>

 <tr align=center>

 <th>Tuesday </th>

 <th> MC</th>

 <th>ST </th>

 <th>CD</th>

 <th>AI</th>

 <th>IP -</th>

 <th colspan=2>-Lab </th>

 </tr>

 <tr align=center>

 <th>Wednesday </th>

 <th> DS</th>

 <th>CD </th>

 <th colspan=2>PC-Lab</th>

 <th>IP</th>

 <th>AI</th>

 <th>MC</th>

 </tr>

<tr align=center>

 <th>Thrusday </th>

 <th> IP</th>

 <th>MC </th>

 <th>DS</th>

 <th>ST</th>

 <th>CD</th>

 <th colspan=2>MINI PROJECT</th>

 </tr>

<tr align=center>

 <th>Friday </th>

 <th> AI</th>

 <th> MAD</th>

 <th colspan=2>-Lab </th>

 <th>IP</th>

 <th>ST</th>

 <th>DS</th>

 </tr>

 </body>

</html>

UNIT-II CLIENT SIDE PROGRAMMING

An introduction to JavaScript – JavaScript DOM Model- Date and Objects

- Regular Expressions- Exception Handling – Validation - Built-in objects -

Event Handling - DHTML with JavaScript - JSON

INTRODUCTION

 Javascript is a dynamic computer programming language. It is lightweight

and most commonly used as a part of web pages, whose implementations allow

client-side script to interact with the user and make dynamic pages. It is an

interpreted programming language with object-oriented capabilities.

JavaScript was first known as LiveScript, but Netscape changed its name to

JavaScript, possibly because of the excitement being generated by Java.

JavaScript made its first appearance in Netscape 2.0 in 1995 with the

name LiveScript. The general-purpose core of the language has been embedded

in Netscape, Internet Explorer, and other web browsers.

Client-side JavaScript

Client-side JavaScript is the most common form of the language. The script

should be included in or referenced by an HTML document for the code to be

interpreted by the browser.

It means that a web page need not be a static HTML, but can include programs

that interact with the user, control the browser, and dynamically create HTML

content.

The JavaScript client-side mechanism provides many advantages over traditional

CGI server-side scripts. For example, you might use JavaScript to check if the

user has entered a valid e-mail address in a form field.

The JavaScript code is executed when the user submits the form, and only if all

the entries are valid, they would be submitted to the Web Server.

JavaScript can be used to trap user-initiated events such as button clicks, link

navigation, and other actions that the user initiates explicitly or implicitly.

Advantages of JavaScript

 Less server interaction − You can validate user input before sending the page

off to the server. This saves server traffic, which means less load on your server.

 Immediate feedback to the visitors − They don't have to wait for a page reload

to see if they have forgotten to enter something.

 Increased interactivity − You can create interfaces that react when the user

hovers over them with a mouse or activates them via the keyboard.

 Richer interfaces − You can use JavaScript to include such items as drag-and-

drop components and sliders to give a Rich Interface to your site visitors.

Limitations of JavaScript

 Client-side JavaScript does not allow the reading or writing of files. This has

been kept for security reason.

 JavaScript cannot be used for networking applications because there is no such

support available.

 JavaScript doesn't have any multithreading or multiprocessor capabilities.

JavaScript can be implemented using JavaScript statements that are placed

within the<script>... </script> HTML tags in a web page.

You can place the <script> tags, containing your JavaScript, anywhere within

you web page, but it is normally recommended that you should keep it within

the <head> tags.

The <script> tag alerts the browser program to start interpreting all the text

between these tags as a script. A simple syntax of your JavaScript will appear as

follows.

The script tag takes two important attributes –

 Language − This attribute specifies what scripting language you are using.

Typically, its value will be javascript. Although recent versions of HTML (and

XHTML, its successor) have phased out the use of this attribute.

 Type − This attribute is what is now recommended to indicate the scripting

language in use and its value should be set to "text/javascript".

So your JavaScript segment will look like −

<scriptlanguage="javascript"type="text/javascript">

JavaScript code

</script>

INCLUDING JAVASCRIPT IN HTML FILE

There is a flexibility given to include JavaScript code anywhere in an HTML

document. However the most preferred ways to include JavaScript in an HTML

file are as follows −

 Script in <head>...</head> section.

 Script in <body>...</body> section.

 Script in <body>...</body> and <head>...</head> sections.

 Script in an external file and then include in <head>...</head> section.

In the following section, we will see how we can place JavaScript in an HTML

file in different ways.

JavaScript in <head>...</head> section

If you want to have a script run on some event, such as when a user clicks

somewhere, then you will place that script in the head as follows –

<html><head><script type="text/javascript">

<!--

FunctionsayHello() {

alert("Hello World")

 }

 //-->

</script>

</head>

<body>

<input type="button" onclick="sayHello()" value="Say Hello" />

</body>

</html>

This code will produce the following results −

JavaScript in <body>...</body> section

If you need a script to run as the page loads so that the script generates content in

the page, then the script goes in the <body> portion of the document. In this

case, you would not have any function defined using JavaScript. Take a look at

the following code.

 <html>

<head>

</head>

<body>

<script type="text/javascript">

<!--

document.write("Hello World")

 //-->

</script>

<p>This is web page body </p>

</body>

</html>

This code will produce the following results −

JavaScript in <body> and <head> Sections

You can put your JavaScript code in <head> and <body> section altogether as

follows −

<html>

<head>

<script type="text/javascript">

<!--

FunctionsayHello() {

alert("Hello World")

 }

 //-->

</script>

</head>

<body>

<script type="text/javascript">

<!--

document.write("Hello World")

 //-->

</script>

<input type="button" onclick="sayHello()" value="Say Hello" />

</body>

</html>

This code will produce the following result −

JavaScript in External File

As you begin to work more extensively with JavaScript, you will be likely to

find that there are cases where you are reusing identical JavaScript code on

multiple pages of a site.

You are not restricted to be maintaining identical code in multiple HTML files.

The script tag provides a mechanism to allow you to store JavaScript in an

external file and then include it into your HTML files.

Here is an example to show how you can include an external JavaScript file in

your HTML code using script tag and its src attribute.

<html>

<head>

<script type="text/javascript" src="filename.js" ></script>

</head>

<body>

</body>

</html>

To use JavaScript from an external file source, you need to write all your

JavaScript source code in a simple text file with the extension ".js" and then

include that file as shown above.

For example, you can keep the following content in filename.js file and then

you can usesayHello function in your HTML file after including the filename.js

file.

FunctionsayHello() {

alert("Hello World")

}

JAVASCRIPT OUTPUT

JavaScript does NOT have any built-in print or display functions.

JavaScript Display Possibilities

JavaScript can "display" data in different ways:

 Writing into an alert box, using window.alert().

 Writing into the HTML output using document.write().

 Writing into an HTML element, using innerHTML.

 Writing into the browser console, using console.log().

Using window.alert()

You can use an alert box to display data:

<!DOCTYPE html>

<html>

<body>

<h1>My First Web Page</h1>

<p>My first paragraph.</p>

<script>

window.alert(5 + 6);

</script>

</body></html>

Using document.write()

For testing purposes, it is convenient to use document.write():

<!DOCTYPE html>

<html>

<body>

<h1>My First Web Page</h1>

<p>My first paragraph.</p>

<script>

document.write(5 + 6);

</script>

</body>

</html>

Using document.write() after an HTML document is fully loaded, will delete all

existing HTML:

<!DOCTYPE html>

<html>

<body>

<h1>My First Web Page</h1>

<p>My first paragraph.</p>

<button onclick="document.write(5 + 6)">Try it</button>

</body>

</html>

Using innerHTML

To access an HTML element, JavaScript can use

the document.getElementById(id) method.

The id attribute defines the HTML element. The innerHTML property defines

the HTML content:

<!DOCTYPE html>

<html>

<body>

<h1>My First Web Page</h1>

<p>My First Paragraph</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 5 + 6;

</script>

</body>

</html>

Using console.log()

In your browser, you can use the console.log() method to display data.

Activate the browser console with F12, and select "Console" in the menu.

Example

<!DOCTYPE html>

<html>

<body>

<h1>My First Web Page</h1>

<p>My first paragraph.</p>

<script>

console.log(5 + 6);

</script>

</body>

</html>

SYNTAX OF JAVASCRIPT

JavaScript syntax is the set of rules, how JavaScript programs are constructed.

A computer program is a list of "instructions" to be "executed" by the

computer.

In a programming language, these program instructions are

called statements.JavaScript is a programming language.

JavaScript statements are separated by semicolons.

var x = 5;

var y = 6;

var z = x + y;

Statements

JavaScript statements are composed of:

Values, Operators, Expressions, Keywords, and Comments.

Values

The JavaScript syntax defines two types of values: Fixed values and variable

values.

Fixed values are called literals. Variable values are called variables.

Variables

In a programming language, variables are used to store data values.

JavaScript uses the var keyword to define variables.

An equal sign is used to assign values to variables.

In this example, x is defined as a variable. Then, x is assigned (given) the value

6:

var x;

x = 6;

Operators

JavaScript uses an assignment operator (=) to assign values to variables:

var x = 5;

var y = 6;

JavaScript uses arithmetic operators (+ - * /) to compute values:

(5 + 6) * 10

Expressions

An expression is a combination of values, variables, and operators, which

computes to a value.

The computation is called an evaluation.

For example, 5 * 10 evaluates to 50:

5 * 10

Expressions can also contain variable values:

x * 10

The values can be of various types, such as numbers and strings.

For example, "John" + " " + "Doe", evaluates to "John Doe":

"John" + " " + "Doe"

Keywords

Keywords are used to identify actions to be performed.The var keyword tells

the browser to create a new variable:

var x = 5 + 6;

var y = x * 10;

Comments in JavaScript

JavaScript supports both C-style and C++-style comments, Thus −

 Any text between a // and the end of a line is treated as a comment and is

ignored by JavaScript.

 Any text between the characters /* and */ is treated as a comment. This may

span multiple lines.

 JavaScript also recognizes the HTML comment opening sequence <!--.

JavaScript treats this as a single-line comment, just as it does the // comment.

 The HTML comment closing sequence --> is not recognized by JavaScript so it

should be written as //-->.

Identifiers

Identifiers are names.

In JavaScript, identifiers are used to name variables (and keywords, and

functions, and labels).

The rules for legal names are much the same in most programming languages.

In JavaScript, the first character must be a letter, an underscore (_), or a dollar

sign ($).

Subsequent characters may be letters, digits, underscores, or dollar signs.

FUNCTIONS

 A function is a block of code designed to perform a particular task.

 A function is a group of reusable code which can be called anywhere in your

program. This eliminates the need of writing the same code again and again. It

helps programmers in writing modular codes. Functions allow a programmer to

divide a big program into a number of small and manageable functions.

 A JavaScript function is executed when "something" invokes it (calls it).

Syntax

A JavaScript function is defined with the function keyword, followed by

a name, followed by parentheses ().

function name(parameter1, parameter2, parameter3) {

 code to be executed

}

Function parameters are the names listed in the function

definition.Function arguments are the real values received by the function when

it is invoked.Inside the function, the arguments are used as local variables.

function myFunction(p1, p2) {

 return p1 * p2; // The function returns the product of p1 and p2

}

Function Invocation

The code inside the function will execute when "something" invokes (calls) the

function:

 When an event occurs (when a user clicks a button)

 When it is invoked (called) from JavaScript code

 Automatically (self invoked)

<html><head>

<script type="text/javascript">

FunctionsayHello(name, age)

 {

document.write (name + " is " + age + " years old.");

 }

</script>

</head>

<body>

<p>Click the following button to call the function</p>

<form>

<input type="button" onclick="sayHello('Zara', 7)" value="Say Hello">

</form>

<p>Use different parameters inside the function and then try...</p>

</body>

</html>

return Statement

A JavaScript function can have an optional return statement. This is required if

you want to return a value from a function. This statement should be the last

statement in a function.

<html>

<head>

<script type="text/javascript">

function concatenate(first, last)

 {

var full;

full = first + last;

return full;

 }

functionsecondFunction()

 {

var result;

result = concatenate('Zara', 'Ali');

document.write (result);

 }

</script>

</head>

<body>

<p>Click the following button to call the function</p>

<form>

<input type="button" onclick="secondFunction()" value="Call Function">

<form>

<p>Use different parameters inside the function and then try...</p>

</body>

</html>

Nested Functions

Function inside another function is known as Nested Functions.

<html>

<head>

<script type="text/javascript">

<!--

function hypotenuse(a, b) {

function square(x) { return x*x; }

returnMath.sqrt(square(a) + square(b));

 }

functionsecondFunction(){

var result;

result = hypotenuse(1,2);

document.write(result);

 }

 //-->

</script>

</head>

<body>

<form>

<input type="button" onclick="secondFunction()" value="Call Function">

</form>

</body>

</html>

Function Constructors

The function statement is not the only way to define a new function; you can

define your function dynamically using Function() constructor along with

the new operator.

Note − Constructor is a terminology from Object Oriented Programming. You

may not feel comfortable for the first time, which is OK.

Syntax

Following is the syntax to create a function using Function() constructor along

with thenew operator.

<script type="text/javascript">

varvariablename = new Function(Arg1, Arg2..., "Function Body");

</script>

The Function() constructor expects any number of string arguments. The last

argument is the body of the function – it can contain arbitrary JavaScript

statements, separated from each other by semicolons.

Notice that the Function() constructor is not passed any argument that specifies

a name for the function it creates. The unnamed functions created with

the Function() constructor are called anonymous functions.

<html>

<head>

<script type="text/javascript">

<!--

varfunc = new Function("x", "y", "return x*y;");

functionsecondFunction(){

var result;

result = func(10,20);

document.write(result);

 }

 //-->

</script>

</head>

<body>

<form>

<input type="button" onclick="secondFunction()" value="Call Function">

</form></body></html>

Function literals

Function literals which is another new way of defining functions. A function

literal is an expression that defines an unnamed function.

Syntax

The syntax for a function literal is much like a function statement, except that it

is used as an expression rather than a statement and no function name is

required.

<script type="text/javascript">

varvariablename = function(Argument List){

 Function Body

 };

</script>

Syntactically, you can specify a function name while creating a literal function

as follows.

<script type="text/javascript">

varvariablename = function FunctionName(Argument List){

 Function Body

 };

</script>

But this name does not have any significance, so it is not worthwhile.

<html>

<head>

<script type="text/javascript">

varfunc = function(x,y){ return x*y };

functionsecondFunction(){

var result;

result = func(10,20);

document.write(result);

 }

</script>

</head>

<body>

<p>Click the following button to call the function</p>

<form>

<input type="button" onclick="secondFunction()" value="Call Function">

</form>

</body></html>

OBJECTS

Objects are composed of attributes. If an attribute contains a function, it is

considered to be a method of the object, otherwise the attribute is considered a

property.

In real life, a car is an object.

A car has properties like weight and color, and methods like start and stop:

All cars have the same properties, but the property values differ from car to car.

All cars have the same methods, but the methods are performed at different

times.

var car = "Fiat";

Objects are variables too. But objects can contain many values.

var car = {type:"Fiat", model:500, color:"white"};

Properties

The name:values pairs (in JavaScript objects) are called properties.

var person = {firstName:"XYZ", lastName:"ABC", age:20};

Example

<!DOCTYPE html><html>

<body>

<p id="demo"></p>

<script>

var person = {firstName:"XYZ", lastName:"ABC", age:20};

document.getElementById("demo").innerHTML =

person.firstName + " is " + person.age + " years old.";

</script>

</body></html>

Accessing Object Properties

You can access object properties in two ways:

objectName.propertyName

or

objectName[propertyName]

<!DOCTYPE html>

<html><body>

<p id="demo1"></p>

<p id="demo"></p>

<script>

var person = {

firstName: "XYZ",

lastName : "ABC",

id : 5566

};

document.getElementById("demo").innerHTML =person.firstName + " " +

person.lastName;

document.getElementById("demo1").innerHTML =person["firstName"] + " "

+ person.lastName;

</script>

</body></html>

Methods

Methods are actions that can be performed on objects.

Methods are stored in properties as function definitions.

Methods are the functions that let the object do something or let something be

done to it. There is a small difference between a function and a method – at a

function is a standalone unit of statements and a method is attached to an object

and can be referenced by the thiskeyword.

OUTPUT

XYZ ABC

XYZ ABC

Methods are useful for everything from displaying the contents of the object to

the screen to performing complex mathematical operations on a group of local

properties and parameters.

User-Defined Objects

All user-defined objects and built-in objects are descendants of an object

called Object.

The new Operator

The new operator is used to create an instance of an object. To create an object,

the newoperator is followed by the constructor method.

In the following example, the constructor methods are Object(), Array(), and

Date(). These constructors are built-in JavaScript functions.

var employee = new Object();

var books = new Array("C++", "Perl", "Java");

var day = new Date("August 15, 1947");

The Object() Constructor

A constructor is a function that creates and initializes an object. JavaScript

provides a special constructor function called Object() to build the object. The

return value of theObject() constructor is assigned to a variable.

The variable contains a reference to the new object. The properties assigned to

the object are not variables and are not defined with the var keyword.

<html><head>

<title>User-defined objects</title>

<script type="text/javascript">

var book = new Object(); // Create the object

book.subject = "C++"; // Assign properties to the object

book.author = "Ira Pohl";

</script>

</head>

<body>

<script type="text/javascript">

document.write("Book name is : " + book.subject + "
");

document.write("Book author is : " + book.author + "
");

</script>

</body></html>

Example 2:

<html><head>

<title>User-defined objects</title>

<script type="text/javascript">

function book(title, author){

this.title = title;

OUTPUT:

Book name is : C++

Book author is : Ira Pohl

this.author = author;

 }

</script>

</head>

<body>

<script type="text/javascript">

varmyBook = new book("C++", "Ira Pohl");

document.write("Book title is : " + myBook.title + "
");

document.write("Book author is : " + myBook.author + "
");

</script>

</body></html>

Defining Methods for an Object

<html>

<head>

<title>User-defined objects</title>

<script type="text/javascript">

 // Define a function which will work as a method

FunctionaddPrice(amount){

this.price = amount;

 }

function book(title, author){

this.title = title;

this.author = author;

this.addPrice = addPrice; // Assign that method as property.

 }

</script>

</head>

<body>

<script type="text/javascript">

varmyBook = new book("C++", "Ira Pohl");

myBook.addPrice(100);

document.write("Book title is : " + myBook.title + "
");

document.write("Book author is : " + myBook.author + "
");

document.write("Book price is : " + myBook.price + "
");

</script></body></html>

NUMBER OBJECT

The Number object represents numerical date, either integers or floating-point

numbers. In general, you do not need to worry about Number objects because

OUTPUT:

Book name is : C++

Book author is : Ira Pohl

OUTPUT:

Book name is : C++

Book author is : Ira Pohl

Book priceis : 100

the browser automatically converts number literals to instances of the number

class.

Syntax

The syntax for creating a number object is as follows −

varval = new Number(number);

In the place of number, if you provide any non-number argument, then the

argument cannot be converted into a number, it returns NaN (Not-a-Number).

Converting Variables to Numbers

There are 3 JavaScript functions that can be used to convert variables to

numbers:

 The Number() method

 The parseInt() method

 The parseFloat() method

These methods are not number methods, but global JavaScript methods.

The Number() Method - can be used to convert JavaScript variables to

numbers:

x = true;

Number(x); // returns 1

x = false;

Number(x); // returns 0

x = new Date();

Number(x); // returns 1404568027739

x = "10"

Number(x); // returns 10

x = "10 20"

Number(x); // returns NaN

The parseInt() Method - parses a string and returns a whole number. Spaces

are allowed. Only the first number is returned:

parseInt("10"); // returns 10

parseInt("10.33"); // returns 10

parseInt("10 20 30"); // returns 10

parseInt("10 years"); // returns 10

parseInt("years 10"); // returns NaN

The parseFloat() Method - parses a string and returns a number. Spaces are

allowed. Only the first number is returned:

parseFloat("10"); // returns 10

parseFloat("10.33"); // returns 10.33

parseFloat("10 20 30"); // returns 10

parseFloat("10 years"); // returns 10

parseFloat("years 10"); // returns NaN

The valueOf() Method - returns a number as a number.

var x = 123;

x.valueOf(); // returns 123 from variable x

(123).valueOf(); // returns 123 from literal 123

(100 + 23).valueOf(); // returns 123 from expression 100 + 23

Global Methods

JavaScript global functions can be used on all JavaScript data types.

These are the most relevant methods, when working with numbers:

Method Description

Number() Returns a number, converted from its

argument.
parseFloat() Parses its argument and returns a floating point

number
parseInt() Parses its argument and returns an integer

Number Methods

JavaScript number methods are methods that can be used on numbers:

Method Description

toString() Returns a number as a string

toExponential() Returns a string, with a number rounded and written using

exponential notation.
toFixed() Returns a string, with a number rounded and written with a specified

number of decimals.

toPrecision() Returns a string, with a number written with a specified length

valueOf() Returns a number as a number

<!DOCTYPE html><html>

<body>

<button onclick="myFunction()">Demo</button>

<p id="demo"></p>

<script>

FunctionmyFunction() {

var x1 = true;

var x2 = false;

var x3 = new Date();

var x4 = "999";

var x5 = "999 888";

var x6 = parseInt("40 years");

var x7 = parseFloat("36.00");

var x8 = isNaN("x6");

var n =

 Number(x1) + "
" +

 Number(x2) + "
" +

 Number(x3) + "
" +

 Number(x4) + "
" +

 Number(x5)+ "
"+

x6 +"
" + x7 + "
" + x8 + "
" + String(x3);

document.getElementById("demo").innerHTML = n;

}

</script>

</body></html>

BOOLEAN OBJECT

The Boolean object represents two values, either "true" or "false".

If value parameter is omitted or is 0, -0, null, false, NaN, undefined, or the

empty string (""), the object has an initial value of false.

Syntax

Use the following syntax to create a boolean object.

varval = new Boolean(value);

Method Description

toSource()
Returns a string containing the source of the Boolean object;

you can use this string to create an equivalent object.
toString()

Returns a string of either "true" or "false" depending upon the

value of the object.

valueOf()
Returns the primitive value of the Boolean object.

<!DOCTYPE html>

<html><body>

<button onclick="myFunction()">Check</button>

<p id="demo"></p>

<script>

functionmyFunction()

 {

document.getElementById("demo").innerHTML = Boolean(10 > 9);

}

</script>

http://www.tutorialspoint.com/javascript/boolean_tosource.htm
http://www.tutorialspoint.com/javascript/boolean_tostring.htm
http://www.tutorialspoint.com/javascript/boolean_valueof.htm

</body></html>

ARRAY OBJECT

The Array object lets you store multiple values in a single variable. It stores a

fixed-size sequential collection of elements of the same type. An array is used to

store a collection of data, but it is often more useful to think of an array as a

collection of variables of the same type.

Syntax

var fruits = new Array("apple", "orange", "mango");

OR

var fruits = ["apple", "orange", "mango"]; //easiest method - literal

You will use ordinal numbers to access and to set values inside an array as

follows.

fruits[0] is the first element

fruits[1] is the second element

fruits[2] is the third element

Method Description

concat() Joins two or more arrays, and returns a copy of the joined arrays

indexOf() Search the array for an element and returns its position

join() Joins all elements of an array into a string

lastIndexOf() Search the array for an element, starting at the end, and returns its

position
pop() Removes the last element of an array, and returns that element

push() Adds new elements to the end of an array, and returns the new

length
reverse() Reverses the order of the elements in an array

shift() Removes the first element of an array, and returns that element

slice() Selects a part of an array, and returns the new array

sort() Sorts the elements of an array

splice() Adds/Removes elements from an array

toString() Converts an array to a string, and returns the result

unshift() Adds new elements to the beginning of an array, and returns the

new length

http://www.w3schools.com/jsref/jsref_concat_array.asp
http://www.w3schools.com/jsref/jsref_indexof_array.asp
http://www.w3schools.com/jsref/jsref_join.asp
http://www.w3schools.com/jsref/jsref_lastindexof_array.asp
http://www.w3schools.com/jsref/jsref_pop.asp
http://www.w3schools.com/jsref/jsref_push.asp
http://www.w3schools.com/jsref/jsref_reverse.asp
http://www.w3schools.com/jsref/jsref_shift.asp
http://www.w3schools.com/jsref/jsref_slice_array.asp
http://www.w3schools.com/jsref/jsref_sort.asp
http://www.w3schools.com/jsref/jsref_splice.asp
http://www.w3schools.com/jsref/jsref_tostring_array.asp
http://www.w3schools.com/jsref/jsref_unshift.asp

valueOf() Returns the primitive value of an array

Example:

<!DOCTYPE html><html>

<body>

<button onclick="myNumber()">Sorting of Numbers</button>

<p id="demo"></p>

<p id="demo1"></p>

<button onclick="myFruits()">Sorting of Alphabets</button>

<p id="demo2"></p>

<button onclick="myList()">Listing Fruits</button>

<p id="demo3"></p>

<script>

functionmyFruits() {

var fruits = ["Banana", "Orange", "Apple", "Mango"];

fruits.push("Lemon"); //to add an element to the array

fruits[fruits.length] = "Pomegranate"

fruits[6]="Grapes"

document.getElementById("demo2").innerHTML = fruits;

fruits.sort();

fruits.reverse();

document.getElementById("demo2").innerHTML = fruits;

}

functionmyNumber() {

var points = [40, 100, 1, 5, 25, 10];

points.sort(function(a, b){return a-b});

document.getElementById("demo").innerHTML = points;

points.sort(function(a, b){return b-a});

document.getElementById("demo1").innerHTML = points;

}

functionmyList()

{

var index;

var text = "";

var fruits = ["Banana", "Orange", "Apple", "Mango"];

http://www.w3schools.com/jsref/jsref_valueof_array.asp

for (index = 0; index <fruits.length; index++) {

text += "" + fruits[index] + "";

 }

text += "";

document.getElementById("demo3").innerHTML = text;

}

</script>

</body></html>

DATE OBJECT

Method Description

getDate() Returns the day of the month (from 1-31)

getDay() Returns the day of the week (from 0-6)

getFullYear() Returns the year (four digits)

getHours() Returns the hour (from 0-23)

getMilliseconds() Returns the milliseconds (from 0-999)

getMinutes() Returns the minutes (from 0-59)

getMonth() Returns the month (from 0-11)

getSeconds() Returns the seconds (from 0-59)

http://www.w3schools.com/jsref/jsref_getdate.asp
http://www.w3schools.com/jsref/jsref_getday.asp
http://www.w3schools.com/jsref/jsref_getfullyear.asp
http://www.w3schools.com/jsref/jsref_gethours.asp
http://www.w3schools.com/jsref/jsref_getmilliseconds.asp
http://www.w3schools.com/jsref/jsref_getminutes.asp
http://www.w3schools.com/jsref/jsref_getmonth.asp
http://www.w3schools.com/jsref/jsref_getseconds.asp

getTime() Returns the number of milliseconds since midnight Jan

1, 1970
getTimezoneOffset() Returns the time difference between UTC time and local

time, in minutes
getUTCDate() Returns the day of the month, according to universal

time (from 1-31)
getUTCDay() Returns the day of the week, according to universal time

(from 0-6)
parse() Parses a date string and returns the number of

milliseconds since January 1, 1970
setDate() Sets the day of the month of a date object

setFullYear() Sets the year (four digits) of a date object

setHours() Sets the hour of a date object

setMilliseconds() Sets the milliseconds of a date object

setMinutes() Set the minutes of a date object

setMonth() Sets the month of a date object

setSeconds() Sets the seconds of a date object

setTime() Sets a date to a specified number of milliseconds

after/before January 1, 1970

setUTCDate() Sets the day of the month of a date object, according to

universal time
toDateString() Converts the date portion of a Date object into a

readable string
toString() Converts a Date object to a string

UTC() Returns the number of milliseconds in a date since

midnight of January 1, 1970, according to UTC time

valueOf() Returns the primitive value of a Date object

<!DOCTYPE html><html>

<body>

<button onclick="myFunction()">Print Date</button>

<script>

FunctionmyFunction() {

http://www.w3schools.com/jsref/jsref_gettime.asp
http://www.w3schools.com/jsref/jsref_gettimezoneoffset.asp
http://www.w3schools.com/jsref/jsref_getutcdate.asp
http://www.w3schools.com/jsref/jsref_getutcday.asp
http://www.w3schools.com/jsref/jsref_parse.asp
http://www.w3schools.com/jsref/jsref_setdate.asp
http://www.w3schools.com/jsref/jsref_setfullyear.asp
http://www.w3schools.com/jsref/jsref_sethours.asp
http://www.w3schools.com/jsref/jsref_setmilliseconds.asp
http://www.w3schools.com/jsref/jsref_setminutes.asp
http://www.w3schools.com/jsref/jsref_setmonth.asp
http://www.w3schools.com/jsref/jsref_setseconds.asp
http://www.w3schools.com/jsref/jsref_settime.asp
http://www.w3schools.com/jsref/jsref_setutcdate.asp
http://www.w3schools.com/jsref/jsref_todatestring.asp
http://www.w3schools.com/jsref/jsref_tostring_date.asp
http://www.w3schools.com/jsref/jsref_utc.asp
http://www.w3schools.com/jsref/jsref_valueof_date.asp

var d = new Date();

var m = d.getMonth();

var day = d.getDay();

document.write(d + "
 ");

document.write("The Day is :"+ day + "
");

document.write(d.getHours()+":" +d.getMinutes()+":"+d.getSeconds()+"
");

document.write(d.getDate() +"/" +d.getMonth()+"/"+d.getFullYear()+"
");

d.setDate(23);

document.write(d.getDate() +"/" +d.getMonth()+"/"+d.getFullYear()+"
");

}

</script></body></html>

MATH OBJECT

The Math object allows you to perform mathematical tasks on numbers.

Constants

Math.E // returns Euler's number

Math.PI // returns PI

Math.SQRT2 // returns the square root of 2

Math.SQRT1_2 // returns the square root of 1/2

Math.LN2 // returns the natural logarithm of 2

Math.LN10 // returns the natural logarithm of 10

Math.LOG2E // returns base 2 logarithm of E

Math.LOG10E // returns base 10 logarithm of E

Method Description

abs(x) Returns the absolute value of x

acos(x) Returns the arccosine of x, in radians

asin(x) Returns the arcsine of x, in radians

atan(x) Returns the arctangent of x as a numeric value between -PI/2 and

PI/2 radians
atan2(y,x) Returns the arctangent of the quotient of its arguments

ceil(x) Returns x, rounded upwards to the nearest integer

cos(x) Returns the cosine of x (x is in radians)

exp(x) Returns the value of Ex

floor(x) Returns x, rounded downwards to the nearest integer

log(x) Returns the natural logarithm (base E) of x

max(x,y,z,...,n) Returns the number with the highest value

min(x,y,z,...,n) Returns the number with the lowest value

pow(x,y) Returns the value of x to the power of y

random() Returns a random number between 0 and 1

round(x) Rounds x to the nearest integer

sin(x) Returns the sine of x (x is in radians)

sqrt(x) Returns the square root of x

tan(x) Returns the tangent of an angle

<!DOCTYPE html>

<html>

<body>

<button onclick="myFunction()">Math Object</button>

<script>

FunctionmyFunction() {

document.write(Math.min(0, 150, 30, 20, -8, -200));

document.write("
");

document.write(Math.max(0, 150, 30, 20, -8, -200));

document.write("
");

document.write(Math.random());

document.write("
");

document.write(Math.round(4.7888));

document.write("
");

document.write(Math.SQRT2);

document.write("
");

document.write(Math.SQRT1_2);

document.write("
");

}

</script>

</body></html>

STRING OBJECTS

A JavaScript string simply stores a series of characters like "John Doe".

A string can be any text inside quotes. You can use single or double quotes:

var answer = "It's alright";

var answer = "He is called 'Johnny'";

var answer = 'He is called "Johnny"';

String Length

The length of a string is found in the built in property length:

var txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

var sln = txt.length;

Special Characters

Because strings must be written within quotes, JavaScript will misunderstand

this string:

var y = "We are the so-called "Vikings" from the north."

The string will be chopped to "We are the so-called ".

The solution to avoid this problem, is to use the \ escape character.

The backslash escape character turns special characters into string characters:

var x = 'It\'s alright';

var y = "We are the so-called \"Vikings\" from the north."

The escape character (\) can also be used to insert other special characters in a

string.

This is the list of special characters that can be added to a text string with the

backslash sign:

Code Outputs

\' single quote

\" double quote

\\ backslash

\n new line

\r carriage return

\t tab

\b backspace

\f form feed

String Methods

Method Description

charAt() Returns the character at the specified index (position)

charCodeAt() Returns the Unicode of the character at the specified index

concat() Joins two or more strings, and returns a copy of the joined strings

fromCharCode

()

Converts Unicode values to characters

indexOf() Returns the position of the first found occurrence of a specified

value in a string
lastIndexOf() Returns the position of the last found occurrence of a specified value

in a string
localeCompar

e()

Compares two strings in the current locale

match() Searches a string for a match against a regular expression, and

returns matches
replace() Searches a string for a value and returns a new string with the value

replaced
search() Searches a string for a value and returns the position of the match

slice() Extracts a part of a string and returns a new string

split() Splits a string into an array of substrings

substr() Extracts a part of a string from a start position through a number of

characters
substring() Extracts a part of a string between two specified positions

toLocaleLowe

rCase()

Converts a string to lowercase letters, according to the host's locale

toLocaleUpper

Case()

Converts a string to uppercase letters, according to the host's locale

toLowerCase() Converts a string to lowercase letters

toString() Returns the value of a String object

toUpperCase() Converts a string to uppercase letters

trim() Removes whitespace from both ends of a string

valueOf() Returns the primitive value of a String object

<html>

<head>

<title>Strings</title>

</head>

<body>

<script type="text/javascript">

varstr = "Apples are round, and apples are juicy.";

varsplitted = str.split(" ", 3);

var y = "We are the so-called \"Vikings\" from the north.";

document.write(splitted);

document.write("
");

document.write(y);

document.write("
");

document.write(y.toUpperCase());

document.write("
");

document.write(y.search('V'));

document.write("
");

document.write(y.slice(22,-2));

document.write("
");

document.write(y.substring(22,29));

</script></body></html>

REGULAR EXPRESSIONS

 A regular expression is a sequence of characters that forms a search pattern.

 When you search for data in a text, you can use this search pattern to describe

what you are searching for.

 A regular expression can be a single character, or a more complicated pattern.

 Regular expressions can be used to perform all types of text search and text

replace operations.

Syntax

A regular expression could be defined with the RegExp () constructor, as

follows −

var pattern = /pattern/attibutes;

OR

var pattern = new RegExp(pattern, attributes);

Here is the description of the parameters –

 pattern − A string that specifies the pattern of the regular expression or another

regular expression.

 attributes − An optional string containing any of the "g", "i", and "m" attributes

that specify global, case-insensitive, and multiline matches, respectively.

Brackets

Brackets ([]) have a special meaning when used in the context of regular

expressions. They are used to find a range of characters.

Expression Description

[...] Any one character between the brackets.

[^...] Any one character not between the brackets.

[0-9] It matches any decimal digit from 0 through 9.

[a-z] It matches any character from lowercase a through lowercase z.

[A-Z] It matches any character from uppercase A through uppercase Z.

[a-Z] It matches any character from lowercase a through uppercase Z.

The ranges shown above are general; you could also use the range [0-3] to match

any decimal digit ranging from 0 through 3, or the range [b-v] to match any

lowercase character ranging from b through v.

Quantifiers

The frequency or position of bracketed character sequences and single characters

can be denoted by a special character. Each special character has a specific

connotation. The +, *, ?, and $ flags all follow a character sequence.

Expression Description

p+ It matches any string containing at least one p.

p* It matches any string containing zero or more p's.

p? It matches any string containing one or more p's.

p{N} It matches any string containing a sequence of N p's

p{2,3} It matches any string containing a sequence of two or three p's.

p{2, } It matches any string containing a sequence of at least two p's.

p$ It matches any string with p at the end of it.

^p It matches any string with p at the beginning of it.

Examples

Following examples explain more about matching characters.

Expression Description

[^a-zA-Z] It matches any string not containing any of the characters

ranging from athrough z and A through Z.

p.p It matches any string containing p, followed by any character,

in turn followed by another p.

^.{2}$ It matches any string containing exactly two characters.

(.*) It matches any string enclosed within and .

p(hp)* It matches any string containing a p followed by zero or more

instances of the sequence hp.

Literal characters

Character Description

Alphanumeric Itself

\0 The NUL character (\u0000)

\t Tab (\u0009)

\n Newline (\u000A)

\v Vertical tab (\u000B)

\f Form feed (\u000C)

\r Carriage return (\u000D)

\xnn The Latin character specified by the hexadecimal number nn;

for example, \x0A is the same as \n

\uxxxx The Unicode character specified by the hexadecimal number

xxxx; for example, \u0009 is the same as \t

\cX The control character ^X; for example, \cJ is equivalent to the

newline character \n

Metacharacters

A metacharacter is simply an alphabetical character preceded by a backslash that

acts to give the combination a special meaning.

For instance, you can search for a large sum of money using the '\d'

metacharacter:/([\d]+)000/, Here \d will search for any string of numerical

character.

The following table lists a set of metacharacters which can be used in PERL

Style Regular Expressions.

Character Description

. a single character

\s a whitespace character (space, tab, newline)

\S non-whitespace character

\d a digit (0-9)

\D a non-digit

\w a word character (a-z, A-Z, 0-9, _)

\W a non-word character

[\b] a literal backspace (special case).

[aeiou] matches a single character in the given set

[^aeiou] matches a single character outside the given set

(foo|bar|baz) matches any of the alternatives specified

Modifiers

Several modifiers are available that can simplify the way you work

with regexps, like case sensitivity, searching in multiple lines, etc.

Modifier Description

i Perform case-insensitive matching.

M Specifies that if the string has newline or carriage return characters, the

^ and $ operators will now match against a newline boundary, instead of

a string boundary
G Performs a global matchthat is, find all matches rather than stopping

after the first match.

Search & Replace

In JavaScript, regular expressions are often used with the two string methods:

search() and replace().

The search() method uses an expression to search for a match, and returns the

position of the match.

The replace() method returns a modified string where the pattern is replaced.

Using String search() With a Regular Expression

<!DOCTYPE html>

<html>

<body>

<button onclick="myFunction()">Search</button>

<p id="demo"></p>

<script>

FunctionmyFunction() {

varstr = "Velammal Institute of Technology";

var n = str.search(/Institute/i);

document.getElementById("demo").innerHTML = n;

}

</script>

</body></html>

Using String replace() With a Regular Expression

<!DOCTYPE html>

<html>

<body>

<p>Replace "velammal" with "Vellore" in the paragraph below:</p>

<button onclick="myFunction()">Replace</button>

<p id="demo">Please visit Velammal Institute of Technology!</p>

<script>

FunctionmyFunction()

{

varstr = document.getElementById("demo").innerHTML;

var txt = str.replace(/velammal/i,"Vellore");

document.getElementById("demo").innerHTML = txt;

}

</script>

</body>

</html>

FORM VALIDATION USING JAVASCRIPT REGULAR EXPRESSIONS

Usage Pattern

1.Username [Min 8 Chars and alpha

numeric characters)

/^[a-z0-9]{8,}/i

2. Email ID /^[a-z0-9._-]+@[a-z]+.[a-z.]{2,5}$/i

3. Date of Birth /^[0-9]{1,2}-[0-9]{1,2}-[0-9]{4}$/i

4. Mobile Number /^([+0-9]{1,3})?([0-9]{10,11})$/i

5. Web Site URL /^[http://]+[www]?.[0-9a-z_.]+.[a-

z.]{2,5}$/i

6. Pincode /^[0-9]{6}$/i

DOCUMENT OBJECT MODEL (THE DOM MODEL)

When a web page is loaded, the browser creates a Document Object Model of

the page.

Every web page resides inside a browser window which can be considered as an

object.

A Document object represents the HTML document that is displayed in that

window. The Document object has various properties that refer to other objects

which allow access to and modification of document content.

The way document content is accessed and modified is called the Document

Object Model, or DOM. The Objects are organized in a hierarchy. This

hierarchical structure applies to the organization of objects in a Web document.

The HTML DOM model is constructed as a tree of Objects:

With the object model, JavaScript gets all the power it needs to create dynamic

HTML:

 JavaScript can change all the HTML elements in the page

 JavaScript can change all the HTML attributes in the page

 JavaScript can change all the CSS styles in the page

 JavaScript can remove existing HTML elements and attributes

 JavaScript can add new HTML elements and attributes

 JavaScript can react to all existing HTML events in the page

 JavaScript can create new HTML events in the page

What is the DOM?

The DOM is a W3C (World Wide Web Consortium) standard.

The DOM defines a standard for accessing documents:

"The W3C Document Object Model (DOM) is a platform and language-neutral

interface that allows programs and scripts to dynamically access and update the

content, structure, and style of a document."

The W3C DOM standard is separated into 3 different parts:

 Core DOM - standard model for all document types

 XML DOM - standard model for XML documents

 HTML DOM - standard model for HTML documents

What is the HTML DOM?

The HTML DOM is a standard object model and programming interface for

HTML. It defines:

 The HTML elements as objects

 The properties of all HTML elements

 The methods to access all HTML elements

 The events for all HTML elements

In other words: The HTML DOM is a standard for how to get, change, add,

or delete HTML elements.

HTML DOM methods are actions you can perform (on HTML Elements)

HTML DOM properties are values (of HTML Elements) that you can set or

change

The DOM Programming Interface

The HTML DOM can be accessed with JavaScript (and with other programming

languages).

In the DOM, all HTML elements are defined as objects.

The programming interface is the properties and methods of each object.

A property is a value that you can get or set (like changing the content of an

HTML element).

A method is an action you can do (like add or deleting an HTML element).

Example

The following example changes the content (the innerHTML) of the <p>

element with id="demo":

<html>

<body>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "Hello World!";

</script>

</body>

</html>

In the example above, getElementById is a method, while innerHTML is

a property.

The getElementById Method

The most common way to access an HTML element is to use the id of the

element.

In the example above the getElementById method used id="demo" to find the

element.

The innerHTML Property

The easiest way to get the content of an element is by using

the innerHTML property.

The innerHTML property is useful for getting or replacing the content of HTML

elements.

The HTML DOM Document

In the HTML DOM object model, the document object represents your web

page.

The document object is the owner of all other objects in your web page.

If you want to access objects in an HTML page, you always start with accessing

the document object.

Below are some examples of how you can use the document object to access and

manipulate HTML.

Finding HTML Elements

Method Description

document.getElementById() Find an element by element id

document.getElementsByTagName() Find elements by tag name

document.getElementsByClassName() Find elements by class name

Changing HTML Elements

Method Description

element.innerHTML= Change the inner HTML of an element

element.attribute= Change the attribute of an HTML element

element.setAttribute(attribute,value) Change the attribute of an HTML element

element.style.property= Change the style of an HTML element

Adding and Deleting Elements

Method Description

document.createElement() Create an HTML element

document.removeChild() Remove an HTML element

document.appendChild() Add an HTML element

document.replaceChild() Replace an HTML element

document.write(text) Write into the HTML output

stream Adding Events Handlers

Method Description

document.getElementById(id).onclick=function(){code} Adding event handler

code to an onclick

event
Finding HTML Objects

The first HTML DOM Level 1 (1998), defined 11 HTML objects, object

collections, and properties. These are still valid in HTML5.

Later, in HTML DOM Level 3, more objects, collections, and properties were

added.

Property Description DOM

document.anchors Returns all <a> elements that have a

name attribute

1

document.applets Returns all <applet>

elements (Deprecated in HTML5)

1

document.baseURI Returns the absolute base URI of the

document

3

document.body Returns the <body> element 1

document.cookie Returns the document's cookie 1

document.doctype Returns the document's doctype 3

document.documentElement Returns the <html> element 3

document.documentMode Returns the mode used by the browser 3

document.documentURI Returns the URI of the document 3

document.domain Returns the domain name of the

document server

1

document.domConfig Obsolete. Returns the DOM

configuration

3

document.embeds Returns all <embed> elements 3

document.forms Returns all <form> elements 1

document.head Returns the <head> element 3

document.images Returns all elements 1

document.implementation Returns the DOM implementation 3

document.inputEncoding Returns the document's encoding

(character set)

3

document.lastModified Returns the date and time the

document was updated

3

document.links Returns all <area> and <a> elements

that have a href attribute

1

document.readyState Returns the (loading) status of the

document

3

document.referrer Returns the URI of the referrer (the

linking document)

1

document.scripts Returns all <script> elements 3

document.strictErrorChecking Returns if error checking is enforced 3

document.title Returns the <title> element 1

document.URL Returns the complete URL of the

document

1

EVENT HANDLING

A JavaScript can be executed when an event occurs, like when a user clicks on

an HTML element.

To execute code when a user clicks on an element, add JavaScript code to an

HTML event attribute:

onclick=JavaScript

Examples of HTML events:

 When a user clicks the mouse

 When a web page has loaded

 When an image has been loaded

 When the mouse moves over an element

 When an input field is changed

 When an HTML form is submitted

 When a user strokes a key

In this example, the content of the <h1> element is changed when a user clicks

on it:

Example

<!DOCTYPE html>

<html>

<body>

<h1 onclick="this.innerHTML='Ooops!'">Click on this text!</h1>

</body>

</html>

In this example, a function is called from the event handler:

<!DOCTYPE html>

<html>

<body>

<h1 onclick="changeText(this)">Click on this text!</h1>

<script>

function changeText(id) {

 id.innerHTML = "Ooops!";

}

</script>

</body>

</html>

Assign Events Using the HTML DOM

The HTML DOM allows you to assign events to HTML elements using

JavaScript:

Assign an onclick event to a button element:

<script>

document.getElementById("myBtn").onclick = displayDate;

</script>

In the example above, a function named displayDate is assigned to an HTML

element with the id="myBtn".

The function will be executed when the button is clicked.

The onload and onunload Events

The onload and onunload events are triggered when the user enters or leaves the

page.

The onload event can be used to check the visitor's browser type and browser

version, and load the proper version of the web page based on the information.

The onload and onunload events can be used to deal with cookies.

<body onload="checkCookies()">

The onchange Event

The onchangeevent are often used in combination with validation of input fields.

Below is an example of how to use the onchange. The upperCase() function will

be called when a user changes the content of an input field.

<input type="text" id="fname" onchange="upperCase()">

<!DOCTYPE html>

<html>

<head>

<script>

FunctionmyFunction() {

var x = document.getElementById("fname");

x.value = x.value.toUpperCase();

}

</script>

</head>

<body>

Enter your name: <input type="text" id="fname" onchange="myFunction()">

<p>When you leave the input field, a function is triggered which transforms the

input text to upper case.</p>

</body>

</html>

The onmouseover and onmouseout Events

The onmouseover and onmouseout events can be used to trigger a function when

the user mouses over, or out of, an HTML element.

<!DOCTYPE html>

<html>

<body>

<div onmouseover="mOver(this)" onmouseout="mOut(this)"

style="background-color:#D94A38;width:120px;height:20px;padding:40px;">

Mouse Over Me</div>

<script>

FunctionmOver(obj) {

obj.innerHTML = "Thank You"

}

FunctionmOut(obj) {

obj.innerHTML = "Mouse Over Me"

}

</script>

</body></html>

The onmousedown, onmouseup and onclick Events

The onmousedown, onmouseup, and onclick events are all parts of a mouse-

click. First when a mouse-button is clicked, the onmousedown event is triggered,

then, when the mouse-button is released, the onmouseup event is triggered,

finally, when the mouse-click is completed, the onclick event is triggered.

<!DOCTYPE html>

<html>

<body>

<div onmousedown="mDown(this)" onmouseup="mUp(this)"

style="background-color:#D94A38;width:90px;height:20px;padding:40px;">

Click Me</div>

<script>

FunctionmDown(obj) {

obj.style.backgroundColor = "#1ec5e5";

obj.innerHTML = "Release Me";

}

FunctionmUp(obj) {

obj.style.backgroundColor="#D94A38";

obj.innerHTML="Thank You";

}

</script>

</body>

</html>

The onfocus()

Change the background-color of an input field when it gets focus.

<!DOCTYPE html>

<html>

<head>

<script>

FunctionmyFunction(x) {

x.style.background = "yellow";

}

</script>

</head>

<body>

Enter your name: <input type="text" onfocus="myFunction(this)">

<p>When the input field gets focus, a function is triggered which changes the

background-color.</p>

</body>

</html>

Create a web page using two image files, which switch between one another

as the mouse pointer moves over the images. Use the on Mouse Over and on

Mouse Out

<!DOCTYPE html>

<html>

<head>

<script>

Functionlighton() {

document.getElementById('myimage').src = "bulbon.gif";

}

Functionlightoff() {

document.getElementById('myimage').src = "bulboff.gif";

}

</script>

</head>

<body>

<img id="myimage" onmousedown="lighton()" onmouseup="lightoff()"

src="bulboff.gif" width="100" height="180" />

<p>Click mouse and hold down!</p>

</body>

</html>

EXCEPTION HANDLING

There are three types of errors in programming: (a) Syntax Errors, (b) Runtime

Errors, and (c) Logical Errors.

Syntax Errors

Syntax errors, also called parsing errors, occur at compile time in traditional

programming languages and at interpret time in JavaScript.

Runtime Errors

Runtime errors, also called exceptions, occur during execution (after

compilation/interpretation).

Logical Errors

Logic errors can be the most difficult type of errors to track down. These errors

are not the result of a syntax or runtime error. Instead, they occur when you

make a mistake in the logic that drives your script and you do not get the result

you expected.

The try...catch...finally Statement

The try statement lets you test a block of code for errors.

The catch statement lets you handle the error.

The throw statement lets you create custom errors.

The finally statement lets you execute code, after try and catch, regardless of the

result.

JavaScript implements the try...catch...finally construct as well as

the throw operator to handle exceptions.

You can catch programmer-generated and runtime exceptions, but you

cannot catchJavaScript syntax errors.

Here is the try...catch...finally block syntax −

<scripttype="text/javascript">

<!--

try{

// Code to run

[break;]

}

catch(e){

// Code to run if an exception occurs

[break;]

}

[finally{

// Code that is always executed regardless of

// an exception occurring

}]

//-->

</script>

The try block must be followed by either exactly one catch block or

one finally block (or one of both). When an exception occurs in the try block,

the exception is placed in e and the catch block is executed. The

optional finally block executes unconditionally after try/catch.

<!DOCTYPE html>

<html>

<body>

<p>Please input a number between 5 and 10:</p>

<input id="demo" type="text">

<button type="button" onclick="myFunction()">Test Input</button>

<p id="message"></p>

<script>

FunctionmyFunction() {

var message, x;

message = document.getElementById("message");

message.innerHTML = "";

 x = document.getElementById("demo").value;

try {

if(x == "") throw "empty";

if(isNaN(x)) throw "not a number";

 x = Number(x);

if(x < 5) throw "too low";

if(x > 10) throw "too high";

 }

catch(err) {

message.innerHTML = "Input is " + err;

 }

}

</script>

</body></html>

The finally Statement

The finally statement lets you execute code, after try and catch, regardless of the

result:

try {

 Block of code to try

}

catch(err) {

 Block of code to handle errors

}

finally {

 Block of code to be executed regardless of the try / catch result

}

Example:

<!DOCTYPE html>

<html>

<body>

<p>Please input a number between 5 and 10:</p>

<input id="demo" type="text">

<button type="button" onclick="myFunction()">Test Input</button>

<p id="message"></p>

<script>

FunctionmyFunction() {

var message, x;

message = document.getElementById("message");

message.innerHTML = "";

 x = document.getElementById("demo").value;

try {

if(x == "") throw "is empty";

if(isNaN(x)) throw "is not a number";

 x = Number(x);

if(x > 10) throw "is too high";

if(x < 5) throw "is too low";

 }

catch(err) {

message.innerHTML = "Input " + err;

 }

finally {

document.getElementById("demo").value = "";

 }

}

</script>

</body></html>

1

 UNIT III SERVER SIDE PROGRAMMING

Servlets: Java Servlet Architecture- Servlet Life Cycle- Form GET and POST actions-

Session Handling- Understanding Cookies- Installing and Configuring Apache Tomcat Web

Server; DATABASE CONNECTIVITY: JDBC perspectives, JDBC program example – JSP:

Understanding Java Server Pages-JSP Standard Tag Library(JSTL)-Creating HTML forms by

embedding JSP code.

SERVLETS

Servlet technology is used to create web application (resides at server side and generates dynamic

web page).

Servlet technology is robust and scalable because of java language. Before Servlet, CGI

(Common Gateway Interface) scripting language was popular as a server-side programming

language. But there were many disadvantages of this technology.

Servlet can be described in many ways, depending on the context.

 Servlet is a technology i.e. used to create web application.

 Servlets are small Java programs that run inside servers.

 Servlet is an API that provides many interfaces and classes including documentations.

 Servlet is an interface that must be implemented for creating any servlet.

 Servlet is a class that extends the capabilities of the servers and responds to the incoming request.

It can respond to any type of requests.

2

 Servlet is a web component that is deployed on the server to create dynamic web page.

CGI (Common Gateway Interface)

CGI(Common Gateway Interface) programming was used to create web applications. Here's how a

CGI program works :

 User clicks a link that has URL to a dynamic page instead of a static page.

 The URL decides which CGI program to execute.

 Web Servers run the CGI program in separate OS shell. The shell includes OS environment and

the process to execute code of the CGI program.

 The CGI response is sent back to the Web Server, which wraps the response in an HTTP response

and send it back to the web browser.

Drawbacks of CGI programs

 High response time because CGI programs execute in their own OS shell.

 CGI is not scalable.

 CGI programs are not always secure or object-oriented.

 It is Platform dependent.

Because of these disadvantages, developers started looking for better CGI solutions. And then Sun

Microsystems developed Servlet as a solution over traditional CGI technology.

Advantages of using Servlets

3

 Less response time because each request runs in a separate thread.

 Servlets are scalable.

 Servlets are robust and object oriented.

 Servlets are platform independent.

HTTP (Hyper Text Transfer Protocol)

1. Http is the protocol that allows web servers and browsers to exchange data over the web.

2. It is a request response protocol.

3. Http uses reliable TCP connections bydefault on TCP port 80.

4. It is stateless means each request is considered as the new request. In other words, server doesn't

recognize the user bydefault.

Http Request Methods

Every request has a header that tells the status of the client. There are many request methods. Get

and Post requests are mostly used.

The http request methods are:

HTTP

Request
Description

GET Asks to get the resource at the requested URL.

4

POST
Asks the server to accept the body info attached. It is like GET request with extra

info sent with the request.

HEAD
Asks for only the header part of whatever a GET would return. Just like GET but

with no body.

TRACE Asks for the loopback of the request message, for testing or troubleshooting.

PUT Says to put the enclosed info (the body) at the requested URL.

DELETE Says to delete the resource at the requested URL.

OPTIONS
Asks for a list of the HTTP methods to which the thing at the request URL can

respond

Container

It provides runtime environment for JavaEE (j2ee) applications.

Operations of Container:

 Life Cycle Management

 Communication Support

 Multithreaded support

 Security etc.

1. Life cycle management: Servlet and JSP are dynamic resources of java based web

application. The Servlet or JSP will run on a server and at server side. A container will take care

about life and death of a Servlet or JSP.

A container will instantiate, Initialize, Service and destroy of a Servlet or JSP. It means life cycle

will be managed by a container.

5

2. Communication Support: If Servlet or JSP wants to communicate with server than its need

some communication logic like socket programming. Designing communication logic is increase

the burden on programmers, but container act as a mediator between a server and a Servlet or JSP

and provides communication between them.

3. Multithreading: A container creates a thread for each request, maintains the thread and finally

destroys it whenever its work is finished.

4. Security: A programmer is not required to write security code in a Servlet/JSP. A container

will automatically provide security for a Servlet/JSP.

Server

It is a running program or software that provides services.

There are two types of servers:

1. Web Server

2. Application Server

Web Server

Web server contains only web or servlet container. It can be used for servlet, jsp, struts, jsf etc. It

can't be used for EJB.

Example of Web Servers are: Apache Tomcat and Resin.

Application Server

Application server contains Web and EJB containers. It can be used for servlet, jsp, struts, jsf, ejb

etc.

Example of Application Servers are:

1. JBoss Open-source server from JBoss community.

2. Glassfish provided by Sun Microsystem. Now acquired by Oracle.

3. Weblogic provided by Oracle. It more secured.

6

4. Websphere provided by IBM.

Content Type

Content Type is also known as MIME (Multipurpose internet Mail Extension) Type. It is a HTTP

header that provides the description about what are you sending to the browser.

There are many content types:

 text/html

 text/plain

 application/msword

 application/vnd.ms-excel

 application/jar

 application/pdf

 application/octet-stream

 application/x-zip

 images/jpeg

 video/quicktime etc.

How a Servlet Application works

Web container is responsible for managing execution of servlets and JSP pages for Java EE

application.

When a request comes in for a servlet, the server hands the request to the Web Container.

Web Container is responsible for instantiating the servlet or creating a new thread to handle the

request. Its the job of Web Container to get the request and response to the servlet. The container

creates multiple threads to process multiple requests to a single servlet.

Servlets don't have a main() method. Web Container manages the life cycle of a Servlet

instance.

1. User sends request for a servlet by clicking a link that has URL to a servlet.

7

2. The container finds the servlet using deployment descriptor and creates two objects :

a. HttpServletRequest

b. HttpServletResponse

3. Then the container creates or allocates a thread for that request and calls the Servlet's service()

method and passes the request, response objects as arguments.

4. The service() method, then decides which servlet method, doGet() or doPost() to call, based on

HTTP Request Method(Get, Post etc) sent by the client. Suppose the client sent an HTTP GET

request, so the service() will call Servlet's doGet() method.

8

5. Then the Servlet uses response object to write the response back to the client.

6. After the service() method is completed the thread dies. And the request and response objects

are ready for garbage collection.

Difference between Applet and Servlet

Applets

 Applets are applications designed to be transmitted over the network and executed by Java

compatible web browsers.

 An Applet is a client side java program that runs within a Web browser on the client

machine.

 An applet can use the user interface classes like AWT or Swing.

9

 Applet Life Cycle Methods: init(), stop(), paint(), start(), destroy()

Servlets

 Servlets are Java based analog to CGI programs, implemented by means of servlet container

associated with an HTTP server.

 Servlet is a server side component which runs on the web server.

 The servlet does not have a user interface.

 Servlet Methods: doGet(), doPost()

SERVLET LIFE CYCLE

A servlet life cycle can be defined as the entire process from its creation till the destruction. The

following are the paths followed by a servlet

 The servlet is initialized by calling the init () method.

 The servlet calls service() method to process a client's request.

 The servlet is terminated by calling the destroy() method.

 Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in details.

The init() method :

The init method is designed to be called only once. It is called when the servlet is first created, and

not called again for each user request. So, it is used for one-time initializations, just as with the init

method of applets.

The servlet is normally created when a user first invokes a URL corresponding to the servlet, but

you can also specify that the servlet be loaded when the server is first started.

When a user invokes a servlet, a single instance of each servlet gets created, with each user

request resulting in a new thread that is handed off to doGet or doPost as appropriate. The init()

method simply creates or loads some data that will be used throughout the life of the servlet.

The init method definition looks like this:

10

publicvoidinit()throwsServletException{// Initialization code...}

The service() method :

The service() method is the main method to perform the actual task. The servlet container (i.e.

web server) calls the service() method to handle requests coming from the client(browsers) and to

write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new thread and calls

service. The service() method checks the HTTP request type (GET, POST, PUT, DELETE, etc.)

and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

Here is the signature of this method:

publicvoid service(ServletRequest request,ServletResponse response)

 throwsServletException,IOException{

}

The service () method is called by the container and service method invokes doGe, doPost, doPut,

doDelete, etc. methods as appropriate. So you have nothing to do with service() method but you

override either doGet() or doPost() depending on what type of request you receive from the client.

The doGet() and doPost() are most frequently used methods with in each service request. Here is

the signature of these two methods.

The doGet() Method

A GET request results from a normal request for a URL or from an HTML form that has no

METHOD specified and it should be handled by doGet() method.

publicvoiddoGet(HttpServletRequest request,

HttpServletResponse response)

throwsServletException,IOException{

// Servlet code}

11

The doPost() Method

A POST request results from an HTML form that specifically lists POST as the METHOD and it

should be handled by doPost() method.

publicvoiddoPost(HttpServletRequest request,

HttpServletResponse response)

throwsServletException,IOException{

// Servlet code

}

The destroy() method :

The destroy() method is called only once at the end of the life cycle of a servlet. This method

gives your servlet a chance to close database connections, halt background threads, write cookie

lists or hit counts to disk, and perform other such cleanup activities.

After the destroy() method is called, the servlet object is marked for garbage collection. The

destroy method definition looks like this:

publicvoid destroy(){

// Finalization code...

}

SERVLET ARCHITECTURE

Architecture Diagram:

The following figure depicts a typical servlet life-cycle scenario.

 First the HTTP requests coming to the server are delegated to the servlet container.

 The servlet container loads the servlet before invoking the service() method.

12

 Then the servlet container handles multiple requests by spawning multiple threads, each thread

executing the service() method of a single instance of the servlet.

A servlet is a Java class that can be loaded dynamically into and run by a special web server. This

servlet-aware web server is called servlet container, which is also called a servlet engine in the early

days of the servlet technology.

Servlets interact with clients via request-response model based on HTTP. Because servlet

technology works on top of HTTP, a servlet container must support HTTP as the protocol for client

requests and server responses. However, a servlet container also supports similar protocols such as

HTTPS for secure transaction.

STEPS TO CREATE SERVLET APPLICATION USING TOMCAT SERVER

To create a Servlet application you need to follow the below mentioned steps. These steps are

common for all the Web server. In our example we are using Apache Tomcat server. Apache Tomcat

13

is an open source web server for testing servlets and JSP technology. Download latest version

of Tomcat Server and install it on your machine.

After installing Tomcat Server on your machine follow the below mentioned steps :

1. Create directory structure for your application.

2. Create a Servlet

3. Compile the Servlet

4. Create Deployement Descriptor for your application

5. Start the server and deploy the application

All these 5 steps are explained in details below, lets create our first Servlet Application.

1. Creating the Directory Structure

Sun Microsystem defines a unique directory structure that must be followed to create a servlet

application.

Create the above directory structure inside Apache-Tomcat\webapps directory. All HTML, static

files(images, cssetc) are kept directly under Web application folder. While all the Servlet classes

are kept inside classes folder.

The web.xml (deployement descriptor) file is kept under WEB-INF folder.

Creating a Servlet

There are three different ways to create a servlet.

http://tomcat.apache.org/

14

 By implementing Servlet interface

 By extending GenericServlet class

 By extending HttpServlet class

But mostly a servlet is created by extending HttpServlet abstract class. As discussed

earlier HttpServlet gives the definition of service() method of the Servlet interface. The servlet

class that we will create should not override service() method. Our servlet class will override

only doGet() or doPost() method.

When a request comes in for the servlet, the Web Container calls the servlet's service() method and

depending on the type of request the service() method calls either

the doGet() or doPost() method.

NOTE: By default a request is Get request.

importjavax.servlet.*;

importjavax.servlet.http.*;

import java.io.*;

publicMyServletextendsHttpServlet

{

public void doGet(HttpServletRequestrequest,HttpServletResposne response)

throwsServletException

 {

response.setContentType("text/html");

PrintWriterout = response.getWriter();

out.println("<html><body>");

out.println("<h1>Hello Readers</h1>");

out.println("</body></html>"); }}

Write above code in a notepad file and save it as MyServlet.java anywhere on your PC. Compile

it(explained in next step) from there and paste the class file into WEB-INF/classes/ directory that

you have to create inside Tomcat/webapps directory.

15

Compiling a Servlet

To compile a Servlet a JAR file is required. Different servers require different JAR files. In Apache

Tomcat server servlet-api.jar file is required to compile a servlet class.

Steps to compile a Servlet

 Set the Class Path.

 Download servlet-api.jar file.

 Paste the servlet-api.jar file inside Java\jdk\jre\lib\ext directory.

 Compile the Servlet class.

16

NOTE: After compiling your Servlet class you will have to paste the class file into WEB-

INF/classes/ directory.

Create Deployment Descriptor

Deployment Descriptor(DD) is an XML document that is used by Web Container to run Servlets

and JSP pages. DD is used for several important purposes such as:

 Mapping URL to Servlet class.

 Initializing parameters.

 Defining Error page.

 Security roles.

 Declaring tag libraries.

We will discuss about all these in details later. Now we will see how to create a simple web.xml file

for our web application.

17

Start the Server

Double click on the startup.bat file to start your Apache Tomcat Server.

Or, execute the following command on your windows machine using RUN prompt.

C:\apache-tomcat-7.0.14\bin\startup.bat

Starting Tomcat Server for the first time

If you are starting Tomcat Server for the first time you need to set JAVA_HOME in the Enviroment

variable. The following steps will show you how to set it.

 Right Click on My Computer, go to Properites.

18

 Go to Advanced Tab and Click on Environment Variables... button.

 Click on New button, and enter JAVA_HOME inside Variable name text field and path of JDK

inside Variable value text field. Click OK to save.

19

Run Servlet Application

Open Browser and type http:localhost:8080/First/hello

Hurray! Our first Servlet Application ran successfully.

SERVLET API

There are two packages used to implement the Servlet. These packages are:

o javax.servlet

o javax.servlet.http

20

The javax.servlet package

 To implement the servlet

 Out of many other interfaces and classes defined in this package the most important

interface is Servlet.

 Contains many interfaces and classes that are used by the servlet or web container. These

are not specific to any protocol.

 All the servlet must implement this interface.

Interfaces in javax.servlet package

Interface Description

Servlet This interface defines all the lifecycle methods

ServletConfig This interface obtains the initialization parameters

ServletContext Using this interface the events can be logged

ServletRequest This interface is useful in reading the data from the client

request.

ServletResponse This interface is useful in writing the data to the client request.

Servlets Interface

Servlet interface provides common behavior to all the servlets.Servlet interface needs to be

implemented for creating any servlet (either directly or indirectly). It provides 3 life cycle methods

21

that are used to initialize the servlet, to service the requests, and to destroy the servlet and 2 non-life

cycle methods.

Methods of Servlet interface

There are 5 methods in Servlet interface. The init, service and destroy are the life cycle methods of

servlet. These are invoked by the web container.

 Method Description

public void init(ServletConfigconfig) initializes the servlet. It is the life

cycle method of servlet and

invoked by the web container only

once.
public void

service(ServletRequestrequest,ServletResponse

response)

provides response for the incoming

request. It is invoked at each

request by the web container. public void destroy() is invoked only once and indicates

that servlet is being destroyed.

public ServletConfiggetServletConfig() returns the object of ServletConfig.

public String getServletInfo() returns information about servlet

such as writer, copyright, version

The ServletConfig Interface

An object of ServletConfig is created by the web container for each servlet using its initialization

phase. This object can be used to get configuration information from web.xml file.

Method Description

Enumeration getInitParameterNames() Returns an enumeration of all the initialization

parameter names.

String getServletName() Returns the name of the Servlet

String getInitParameter(String name) Returns the parameter value for the

specified parameter name.

22

ServletContextgetServletContext() Returns an object of ServletContext.

The ServletContext Interface

ServletContext is one of pre-defined interface available in javax.servlet.*; Object of ServletContext

interface is available one per web application. An object of ServletContext is automatically created

by the container when the web application is deployed.

Method Description

Object getAttribute(String attribute_name) The value of the attribute attribute_name in the

current session is returned.

void setAttribute(String attribute_name,

object value)

The attribute_name is passed to the object

value.

String getServerInfo() This method returns the information about the

server

String log(String str) Writes the str to the servlet log.

String getMimeType(String file) It returns the MIME type of the file.

The ServletRequest Interface

Method Description

Object getAttribute(String attribute_name) The value of the attribute attribute_name in the

current session is returned.

initgetContentlength() Returns the content size of the request

String getContentType() Returns the type of the request

getInputStream() Read the binary data from the request

getProtocol() Read the name of the protocol used

getReader() Reading the text from the request

getServerName() Returns the name of the server on which the

servlet is running

initgetServerPort() Returns the port number of the servlet

23

The ServletResponse Interface

Method Description

String getCharacterEncoding() Returns the character encoding

ServletOutputStreamgetOutputStream() Returns the output stream which is used to

write the data for responding

PrintWritergetWriter() Write the character data to the response

void setContentLength(int size) Sets the length of the content equal to the size.

void setContentLength(String Type) Sets the type of the content

Classes in javax.servlet package

There are many classes in javax.servlet package. They are as follows:

Class Description

GenericServlet Implements the Servlet and ServletConfig interfaces

ServletInputStream Provides the input stream for reading the client’s request

ServletOutputStream Provides the output stream for reading the client’s request

ServletException Raise the exception when an error occurs

The javax.servlet.http

The javax.servlet.http package contains interfaces and classes that are responsible for http requests

only.

Interface Description

HttpSession Session data can be read or written using this interface

HttpServletRequest Servlet can read the information from the HTTP request using

this information

24

HttpServletResponse Servlet can write the information to HTTP response using this

interface

HttpSessionBindingListener Tells the object about its binding with the particular session

HttpSession

Method Description

String getId() Returns the session ID

ObjectgetAttribute(String attribute_name) The value of the attribute attribute_name in

the current session is returned

Enumeration getAttributeNames() Returns the attribute names

Http Servlet Request

Method Description

String getMethod() Returns the HTTP method for the client

request

String getPathInfo() Returns the path information about the servlet

path

HttpSessiongetSession() Returns the current session

String getHeader(string fields) Returns the value of header field

Cookie[] getCookies() Returns the information in the cookies in the

request made

String getAuth Type() Returns the type of authentication

Http Servlet Response

Method Description

Void addCookie(Cookie cookie) This method is used to add cookie in the

response

String encodeURL(String url) This method is used to encode the specified

URL

Boolean containsHeader(String f) This method returns TRUE if the response

header contains the field f.

Void sendError(int code) This method sends error code to the client.

25

HttpSessionbindinglistener

Method Description

Object getValue() This function returns the value of

bounded or unbounded attribute.

String getName() This function returns the name being bound or

unbound.

HttpSessiongetSession() This function returns the session to which the

listener can be bound or unbound.

Classes

Class Description

Cookie This class is used to write the cookies.

Http Servlet It is used when developing servlet that

receive and process the HTTP request.

HttpSessionEvent This class is used to handle the session

event.

HttpSessionBindingEvent When a listener is bound to a value.

1.The Cookie class

 Class Description

String getValue() This function returns a value of the cookie.

Void setValue(String s) This function sets the value to the cookie.

String getName() This function returns the name.

2.TheHttpServlet class

Class Description

Void doGet(HttpServletRequestreq,

HttpServletResponse res)

This method performs HTTP get request.

Void doPost(HttpServletRequestreq,

HttpServletResponse res)

This method performs HTTP post request.

Void doPut(HttpServletRequestreq,

HttpServletResponse res)

This method performs HTTP put request.

Void service(HttpServletRequestreq,

HttpServletResponse res)

This method is invoked for processing

HTTP request and response.

3.TheHttpSessionEvent:

This method encapsulates the session event.

26

4.HttpSessionBindingEvent:

The HttpSessionBindingEvent class extends HttpSessionEvent.It is generated when a

listener is bound to a value. The getSession() method obtains the session to which the listener

is being bound or unbound.

Servlet Example by implementing Servlet interface

Let's see the simple example of servlet by implementing the servlet interface.

File: First.java

import java.io.*;

import javax.servlet.*;

public class First implements Servlet{

ServletConfig config=null;

public void init(ServletConfig config){

this.config=config;

System.out.println("servlet is initialized");

}

public void service(ServletRequest req,ServletResponse res)

throws IOException,ServletException{

res.setContentType("text/html");

PrintWriter out=res.getWriter();

out.print("<html><body>");

out.print("hello simple servlet");

out.print("</body></html>");

}

public void destroy(){System.out.println("servlet is destroyed");}

public ServletConfig getServletConfig(){return config;}

public String getServletInfo(){return "copyright 2007-1010";}

}

27

FORM GET AND POSTACTIONS

The browser uses two methods to pass this information to web server. These methods are GET

Method and POST Method.

GET method:

The GET method sends the encoded user information appended to the page request. The page and

the encoded information are separated by the ?character as follows:

http://www.test.com/hello?key1=value1&key2=value2

The GET method is the default method to pass information from browser to web server and it

produces a long string that appears in your browser's Location:box. Never use the GET method if

you have password or other sensitive information to pass to the server. The GET method has size

limitation: only 1024 characters can be in a request string.

This information is passed using QUERY_STRING header and will be accessible through

QUERY_STRING environment variable and Servlet handles this type of requests using

doGet() method.

Anatomy of Get Request

As we know that data is sent in request header in case of get request. It is the default request type.

Let's see what informations are sent to the server.

POST method:

A generally more reliable method of passing information to a backend program is the POST

method. This packages the information in exactly the same way as GET methods, but instead of

28

sending it as a text string after a ?in the URL it sends it as a separate message. This message comes

to the backend program in the form of the standard input which you can parse and use for your

processing. Servlet handles this type of requests using doPost()method.

Reading Form Data using Servlet:

Servlets handles form data parsing automatically using the following methods depending on the

situation:

 getParameter(): You call request.getParameter() method to get the value of a form

parameter.

 getParameterValues(): Call this method if the parameter appears more than once and

returns multiple values, for example checkbox.

 getParameterNames(): Call this method if you want a complete list of all parameters in the

current request.

Anatomy of Post Request

As we know, in case of post request original data is sent in message body. Let's see how informations

are passed to the server in case of post request.

GET Method Example Using URL:

29

Here is a simple URL which will pass two values to HelloForm program using GET method.

http://localhost:8080/HelloForm?first_name=ZARA&last_name=ALI

Below is HelloForm.java servlet program to handle input given by web browser. We are going to

use getParameter() method which makes it very easy to access passed information:

importjava.io.IOException;

importjava.io.PrintWriter;

importjavax.servlet.ServletException;

importjavax.servlet.http.HttpServlet;

importjavax.servlet.http.HttpServletRequest;

importjavax.servlet.http.HttpServletResponse;

public class HelloFormData extends HttpServlet {

 private static final long serialVersionUID = 1L;

 public void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Servlet: Read Form Data";

 out.println("<html>" + "<head><title>" + title

 + "</title></head><body>"

 + "<h1>" + title + "</h1>"

 + "<p>Hi "

 + request.getParameter("name")

 + "</p>"

}

}

Web.xml

This web.xml defines the Servlet mapping for the form data servlet.

<web-app xmlns=http://java.sun.com/xml/ns/j2ee

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

http://javapapers.com/servlet/what-is-servlet-mapping/

30

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-

app_2_4.xsd"

version="2.4">

<display-name>Servlet Form Data Handling</display-name>

<servlet>

<servlet-name>HelloFormData</servlet-name>

<servlet-class>HelloFormData</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>HelloFormData</servlet-name>

<url-pattern>/hello</url-pattern>

</servlet-mapping>

</web-app>

index.html

<!DOCTYPE html>

<html>

<head>

<title>Servlet Read Form Data</title>

</head>

<body>

31

<form action="./hello" method="GET">

Enter your Name: <input type="text" name="name">

<input type="submit" value="Submit" />

</form>

</body>

</html>

Read using POST method

In the above HTML page in form tag instead of GET use as POST. Then in the servlet to read the

form data add a doPost method as below,

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throwsServletException, IOException {

doGet(request, response); }

What is the difference between Get and Post?

32

There are many differences between the Get and Post request. Let's see these differences:

GET POST

1) In case of Get request, only limited amount of

data can be sent because data is sent in header.

In case of post request, large amount of data can be

sent because data is sent in body.

2) Get request is not secured because data is

exposed in URL bar.

Post request is secured because data is not exposed

in URL bar.

3) Get request can be bookmarked Post request cannot be bookmarked

4) Get request is idempotent. It means second

request will be ignored until response of first request

is delivered.

Post request is non-idempotent

5) Get request is more efficient and used more than

Post
Post request is less efficient and used less than get.

SESSION HANDLING

Session simply means a particular interval of time.

Session Tracking is a mechanism used by Webcontainer to maintain state (data) of a user. It is also

known as session management in servlet.

HTTP protocol is a stateless so we need to maintain state using session tracking techniques. Each

time user requests to the server, server treats the request as the new request. So we need to maintain

the state of an user to recognize to particular user.

HTTP is stateless that means each request is considered as the new request. It is shown in the figure

given below:

Why use Session Tracking?

33

 Http protocol is stateless, to make stateful between client and server we need Session

Tracking.

 Session Tracking is useful for online shopping, mailing application, E-Commerce

application to track the conversion.

 To recognize the user it is used to recognize the particular user.

How Session Works

The basic concept behind session is, whenever a user starts using our application, we can save a

unique identification information about him, in an object which is available throughout the

application, until its destroyed. So wherever the user goes, we will always have his information and

we can always manage which user is doing what. Whenever a user wants to exit from your

application, destroy the object with his information.

Session Tracking Techniques

34

There are four techniques used in Session tracking:

1. Cookies

2. Hidden Form Field

3. URL Rewriting

4. HttpSession

1. COOKIES

A cookie is a small piece of information that is persisted between the multiple client requests.

A cookie has a name, a single value, and optional attributes such as a comment, path and domain

qualifiers, a maximum age, and a version number.

How Cookie works

By default, each request is considered as a new request. In cookies technique, we add cookie with

response from the servlet. So cookie is stored in the cache of the browser. After that if request is sent

by the user, cookie is added with request by default. Thus, we recognize the user as the old user.

Types of Cookie

35

There are 2 types of cookies in servlets.

1. Non-persistent cookie

2. Persistent cookie

Non-persistent cookie

It is valid for single session only. It is removed each time when user closes the browser.

Persistent cookie

It is valid for multiple session . It is not removed each time when user closes the browser. It is

removed only if user logout or signout.

Advantage of Cookies

1. Simplest technique of maintaining the state.

2. Cookies are maintained at client side.

Disadvantage of Cookies

1. It will not work if cookie is disabled from the browser.

2. Only textual information can be set in Cookie object.

Cookie class

javax.servlet.http.Cookie class provides the functionality of using cookies. It provides a lot of

useful methods for cookies.

Constructor of Cookie class

Constructor Description

Cookie() constructs a cookie.

Cookie(String name, String value) constructs a cookie with a specified name and

value.

Useful Methods of Cookie class

There are given some commonly used methods of the Cookie class.

36

Method Description

public void setMaxAge(int expiry) Sets the maximum age of the cookie in seconds.

public String getName() Returns the name of the cookie. The name cannot

be changed after creation.

public String getValue() Returns the value of the cookie.

public void setName(String name) changes the name of the cookie.

public void setValue(String value) changes the value of the cookie.

Other methods required for using Cookies

For adding cookie or getting the value from the cookie, we need some methods provided by other

interfaces. They are:

1. public void addCookie(Cookie ck):method of HttpServletResponse interface is used to

add cookie in response object.

2. public Cookie[] getCookies():method of HttpServletRequest interface is used to return

all the cookies from the browser.

How to create Cookie?

Let's see the simple code to create cookie.

Cookie ck=new Cookie("user","sonoo jaiswal");//creating cookie object

response.addCookie(ck);//adding cookie in the response

How to delete Cookie?

Let's see the simple code to delete cookie. It is mainly used to logout or signout the user.

Cookie ck=new Cookie("user","");//deleting value of cookie

ck.setMaxAge(0);//changing the maximum age to 0 seconds

response.addCookie(ck);//adding cookie in the response

How to get Cookies?

Let's see the simple code to get all the cookies.

37

Cookie ck[]=request.getCookies();

for(int i=0;i<ck.length;i++){

out.print("
"+ck[i].getName()+" "+ck[i].getValue());//printing name an

d value of cookie

}

38

Output

39

2. Hidden Form Field

Hidden form field can also be used to store session information for a particular client. In case of

hidden form field a hidden field is used to store client state. In this case user information is stored in

hidden field value and retrieved from another servlet.

In case of Hidden Form Field a hidden (invisible) textfield is used for maintaining the state of an

user.

In such case, we store the information in the hidden field and get it from another servlet. This

approach is better if we have to submit form in all the pages and we don't want to depend on the

browser.

Let's see the code to store value in hidden field.

<input type="hidden" name="uname" value="Vimal Jaiswal">

Here, uname is the hidden field name and Vimal Jaiswal is the hidden field value.

Advantage of Hidden Form Field

1. It will always work whether cookie is disabled or not.

Disadvantage of Hidden Form Field:

1. It is maintained at server side.

2. Extra form submission is required on each pages.

40

3. Only textual information can be used.

Example of using Hidden Form Field

In this example, we are storing the name of the user in a hidden textfield and getting that value from

another servlet.

index.html

<form action="servlet1">
Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>
</form>

FirstServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response){
 try{

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");
 out.print("Welcome "+n);

 //creating form that have invisible textfield
 out.print("<form action='servlet2'>");
 out.print("<input type='hidden' name='uname' value='"+n+"'>");
 out.print("<input type='submit' value='go'>");
 out.print("</form>");

41

 out.close();

 }catch(Exception e){System.out.println(e);}
 }

}

SecondServlet.java

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
public class SecondServlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response)
 try{
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 //Getting the value from the hidden field
 String n=request.getParameter("uname");
 out.print("Hello "+n);

 out.close();
 }catch(Exception e){System.out.println(e);}

 }
}

web.xml

<web-app>

<servlet>
<servlet-name>s1</servlet-name>
<servlet-class>FirstServlet</servlet-class>
</servlet>

<servlet-mapping>

<servlet-name>s1</servlet-name>
<url-pattern>/servlet1</url-pattern>
</servlet-mapping>

<servlet>
<servlet-name>s2</servlet-name>
<servlet-class>SecondServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>s2</servlet-name>
<url-pattern>/servlet2</url-pattern>
</servlet-mapping>

42

</web-app>

3. URL Rewriting

In URL rewriting, we append a token or identifier to the URL of the next Servlet or the next

resource. We can send parameter name/value pairs using the following format:

url?name1=value1&name2=value2&??

A name and a value is separated using an equal = sign, a parameter name/value pair is separated

from another parameter using the ampersand(&). When the user clicks the hyperlink, the parameter

name/value pairs will be passed to the server. From a Servlet, we can use getParameter() method to

obtain a parameter value.

Advantage of URL Rewriting

1. It will always work whether cookie is disabled or not (browser independent).

2. Extra form submission is not required on each pages.

Disadvantage of URL Rewriting

1. It will work only with links.

2. It can send only textual information.

Example of using URL Rewriting

In this example, we are maintaining the state of the user using link. For this purpose, we are

appending the name of the user in the query string and getting the value from the query string in

another page.

43

index.html

<form action="servlet1">
Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>
</form>

FirstServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response){
 try{

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 //appending the username in the query string
 out.print("visit");

 out.close();

 }catch(Exception e){System.out.println(e);}
 }

}

SecondServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
 try{

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 //getting value from the query string

 String n=request.getParameter("uname");

44

 out.print("Hello "+n);

 out.close();

 }catch(Exception e){System.out.println(e);}
 }

}

web.xml

<web-app>

<servlet>
<servlet-name>s1</servlet-name>
<servlet-class>FirstServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>s1</servlet-name>
<url-pattern>/servlet1</url-pattern>
</servlet-mapping>

<servlet>
<servlet-name>s2</servlet-name>
<servlet-class>SecondServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>s2</servlet-name>

<url-pattern>/servlet2</url-pattern>
</servlet-mapping>

</web-app>

4.HttpSession

HttpSession object is used to store entire session with a specific client. We can store, retrieve and

remove attribute from HttpSession object. Any servlet can have access to HttpSession object

throughout the getSession() method of the HttpServletRequest object.

45

How HttpSession works

1. On client's first request, the Web Container generates a unique session ID and gives it back to

the client with response. This is a temporary session created by web container.

2. The client sends back the session ID with each request. Making it easier for the web container to

identify where the request is coming from.

3. The Web Container uses this ID, finds the matching session with the ID and associates the

session with the request.

How to get the HttpSessionobject ?

The HttpServletRequest interface provides two methods to get the object of HttpSession:

1. publicHttpSessiongetSession():Returns the current session associated with this request, or if

the request does not have a session, creates one.

2. publicHttpSessiongetSession(boolean create):Returns the current HttpSession associated

with this request or, if there is no current session and create is true, returns a new session.

Commonly used methods of HttpSession interface

1. public String getId():Returns a string containing the unique identifier value.

2. public long getCreationTime():Returns the time when this session was created, measured in

milliseconds since midnight January 1, 1970 GMT.

46

3. public long getLastAccessedTime():Returns the last time the client sent a request associated

with this session, as the number of milliseconds since midnight January 1, 1970 GMT.

4. public void invalidate():Invalidates this session then unbinds any objects bound to it.

Example of using HttpSession

In this example, we are setting the attribute in the session scope in one servlet and getting that value

from the session scope in another servlet. To set the attribute in the session scope, we have used the

setAttribute() method of HttpSession interface and to get the attribute, we have used the getAttribute

method.

index.html

<form action="servlet1">
Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>
</form>

FirstServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response){
 try{

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");
 out.print("Welcome "+n);

 HttpSession session=request.getSession();
 session.setAttribute("uname",n);

 out.print("visit");

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

47

}

SecondServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
 try{

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 HttpSession session=request.getSession(false);
 String n=(String)session.getAttribute("uname");
 out.print("Hello "+n);

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

web.xml

<web-app>

<servlet>
<servlet-name>s1</servlet-name>
<servlet-class>FirstServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>s1</servlet-name>
<url-pattern>/servlet1</url-pattern>
</servlet-mapping>

<servlet>

<servlet-name>s2</servlet-name>
<servlet-class>SecondServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>s2</servlet-name>
<url-pattern>/servlet2</url-pattern>

48

</servlet-mapping>

</web-app>

INSTALLING AND CONFIGURING APACHE TOMCAT WEB SERVER

This section will show the process to install and configure Tomcat 6 on your computer system.

Step 1:

Installation of JDK:

Before beginning the process of installing Tomcat on your system, ensure first the availability of

JDK on your system program directory. Install it on your system if not already installed (because

any version of tomcat requires the Java 1.6 or higher versions) and then set the class path

(environment variable) of JDK. To set the JAVA_HOME Variable: you need to specify the

location of the java run time environment to support the Tomcat else Tomcat server cannot run.

This variable contains the path of JDK installation directory.

set JAVA_HOME=C:\Program Files\Java\jdk1.6

Note: it should not contain the path up to bin folder. Here, we have taken the URL path according to

our installation convention.

For Windows OS, go through the following steps:

Start menu->Control Panel->System->Advanced tab->Environment Variables->New->set the

Variable name = JAVA_HOME and variable value = C:\Program Files\Java\jdk1.6

Now click on all the subsequent ok buttons one by one. It will set the JDK path.

Step 2:

For setting the class path variable for JDK, do like this:

Start menu->Control Panel->System->Advanced tab->Environment Variables->New->

Set PATH="C:\Program Files\Java\jdk1.6\bin"; %PATH%

OR

49

First, right click on the

My Computer->properties->advance->Environment Variables->path.

Now, set bin directory path of JDK in the path variable

Step 3:

The process of installing Tomcat 6.0 begins here from now. It takes various steps for installing and

configuring the Tomcat 6.0.

For Windows OS, Tomcat comes in two forms: .zip file and .exe file (the Windows installer file).

Here we are exploring the installation process by using the .exe file. First unpack the zipped file and

simply execute the '.exe' file.

A Welcome screen shot appears that shows the beginning of installation process. Just click on the

'Next' button to precede the installation process.

Steps 4:

A screen of 'License Agreement' displays.

50

Click on the 'I Agree' button.

Step 5:

A screen shot appears asking for the 'installing location'

Choose the default components and click on the 'Next' button.

Step 6:

A screen shot of 'Configuration Options' displays on the screen. Choose the location for the Tomcat

files as per your convenience. You can also select the default Location

51

The port number will be your choice on which you want to run the tomcat server. The port number

8080 is the default port value for tomcat server to proceed the HTTP requests. The user can also

change the 'port number' after completing the process of installation; for this, users have to follow

the following tips.

Go to the specified location as " Tomcat 6.0 \conf \server.xml ". Within the server.xml file choose

"Connector" tag and change the port number.

Now, click on the 'Next' button to further proceed the installation process.

Step 7:

A Window of Java Virtual Machine displays on the screen

52

This window asks for the location of the installed Java Virtual Machine. Browse the location of the

JRE folder and click on the Install button. This will install the Apache tomcat at the specified

location.

Step 8:

A processing window of installing displays on the screen.

To get the information about installer click on the "Show details" button

Step 9:

A screen shot of 'Tomcat Completion' displays on the screen.

Click on the 'Finish' button.

53

Step 10:

A window of Apache Service Manager appears with displaying the running process.

Let the running process goes on.

Step 11:

After completing the installation process, the Apache Tomcat Manager appears on the toolbar panel

like shown in the below picture.

Configuring Tomcat Manager

To Configure the Tomcat Manager, there are two ways; either user can configure Tomcat directly

from the toolbar panel or can configure it from Control Panel Section.

i) Configuring from toolbar Panel

To Configure Apache Tomcat web server from the toolbar panel, you have to press 'double click' on

the appeared icon.

54

A configured window appears on the desktop. Now, just click on the Startup button. The installation

process will be completed.

ii) Configuration from the Control Panel

To configure the Apache Tomcat Manager, Users will have to follow the follwing steps:

Click on the Startup button -- select Control Panel -- Administrator Tool -- Services -- select Apache

Tomcat.

The following screen displays on the monitor.

Double click on the Apache Tomcat. The window of Apache Tomcat Properties appears on the

screen.

55

Now, Click on the start up button. The Apache Tomcat is now ready to function.

To operate it, follow the below steps of processing.

Start the Tomcat Server:

1.Start the tomcat server from the bin folder of Tomcat 6.0 directory by double clicking the

"tomcat6.exe" file.

OR create a shortcut of this .exe file at your desktop.

2. Now Open web browser and type URL http://localhost:8080 in the address bar to test the server

3. To Stop the Tomcat Server: Stop the server by pressing the "Ctrl + c" keys.

The screen of Apache Tomcat software looks like this:

56

DATABASE CONNECTIVITY: JDBC perspectives, JDBC program example

JDBC is a java API to connect and execute query with the database. JDBC API uses jdbc drivers to

connect with the database.

Why use JDBC

Before JDBC, ODBC API was the database API to connect and execute query with the database.

But, ODBC API uses ODBC driver which is written in C language (i.e. platform dependent and

unsecured). That is why Java has defined its own API (JDBC API) that uses JDBC drivers (written

in Java language).

57

What is API?

API (Application programming interface) is a document that contains description of all the features

of a product or software. It represents classes and interfaces that software programs can follow to

communicate with each other. An API can be created for applications, libraries, operating systems,

etc

JDBC Architecture

The JDBC API supports both two-tier and three-tier processing models for database access but in

general, JDBC Architecture consists of two layers −

 JDBC API: This provides the application-to-JDBC Manager connection.

 JDBC Driver API: This supports the JDBC Manager-to-Driver Connection.

The JDBC API uses a driver manager and database-specific drivers to provide transparent

connectivity to heterogeneous databases.

The JDBC driver manager ensures that the correct driver is used to access each data source. The

driver manager is capable of supporting multiple concurrent drivers connected to multiple

heterogeneous databases.

Following is the architectural diagram, which shows the location of the driver manager with respect

to the JDBC drivers and the Java application −

58

Common JDBC Components

The JDBC API provides the following interfaces and classes −

 DriverManager: This class manages a list of database drivers. Matches connection requests

from the java application with the proper database driver using communication sub protocol.

The first driver that recognizes a certain subprotocol under JDBC will be used to establish a

database Connection.

 Driver: This interface handles the communications with the database server. You will

interact directly with Driver objects very rarely. Instead, you use DriverManager objects,

which manage objects of this type. It also abstracts the details associated with working with

Driver objects.

 Connection: This interface with all methods for contacting a database. The connection

object represents communication context, i.e., all communication with database is through

connection object only.

 Statement: You use objects created from this interface to submit the SQL statements to the

database. Some derived interfaces accept parameters in addition to executing stored

procedures.

 ResultSet: These objects hold data retrieved from a database after you execute an SQL

query using Statement objects. It acts as an iterator to allow you to move through its data.

 SQLException: This class handles any errors that occur in a database application.

JDBC Driver is a software component that enables java application to interact with the

database.There are 4 types of JDBC drivers:

1. JDBC-ODBC bridge driver

2. Native-API driver (partially java driver)

3. Network Protocol driver (fully java driver)

4. Thin driver (fully java driver)

1) JDBC-ODBC bridge driver

The JDBC-ODBC bridge driver uses ODBC driver to connect to the database. The JDBC-ODBC

bridge driver converts JDBC method calls into the ODBC function calls. This is now discouraged

because of thin driver.

59

Advantages:

 easy to use.

 can be easily connected to any database.

Disadvantages:

 Performance degraded because JDBC method call is converted into the ODBC function calls.

 The ODBC driver needs to be installed on the client machine.

2) Native-API driver

The Native API driver uses the client-side libraries of the database. The driver converts JDBC

method calls into native calls of the database API. It is not written entirely in java.

Advantage:

60

 performance upgraded than JDBC-ODBC bridge driver.

Disadvantage:

 The Native driver needs to be installed on the each client machine.

 The Vendor client library needs to be installed on client machine.

3) Network Protocol driver

The Network Protocol driver uses middleware (application server) that converts JDBC calls directly

or indirectly into the vendor-specific database protocol. It is fully written in java.

Advantage:

 No client side library is required because of application server that can perform many tasks

like auditing, load balancing, logging etc.

Disadvantages:

 Network support is required on client machine.

 Requires database-specific coding to be done in the middle tier.

 Maintenance of Network Protocol driver becomes costly because it requires database-specific

coding to be done in the middle tier.

4) Thin driver

The thin driver converts JDBC calls directly into the vendor-specific database protocol. That is

why it is known as thin driver. It is fully written in Java language.

61

Advantage:

 Better performance than all other drivers.

 No software is required at client side or server side.

Disadvantage:

 Drivers depends on the Database.

EXAMPLE PROGRAM ON SERVLET WITH DATABASE CONNECTIVITY

 Download Jar and save to lib folder of Apache (ojdbc14-1.0.jar Required):

 Update Classpath to following (Path in Bold are new): C:\Program Files\Apache Software

Foundation\Tomcat 7.0\lib\servlet-api.jar;C:\Program Files\Apache Software

Foundation\Tomcat 7.0\lib\jsp-api.jar;C:\Program Files\Apache Software Foundation\Tomcat

7.0\lib\ojdbc14-1.0.jar;C:\Program Files\Apache Software Foundation\Tomcat

7.0\lib\ com.mysql.jdbc_5.1.5.jar;.

 Download and Install MySQL.

First Create Your Database and Tables

Table Name: student

FieldName Type

Sid number(10) Primary Key

62

Sname varchar2(20)

 Hello JDBC MySQL using Servlet Example

FilePath : C:\Program Files\Apache Software Foundation\Tomcat 7.0\webapps\example03\WEB-

INF\classes

ex03.java
importjava.io.IOException;

importjava.io.PrintWriter;

importjava.sql.Connection;

importjava.sql.DriverManager;

importjava.sql.ResultSet;

importjava.sql.Statement;

importjavax.servlet.ServletException;

importjavax.servlet.http.HttpServlet;

importjavax.servlet.http.HttpServletRequest;

importjavax.servlet.http.HttpServletResponse;

public class ex03 extends HttpServlet

{

 protected void doGet(HttpServletRequestreq,HttpServletResponse

res)throws ServletException,IOException

 {

 PrintWriter pw=res.getWriter();

 res.setContentType("text/html");

 String tb="student";

 pw.println("Initializing Connection....");

 try

 {

 Class.forName("com.mysql.jdbc.Driver");

 Connection

con=DriverManager.getConnection("jdbc:mysql://localhost:3306/test","adars

h","patel");

 Statement st=con.createStatement();

 pw.println("connection established successfully...!!");

 ResultSetrs=st.executeQuery("Select * from "+tb);

 pw.println("<table border=1>");

 while(rs.next())

 {

pw.println("<tr><td>"+rs.getInt(1)+"</td><td>"+rs.getString(2)+"</td>"+"<

/tr>");

 }

 pw.println("</table>");

 pw.close();

63

 }

 catch (Exception e)

 {

 pw.println("The error is:" + e.getMessage());

 } }}

Hello JDBC using Servlet Example Explanation:

Line :Class.forName(“com.mysql.jdbc.Driver “);

Explanation : This Line if to load Driver for MySQL Database Connectivity with Java Servlet.

Line: Connection con=DriverManager.getConnection(“jdbc:mysql://localhost:3306/test”,”root”,””);

Explanation : This Line is most important as it contains userid and password of MySQL. Here I

have used userid :adarsh and password : patel. Only 2 Fields you need to change is userid and

password. (Default userid for MySQL is root and password is blank);

 FilePath : C:\Program Files\ApacheSoftwareFoundation\Tomcat

7.0\webapps\example03\WEB-INF\

web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app>
<display-name>Example 02 </display-name>
<description> JDBC Using Servlet </description>
 <servlet>
 <servlet-name>ex03</servlet-name>
 <servlet-class>ex03</servlet-class>
</servlet>
 <servlet-mapping>
 <servlet-name>ex03</servlet-name>
 <url-pattern>/ex03</url-pattern>
</servlet-mapping></web-app>

UNIT III

SERVER SIDE PROGRAMMING

JSP: Understanding Java Server Pages-JSP Standard Tag Library(JSTL)-Creating HTML forms by

embedding JSP code.

JSP DEFINITION:

 Java Server Pages (JSP) is a server-side programming technology that enables the creation

of dynamic, platform-independent method for building Web-based applications.

 JSP technology is used to create web application just like Servlet technology. It can be

thought of as an extension to servlet because it provides more functionality than servlet such

as expression language, JSTL, etc.

 A JSP page consists of HTML tags and JSP tags. The jsp pages are easier to maintain than

servlet because we can separate designing and development. It provides some additional

features such as Expression Language, Custom Tag etc.

Advantage of JSP over Servlet

There are many advantages of JSP over servlet. They are as follows:

1) Extension to Servlet

JSP technology is the extension to servlet technology. We can use all the features of servlet in

JSP. In addition to, we can use implicit objects, predefined tags, expression language and

Custom tags in JSP which makes JSP development easy.

2) Easy to maintain

JSP can be easily managed because we can easily separate our business logic with presentation

logic. In servlet technology, we mix our business logic with the presentation logic.

3) Fast Development: No need to recompile and redeploy

If JSP page is modified, we don't need to recompile and redeploy the project. The servlet code

needs to be updated and recompiled if we have to change the look and feel of the application.

4) Less code than Servlet

In JSP, we can use a lot of tags such as action tags, jstl, custom tags etc. that reduces the code.

Moreover, we can use EL, implicit objects etc.

Why Use JSP?

 JavaServer Pages often serve the same purpose as programs implemented using the

Common Gateway Interface (CGI). But JSP offer several advantages in comparison with

the CGI.

 Performance is significantly better because JSP allows embedding Dynamic Elements in

HTML Pages itself instead of having a separate CGI files.

 JSP are always compiled before it's processed by the server unlike CGI/Perl which requires

the server to load an interpreter and the target script each time the page is requested.

 JavaServer Pages are built on top of the Java Servlets API, so like Servlets, JSP also has

access to all the powerful Enterprise Java APIs, including JDBC, JNDI, EJB, JAXP etc.

 JSP pages can be used in combination with servlets that handle the business logic, the

model supported by Java servlet template engines.

JSP ARCHITECTURE

The web server needs a JSP engine ie. container to process JSP pages. The JSP container is

responsible for intercepting requests for JSP pages. This tutorial makes use of Apache which has

built-in JSP container to support JSP pages development.

A JSP container works with the Web server to provide the runtime environment and other services

a JSP needs. It knows how to understand the special elements that are part of JSPs.

Following diagram shows the position of JSP container and JSP files in a Web Application.

PROCESSING OF JSP

The following steps explain how the web server creates the web page using JSP:

 As with a normal page, your browser sends an HTTP request to the web server.

 The web server recognizes that the HTTP request is for a JSP page and forwards it to a JSP

engine. This is done by using the URL or JSP page which ends with .jspinstead of .html.

 The JSP engine loads the JSP page from disk and converts it into a servlet content. This

conversion is very simple in which all template text is converted to println() statements

and all JSP elements are converted to Java code that implements the corresponding

dynamic behavior of the page.

 The JSP engine compiles the servlet into an executable class and forwards the original

request to a servlet engine.

 A part of the web server called the servlet engine loads the Servlet class and executes it.

During execution, the servlet produces an output in HTML format, which the servlet

engine passes to the web server inside an HTTP response.

 The web server forwards the HTTP response to your browser in terms of static HTML

content.

 Finally web browser handles the dynamically generated HTML page inside the HTTP

response exactly as if it were a static page.

All the above mentioned steps can be shown below in the following diagram:

 Typically, the JSP engine checks to see whether a servlet for a JSP file already exists and

whether the modification date on the JSP is older than the servlet.

 If the JSP is older than its generated servlet, the JSP container assumes that the JSP hasn't

changed and that the generated servlet still matches the JSP's contents.

 This makes the process more efficient than with other scripting languages (such as PHP)

and therefore faster.

 So in a way, a JSP page is really just another way to write a servlet without having to be a

Java programming wiz.

 Except for the translation phase, a JSP page is handled exactly like a regular servlet.

LIFECYCLE OF JSP

A JSP life cycle can be defined as the entire process from its creation till the destruction which is

similar to a servlet life cycle with an additional step which is required to compile a JSP into

servlet.

The following are the paths followed by a JSP

 Compilation

 Initialization

 Execution

 Cleanup

The four major phases of JSP life cycle are very similar to Servlet Life Cycle and they are as

follows:

JSP Compilation:

When a browser asks for a JSP, the JSP engine first checks to see whether it needs to compile the

page. If the page has never been compiled, or if the JSP has been modified since it was last

compiled, the JSP engine compiles the page.

The compilation process involves three steps:

 Parsing the JSP.

 Turning the JSP into a servlet.

 Compiling the servlet.

JSP Initialization:

When a container loads a JSP it invokes the jspInit() method before servicing any requests. If you

need to perform JSP-specific initialization, override the jspInit() method:

publicvoid jspInit(){

// Initialization code...

}

Typically initialization is performed only once and as with the servlet init method, you generally

initialize database connections, open files, and create lookup tables in the jspInit method.

JSP Execution:

This phase of the JSP life cycle represents all interactions with requests until the JSP is destroyed.

Whenever a browser requests a JSP and the page has been loaded and initialized, the JSP engine

invokes the _jspService() method in the JSP.

The _jspService() method takes an HttpServletRequest and an HttpServletResponse as its

parameters as follows:

void _jspService(HttpServletRequest request,

HttpServletResponse response)

{

// Service handling code...

}

The _jspService() method of a JSP is invoked once per a request and is responsible for generating

the response for that request and this method is also responsible for generating responses to all

seven of the HTTP methods ie. GET, POST, DELETE etc.

JSP Cleanup:

The destruction phase of the JSP life cycle represents when a JSP is being removed from use by a

container.

The jspDestroy() method is the JSP equivalent of the destroy method for servlets. Override

jspDestroy when you need to perform any cleanup, such as releasing database connections or

closing open files.

The jspDestroy() method has the following form:

publicvoid jspDestroy()

{

// Your cleanup code goes here.

}

CONTROL-FLOW STATEMENTS:

 JSP provides full power of Java to be embedded in your web application.

 You can use all the APIs and building blocks of Java in your JSP programming including decision making

statements, loops etc.

Decision-Making Statements:

 The if...else block starts out like an ordinary Scriptlet, but the Scriptlet is closed at each line with HTML text

included between Scriptlet tags.

<%!int day =3; %>

<html>

<head><title>IF...ELSE Example</title></head>

<body>

<%if(day ==1| day ==7){ %>

<p> Today is weekend</p>

<%}else{ %>

<p> Today is not weekend</p>

<%} %>

</body>

</html>

This would produce following result:

 Today is not weekend

Switch Case:

Now look at the following switch...case block which has been written a bit differentlty

usingout.println() and inside Scriptletas:

<%!int day =3; %>

<html>

<head><title>SWITCH...CASE Example</title></head>

<body>

<%

switch(day){

case0:

out.println("It\'s Sunday.");

break;

case1:

out.println("It\'s Monday.");

break;

case2:

out.println("It\'s Tuesday.");

break;

case3:

out.println("It\'s Wednesday.");

break;

case4:

out.println("It\'s Thursday.");

break;

case5:

out.println("It\'s Friday.");

break;

default:

out.println("It's Saturday.");

}

%>

</body>

</html>

This would produce following result:

It's Wednesday.

Loop Statements:

 You can also use three basic types of looping blocks in Java: for, while,and

do…whileblocks in your JSP programming.

Let us look at the following for loop example:

<%!int fontSize; %>

<html>

<head><title>FOR LOOP Example</title></head>

<body>

<%for(fontSize =1; fontSize <=3; fontSize++){ %>

<font color="green" size="<%= fontSize %>">

 JSP Tutorial

<%}%>

</body>

</html>

This would produce following result:

 JSP Tutorial

 JSP Tutorial

 JSP Tutorial

Above example can be written using while loop as follows:

<%!int fontSize; %>

<html>

<head><title>WHILE LOOP Example</title></head>

<body>

<%while(fontSize <=3){ %>

<font color="green" size="<%= fontSize %>">

 JSP Tutorial

<%fontSize++;%>

<%}%>

</body>

</html>

This would also produce following result:

 JSP Tutorial

 JSP Tutorial

 JSP Tutorial

JSP Operators:

 JSP supports all the logical and arithmetic operators supported by Java.

 Following table give a list of all the operators with the highest precedence appear at the top

of the table, those with the lowest appear at the bottom.

 Within an expression, higher precedence operators will be evaluated first.

Category Operator Associativity

Postfix () [] . (dot operator) Left to right

Unary ++ - - ! ~ Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift >>>>><< Left to right

Relational >>= <<= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

JSP Literals:

The JSP expression language defines the following literals:

 Boolean: true and false

 Integer: as in Java

 Floating point: as in Java

 String: with single and double quotes; " is escaped as \", ' is escaped as \', and \ is escaped

as \\.

 Null: null

 Null: null

SCRIPTLET:

A scriptlet can contain any number of JAVA language statements, variable or method declarations,

or expressions that are valid in the page scripting language.

Following is the syntax of Scriptlet:

<% code fragment %>

You can write XML equivalent of the above syntax as follows:

<jsp:scriptlet>

 code fragment

</jsp:scriptlet>

JSP Scriptlet tag (Scripting elements)

1. Scripting elements

2. JSP scriptlet tag

3. Simple Example of JSP scriptlet tag

4. Example of JSP scriptlet tag that prints the user name

In JSP, java code can be written inside the jsp page using the scriptlet tag.

JSP Scripting elements

The scripting elements provide the ability to insert java code inside the jsp. There are three types of

scripting elements:

o scriptlet tag

o expression tag

http://www.javatpoint.com/jsp-scriptlet-tag
http://www.javatpoint.com/jsp-scriptlet-tag#scriptlet
http://www.javatpoint.com/jsp-scriptlet-tag#scriptletex1
http://www.javatpoint.com/jsp-scriptlet-tag#scriptletex2

o declaration tag

JSP scriptlet tag

 A scriptlet tag is used to execute java source code in JSP.

 Syntax is as follows:

<% java source code %>

Example of JSP scriptlet tag

In this example, we are displaying a welcome message.

<html>

<body>

<% out.print("welcome to jsp"); %>

</body>

</html>

Example of JSP scriptlet tag that prints the user name

 In this example, we have created two files index.html and welcome.jsp.

 The index.html file gets the username from the user and the welcome.jsp file prints the

username with the welcome message.

File: index.html

<html>

<body>

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

</body>

</html>

File: welcome.jsp

<html>

<body>

<%

String name=request.getParameter("uname");

out.print("welcome "+name);

%>

</form>

</body>

</html>

JSP expression tag

 The code placed within JSP expression tag is written to the output stream of the response.

 So you need not write out.print() to write data.

 It is mainly used to print the values of variable or method.

Syntax of JSP expression tag

<%= statement %>

Example of JSP expression tag

In this example of jsp expression tag, we are simply displaying a welcome message.

<html>

<body>

<%= "welcome to jsp" %>

</body>

</html>

Note: Do not end your statement with semicolon in case of expression tag.

Example of JSP expression tag that prints current time

To display the current time, we have used the getTime() method of Calendar class. The getTime() is

an instance method of Calendar class, so we have called it after getting the instance of Calendar

class by the getInstance() method.

index.jsp

<html>

<body>

Current Time: <%= java.util.Calendar.getInstance().getTime() %>

</body>

</html>

Example of JSP expression tag that prints the user name

In this example, we are printing the username using the expression tag. The index.html file gets the

username and sends the request to the welcome.jsp file, which displays the username.

File: index.jsp

<html>

<body>

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

</body>

</html>

File: welcome.jsp

<html>

<body>

<%= "Welcome "+request.getParameter("uname") %>

</body>

</html>

JSP Declaration Tag

 The JSP declaration tag is used to declare fields and methods.

 The code written inside the jsp declaration tag is placed outside the service() method of auto

generated servlet.

 So it doesn't get memory at each request.

Syntax of JSP declaration tag

<%! field or method declaration %>

Difference between JSP Scriptlet tag and Declaration tag

Jsp Scriptlet Tag Jsp Declaration Tag

The jsp scriptlet tag can only declare variables not

methods.

The jsp declaration tag can

declare variables as well as

methods.

The declaration of scriptlet tag is placed inside the

_jspService() method.

The declaration of jsp declaration

tag is placed outside the

_jspService() method.

Example of JSP declaration tag that declares field

In this example of JSP declaration tag, we are declaring the field and printing the value of the

declared field using the jsp expression tag.

index.jsp

<html>

<body>

<%! int data=50; %>

<%= "Value of the variable is:"+data %>

</body>

</html>

Example of JSP declaration tag that declares method

 In this example of JSP declaration tag, we are defining the method which returns the cube of

given number and calling this method from the jsp expression tag.

 But we can also use jsp scriptlet tag to call the declared method.

index.jsp

<html>

<body>

<%!

int cube(int n){

return n*n*n*;

}

%>

<%= "Cube of 3 is:"+cube(3) %>

</body>

</html>

JSP Comments:

JSP comment marks text or statements that the JSP container should ignore. A JSP comment is

useful when you want to hide or "comment out" part of your JSP page.

Following is the syntax of JSP comments:

<%-- This is JSP comment --%>

There are a small number of special constructs you can use in various cases to insert comments or

characters that would otherwise be treated specially. Here's a summary:

 Syntax Purpose

<%-- comment --%> A JSP comment. Ignored by the JSP engine.

<!-- comment --> An HTML comment. Ignored by the browser.

<\% Represents static <% literal.

%\> Represents static %> literal.

\' A single quote in an attribute that uses single quotes.

\" A double quote in an attribute that uses double quotes.

JSP DIRECTIVES:

The jsp directives are messages that tells the web container how to translate a JSP page into the

corresponding servlet.

There are three types of directives:

 page directive

 include directive

 taglib directive

Syntax of JSP Directive

<%@ directive attribute="value" %>

Directive Description

<%@ page ... %> Defines page-dependent attributes, such as scripting language,

error page, and buffering requirements.
<%@ include ... %> Includes a file during the translation phase.

<%@ taglib ... %> Declares a tag library, containing custom actions, used in the

page

1. page directive

The page directive defines attributes that apply to an entire JSP page.

<%@ page attribute="value" %>

2. include Directive:

 The include directive is used to includes a file during the translation phase.

 This directive tells the container to merge the content of other external files with the

current JSP during the translation phase.

 You may code include directives anywhere in your JSP page.

The general usage form of this directive is as follows:

<%@ include file="relative url">

The filename in the include directive is actually a relative URL. If you just specify a filename with

no associated path, the JSP compiler assumes that the file is in the same directory as your JSP.

3. taglib Directive:

 The JavaServer Pages API allows you to define custom JSP tags that look like HTML or

XML tags and a tag library is a set of user-defined tags that implement custom behavior.

 The taglib directive declares that your JSP page uses a set of custom tags, identifies the

location of the library, and provides a means for identifying the custom tags in your JSP

page.

The taglib directive follows the following syntax:

<%@ taglib uri="uri" prefix="prefixOfTag">

Where the uri attribute value resolves to a location the container understands and

the prefix attribute informs a container what bits of markup are custom actions.

JSP ACTIONS:

JSP actions use constructs in XML syntax to control the behavior of the servlet engine. You can

dynamically insert a file, reuse JavaBeans components, forward the user to another page, or

generate HTML for the Java plugin.

There is only one syntax for the Action element, as it conforms to the XML standard:

<jsp:action_name attribute="value" />

Action elements are basically predefined functions and there are following JSP actions available:

Syntax Purpose

jsp:include Includes a file at the time the page is requested

jsp:useBean Finds or instantiates a JavaBean

jsp:setProperty Sets the property of a JavaBean

jsp:getProperty Inserts the property of a JavaBean into the output

jsp:forward Forwards the requester to a new page

jsp:plugin Generates browser-specific code that makes an OBJECT or

EMBED tag for the Java plugin

jsp:element Defines XML elements dynamically.

jsp:attribute Defines dynamically defined XML element's attribute.

jsp:body Defines dynamically defined XML element's body.

jsp:text Use to write template text in JSP pages and documents.

JSP IMPLICIT OBJECTS:

JSP supports nine automatically defined variables, which are also called implicit objects. These

variables are:

Objects Description

request This is the HttpServletRequest object associated with the request.

response This is the HttpServletResponse object associated with the response to the

client.

out This is the PrintWriter object used to send output to the client.

session This is the HttpSession object associated with the request.

application This is the ServletContext object associated with application context.

config This is the ServletConfig object associated with the page.

pageContext This encapsulates use of server-specific features like higher

performance JspWriters.
page This is simply a synonym for this, and is used to call the methods defined

by the translated servlet class.

Exception The Exception object allows the exception data to be accessed by

designated JSP.

JSTL (JSP STANDARD TAG LIBRARY)

The JavaServer Pages Standard Tag Library (JSTL) is a collection of useful JSP tags which

encapsulates core functionality common to many JSP applications.

JSTL has support for common, structural tasks such as iteration and conditionals, tags for

manipulating XML documents, internationalization tags, and SQL tags. It also provides a

framework for integrating existing custom tags with JSTL tags.

The JSTL tags can be classified, according to their functions, into following JSTL tag library

groups that can be used when creating a JSP page:

 Core Tags

 Formatting tags

 SQL tags

 XML tags

 JSTL Functions

Core Tags:

The core group of tags are the most frequently used JSTL tags. Following is the syntax to include

JSTL Core library in your JSP:

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

There are following Core JSTL Tags:

Tag Description

<c:out > Like <%= ... >, but for expressions.

<c:set > Sets the result of an expression evaluation in a 'scope'

<c:remove > Removes a scoped variable (from a particular scope, if

specified).

<c:catch> Catches any Throwable that occurs in its body and optionally

exposes it.

<c:if> Simple conditional tag which evalutes its body if the supplied

condition is true.

<c:choose> Simple conditional tag that establishes a context for mutually

exclusive conditional operations, marked by <when> and

<otherwise>

<c:when> Subtag of <choose> that includes its body if its condition

evalutes to 'true'.

<c:otherwise > Subtag of <choose> that follows <when> tags and runs only if

all of the prior conditions evaluated to 'false'.

<c:import> Retrieves an absolute or relative URL and exposes its contents

to either the page, a String in 'var', or a Reader in 'varReader'.

<c:forEach > The basic iteration tag, accepting many different collection

types and supporting subsetting and other functionality .

http://www.tutorialspoint.com/jsp/jstl_core_out_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_set_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_remove_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_catch_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_if_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_choose_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_choose_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_choose_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_import_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_foreach_tag.htm

<c:forTokens> Iterates over tokens, separated by the supplied delimeters.

<c:param> Adds a parameter to a containing 'import' tag's URL.

<c:redirect > Redirects to a new URL.

<c:url> Creates a URL with optional query parameters

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<html>

<head>

<title><c:out> Tag Example</title>

</head>

<body>

<c:out value="${'<tag> , &'}"/>

</body>

</html>

This would produce following result:

<tag> , &

<body>

<c:setvar="salary"scope="session"value="${2000*2}"/>

<c:outvalue="${salary}"/>

</body>

This would produce following result:

4000

<body>

<c:setvar="salary"scope="session"value="${2000*2}"/>

<p>Before Remove Value: <c:outvalue="${salary}"/></p>

<c:removevar="salary"/>

<p>After Remove Value: <c:outvalue="${salary}"/></p>

</body>

http://www.tutorialspoint.com/jsp/jstl_core_foreach_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_param_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_redirect_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_url_tag.htm

This would produce following result:

Before Remove Value: 4000

After Remove Value:

<body>

<c:setvar="salary"scope="session"value="${2000*2}"/>

<c:iftest="${salary > 2000}">

<p>My salary is: <c:outvalue="${salary}"/><p>

</c:if>

</body>

This would produce following result:

My salary is: 4000

Formatting tags:

The JSTL formatting tags are used to format and display text, the date, the time, and numbers for

internationalized Web sites. Following is the syntax to include Formatting library in your JSP:

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

Following is the list of Formatting JSTL Tags:

Tag Description

<fmt:formatNumber> To render numerical value with specific precision or

format.

<fmt:parseNumber> Parses the string representation of a number,

currency, or percentage.

<fmt:formatDate> Formats a date and/or time using the supplied styles

and pattern

<fmt:parseDate> Parses the string representation of a date and/or time

<fmt:bundle> Loads a resource bundle to be used by its tag body.

http://www.tutorialspoint.com/jsp/jstl_format_formatnumber_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_parsenumber_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_formatdate_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_parsedate_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_bundle_tag.htm

<fmt:setLocale> Stores the given locale in the locale configuration

variable.

<fmt:setBundle> Loads a resource bundle and stores it in the named

scoped variable or the bundle configuration variable.

<fmt:timeZone> Specifies the time zone for any time formatting or

parsing actions nested in its body.

<fmt:setTimeZone> Stores the given time zone in the time zone

configuration variable

<fmt:message> To display an internationalized message.

<fmt:requestEncoding> Sets the request character encoding

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

<head>

<title>JSTL fmt:formatNumber Tag</title>

</head>

<body>

<h3>Number Format:</h3>

<c:setvar="balance"value="120000.2309"/>

<p>Formatted Number (1): <fmt:formatNumbervalue="${balance}"

type="currency"/></p>

<p>Formatted Number (2): <fmt:formatNumbertype="number"

maxIntegerDigits="3"value="${balance}"/></p>

</body>

</html>

This would produce following result:

Number Format:

Formatted Number (1): £120,000.23

http://www.tutorialspoint.com/jsp/jstl_format_setlocale_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_setbundle_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_timezone_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_settimezone_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_message_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_requestencoding_tag.htm

Formatted Number (2): 000.231

SQL tags:

The JSTL SQL tag library provides tags for interacting with relational databases (RDBMSs) such

as Oracle, mySQL, or Microsoft SQL Server.

Following is the syntax to include JSTL SQL library in your JSP:

<%@ taglib prefix="sql"

 uri="http://java.sun.com/jsp/jstl/sql" %>

Following is the list of SQL JSTL Tags:

Tag Description

<sql:setDataSource> Creates a simple DataSource suitable only for

prototyping

<sql:query> Executes the SQL query defined in its body or through

the sql attribute.

<sql:update> Executes the SQL update defined in its body or through

the sql attribute.

<sql:param> Sets a parameter in an SQL statement to the specified

value.

<sql:dateParam> Sets a parameter in an SQL statement to the specified

java.util.Date value.

<sql:transaction > Provides nested database action elements with a shared

Connection, set up to execute all statements as one

transaction.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<html>

<head>

<title>JSTL sql:setDataSource Tag</title>

</head>

<body>

http://www.tutorialspoint.com/jsp/jstl_sql_setdatasource_tag.htm
http://www.tutorialspoint.com/jsp/jstl_sql_query_tag.htm
http://www.tutorialspoint.com/jsp/jstl_sql_update_tag.htm
http://www.tutorialspoint.com/jsp/jstl_sql_param_tag.htm
http://www.tutorialspoint.com/jsp/jstl_sql_dateparam_tag.htm
http://www.tutorialspoint.com/jsp/jstl_sql_transaction_tag.htm

<sql:setDataSourcevar="snapshot"driver="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost/TEST"

user="user_id"password="mypassword"/>

<sql:querydataSource="${snapshot}"sql="..."var="result"/>

</body>

</html>

XML tags:

The JSTL XML tags provide a JSP-centric way of creating and manipulating XML documents.

Following is the syntax to include JSTL XML library in your JSP.

The JSTL XML tag library has custom tags for interacting with XML data. This includes parsing

XML, transforming XML data, and flow control based on XPath expressions.

<%@ taglib prefix="x"

 uri="http://java.sun.com/jsp/jstl/xml" %>

Before you proceed with the examples, you would need to copy following two XML and XPath

related libraries into your <Tomcat Installation Directory>\lib:

 XercesImpl.jar: Download it fromhttp://www.apache.org/dist/xerces/j/

 xalan.jar: Download it from http://xml.apache.org/xalan-j/index.html

Following is the list of XML JSTL Tags:

Tag Description

<x:out> Like <%= ... >, but for XPath expressions.

<x:parse> Use to parse XML data specified either via an attribute or in

the tag body.

<x:set > Sets a variable to the value of an XPath expression.

<x:if > Evaluates a test XPath expression and if it is true, it processes

its body. If the test condition is false, the body is ignored.

http://www.apache.org/dist/xerces/j/
http://xml.apache.org/xalan-j/index.html
http://www.tutorialspoint.com/jsp/jstl_xml_out_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_parse_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_set_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_if_tag.htm

<x:forEach> To loop over nodes in an XML document.

<x:choose> Simple conditional tag that establishes a context for mutually

exclusive conditional operations, marked by <when> and

<otherwise>

<x:when > Subtag of <choose> that includes its body if its expression

evalutes to 'true'

<x:otherwise > Subtag of <choose> that follows <when> tags and runs only if

all of the prior conditions evaluated to 'false'

<x:transform > Applies an XSL transformation on a XML document

<x:param > Use along with the transform tag to set a parameter in the

XSLT stylesheet

JSTL Functions:

JSTL includes a number of standard functions, most of which are common string manipulation

functions. Following is the syntax to include JSTL Functions library in your JSP:

<%@ taglib prefix="fn"

 uri="http://java.sun.com/jsp/jstl/functions" %>

Following is the list of JSTL Functions:

Function Description

fn:contains() Tests if an input string contains the specified

substring.

fn:containsIgnoreCase() Tests if an input string contains the specified

substring in a case insensitive way.

fn:endsWith() Tests if an input string ends with the specified suffix.

fn:escapeXml() Escapes characters that could be interpreted as XML

markup.

http://www.tutorialspoint.com/jsp/jstl_xml_foreach_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_choose_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_choose_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_choose_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_transform_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_param_tag.htm
http://www.tutorialspoint.com/jsp/jstl_function_contains.htm
http://www.tutorialspoint.com/jsp/jstl_function_containsignorecase.htm
http://www.tutorialspoint.com/jsp/jstl_function_endswith.htm
http://www.tutorialspoint.com/jsp/jstl_function_escapexml.htm

fn:indexOf() Returns the index withing a string of the first

occurrence of a specified substring.

fn:join() Joins all elements of an array into a string.

fn:length() Returns the number of items in a collection, or the

number of characters in a string.

fn:replace() Returns a string resulting from replacing in an input

string all occurrences with a given string.

fn:split() Splits a string into an array of substrings.

fn:startsWith() Tests if an input string starts with the specified

prefix.

fn:substring() Returns a subset of a string.

fn:substringAfter() Returns a subset of a string following a specific

substring.

fn:substringBefore() Returns a subset of a string before a specific

substring.

fn:toLowerCase() Converts all of the characters of a string to lower

case.

fn:toUpperCase() Converts all of the characters of a string to upper

case.

fn:trim() Removes white spaces from both ends of a string.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn" %>

<html>

<head>

<title>Using JSTL Functions</title>

http://www.tutorialspoint.com/jsp/jstl_function_indexof.htm
http://www.tutorialspoint.com/jsp/jstl_function_join.htm
http://www.tutorialspoint.com/jsp/jstl_function_length.htm
http://www.tutorialspoint.com/jsp/jstl_function_replace.htm
http://www.tutorialspoint.com/jsp/jstl_function_split.htm
http://www.tutorialspoint.com/jsp/jstl_function_startswith.htm
http://www.tutorialspoint.com/jsp/jstl_function_substring.htm
http://www.tutorialspoint.com/jsp/jstl_function_substringafter.htm
http://www.tutorialspoint.com/jsp/jstl_function_substringbefore.htm
http://www.tutorialspoint.com/jsp/jstl_function_tolowercase.htm
http://www.tutorialspoint.com/jsp/jstl_function_touppercase.htm
http://www.tutorialspoint.com/jsp/jstl_function_trim.htm

</head>

<body>

<c:setvar="string1"value="This is first String."/>

<c:setvar="string2"value="This is second String."/>

<p>Length of String (1) : ${fn:length(string1)}</p>

<p>Length of String (2) : ${fn:length(string2)}</p>

</body>

</html>

This would produce following result:

Length of String (1) : 21

Length of String (2) : 22

<body>

<c:setvar="string1"value="This is first String."/>

<c:setvar="string2"value="${fn:substring(string1, 5, 15)}"/>

<p>Final sub string : ${string2}</p>

</body>

This would produce following result:

Final sub string : is first S

<body>

<c:setvar="string1"value="This is first String."/>

<c:setvar="string2"value="${fn:toLowerCase(string1)}"/>

<p>Final string : ${string2}</p>

</body>

This would produce following result:

Final string : this is first string.

<body>

<c:setvar="string1"value="This is first String."/>

<c:setvar="string2"value="${fn:toUpperCase(string1)}"/>

<p>Final string : ${string2}</p>

</body>

This would produce following result:

Final string : THIS IS FIRST STRING.

CREATING HTML FORM BY EMBEDDING JSP CODE:

JSP handles form data parsing automatically using the following methods depending on the

situation:

 getParameter(): You call request.getParameter() method to get the value of a form

parameter.

 getParameterValues(): Call this method if the parameter appears more than once and

returns multiple values, for example checkbox.

 getParameterNames(): Call this method if you want a complete list of all parameters in

the current request.

 getInputStream(): Call this method to read binary data stream coming from the client.

GET Method Example Using Form:

Here is a simple example which passes two values using HTML FORM and submit button. We are

going to use same JSP main.jsp to handle this input.

<html>

<body>

<formaction="main.jsp"method="GET">

First Name: <inputtype="text"name="first_name">

Last Name: <inputtype="text"name="last_name"/>

<inputtype="submit"value="Submit"/>

</form>

</body>

</html>

Keep this HTML in a file Hello.html and put it in <Tomcat-installation-

directory>/webapps/ROOT directory. When you would accesshttp://localhost:8080/Hello.html,

here is the actual output of the above form.

First Name:

Last Name:

Try to enter First Name and Last Name and then click submit button to see the result on your local

machine where tomcat is running. Based on the input provided, it will generate similar result as

mentioned in the above example.

GET Method Example Using URL:

Here is a simple URL which will pass two values to HelloForm program using GET method.

http://localhost:8080/main.jsp?first_name=ZARA&last_name=ALI

Below is main.jsp JSP program to handle input given by web browser. We are going to

use getParameter() method which makes it very easy to access passed information:

<html>

<head>

<title>Using GET Method to Read Form Data</title>

</head>

<body>

<center>

<h1>Using GET Method to Read Form Data</h1>

<p>First Name:

<%= request.getParameter("first_name")%>

</p>

<p>Last Name:

<%= request.getParameter("last_name")%>

</p>

</body>

</html>

Now type http://localhost:8080/main.jsp?first_name=ZARA&last_name=ALI in your browser's

Location:box. This would generate following result:

Using GET Method to Read Form Data

 First Name: ZARA

 Last Name: ALI

POST Method Example Using Form:

 There is no change in above JSP because only way of passing parameters is changed and no

binary data is being passed to the JSP program.

<html>

<head>

<title>Using GET and POST Method to Read Form Data</title>

</head>

<body>

<center>

<h1>Using GET Method to Read Form Data</h1>

<p>First Name:

<%= request.getParameter("first_name")%>

</p>

<p>Last Name:

<%= request.getParameter("last_name")%>

</p>

</body>

</html>

Following is the content of Hello.html file:

<html>

<body>

<formaction="main.jsp"method="POST">

First Name: <inputtype="text"name="first_name">

Last Name: <inputtype="text"name="last_name"/>

<inputtype="submit"value="Submit"/>

</form>

</body>

</html>

Now let us keep main.jsp and hello.htm in <Tomcat-installation-directory>/webapps/ROOT

directory. When you would accesshttp://localhost:8080/Hello.html, below is the actual output of

the above form.

First Name:

Last Name:

Passing Checkbox Data to JSP Program

 Checkboxes are used when more than one option is required to be selected.

Here is example HTML code, CheckBox.htm, for a form with two checkboxes

<html>

<body>

<formaction="main.jsp"method="POST"target="_blank">

<inputtype="checkbox"name="maths"checked="checked"/> Maths

<inputtype="checkbox"name="physics"/> Physics

<inputtype="checkbox"name="chemistry"checked="checked"/> Chemistry

<inputtype="submit"value="Select Subject"/>

</form>

</body>

</html>

The result of this code is the following form

 Maths Physics Chemistry

Below is main.jsp JSP program to handle input given by web browser for checkbox button.

<html>

<head>

<title>Reading Checkbox Data</title>

</head>

<body>

<center>

<h1>Reading Checkbox Data</h1>

<p>Maths Flag:

<%= request.getParameter("maths")%>

</p>

<p>Physics Flag:

<%= request.getParameter("physics")%>

</p>

<p>Chemistry Flag:

<%= request.getParameter("chemistry")%>

</p>

</body>

</html>

For the above example, it would display following result:

Reading Checkbox Data

 Maths Flag : : on

 Physics Flag: : null

 Chemistry Flag: : on

Reading All Form Parameters:

 Following is the generic example which uses getParameterNames() method of

HttpServletRequest to read all the available form parameters.

 This method returns an Enumeration that contains the parameter names in an unspecified

order.

Once we have an Enumeration, we can loop down the Enumeration in the standard manner,

using hasMoreElements() method to determine when to stop and using nextElement() method to

get each parameter name.

<%@ page import="java.io.*,java.util.*" %>

<html>

<head>

<title>HTTP Header Request Example</title>

</head>

<body>

<center>

<h2>HTTP Header Request Example</h2>

<tablewidth="100%"border="1"align="center">

<trbgcolor="#949494">

<th>Param Name</th><th>Param Value(s)</th>

</tr>

<%

Enumeration paramNames = request.getParameterNames();

while(paramNames.hasMoreElements()){

String paramName =(String)paramNames.nextElement();

out.print("<tr><td>"+ paramName +"</td>\n");

String paramValue = request.getHeader(paramName);

out.println("<td> "+ paramValue +"</td></tr>\n");

}

%>

</table>

</center>

</body>

</html>

Following is the content of Hello.html:

<html>

<body>

<formaction="main.jsp"method="POST"target="_blank">

<inputtype="checkbox"name="maths"checked="checked"/> Maths

<inputtype="checkbox"name="physics"/> Physics

<inputtype="checkbox"name="chemistry"checked="checked"/> Chem

<inputtype="submit"value="Select Subject"/>

</form>

</body>

</html>

Now try calling JSP using above Hello.htm, this would generate a result something like as below

based on the provided input:

Reading All Form Parameters

Param Name Param Value(s)

maths on

chemistry on

PHP and XML 8
4.1 INTRODUCTION TO PHP

PHP is basically used for developing web based software applications.PHP is probably

the most popular scripting language on the web. It is used to enhance web pages.PHP is

known as a server-sided language. That is because the PHP doesn't get executed on the

client’s computer, but on the computer the user had requested the page from. The results are

then handed over to client, and then displayed in the browser.

Features of PHP:

❖ PHP is a server side scripting language that is embedded in HTML

❖ PHP was originally developed by the Danish Greenlander Rasmus Lerdorf, and

was subsequently developed as open source.

❖ It is used to manage dynamic content, databases, session tracking, even build entire

e-commerce sites.

❖ It is integrated with a number of popular databases, including MySQL,

PostgreSQL, Oracle, Sybase, Informix, and Microsoft SQL Server.

❖ PHP supports a large number of protocols such as POP3, IMAP, and LDAP. PHP4

added support for Java and distributed object architectures (COM and CORBA),

making n-tier development a possibility for the first time.

❖ PHP language tries to be as forgiving as possible.

❖ PHP syntax is C-Like.

Common uses of PHP

❖ PHP performs system functions, i.e. from files on a system it can create, open,

read, write, and close them.

The PHP Hypertext Pre-processor (PHP) is a programming language that allows

web developers to create dynamic content that interacts with databases

domain.

4

 4.2 PHP and XML 8

❖ PHP can handle forms, i.e. gather data from files, save data to a file, through email

the user can send data, return data to the user.

❖ The user can add, delete, and modify elements within the database through PHP.

❖ They can access cookies variables and set cookies.

❖ Using PHP, the user can restrict users to access some pages of the website.

❖ It can encrypt data.

Working of PHP

 When the client requests a PHP page residing on the server, the server first performs

the operations mentioned by the PHP code of the page. Then is sends the output of the PHP

page in HTML format. So when the user views the source code of the page, it will be full of

HTML tags. All the work is done at the server side.

4.2 PROGRAMMING WITH PHP

➢ Comments

A comment is the portion of a program that exists only for the human reader and

stripped out before displaying the programs result. There are two commenting formats

in PHP:

- Single-line comments: They are generally used for short explanations or notes

relevant to the local code.

- Multi-line comments: They are generally used to provide pseudocode

algorithms and more detailed explanations when necessary. The multiline style

of commenting is the same as in C.

Rules of PHP

❖ PHP is white space insensitive

❖ PHP is case sensitive

❖ Statements are expressions terminated by semicolons

❖ Expressions are combinations of tokens

❖ Braces make blocks

➢ PHP Variable Types

All variables in PHP are denoted with a leading dollar sign ($). The value of a variable

is the value of its most recent assignment. Variables are assigned with the = operator,

with the variable on the left-hand side and the expression to be evaluated on the right.

Variables in PHP do not have intrinsic types (data types) - a variable does not

know in advance whether it will be used to store a number or a string of characters.

 Internet Programming 4.3

Variables used before they are assigned have default values. PHP automatically

converts types from one to another when necessary. PHP has a total of eight data

types:

• Integers are whole numbers, without a decimal point. They can be in

decimal, octal or hexadecimal. Eg: 87.

• Doubles are floating-point numbers. Eg: 3.87

• Booleans have only two possible values either true or false.

• NULL is a special type that only has one value: NULL

• Strings are sequences of characters

• Arrays are named and indexed collections of other values.

• Objects are instances of programmer-defined classes, which can package up

both other kinds of values and functions that are specific to the class.

• Resources are special variables that hold references to resources external to

PHP (such as database connections).

• The first five are simple types, and the arrays and objects are compound

types.

• The compound types can package up other arbitrary values of arbitrary

type, whereas the simple types cannot.

Variable Scope

Scope can be defined as the range of availability a variable has to the program in

which it is declared. PHP variables can be one of four scope types: Local variables, Function

parameters, Global variables and Static variables.

 Variable Naming

Rules for naming a variable are:

➢ Variable names must begin with a letter or underscore character.

➢ A variable name can consist of numbers, letters, underscores but the user

cannot use characters like + , - , % , (,) . & , etc

PHP Constants

A constant is a name or an identifier for a simple value. A constant value cannot

change during the execution of the script. By default a constant is case-sensitive. By

convention, constant identifiers are always uppercase. A constant name starts with a letter or

underscore, followed by any number of letters, numbers, or underscores. To define a constant ,

 4.4 PHP and XML 8

use define() function and retrieve the value of a constant. The function constant() is used to

read a constant's value .

define(name, value, case-insensitive)

The name specifies the name of the constant, value: Specifies the value of the constant

and case-insensitive: Specifies whether the constant name should be case-insensitive. Default

is false

Differences between constants and variables in PHP

Constants in PHP Variables in PHP

No $ sign before constants. $ sign is present before variables.

Constants are defined using define(). Variables are defined using assignment

statement.

Constants may be defined and accessed

anywhere without any regard.

Variables follow certain scope.

Constants cannot be redefined or

undefined.

They can be redefined.

Pre-defined constants

Name Description

__LINE__ The current line number of the file.

__FILE__ The full path and filename of the file. If used inside an include,

the name of the included file is returned. Since PHP 4.0.2,

__FILE__ always contains an absolute path whereas in older

versions it contained relative path under some circumstances

__FUNCTION__ The function name. (Added in PHP 4.3.0) As of PHP 5 this

constant returns the function name as it was declared (case-

sensitive). In PHP 4 its value is always lowercased.

__CLASS__ The class name. (Added in PHP 4.3.0) As of PHP 5 this

constant returns the class name as it was declared (case-

sensitive). In PHP 4 its value is always lowercased.

__METHOD__ The class method name. (Added in PHP 5.0.0) The method

name is returned as it was declared (case-sensitive).

 Internet Programming 4.5

➢ Echo and Print statements

Differences between echo and print statement

echo print

This does not have return value. This has a return value of 1.

This cannot be used in expressions. This can be used in expressions.

This can take multiple parameters. This can take only one parameter.

This is slightly faster than print. This is comparatively slower.

➢ Operators

Operators are used to perform operations on variables and values.PHP divides the

operators in the following groups: Arithmetic operators, Assignment operators,

Comparison operators, Increment/Decrement operators, Logical operators, String

operators and Array operators.

PHP CONTROL STATMENTS

Decision Making Statements

 The if, else if ...else and switch statements are used to take decision based on the

different condition.

• if statement - executes some code only if a specified condition is true.

• if...else statement - executes some code if a condition is true and another code if the

condition is false.

• if...else if....else statement - specifies a new condition to test, if the first condition is

false

• switch statement - selects one of many blocks of code to be executed

➢ if statement

if statement

<?php

$t = date("H");

if ($t < "20") //This program outputs the echo statement if the hour is <20

{

 echo "Have a good day!";

}

?>

 4.6 PHP and XML 8

➢ if-else statement

Use the if....else statement to execute some code if a condition is true and another code

if the condition is false.

if else statement

<?php

$t = date("H");

if ($t < "20") {

 echo "Have a good day!";

} else {

 echo "Have a good night!";

}

?>

➢ if-else ladder

Use the if....else if...else statement to specify a new condition to test, if the first condition

is false.

if-else ladder

<?php

$t = date("H");

if ($t < "10") {

 echo "Have a good morning!";

} elseif ($t < "20") {

 echo "Have a good day!";

} else {

 echo "Have a good night!";

}

?>

➢ switch statement

To select one of many blocks of code to be executed, use the Switch statement. The switch

statement is used to avoid long blocks of if..elseif..else code. The switch statement works

in an unusual way. First it evaluates given expression then seeks a label to match the

resulting value. If a matching value is found then the code associated with the matching

 Internet Programming 4.7

label will be executed or if none of the labels match then statement will execute any

specified default code.

Switch statement

<html>

<body>

<?php $d=date("D");

switch ($d)

 {

 case "Mon":

 echo "Today is Monday";

 break;

case "Tue":

 echo "Today is Tuesday";

 break;

case "Wed":

 echo "Today is Wednesday";

 break;

case "Thu":

 echo "Today is Thursday";

 break;

case "Fri":

 echo "Today is Friday";

 break;

case "Sat":

 echo "Today is Saturday";

 break;

case "Sun":

 echo "Today is Sunday";

 break;

default:

 echo "Wonder which day is this ?";

 4.8 PHP and XML 8

}

?>

</body></html>

Looping Statements

Loops in PHP are used to execute the same block of code a specified number of times.

PHP supports following four loop types

• for : loops through a block of code a specified number of times.

• while: loops through a block of code if and as long as a specified condition is true.

• do...while: loops through a block of code once, and then repeats the loop as long as

a special condition is true.

• foreach: loops through a block of code for each element in an array.

➢ For loop

for loop

<html>

<body>

<?php

$a = 0;

$b = 0;

for($i=0; $i<5; $i++)

{

 $a += 10;

$b += 5;

}

echo ("At the end of the loop a=$a and b=$b");

?>

</body></html>

At the end of the loop a=50 and b=25

➢ While loop

The while statement will execute a block of code as long as a test expression is true. If the

test expression is true then the code block will be executed. After the code has executed

the test expression will again be evaluated and the loop will continue until the test

expression is found to be false.

 Internet Programming 4.9

While loop

<html> <body>

<?php

$i = 0;

$num = 50;

while($i < 10)

{

$num--;

$i++;

}

echo ("Loop stopped at i = $i and num = $num");

?> </body></html>

Loop stopped at i = 1 and num = 40

➢ Do…while loop

<html> <body>

<?php

$i = 0;

$num = 0;

do {

 $i++;

}while($i < 10);

echo ("Loop stopped at i = $i");

?></body></html>

Loop stopped at i = 10

➢ For Each loop

The for each statement is used to loop through arrays. For each pass the value of the

current array element is assigned to $value and the array pointer is moved by one and in

the next pass next element will be processed.

<html> <body>

<?

php $array = array(11, 12, 13,14, 15);

 4.10 PHP and XML 8

foreach($array as $value)

{

 echo "Value is $value
";

} ?> </body></html>

Value is 11

Value is 12

Value is 13

Value is 14

Value is 15

➢ Break statement

The PHP break keyword is used to terminate the execution of a loop prematurely.

The break statement is situated inside the statement blockAfter coming out of a

loop immediate statement to the loop will be executed.

➢ Continue statement

The PHP continue keyword is used to halt the current iteration of a loop but it

does not terminate the loop. Just like the break statement the continue statement is

situated inside the statement block containing the code that the loop executes,

preceded by a conditional test. For the pass encountering continue statement, rest

of the loop code is skipped and next pass starts.

FUNCTIONS

 A function is a block of statements that can be used repeatedly in a program. A

function will not execute immediately when a page loads. A function will be executed by a

call to the function. There are two types of functions: Built-in functions and User defined

functions

User defined Functions

 A user defined function declaration starts with the word function. Information can be

passed to functions through arguments. An argument is just like a variable. Arguments are

specified after the function name, inside the parentheses.

<?php

function sum($x, $y) {

 $z = $x + $y;

 return $z; }

echo "5 + 10 = " . sum(5, 10) . "
";

 Internet Programming 4.11

echo "7 + 13 = " . sum(7, 13) . "
";

echo "2 + 4 = " . sum(2, 4); ?>

5 + 10 = 15

7 + 13 = 20

2 + 4 = 6

Built-in functions

Array functions

Function Description

array() Creates an array

array_chunk() Splits an array into chunks of arrays

array_column() Returns the values from a single column in the input array

array_combine() Creates an array by using the elements from one "keys" array and

one "values" array

array_count_values(

)

Counts all the values of an array

array_diff() Compare arrays, and returns the differences (compare values only)

array_diff_key() Compare arrays, and returns the differences (compare keys only)

array_fill() Fills an array with values

array_fill_keys() Fills an array with values, specifying keys

array_filter() Filters the values of an array using a callback function

array_flip() Flips/Exchanges all keys with their associated values in an array

array_intersect() Compare arrays, and returns the matches (compare values only)

array_key_exists() Checks if the specified key exists in the array

array_keys() Returns all the keys of an array

array_map() Sends each value of an array to a user-made function, which returns

new values

array_merge() Merges one or more arrays into one array

array_multisort() Sorts multiple or multi-dimensional arrays

 4.12 PHP and XML 8

array_pad() Inserts a specified number of items, with a specified value, to an

array

array_pop() Deletes the last element of an array

array_product() Calculates the product of the values in an array

array_push() Inserts one or more elements to the end of an array

array_rand() Returns one or more random keys from an array

array_reduce() Returns an array as a string, using a user-defined function

array_replace() Replaces the values of the first array with the values from following

arrays

array_replace_recur

sive()

Replaces the values of the first array with the values from following

arrays recursively

array_reverse() Returns an array in the reverse order

array_search() Searches an array for a given value and returns the key

array_shift() Removes the first element from an array, and returns the value of

the removed element

array_slice() Returns selected parts of an array

array_splice() Removes and replaces specified elements of an array

array_sum() Returns the sum of the values in an array

array_udiff() Compare arrays, and returns the differences (compare values only,

using a user-defined key comparison function)

array_uintersect() Compare arrays, and returns the matches (compare values only,

using a user-defined key comparison function)

array_unique() Removes duplicate values from an array

array_unshift() Adds one or more elements to the beginning of an array

array_values() Returns all the values of an array

array_walk() Applies a user function to every member of an array

arsort() Sorts an associative array in descending order, according to the

value

asort() Sorts an associative array in ascending order, according to the value

compact() Create array containing variables and their values

 Internet Programming 4.13

count() Returns the number of elements in an array

current() Returns the current element in an array

each() Returns the current key and value pair from an array

end() Sets the internal pointer of an array to its last element

extract() Imports variables into the current symbol table from an array

in_array() Checks if a specified value exists in an array

key() Fetches a key from an array

list() Assigns variables as if they were an array

natcasesort() Sorts an array using a case insensitive "natural order" algorithm

natsort() Sorts an array using a "natural order" algorithm

next() Advance the internal array pointer of an array

prev() Rewinds the internal array pointer

range() Creates an array containing a range of elements

reset() Sets the internal pointer of an array to its first element

rsort() Sorts an indexed array in descending order

shuffle() Shuffles an array

sort() Sorts an indexed array in ascending order

uasort() Sorts an array by values using a user-defined comparison function

uksort() Sorts an array by keys using a user-defined comparison function

usort() Sorts an array using a user-defined comparison function

➢ Calendar Functions

The calendar extension contains functions that simplify converting between different

calendar formats. It is based on the Julian Day Count, which is a count of days starting

from January 1st, 4713 B.C. To convert between calendar formats, first convert to Julian

Day Count, then to the calendar of the user’s choice.

Function Description

cal_days_in_month() Returns the number of days in a month for a specified year and

calendar

cal_from_jd() Converts a Julian Day Count into a date of a specified calendar

 4.14 PHP and XML 8

cal_info() Returns information about a specified calendar

cal_to_jd() Converts a date in a specified calendar to Julian Day Count

easter_date() Returns the Unix timestamp for midnight on Easter of a

specified year

easter_days() Returns the number of days after March 21, that the Easter

Day is in a specified year

gregoriantojd() Converts a Gregorian date to a Julian Day Count

jddayofweek() Returns the day of the week

jdmonthname() Returns a month name

jdtogregorian() Converts a Julian Day Count to a Gregorian date

jdtounix() Converts Julian Day Count to Unix timestamp

jewishtojd() Converts a Jewish date to a Julian Day Count

juliantojd() Converts a Julian date to a Julian Day Count

unixtojd() Converts Unix timestamp to Julian Day Count

➢ Date Functions

The date/time functions allow to get the date and time from the server on which PHP

script runs. These functions depend on the locale settings of the server. Remember to

take daylight saving time and leap years into consideration when working with these

functions.

Function Description

checkdate() Validates a Gregorian date

date_add() Adds days, months, years, hours, minutes, and

seconds to a date

date_create_from_format() Returns a new DateTime object formatted

according to a specified format

date_create() Returns a new DateTime object

date_date_set() Sets a new date

date_default_timezone_get() Returns the default timezone used by all date/time

functions

date_default_timezone_set() Sets the default timezone used by all date/time

functions

 Internet Programming 4.15

date_diff() Returns the difference between two dates

date_format() Returns a date formatted according to a specified

format

date_interval_format() Formats the interval

date_isodate_set() Sets the ISO date

date_modify() Modifies the timestamp

date_parse() Returns an associative array with detailed info

about a specified date

date_sub() Subtracts days, months, years, hours, minutes, and

seconds from a date

date_sun_info() Returns an array containing info about

sunset/sunrise and twilight begin/end, for a

specified day and location

date_sunrise() Returns the sunrise time for a specified day and

location

date_sunset() Returns the sunset time for a specified day and

location

date_time_set() Sets the time

date() Formats a local date and time

getdate() Returns date/time information of a timestamp or

the current local date/time

gettimeofday() Returns the current time

gmdate() Formats a GMT/UTC date and time

gmmktime() Returns the Unix timestamp for a GMT date

gmstrftime() Formats a GMT/UTC date and time according to

locale settings

idate() Formats a local time/date as integer

localtime() Returns the local time

microtime() Returns the current Unix timestamp with

microseconds

mktime() Returns the Unix timestamp for a date

 4.16 PHP and XML 8

strftime() Formats a local time and/or date according to

locale settings

time() Returns the current time as a Unix timestamp

timezone_name_get() Returns the name of the timezone

timezone_offset_get() Returns the timezone offset from GMT

timezone_open() Creates new DateTimeZone object

timezone_version_get() Returns the version of the timezone db

➢ Directory functions

The directory function allows retrieving information about directories and their contents.

Function Description

chdir() Changes the current directory

chroot() Changes the root directory

closedir() Closes a directory handle

dir() Returns an instance of the Directory class

getcwd() Returns the current working directory

opendir() Opens a directory handle

readdir() Returns an entry from a directory handle

rewinddir() Resets a directory handle

scandir() Returns an array of files and directories of a

specified directory

➢ Error handling functions

 The error functions are used to deal with error handling and logging. The error

functions allow us to define own error handling rules, and modify the way the errors can

be logged. The logging functions allow us to send messages directly to other machines,

emails, or system logs. The error reporting functions allow us to customize what level

and kind of error feedback is given.

 Internet Programming 4.17

Function Description

debug_backtrace() Generates a backtrace

debug_print_backtrace() Prints a backtrace

error_get_last() Returns the last error that occurred

error_log() Sends an error message to a log, to a file, or to a mail

account

error_reporting() Specifies which errors are reported

restore_error_handler() Restores the previous error handler

restore_exception_handler() Restores the previous exception handler

set_error_handler() Sets a user-defined error handler function

set_exception_handler() Sets a user-defined exception handler function

trigger_error() Creates a user-level error message

user_error() Alias of trigger_error()

debug_backtrace() Generates a backtrace
s

➢ File system Functions

The file system functions allow the user to access and manipulate the file system.

Function Description

basename() Returns the filename component of a path

chgrp() Changes the file group

chmod() Changes the file mode

chown() Changes the file owner

clearstatcache() Clears the file status cache

copy() Copies a file

dirname() Returns the directory name component of a path

disk_free_space() Returns the free space of a directory

disk_total_space() Returns the total size of a directory

 4.18 PHP and XML 8

fclose() Closes an open file

feof() Tests for end-of-file on an open file

fflush() Flushes buffered output to an open file

fgetc() Returns a character from an open file

fgets() Returns a line from an open file

fgetss() Returns a line, with HTML and PHP tags removed, from an

open file

file() Reads a file into an array

file_exists() Checks whether or not a file or directory exists

file_get_contents() Reads a file into a string

file_put_contents() Writes a string to a file

fileatime() Returns the last access time of a file

filectime() Returns the last change time of a file

filegroup() Returns the group ID of a file

fileinode() Returns the inode number of a file

filemtime() Returns the last modification time of a file

fileowner() Returns the user ID (owner) of a file

fileperms() Returns the permissions of a file

filesize() Returns the file size

filetype() Returns the file type

flock() Locks or releases a file

fnmatch() Matches a filename or string against a specified pattern

fopen() Opens a file or URL

fpassthru() Reads from an open file, until EOF, and writes the result to the

output buffer

fputcsv() Formats a line as CSV and writes it to an open file

fread() Reads from an open file

fscanf() Parses input from an open file according to a specified format

 Internet Programming 4.19

fseek() Seeks in an open file

fstat() Returns information about an open file

ftell() Returns the current position in an open file

ftruncate() Truncates an open file to a specified length

fwrite() Writes to an open file

glob() Returns an array of filenames / directories matching a specified

pattern

is_dir() Checks whether a file is a directory

is_executable() Checks whether a file is executable

is_file() Checks whether a file is a regular file

is_link() Checks whether a file is a link

is_readable() Checks whether a file is readable

is_uploaded_file() Checks whether a file was uploaded via HTTP POST

is_writable() Checks whether a file is writeable

lchgrp() Changes group ownership of symlink

lchown() Changes user ownership of symlink

link() Creates a hard link

linkinfo() Returns information about a hard link

lstat() Returns information about a file or symbolic link

mkdir() Creates a directory

move_uploaded_file() Moves an uploaded file to a new location

pathinfo() Returns information about a file path

pclose() Closes a pipe opened by popen()

popen() Opens a pipe

readfile() Reads a file and writes it to the output buffer

readlink() Returns the target of a symbolic link

realpath() Returns the absolute pathname

realpath_cache_get() Returns realpath cache entries

 4.20 PHP and XML 8

realpath_cache_size() Returns realpath cache size

rename() Renames a file or directory

rewind() Rewinds a file pointer

rmdir() Removes an empty directory

set_file_buffer() Sets the buffer size of an open file

stat() Returns information about a file

symlink() Creates a symbolic link

touch() Sets access and modification time of a file

umask() Changes file permissions for files

unlink() Deletes a file

➢ Math functions

Function Description

abs() Returns the absolute (positive) value of a number

acos() Returns the arc cosine of a number

acosh() Returns the inverse hyperbolic cosine of a number

asin() Returns the arc sine of a number

asinh() Returns the inverse hyperbolic sine of a number

atan() Returns the arc tangent of a number in radians

atan2() Returns the arc tangent of two variables x and y

atanh() Returns the inverse hyperbolic tangent of a number

bindec() Converts a binary number to a decimal number

ceil() Rounds a number up to the nearest integer

cos() Returns the cosine of a number

cosh() Returns the hyperbolic cosine of a number

decbin() Converts a decimal number to a binary number

dechex() Converts a decimal number to a hexadecimal number

decoct() Converts a decimal number to an octal number

deg2rad() Converts a degree value to a radian value

 Internet Programming 4.21

exp() Calculates the exponent of e

expm1() Returns exp(x) – 1

floor() Rounds a number down to the nearest integer

fmod() Returns the remainder of x/y

getrandmax() Returns the largest possible value returned by rand()

hexdec() Converts a hexadecimal number to a decimal number

hypot() Calculates the hypotenuse of a right-angle triangle

max() Returns the highest value in an array, or the highest value of several

specified values

min() Returns the lowest value in an array, or the lowest value of several

specified values

octdec() Converts an octal number to a decimal number

pi() Returns the value of PI

pow() Returns x raised to the power of y

rad2deg() Converts a radian value to a degree value

rand() Generates a random integer

round() Rounds a floating-point number

sin() Returns the sine of a number

sinh() Returns the hyperbolic sine of a number

sqrt() Returns the square root of a number

srand() Seeds the random number generator

tan() Returns the tangent of a number

tanh() Returns the hyperbolic tangent of a number

➢ String functions

Function Description

bin2hex() Converts a string of ASCII characters to hexadecimal values

chop() Removes whitespace or other characters from the right end of a

string

chr() Returns a character from a specified ASCII value

chunk_split() Splits a string into a series of smaller parts

 4.22 PHP and XML 8

convert_cyr_string() Converts a string from one Cyrillic character-set to another

convert_uudecode() Decodes a uuencoded string

convert_uuencode() Encodes a string using the uuencode algorithm

count_chars() Returns information about characters used in a string

crc32() Calculates a 32-bit CRC for a string

crypt() One-way string encryption (hashing)

echo() Outputs one or more strings

explode() Breaks a string into an array

fprintf() Writes a formatted string to a specified output stream

hex2bin() Converts a string of hexadecimal values to ASCII characters

html_entity_decode() Converts HTML entities to characters

htmlentities() Converts characters to HTML entities

implode() Returns a string from the elements of an array

join() Alias of implode()

lcfirst() Converts the first character of a string to lowercase

levenshtein() Returns the Levenshtein distance between two strings

localeconv() Returns locale numeric and monetary formatting information

ltrim() Removes whitespace or other characters from the left side of a

string

number_format() Formats a number with grouped thousands

ord() Returns the ASCII value of the first character of a string

parse_str() Parses a query string into variables

print() Outputs one or more strings

printf() Outputs a formatted string

rtrim() Removes whitespace or other characters from the right side of a

string

setlocale() Sets locale information

sha1() Calculates the SHA-1 hash of a string

 Internet Programming 4.23

sha1_file() Calculates the SHA-1 hash of a file

similar_text() Calculates the similarity between two strings

sprintf() Writes a formatted string to a variable

sscanf() Parses input from a string according to a format

str_ireplace() Replaces some characters in a string (case-insensitive)

str_pad() Pads a string to a new length

str_repeat() Repeats a string a specified number of times

str_replace() Replaces some characters in a string (case-sensitive)

str_shuffle() Randomly shuffles all characters in a string

str_split() Splits a string into an array

str_word_count() Count the number of words in a string

strcasecmp() Compares two strings (case-insensitive)

strchr() Finds the first occurrence of a string inside another string (alias of

strstr())

strcmp() Compares two strings (case-sensitive)

strcoll() Compares two strings (locale based string comparison)

strcspn() Returns the number of characters found in a string before any part

of some specified characters are found

stripos() Returns the position of the first occurrence of a string inside

another string (case-insensitive)

stristr() Finds the first occurrence of a string inside another string (case-

insensitive)

strlen() Returns the length of a string

strncmp() String comparison of the first n characters (case-sensitive)

strpbrk() Searches a string for any of a set of characters

strpos() Returns the position of the first occurrence of a string inside

another string (case-sensitive)

strrchr() Finds the last occurrence of a string inside another string

strrev() Reverses a string

 4.24 PHP and XML 8

strrpos() Finds the position of the last occurrence of a string inside another

string (case-sensitive)

strspn() Returns the number of characters found in a string that contains

only characters from a specified charlist

strstr() Finds the first occurrence of a string inside another string (case-

sensitive)

strtok() Splits a string into smaller strings

strtolower() Converts a string to lowercase letters

strtoupper() Converts a string to uppercase letters

strtr() Translates certain characters in a string

substr() Returns a part of a string

substr_compare() Compares two strings from a specified start position (binary safe

and optionally case-sensitive)

substr_count() Counts the number of times a substring occurs in a string

substr_replace() Replaces a part of a string with another string

trim() Removes whitespace or other characters from both sides of a

string

vfprintf() Writes a formatted string to a specified output stream

vprintf() Outputs a formatted string

vsprintf() Writes a formatted string to a variable

wordwrap() Wraps a string to a given number of characters

➢ Miscellaneous Functions

Function Description

connection_aborted() Checks whether the client has disconnected

connection_status() Returns the current connection status

connection_timeout() Deprecated in PHP 4.0.5. Checks whether the script has

timed out

constant() Returns the value of a constant

 Internet Programming 4.25

define() Defines a constant

defined() Checks whether a constant exists

die() Prints a message and exits the current script

eval() Evaluates a string as PHP code

exit() Prints a message and exits the current script

get_browser() Returns the capabilities of the user's browser

halt_compiler() Halts the compiler execution

pack() Packs data into a binary string

php_check_syntax() Deprecated in PHP 5.0.5

php_strip_whitespace() Returns the source code of a file with PHP comments and

whitespace removed

sleep() Delays code execution for a number of seconds

sys_getloadavg() Gets system load average

time_nanosleep() Delays code execution for a number of seconds and

nanoseconds

time_sleep_until() Delays code execution until a specified time

uniqid() Generates a unique ID

unpack() Unpacks data from a binary string

usleep() Delays code execution for a number of microseconds

PHP COOKIES

 PHP transparently supports HTTP cookies. There are three steps involved in

identifying returning users:

• Server script sends a set of cookies to the browser

• Browser stores this information on local machine for future use.

• When next time browser sends any request to web server then it sends those cookies

information to the server and server uses that information to identify the user.

Cookies are small data stored on the client computer and they are kept of use

tracking purpose.

 4.26 PHP and XML 8

➢ Setting Cookies with PHP:

PHP provided setcookie() function to set a cookie. This function requires six arguments

and should be called before <html> tag. For each cookie this function has to be called

separately.

 setcookie(name, value, expire, path, domain, security);

• Name: This sets the name of the cookie and is stored in an environment variable called

HTTP_COOKIE_VARS. This variable is used while accessing cookies.

• Value: This sets the value of the named variable and is the content that the user wants to

store.

• Expiry: This specify a future time in seconds since 00:00:00 GMT on 1st Jan 1970. After

this time cookie will become inaccessible. If this parameter is not set then cookie will

automatically expire when the browser is closed.

• Path: This specifies the directories for which the cookie is valid. A single forward slash

character permits the cookie to be valid for all directories.

• Domain: This can be used to specify the domain name in very large domains and must

contain at least two periods to be valid. All cookies are only valid for the host and domain

which created them.

• Security: This can be set to 1 to specify that the cookie should only be sent by secure

transmission using HTTPS otherwise set to 0 which mean cookie can be sent by regular

HTTP.

Setting a cookie

<?php

 setcookie("name", "John Watkin", time()+3600, "/","", 0);

 setcookie("age", "36", time()+3600, "/", "", 0); ?>

<html><head> <title>Setting Cookies with PHP</title> </head>

<body>

<?php echo "Set Cookies"?> </body></html>

➢ Accessing Cookies with PHP

PHP provides many ways to access cookies. Simplest way is to use either $_COOKIE

or $HTTP_COOKIE_VARS variables.isset() function is used to check if a cookie is

set or not.

 Internet Programming 4.27

Accessing cookies

<html><head> <title>Accessing Cookies with PHP</title> </head>

<body> <?php

echo $_COOKIE["name"]. "
";

/* is equivalent to */

echo $HTTP_COOKIE_VARS["name"]. "
";

echo $_COOKIE["age"] . "
";

/* is equivalent to */

echo $HTTP_COOKIE_VARS["name"] . "
";

?> </body></html>

➢ Deleting Cookie

To delete a cookie users should call setcookie() with the name argument only but this

does not always work well, however, and should not be relied on. It is safest to set the

cookie with a date that has already expired

<?php

 setcookie("name", "", time()- 60, "/","", 0);

 setcookie("age", "", time()- 60, "/","", 0);

?>

<html><head> <title>Deleting Cookies with PHP</title> </head>

<body>

<?php echo "Deleted Cookies" ?> </body></html>

REGULAR EXPRESSIONS IN PHP

PHP offers functions specific to two sets of regular expression functions, each

corresponding to a certain type of regular expression: POSIX Regular Expressions and PERL

Style Regular Expressions.

POSIX Regular Expressions

• The structure of a POSIX regular expression is similar to a typical arithmetic expression:

various elements (operators) are combined to form more complex expressions.

Regular expressions are nothing more than a sequence or pattern of characters.

They provide the foundation for pattern-matching functionality.

 4.28 PHP and XML 8

• The simplest regular expression is one that matches a single character.

▪ Brackets: Brackets ([]) have a special meaning when used in the context of regular

expressions. They are used to find a range of characters.

▪ Quantifiers: The frequency or position of bracketed character sequences and single

characters can be denoted by a special character. Each special character having a

specific connotation. The +, *, ?, {int. range}, and $ flags all follow a character

sequence.

▪ Predefined Character Ranges: For programming convenience several predefined

character ranges, also known as character classes, are available. Character classes

specify an entire range of characters, for example, the alphabet or an integer set.

Expression Description

[0-9] It matches any decimal digit from 0 through 9.

[a-z] It matches any character from lowercase a through lowercase z.

[A-Z] It matches any character from uppercase A through uppercase Z.

[a-Z] It matches any character from lowercase a through uppercase Z.

p+ It matches any string containing at least one p.

p* It matches any string containing zero or more p's.

p? It matches any string containing zero or more p's. This is just an alternative

way to use p*.

p{N} It matches any string containing a sequence of N p's

p{2,3} It matches any string containing a sequence of two or three p's.

p{2, } It matches any string containing a sequence of at least two p's.

p$ It matches any string with p at the end of it.

^p It matches any string with p at the beginning of it.

[[:alpha:]] It matches any string containing alphabetic characters aA through zZ.

[[:digit:]] It matches any string containing numerical digits 0 through 9.

[[:alnum:]] It matches any string containing alphanumeric characters aA through zZ

and 0 through 9.

[[:space:]] It matches any string containing a space.

 Internet Programming 4.29

PHP currently offers seven functions for searching strings using POSIX-style regular

expressions:

Function Description

ereg()

The ereg() function searches a string specified by string for a string

specified by pattern, returning true if the pattern is found, and false

otherwise.

ereg_replace()
The ereg_replace() function searches for string specified by pattern and

replaces pattern with replacement if found.

eregi()
The eregi() function searches throughout a string specified by pattern

for a string specified by string. The search is not case sensitive.

eregi_replace()
The eregi_replace() function operates exactly like ereg_replace(),

except that the search for pattern in string is not case sensitive.

split()

The split() function will divide a string into various elements, the

boundaries of each element based on the occurrence of pattern in

string.

spliti()
The spliti() function operates exactly in the same manner as its sibling

split(), except that it is not case sensitive.

sql_regcase()

The sql_regcase() function can be thought of as a utility function,

converting each character in the input parameter string into a bracketed

expression containing two characters.

PERL Style Regular Expressions:

Perl-style regular expressions are similar to their POSIX counterparts. The POSIX

syntax can be used almost interchangeably with the Perl-style regular expression functions

➢ Metacharacters: A metacharacter is simply an alphabetical character preceded by a

backslash that acts to give the combination a special meaning.

Metacharacters Description

. a single character

\s a whitespace character (space, tab, newline)

\S non-whitespace character

\d a digit (0-9)

\D a non-digit

http://www.tutorialspoint.com/php/php_ereg.htm
http://www.tutorialspoint.com/php/php_ereg_replace.htm
http://www.tutorialspoint.com/php/php_eregi.htm
http://www.tutorialspoint.com/php/php_eregi_replace.htm
http://www.tutorialspoint.com/php/php_split.htm
http://www.tutorialspoint.com/php/php_spliti.htm
http://www.tutorialspoint.com/php/php_sql_regcase.htm

 4.30 PHP and XML 8

\w a word character (a-z, A-Z, 0-9, _)

\W a non-word character

[aeiou] matches a single character in the given set

[^aeiou] matches a single character outside the given set

(foo|bar|baz) matches any of the alternatives specified

Modifiers: Several modifiers are available that can make the user work with regexps much

easier, like case sensitivity, searching in multiple lines etc.

Modifiers Description

I Makes the match case insensitive

M

Specifies that if the string has newline or carriage return characters, the ^

and $ operators will now match against a newline boundary, instead of

string boundary

O Evaluates the expression only once

S Allows use of . to match a newline character

X Allows the user to use white space in the expression for clarity

G Globally finds all matches

Cg Allows a search to continue even after a global match fails

PHP's Regexp PERL Compatible Functions

Functions Description

preg_match()
The preg_match() function searches string for pattern, returning true

if pattern exists, and false otherwise.

preg_match_all()
The preg_match_all() function matches all occurrences of pattern in

string.

preg_replace()

The preg_replace() function operates just like ereg_replace(), except

that regular expressions can be used in the pattern and replacement

input parameters.

preg_split()
The preg_split() function operates exactly like split(), except that

regular expressions are accepted as input parameters for pattern.

preg_grep()
The preg_grep() function searches all elements of input_array,

returning all elements matching the regexp pattern.

preg_ quote() Quote regular expression characters

http://www.tutorialspoint.com/php/php_preg_match.htm
http://www.tutorialspoint.com/php/php_preg_match_all.htm
http://www.tutorialspoint.com/php/php_preg_replace.htm
http://www.tutorialspoint.com/php/php_preg_split.htm
http://www.tutorialspoint.com/php/php_preg_grep.htm
http://www.tutorialspoint.com/php/php_preg_quote.htm

 Internet Programming 4.31

DATABASE CONNECTIVITY

PHP will work with virtually all database software, including Oracle and Sybase but

most commonly used is freely available MySQL database.

Opening Database Connection:

 PHP provides mysql_connect function to open a database connection. This function

takes five parameters and returns a MySQL link identifier on success, or FALSE on failure.

 connection mysql_connect(server,user,password,new_link,client_flag);

• Server: The host name running database server. If not specified then default value is

localhost:3306. This is optional.

• User: The username accessing the database. If not specified then default is the name of the

user that owns the server process. This is optional.

• Password: The password of the user accessing the database. If not specified then default

is an empty password.

• new_link: If a second call is made to mysql_connect() with the same arguments, no new

connection will be established; instead, the identifier of the already opened connection will

be returned. This is optional.

• client_flags: This is optional. A combination of the following constants:

1. MYSQL_CLIENT_SSL - Use SSL encryption

2. MYSQL_CLIENT_COMPRESS - Use compression protocol

3. MYSQL_CLIENT_IGNORE_SPACE - Allow space after function names

4. MYSQL_CLIENT_INTERACTIVE - Allow interactive timeout seconds of

inactivity before closing the connection

➢ Closing Database Connection:

PHP uses mysql_close to close a database connection. This function takes connection

resource returned by mysql_connect function. It returns TRUE on success or FALSE

on failure. If a resource is not specified then last opened database is closed.

 bool mysql_close (resource $link_identifier);

➢ Creating a Database:

To create and delete a database the users should have admin privilege. PHP uses

mysql_query function to create a MySQL database. This function takes two parameters

and returns TRUE on success or FALSE on failure.

 bool mysql_query(sql, connection);

 4.32 PHP and XML 8

• Sql: SQL query to create a database

• Connection: if not specified then last opened connection by mysql_connect will be

used.

➢ Selecting a Database:

 Once the user establishes a connection with a database server then it is required to

select a particular database where all the tables are associated. This is required because

there may be multiple databases residing on a single server. PHP provides function

mysql_select_db to select a database. It returns TRUE on success or FALSE on failure.

 bool mysql_select_db(db_name, connection);

• db_name: Database name to be selected

• connection: if not specified then last opened connection by mysql_connect will be

used.

➢ Creating Database Tables:

To create tables in the new database the user need to do the same thing as creating the

database. First create the SQL query to create the tables then execute the query using

mysql_query() function.

Creating and selecting a database table

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass); //Creating a connection

if(! $conn)

{ die('Could not connect: ' . mysql_error()); }

echo 'Connected successfully';

$sql = 'CREATE TABLE employee('. 'emp_id INT NOT NULL AUTO_INCREMENT, '.

 'emp_name VARCHAR(20) NOT NULL, '. 'emp_address VARCHAR(20) NOT NULL,

'.'emp_salary INT NOT NULL, '. 'join_date timestamp(14) NOT NULL, '.

 'primary key (emp_id))'; //Creating a table

mysql_select_db('test_db'); //Seeting a table

$retval = mysql_query($sql, $conn);

if(! $retval)

 Internet Programming 4.33

{ die('Could not create table: ' . mysql_error()); }

echo "Table employee created successfully\n";

mysql_close($conn); //Closing a connection ?>

 In case the user need to create many tables then it is better to create a text file first and

put all the SQL commands in that text file and then load that file into $sql variable and

execute those commands.

➢ Deleting a Database:

If a database is no longer required then it can be deleted forever. The users can use pass

an SQL command to mysql_query to delete a database.

➢ Deleting a Table:

It is again a matter of issuing one SQL command through mysql_query function to

delete any database table. But be very careful while using this command because by

doing so the users can delete some important information the user has in the table.

Deleting a table

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{ die('Could not connect: ' . mysql_error()); }

$sql = 'DROP TABLE employee'; //Deleting a table

$retval = mysql_query($sql, $conn);

if(! $retval)

{ die('Could not delete table employee: ' . mysql_error()); }

echo "Table deleted successfully\n";

mysql_close($conn); ?>

➢ Insert Data into MySQL Database

Data can be entered into MySQL tables by executing SQL INSERT statement through

PHP function mysql_query. In real application, all the values will be taken using HTML

 4.34 PHP and XML 8

form and then those values will be captured using PHP script and finally they will be

inserted into MySQL tables.

Inserting values

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{ die('Could not connect: ' . mysql_error()); }

$sql = 'INSERT INTO employee '. '(emp_name,emp_address, emp_salary, join_date) '.

 'VALUES ("guest", "XYZ", 2000, NOW())';

mysql_select_db('test_db');

$retval = mysql_query($sql, $conn);

if(! $retval)

{ die('Could not enter data: ' . mysql_error()); }

echo "Entered data successfully\n";

mysql_close($conn); ?>

➢ Getting Data From MySQL Database

Data can be fetched from MySQL tables by executing SQL SELECT statement through

PHP function mysql_query. The user have several options to fetch data from MySQL.

The most frequently used option is to use function mysql_fetch_array(). This function

returns row as an associative array, a numeric array, or both. This function returns

FALSE if there are no more rows.

Fetching data from tables

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

 Internet Programming 4.35

if(! $conn)

{ die('Could not connect: ' . mysql_error()); }

$sql = 'SELECT emp_id, emp_name, emp_salary FROM employee';

mysql_select_db('test_db');

$retval = mysql_query($sql, $conn);

if(! $retval)

{ die('Could not get data: ' . mysql_error()); }

while($row = mysql_fetch_array($retval, MYSQL_ASSOC))

{ echo "EMP ID :{$row['emp_id']}
 ".

 "EMP NAME : {$row['emp_name']}
 ".

 "EMP SALARY : {$row['emp_salary']}
 "; }

echo "Fetched data successfully\n";

mysql_close($conn); ?>

➢ Deleting Data from MySQL Database

Data can be deleted from MySQL tables by executing SQL DELETE statement through

PHP function mysql_query. To delete a record in any table it is required to locate that

record by using a conditional clause.

Deleting data from tables

<html> <head> <title>Delete a Record from MySQL Database</title> </head>

<body> <?php

if(isset($_POST['delete']))

{ $dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{ die('Could not connect: ' . mysql_error()); }

$emp_id = $_POST['emp_id'];

$sql = "DELETE employee WHERE emp_id = $emp_id" ; //Query to delete a record

mysql_select_db('test_db');

$retval = mysql_query($sql, $conn);

 4.36 PHP and XML 8

if(! $retval)

{ die('Could not delete data: ' . mysql_error()); }

echo "Deleted data successfully\n";

mysql_close($conn); }

else

{ ?>

<form method="post" action="<?php $_PHP_SELF ?>">

<table width="400" border="0" cellspacing="1" cellpadding="2"> <tr>

<td width="100">Employee ID</td>

<td><input name="emp_id" type="text" id="emp_id"></td> </tr>

<tr> <td width="100"></td>

<td></td> </tr>

<tr> <td width="100"></td>

<td> <input name="delete" type="submit" id="delete" value="Delete"> </td> </tr>

</table> </form>

<?php } ?> </body></html>

➢ Updating Data into MySQL Database

Data can be updated into MySQL tables by executing SQL UPDATE statement through

PHP function mysql_query. To update a record in any table it is required to locate that

record by using a conditional clause.

Updating data

<html><head> <title>Update a Record in MySQL Database</title> </head><body>

<?php

if(isset($_POST['update']))

{ $dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{ die('Could not connect: ' . mysql_error()); }

$emp_id = $_POST['emp_id'];

 Internet Programming 4.37

$emp_salary = $_POST['emp_salary'];

$sql = "UPDATE employee SET emp_salary = $emp_salary WHERE emp_id = $emp_id"

;

mysql_select_db('test_db');

$retval = mysql_query($sql, $conn);

if(! $retval)

{ die('Could not update data: ' . mysql_error()); }

echo "Updated data successfully\n";

mysql_close($conn); }

else {?>

<form method="post" action="<?php $_PHP_SELF ?>">

<table width="400" border="0" cellspacing="1" cellpadding="2">

<tr> <td width="100">Employee ID</td>

<td><input name="emp_id" type="text" id="emp_id"></td> </tr>

<tr> <td width="100">Employee Salary</td>

<td><input name="emp_salary" type="text" id="emp_salary"></td> </tr>

<tr> <td width="100"></td> <td></td> </tr>

<tr> <td width="100"></td> <td>

<input name="update" type="submit" id="update" value="Update"> </td> </tr>

</table> </form> <?php }

?> </body></html>

4.2 XML (Extensible Markup Language)

XML is a text-based markup language derived from Standard Generalized Markup

Language (SGML).It is a new markup language, developed by the W3C (World Wide Web

Consortium), mainly to overcome the limitations in HTML. Markup is information added to

a document that enhances its meaning in certain ways, in that it identifies the parts and how

they relate to each other. More specifically, a markup language is a set of symbols that can be

placed in the text of a document to demarcate and label the parts of that document.

 XML is not a programming language. It is usually stored in a simple text file and is

processed by special software that is capable of interpreting XML. XML don’t have pre -

defined tags and the tags are stricter than HTML.

XML is a markup language that defines set of rules for encoding documents in a

format that is both human-readable and machine-readable.

 4.38 PHP and XML 8

XML is extensible: XML allows the user to create user defined self-descriptive tags, or

language that suits the application.

XML carries the data, does not present it: XML allows storing the data irrespective of how

it will be presented.

XML is a public standard: XML was developed by an organization called the World Wide

Web Consortium (W3C) and is available as an open standard.

Features of XML

❖ XML simplifies the creation of HTML documents for large web sites.

❖ XML can be used to exchange the information between organizations and systems.

❖ XML can be used for offloading and reloading of databases.

❖ XML can be used to store and arrange the data, which can customize the user data

handling needs.

❖ XML can easily be merged with style sheets to create almost any desired output.

❖ Any type of data can be expressed as an XML document

❖ It has syndicated content, where content is being made available to different web

sites.

❖ It suits well for electronic commerce applications where different organizations

collaborate to serve a customer.

❖ It supports scientific applications with new markup languages for mathematical and

chemical formulas.

❖ It also supports electronic books with new markup languages to express rights and

ownership.

❖ XML could also be used in handheld devices and smart phones with new markup

languages optimized for these devices.

Syntax Rules

Fig 4.1 Syntax Rules of XML

XML Declaration References

Syntax Rules

Tag & Elements Attributes

T

e

x

t

 Internet Programming 4.39

➢ XML Declaration

The XML document can optionally have an XML declaration.

<?xml version="1.0" encoding="UTF-8"?>.

Version is the XML version and encoding specifies the character encoding used in the

document.

Syntax Rules for XML declaration

• The XML declaration is case sensitive and must begin with "<?xml>" where "xml"

is written in lower-case.

• If document contains XML declaration, then it strictly needs to be the first

statement of the XML document.

• The XML declaration strictly needs be the first statement in the XML document.

• An HTTP protocol can override the value of encoding that the user put in the XML

declaration.

➢ Tags and Elements

An XML file is structured by several XML-elements also called XML-nodes or XML-

tags. XML-elements' names are enclosed by angular brackets <>.

<element>....</element> or

<element/>

Nesting of elements

An XML-element can contain multiple XML-elements as its children, but the children

elements must not overlap. i.e., an end tag of an element must have the same name as that of

the most recent unmatched start tag.

<?xml version="1.0"?>

<contact-info>

<company>abc</company>

<contact-info>

• Root element: An XML document can have only one root element.

• Case sensitivity: The names of XML-elements are case-sensitive.

➢ Attributes

An attribute specifies a single property for the element, using a name/value pair. An XML-

element can have one or more attributes. It is possible to attach additional information to

elements in the form of attributes. The names follow the same rules as element names.

<tel preferred=”true”>513-555-8889</tel>

 4.40 PHP and XML 8

➢ XML References

References allow the user to add or include additional text or markup in an XML

document. References always begin with the symbol "&”, which is a reserved character

and end with the symbol ";". XML has two types of references:

• Entity References: An entity reference contains a name between the start and the end

delimiters. The entity reference is replaced by the content of the entity.

• Character References: A letter is replaced by its Unicode character code. Character

references that start with &#x provides a hexadecimal representation of the character

code.

XML Text

The names of XML-elements and XML-attributes are case-sensitive, which means the

name of start and end elements need to be written in the same case. To avoid character

encoding problems, all XML files should be saved as Unicode UTF-8 or UTF-16 files.

Whitespace characters like blanks, tabs and line-breaks between XML-elements and between

the XML-attributes will be ignored. Some characters are reserved by the XML syntax itself.

Hence, they cannot be used directly.

XML Documents

 An XML document is a basic unit of XML information composed of elements and

other markup in an orderly package. An XML document can contains wide variety of data.

<?xml version="1.0"?> //document prolog

<contact-info> //all the following lines are document element

<name>Sharanya</name>

<company>abc</company>

<phone>(044)257887296</phone>

</contact-info>

 The XML documents are divided into: Document prolog section and document

element sections.

Document prolog: The document prolog comes at the top of the document, before the

root element. This section contains: XML declaration and Document type declaration. The

first line in the above example belongs to prolog section.

Document element: Document Elements are the building blocks of XML. These

divide the document into a hierarchy of sections, each serving a specific purpose. The other

lines except the first line come under document element section.

 Internet Programming 4.41

XML Declaration

 The XML declaration is the first line of the document. The declaration identifies the

document as an XML document. The declaration also lists the version of XML used in the

document. The declaration can contain other attributes to support other features such as

character set encoding.

Syntax:

<?xml

 version="version_number"

 encoding="encoding_declaration"

 standalone="standalone_status"

?>

❖ Version- Specifies the version of the XML standard used.

❖ Encoding declaration- It defines the character encoding used in the document. UTF-8

is the default encoding used.

❖ Standalone- It informs the parser whether the document relies on the information

from an external source, such as external document type definition (DTD), for its

content. The default value is set to no. Setting it to yes tells the processor there are no

external declarations required for parsing the document.

Rules for XML declaration

• If the XML declaration is present in the XML, it must be placed as the first line in

the XML document.

• If the XML declaration is included, it must contain version number attribute.

• The Parameter names and values are case-sensitive.

• The names are always in lower case.

• The order of placing the parameters is important. The correct order is: version,

encoding and standalone.

• Either single or double quotes may be used.

• The XML declaration has no closing tag i.e. </?xml>

Example Description

<?xml > XML declaration with no parameters.

<?xml version="1.0"> XML declaration with version definition.

 4.42 PHP and XML 8

<?xml version="1.0" encoding="UTF-8"

standalone="no" ?>

XML declaration with all parameters

defined.

<?xml version='1.0' encoding='iso-8859-

1' standalone='no' ?>

XML declaration with all parameters

defined in single quotes.

XML tags

 XML tags form the foundation of XML. They define the scope of an element in the

XML. They can also be used to insert comments, declare settings required for parsing the

environment and to insert special instructions.

➢ Start Tag: The beginning of every non-empty XML element is marked by a start-tag.

Example: <address>.

➢ End Tag:Every element that has a start tag should end with an end-tag.

Example: </address>

➢ Empty Tag: The text that appears between start-tag and end-tag is called content. An

element which has no content is termed as empty. An empty element can be represented

in two ways:

(1) A start-tag immediately followed by an end-tag :<hr></hr>

(2) A complete empty-element tag : <hr />

XML Tags Rules

• XML tags are case-sensitive.

• XML tags must be closed in an appropriate order, i.e., an XML tag opened inside

another element must be closed before the outer element is closed.

XML Elements

XML elements can be defined as building blocks of an XML. Each XML document contains

one or more elements, the scope of which are either delimited by start and end tags, or for

empty elements, by an empty-element tag.

<element-name attribute1 attribute2>

....content

</element-name>

• element-name is the name of the element.

 Internet Programming 4.43

• attribute1, attribute2 are attributes of the element separated by white spaces. An

attribute defines a property of the element. It associates a name with a value, which

is a string of characters. An attribute is written as: name = "value".

Empty Element: An empty element is an element with no content.

Example: <name attribute1 attribute2.../>

XML Elements Rules

• An element name can contain any alphanumeric characters. The only punctuation

mark allowed in names are the hyphen (-), under-score (_) and period (.).

• Names are case sensitive.

• Start and end tags of an element must be identical.

• An element, which is a container, can contain text or elements.

XML Attributes

Attributes are part of the XML elements. An element can have multiple unique

attributes. Attribute gives more information about XML elements. To be more precise, they

define properties of elements. An XML attribute is always a name-value pair.

 <element-name attribute1 attribute2 >

 content….

 < /element-name>

where attribute1 and attribute2 has the following form: name = "value"

The following are the types of attributes:

➢ String: It takes any literal string as a value. CDATA is a String type. CDATA is character

data. This means, any string of non-markup characters is a legal part of the attribute.

➢ Tokenized: This is more constrained type. The validity constraints noted in the grammar

are applied after the attribute value is normalized.

➢ Enumerated: This has a list of predefined values in its declaration, out of which, it must

assign one value. There are two types of enumerated attribute:

❖ NotationType: It declares that an element will be referenced to a NOTATION

declared somewhere else in the XML document.

❖ Enumeration: Enumeration allows the user to define a specific list of values that the

attribute value must match.

 4.44 PHP and XML 8

Element Attribute Rules

An attribute name must not appear more than once in the same start-tag or empty-

element tag. An attribute must be declared in the Document Type Definition (DTD) using an

Attribute-List Declaration. Attribute values must not contain direct or indirect entity

references to external entities. The replacement text of any entity referred to directly or

indirectly in an attribute value must not contain either less than sign <.

XML other features

➢ Comments:

A comment starts with <!-- and ends with -->. Comments cannot appear before XML

declaration. Comments can appear anywhere in a document. Comments must not appear

within attribute values. Nested comments are not allowed.

➢ Whitespaces:

Whitespace is a collection of spaces, tabs, and newlines. XML document contain two

types of white spaces Significant Whitespace and Insignificant Whitespace. A significant

Whitespace occurs within the element which contain text and markup present together.

<name>Adhithya Ramanan</name>

Insignificant whitespace means the space where only element content is allowed.

<address.category="residence">

Differences between XML and HTML

XML HTML

XML was designed to be a software and

hardware independent tool used to transport

and store data, with focus on what data is.

HTML was designed to display data with

focus on how data looks.

XML provides a framework for defining

markup languages.

HTML is a markup language itself.

XML is neither a programming language

nor a presentation language.

HTML is a presentation language.

XML is case sensitive. HTML is case insensitive.

XML is used basically to transport data

between the application and the database.

HTML is used for designing a web-page

to be rendered on the client side.

In XML custom tags can be defined and the

tags are invented by the author of the XML

document.

HTML has its own predefined tags

 Internet Programming 4.45

XML makes it mandatory for the user the

close each tag that has been used.

HTML is not strict if the user does not use

the closing tags.

XML preserve white space. HTML does not preserve white space.

XML is about carrying information, hence

it is dynamic.

HTML is about displaying data, hence it is

static.

DOCUMENT TYPE DECLARATION (DTD)

 The document type declaration attaches a DTD to a document. It is a way to describe

XML language precisely.

<!DOCTYPE element DTD identifier

[declaration1

 declaration2

 ]>

The DTD starts with <!DOCTYPE delimiter. An element tells the parser to parse the

document from the specified root element. DTD identifier is an identifier for the document

type definition, which may be the path to a file on the system or URL to a file on the internet.

If the DTD is pointing to external path, it is called External Subset. The square brackets []

enclose an optional list of entity declarations called Internal Subset.

Internal DTD

A DTD is referred to as an internal DTD if elements are declared within the XML

files. To refer it as internal DTD, standalone attribute in XML declaration must be set to yes.

<!DOCTYPE root-element [element-declarations]>

root-element is the name of root element and element-declarations is where the user

declare the elements.

Internal DTD

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE address [

<!ELEMENT address (name, company, phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone (#PCDATA)>]>

<address> <name>Sharanya</name>

<company>abc</company>

<phone>12347890</phone> </address>

 4.46 PHP and XML 8

Start Declaration- Begin the XML declaration with following statement

 <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

DTD- Immediately after the XML header, the document type declaration follows, commonly

referred to as the DOCTYPE:

 <!DOCTYPE address [

The DOCTYPE declaration has an exclamation mark (!) at the start of the element name. The

DOCTYPE informs the parser that a DTD is associated with this XML document.

DTD Body- The DOCTYPE declaration is followed by body of the DTD, where elements,

attributes, entities, and notations are declared.

End Declaration - Finally, the declaration section of the DTD is closed using a closing

bracket and a closing angle bracket (]>).

Rules

• The document type declaration must appear at the start of the document.

• The element declarations must start with an exclamation mark.

• The Name in the document type declaration must match the element type of the

root element.

External DTD

In external DTD elements are declared outside the XML file. They are accessed by

specifying the system attributes which may be either the legal .dtd file or a valid URL. To

refer it as external DTD, standalone attribute in the XML declaration must be set as no. This

means, declaration includes information from the external source.

 <!DOCTYPE root-element SYSTEM "file-name">

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<!DOCTYPE address SYSTEM "address.dtd">

<address> <name>Sharanya</name>

<company>abc</company>

<phone>1234689</phone> </address>

address.dtd

<!ELEMENT address (name,company,phone)> <!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)> <!ELEMENT phone (#PCDATA)>

 Internet Programming 4.47

Types of external DTD

➢ System Identifiers: A system identifier enables the user to specify the location of an

external file containing DTD declarations.

 <!DOCTYPE name SYSTEM "address.dtd" [...]>

➢ Public Identifiers: Public identifiers provide a mechanism to locate DTD resources.

 <!DOCTYPE name PUBLIC "-//Beginning XML//DTD Address Example//EN">

 Public identifiers are used to identify an entry in a catalog. Public identifiers can follow any

format, however, a commonly used format is called Formal Public Identifiers, or FPIs.

Advantages of DTD

• The XML processor enforces the structure, as defined in the DTD.

• The application easily accesses the document structure.

• The DTD gives hints to the XML processor—that is, it helps separate indenting

from content.

• The DTD can declare default or fixed values for attributes. This might result in a

smaller document.

XML SCHEMAS

XML Schema is commonly known as XML Schema Definition (XSD). It is used to

describe and validate the structure and the content of XML data. XML schema defines the

elements, attributes and data types. Schema element supports Namespaces. It is similar to a

database schema that describes the data in a database.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="contact">

<xs:complexType><xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="company" type="xs:string" />

<xs:element name="phone" type="xs:int" /> </xs:sequence>

</xs:complexType></xs:element> </xs:schema>

➢ Elements: An element can be defined within an XSD as follows:

 <xs:element name="x" type="y"/>

 4.48 PHP and XML 8

➢ Definition Types

• Simple Type - Simple type element is used only in the context of the text. Some of

predefined simple types are: xs:integer, xs:boolean, xs:string, xs:date.

 Example: <xs:element name="phone_number" type="xs:int" />

• Complex Type - A complex type is a container for other element definitions. This

allows the user to specify which child elements an element can contain and to provide

some structure within the user’s XML documents.

 <xs:element name="Address">

 <xs:complexType><xs:sequence>

 <xs:element name="name" type="xs:string" />

 <xs:element name="company" type="xs:string" />

 <xs:element name="phone" type="xs:int" />

 </xs:sequence><xs:complexType>

 </xs:element>

• Global Types - With global type, the user can define a single type in the user’s

document, which can be used by all other references.

 <xs:element name="AddressType">

 <xs:complexType><xs:sequence>

 <xs:element name="name" type="xs:string" />

 <xs:element name="company" type="xs:string" />

 </xs:sequence></xs:complexType>

 </xs:element>

 Now let us use this type in our example as below:

<xs:element name="Address1">

<xs:complexType><xs:sequence>

<xs:element name="address" type="AddressType" />

 <xs:element name="phone1" type="xs:int" />

</xs:sequence></xs:complexType>

 Internet Programming 4.49

</xs:element>

<xs:element name="Address2">

<xs:complexType><xs:sequence>

<xs:element name="address" type="AddressType" />

 <xs:element name="phone2" type="xs:int" />

</xs:sequence></xs:complexType>

</xs:element>

Instead of having to define the name and the company twice (once for Address1 and once

for Address2), we now have a single definition.

➢ Attributes

Attributes in XSD provide extra information within an element. Attributes have name and

type property as shown below:

 <xs:attribute name="x" type="y"/>

XML DOM

The Document Object Model (DOM) is the foundation of XML. XML documents

have a hierarchy of informational units called nodes; DOM is a way of describing those nodes

and the relationships between them.

DOM

<!DOCTYPE html> <html><body>

<h1> DOM example </h1>

<div> Name:

Company:

Phone: </div>

<script> if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp = new XMLHttpRequest(); }

A DOM Document is a collection of nodes or pieces of information organized in a

hierarchy. This hierarchy allows a developer to navigate through the tree looking for

specific information.

 4.50 PHP and XML 8

 else {// code for IE6, IE5

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP"); }

 xmlhttp.open("GET","/xml/address.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 document.getElementById("name").innerHTML=

 xmlDoc.getElementsByTagName("name")[0].childNodes[0].nodeValue;

 document.getElementById("company").innerHTML=

 xmlDoc.getElementsByTagName("company")[0].childNodes[0].nodeValue;

 document.getElementById("phone").innerHTML=

 xmlDoc.getElementsByTagName("phone")[0].childNodes[0].nodeValue;

</script></body></html>

address.xml

<?xml version="1.0"?>

<contact-info>

<name>Sharanya</name>

<company>abc</company>

<phone>(011) 123-4567</phone>

</contact-info>

XML PARSERS

Fig 4.2 XML Parsers

XML

Documents
XML

Documents
XML

Documents

Client

Application

XML

Parser

XML parser is a software library or a package that provides interface for client

applications to work with XML documents. It checks for proper format of the XML

document and may also validate the XML documents.

 Internet Programming 4.51

 The goal of a parser is to transform XML into a readable code. To ease the process of

parsing, some commercial products are available that facilitate the breakdown of XML

document and yield more reliable results.

VALIDATION

 An XML document is said to be valid if its contents match with the elements,

attributes and associated document type declaration (DTD), and if the document complies

with the constraints expressed in it. Validation is dealt in two ways by the XML parser. They

are: Well-formed XML document and Valid XML document

➢ Well-formed XML document

• Non DTD XML files must use the predefined character entities for amp(&),

apos (single quote), gt >), lt (<), quot (double quote).

• It must follow the ordering of the tag. i.e., the inner tag must be closed before

closing the outer tag.

• Each of its opening tags must have a closing tag or it must be a self- ending

tag.(<title>....</title> or <title/>).

• It must have only one attribute in a start tag, which needs to be quoted.

• Amp (&), apos (single quote), gt (>), lt (<), quot (double quote) entities other

than these must be declared.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE address [

<!ELEMENT address (name, company, phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone (#PCDATA)>]>

<address> <name>Sharanya</name>

<company>abc</company>

<phone>(011) 123-4567</phone> </address>

➢ Valid XML document

If an XML document is well-formed and has an associated Document Type Declaration

(DTD), then it is said to be a valid XML document.

 4.52 PHP and XML 8

XSL (XML Style Sheet)

XML concentrates on the structure of the information and not its appearance. The

W3C has published two recommendations for style sheets: CSS (Cascading Style Sheet) and

XSL(XML Style sheet Language).XSL supports transforming the document before display.

XSL would typically be used for advanced styling. XSL originally consisted of three parts:

• XSLT (XSL Transformation) - a language for transforming XML documents

• XPath - a language for navigating in XML documents

• XSL-FO (XSL Formatting Objects) - a language for formatting XML documents

XSL

<P>Table of Contents</P>

<xsl:for-each select=”article/section/title”>

<A><xsl:value-of select=”.”/>

</xsl:for-each>

XSLT (XSL Transformation)

 XSLT is a language to specify transformation of XML documents. It takes an XML

document and transforms it into another XML document. XSLT is an XML-related

technology that is used to manipulate and transform XML documents.

Fig 4.2 XSLT Transformation

 With XSLT, the user can take an XML document and choose the elements and values,

then generate a new file with new choices. Because of XSLT's ability to change the content of

an XML document, XSLT is referred to as the stylesheet for XML. XSLT is not limited to

styling activities. Many applications require transforming documents. XSLT can be used to:

• Add elements specifically for viewing, such as add the logo or the address of the

sender to an XML invoice.

Source

document

Resulting

document

XSLT

style sheet

XSL

processor

 Internet Programming 4.53

• Create new content from an existing one, such as create the table of contents

• Present information with the right level of details for the reader, such as using a

style sheet to present high-level information to a managerial person while using

another style sheet to present more detailed technical information to the rest of the

staff.

• Convert between different DTDs or different versions of a DTD, such as convert a

company specific DTD to an industry standard

• Transform XML documents into HTML for backward compatibility with existing

browsers.

XSLT

XML code XSLT code

<?xml version="1.0"

encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl"

href="class.xsl"?>

<class>

<student>Arthi</student>

<student>Ambarish</student>

<student>Anitha</student>

<teacher>Sharanya</teacher>

</class>

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

>

 <xsl:template match="teacher">

 <p><u><xsl:value-of select="."/></u></p>

 </xsl:template>

 <xsl:template match="student">

 <p><xsl:value-of select="."/></p>

 </xsl:template>

 <xsl:template match="/">

 <html><body>

 <xsl:apply-templates/>

 </body></html>

 </xsl:template></xsl:stylesheet>

 The XML file class.xml is linked to the XSLT code by adding the xml-stylesheet

reference. The XSLT code then applies its rules to transform the XML document.

• Before XSLT: classoriginal.xml

• After XSLT rules are applied: class.xml

XSLT Syntax

➢ XSLT - XML Declaration

The user includes an XML declaration at the top of the XSLT documents. The attribute

version defines what version of XML is used.

Example: <?xml version="1.0" ?>

 4.54 PHP and XML 8

➢ XSLT - Stylesheet Root Element

Every XSLT file must have the root element xsl:stylesheet. This root element has two

attributes that must be included:

• version - the version of XSLT

• xmlns:xsl - the XSLT namespace, which is a URI to w3.org

➢ XSLT - XSL: Namespace Prefix

The root element specifies the XSL namespace. The standard form of an XSL element is:

xsl:element

XSLT - Stylesheet Reference

Linking XML document to XSLT stylesheet is stylesheet reference. This is the magic

step that connects XML to a XSLT file

XSLT - xml-stylesheet

xml-stylesheet is a special declaration in XML for linking XML with stylesheets. Place

this after XML declaration to link the XML file to the XSLT code. xml-stylesheet has two

attributes:

• type: the type of file being linked to. We will be using the value text/xsl to specify

XSLT.

• href: the location of the file. If the user saved the user XSLT and XML file in the

same directory, the user can simply use the XSLT filename.

Make sure that both XSLT and XML file are in the same directory.

Reference

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="class.xsl"?>

<class> <student>Arun</student>

 <student>Divya</student>

 <teacher>Sharanya</teacher> </class>

XSLT: XSL Template

 The purpose of XSLT is to help transform an XML document into something new. To

transform an XML document, XSLT must be able to do two things well:

• Find information in the XML document.

• Add additional text and/or data.

 Internet Programming 4.55

Both of these items are taken care of with the very important XSL element

xsl:template.

XSLT - xsl:template Match Attribute

To find information in an XML document use xsl:template's match attribute. It is in

this attribute the knowledge of XPath is used to find information in the XML document. In

previous example, to find student elements, we would set the match attribute to a simple

XPath expression: student.

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="student">

 Found a learner!

 </xsl:template>

</xsl:<stylesheet>

XSLT - xsl:apply-templates

 The xsl:apply-templates element to be more selective of the XML data.

➢ XSLT - Remove Unwanted Text

 The following attributes are used to remove unwanted text:

• select attribute: lets the user choose specific child elements

• xsl:apply-templates: to decide when and where the xsl:template elements are

used

XSLT - Remove Unwanted Children

 We could use the select attribute to select specific child elements. To do this, we need

a new xsl:template that matches our XML document's root element, class. We can then pick

the child student using the select attribute. Here's the XSLT code to get the job done.

apply templates

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="class">

<xsl:apply-templates select="student"/>

</xsl:template>

<xsl:template match="student">

 4.56 PHP and XML 8

 Found a learner!

</xsl:template></xsl:stylesheet>

Found a learner! Found a learner! Found a learner!

The XSLT processor begins at the root element when looking for template matches.

Because we have a match for the root element, class, the code we just added is used first.

xsl:apply-templates

In our template that matched class, we use xsl:apply-templates which will check for

template matches on all the children of class. The children of class in our XML document are

student and teacher.

xsl:apply-templates select="student"

To have the teacher element, "Sharanya," ignored, we use the select attribute of

xsl:apply-templates to specify only student children.

The XSLT processor then goes searching templates that only match student elements.

xsl:template match="student"

The processor finds the only other template in our XSLT, which prints out, "Found a

learner!" for each student element in the XML document. XSLT finds three students, so

"Found a learner!" is displayed three times.

XSLT - Well-Formed Output

To obtain well formed output remove the root element in an XSLT template and

inserting a new root element for the output. To do this, we are going to need to add an <html>

(root element) tag, a <body> tag, and maybe some <p> tags.

XSLT - Replacing the Old Root Element

In the template that matches the original root element, we will insert the <html> tag to

be the output's root element. We can also put the <body> tag there. In the template that

matches the student elements, we can insert a <p> tag to make a separate paragraph for each

student.

 Replacing root

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="class"> <html><body>

<xsl:apply-templates select="student"/> </body></html> </xsl:template>

 Internet Programming 4.57

<xsl:template match="student">

<p> Found a learner!</p> </xsl:template></xsl:stylesheet>

<html><body>

<p>Found a learner!</p>

<p>Found a learner!</p>

<p>Found a learner!</p>

</body></html>

4.3 NEWSFEEDS

 News feeds are an example of automated syndication. News feed technologies allow

information to be automatically provided and updated on Web sites, emailed to users, etc. As

the name implies news feeds are normally used to provide news; however the technology can

be used to syndicate a wide range of information.

 The BBC ticker is an example of a news feed application. A major limitation with this

approach is that the ticker can only be used with information provided by the BBC. The RSS

(Really Simple Syndication)standard was developed as an open standard for news syndication,

allowing applications to display news supplied by any RSS provider.

RSS (Really Simple Syndication)

 It is a way to easily distribute a list of headlines, update notices, and sometimes

content to a wide number of people. It is used by computer programs that organize those

headlines and notices for easy reading.

 The content feed is identified by a unique URI, and this URI is used by an RSS Reader

application to retrieve and display the content feed from a web site. An RSS feed can contain

one or more images or items. An item can be a synopsis of an article with a link to the full

article or the entire article itself. An RSS has a well-defined structure. Some Web APIs use

RSS as the data format returned when a request is made.

Working of RSS

 RSS works by having the website author maintain a list of notifications on their

website in a standard way. This list of notifications is called an RSS Feed. People who are

interested in finding out the latest headlines or changes can check this list. Special computer

programs called RSS aggregators have been developed that automatically access the RSS

feeds of websites of user’s interest and organize the results.

 Producing an RSS feed is very simple and hundreds of thousands of websites now

provide this feature, including major news organizations like the New York Times, the BBC,

and Reuters, as well as many weblogs.

RSS is an XML dialect used to publish frequently updated content, such as blog

posts or news headlines.

 4.58 PHP and XML 8

 RSS provides very basic information to do its notification. It is made up of a list of

items presented in order from newest to oldest. Each item usually consists of a simple title

describing the item along with a more complete description and a link to a web page with the

actual information being described. Sometimes this description is the full information the user

want to read (such as the content of a weblog post) and sometimes it is just a summary.

Creating RSS feed

The special XML-format file that makes up an RSS feed is usually created in one of a variety

of ways. Most large news websites and most weblogs are maintained using special content

management programs. Authors add their stories and postings to the website by interacting

with those programs and then use the program's publish facility to create the HTML files that

make up the website. Those programs often also can update the RSS feed XML file at the

same time, adding an item referring to the new story or post, and removing less recent items.

 Blog creation tools like Blogger, LiveJournal, Movable Type, and Radio automatically

create feeds. Websites that are produced in a more custom manner, such as with Macromedia

Dreamweaver or a simple text editor, usually do not automatically create RSS feeds. Authors

of such websites either maintain the XML files by hand, just as they do the website itself, or

use a tool such as Software Garden, Inc.'s ListGarden program to maintain it.

 There are also services that periodically read requested websites themselves and try to

automatically determine changes (this is most reliable for websites with a somewhat regular

news-like format), or that let the users create RSS feed XML files that are hosted by that

service provider.

Fig 4.3: Communication between websites, RSS feed and PC

In the above diagram, a web browser being used to read first Web Site 1 over the

Internet and then Web Site 2. It also shows the RSS feed XML files for both websites being

monitored simultaneously by an RSS Feed Aggregator.

Personal Computer

Browser

Web server

Web server

Web

site 1

files

Web

site 1

files

Web

site 1

files

Web

site 1

files

RSS

XML

file

Web

site 1

files

Web

site 1

files

Web

site 1

files

Web

site 2

files

RSS

XML

file

RSS

Feed

Aggregator

 Internet Programming 4.59

➢ Sections of an RSS file

 Apart from the root element there are four main sections of the RSS file. These

are the channel, image, item, and text input sections. In practical use, the channel

and item elements are requirements for any useful RSS file, while the image and

text input are optional.

 The channel section

The channel element contains metadata that describe the channel itself, telling what the

channel is and who created it. The channel is a required element that includes the name of the

channel, its description, its language, and a URL. The URL is normally used to point to the

channel's source of information.

Channel element

<channel><title>MozillaZine</title>

<link>http://www.mozillazine.org</link>

<description>The user source for Mozilla news, advocacy, interviews, builds, and more!

</description>

<language>en-us</language> </channel>

The title can be treated as a headline link with the description following. The Channel

Language definition allow aggregators to filter news feeds and gives the rendering software

the information necessary to display the language properly. The </channnel> tag is used after

all the channel elements to close the channel. As RSS conforms to XML specs, the element

must be well formed; it requires the closing tag.

The image section

The image element is an optional element that is usually used to include the logo of the

channel provider. The default size for the image is 88 pixels wide by 31 pixels high, but it can

be enlarged to 144 pixels wide by 400 pixels wide.

Image element



The image's title, URL, link, width, and height tags allow renderers to translate the file

into HTML. The title tag is normally used for the image's ALT text.

 4.60 PHP and XML 8

The items

Items form the dynamic part of an RSS file. While channel, image, and text input

elements create the channel's identity and typically stay the same over long periods of time,

channel items are rendered as news headlines, and the channel's value depends on their

changing fairly frequently.

Item element

<item><title>Java2 in Navigator 5?</title>

<link>http://www.mozillazine.org/talkback.html?article=607</link>

<description>Will Java2 be an integrated part of Navigator 5?

 Read more about it in this discussion...</description> </item>

Fifteen items are allowed in a channel. Titles should be less than 100 characters, while

descriptions should be under 500 characters. The item title is normally rendered as a headline

that links to the full article whose URL is provided by the item link. The item description is

commonly used for either a summary of the article's content or for commentary on the article.

News feed channels use the description to highlight the content of news articles,

usually on the channel owner's site, and Web log channels use the description to provide

commentary on a variety of content, often on third-party sites.

The text input

The text input area is an optional element, with only one allowed per channel. This lets

the user respond to the channel.

<textinput><title>Send</title>

<description>Comments about MozillaZine?</description>

<name>responseText</name>

<link>http://www.mozillazine.org/cgi-bin/sampleonly.cgi</link> </textinput>

The title is normally rendered as the label of the form's ssubmit button, and the

description as the text displayed before or above the input field. The text input name is

supplied along with the contents of the text field when the submit button is clicked.

4.4 ATOM

Atom is a syndication data format like RSS, as well as a publishing protocol.

The Atom data format uses XML syntax with one or more entry elements

containing the full and/or summary content.

http://www.mozillazine.org/cgi-bin/sampleonly.cgi%3c/link

 Internet Programming 4.61

 The Atom Publishing Protocol (APP) defines a hierarchy for organizing published

content (services, workspaces, collections, and resources) and uses the HTTP Get, Post, Put,

and Delete methods for retrieving, creating, deleting, and editing published content. Atom’s

use of HTTP’s built-in methods and XML as a data format is in the spirit of a RESTful web

services implementation.

Atom was designed to be a universal publishing standard for blogs and other Web sites

where content is updated frequently. Users visiting a Web site with an Atom feed can discover

a file described as "atom.xml" in the URL that can be copied and pasted into an aggregator to

subscribe to the feed.

Atom was originally developed as an alternative to RSS 2.0, the standard developed by

Dave Winer and copyrighted by Harvard University, as a means of improving perceived

shortcomings of the RSS format by the blogging community.

Features of ATOM

• Atom was developed to be vendor neutral and freely extensible by any user; it

is an open standard.

• Atom lies within an XML-namespace.

• Atom includes auto discovery, allowing feed aggregators to automatically

detect the presence of a feed.

• Atom differentiates between relative and non-relative URIs.

• Atom has separate summary and content elements.

• Atom explicitly labels a payload as plaintext or HTML.

• Each entry has a globally unique ID.

UNIT V

INTRODUCTION TO ANGULAR and WEB

APPLICATIONS FRAMEWORKS

Introduction to AngularJS, MVC Architecture,

Understanding ng attributes, Expressions and data

binding, Conditional Directives, Style Directives,

Controllers, Filters, Forms, Routers, Modules,

Services; Web Applications Frameworks and Tools

– Firebase- Docker- Node JS- React- Django- UI &

UX.

AngularJS is an open source, JavaScript based web application development

framework.

Definition of AngularJS as put by its official documentation is as follows:

AngularJS is a structural framework for dynamic web applications. It lets you use

HTML as your template language and lets you extend HTML's syntax to express your

application components clearly and succinctly. Its data binding and dependency

injection eliminate much of the code you currently have to write. And it all happens

within the browser, making it an ideal partner with any server technology.

It was originally developed in 2009 by Misko Hevery and Adam Abrons. It is now

maintained by Google.

General Features

The most important general features of AngularJS are:

 AngularJS is a efficient framework that can create Rich Internet Applications

(RIA).

 AngularJS provides developers an options to write client side applications

using JavaScript in a clean Model View Controller (MVC) way.

 Applications written in AngularJS are cross-browser compliant. AngularJS

automatically handles JavaScript code suitable for each browser.

 AngularJS is open source, completely free, and used by thousands of

developers around the world. It is licensed under the Apache license version

2.0.

Overall, AngularJS is a framework to build large scale, high performance, and easy-

to-maintain web applications.

Core Features

The most important core features of AngularJS are:

 Data-binding: It is the automatic synchronization of data between model and

view components.

 Scope: These are objects that refer to the model. They act as a glue between

controller and view.

1. OVERVIEW

https://docs.angularjs.org/guide/introduction

 Controller: These are JavaScript functions bound to a particular scope.

 Services: AngularJS comes with several built-in services such as $http to

make a XMLHttpRequests. These are singleton objects which are instantiated

only once in app.

 Filters: These select a subset of items from an array and returns a new array.

 Directives: Directives are markers on DOM elements such as elements,

attributes, css, and more. These can be used to create custom HTML tags that

serve as new, custom widgets. AngularJS has built-in directives such as

ngBind, ngModel etc.

 Templates:These are the rendered view with information from the controller

and model. These can be a single file (such as index.html) or multiple views

in one page using partials.

 Routing: It is concept of switching views.

 Model View Whatever: MVW is a design pattern for dividing an application

into different parts called Model, View, and Controller, each with distinct

responsibilities. AngularJS does not implement MVC in the traditional sense,

but rather something closer to MVVM (Model-View-ViewModel). The Angular

JS team refers it humorously as Model View Whatever.

 Deep Linking: Deep linking allows you to encode the state of application in

the URL so that it can be bookmarked. The application can then be restored

from the URL to the same state.

 Dependency Injection: AngularJS has a built-in dependency injection

subsystem that helps the developer to create,understand, and test the

applications easily.

Concepts

The following diagram depicts some important parts of AngularJS which we will

discuss in detail in the subsequent chapters.

Advantages of AngularJS

The advantages of AngularJS are:

 AngularJS provides capability to create Single Page Application in a very clean

and maintainable way.

 AngularJS provides data binding capability to HTML. Thus, it gives user a rich

and responsive experience.

 AngularJS code is unit testable.

 AngularJS uses dependency injection and make use of separation of concerns.

 AngularJS provides reusable components.

 With AngularJS, the developers can achieve more functionality with short

code.

 In AngularJS, views are pure html pages, and controllers written in JavaScript

do the business processing.

On the top of everything, AngularJS applications can run on all major browsers and

smart phones, including Android and iOS based phones/tablets.

Disadvantages of AngulaJS

Though AngularJS comes with a lot of merits, here are some points of concern:

 Not Secure : Being JavaScript only framework, application written in

AngularJS are not safe. Server side authentication and authorization is must

to keep an application secure.

 Not degradable: If the user of your application disables JavaScript, then

nothing would be visible, except the basic page.

AngularJS Directives

The AngularJS framework can be divided into three major parts:

 ng-app : This directive defines and links an AngularJS application to HTML.

 ng-model : This directive binds the values of AngularJS application data to

HTML input controls.

 ng-bind : This directive binds the AngularJS application data to HTML tags.

 Angular JS Tutorial

This chapter describes how to set up AngularJS library to be used in web application

development. It also briefly describes the directory structure and its contents.

When you open the link https://angularjs.org/, you will see there are two options to

download AngularJS library:

 View on GitHub- By clicking on this button, you are diverted to GitHub and

get all the latest scripts.

 Download- By clicking on this button, a screen you get to see a dialog box

shown as:

2. ENVIRONMENT

https://angularjs.org/

This screen offers various options for selecting Angular JS as follows:

 Downloading and hosting files locally

o There are two different options : Legacy and Latest. The names

themselves are self descriptive. The Legacy has version less than 1.2.x

and the Latest come with version 1.3.x.

o We can also go with the minimized, uncompressed, or zipped version.

 CDN access: You also have access to a CDN. The CDN gives you access around

the world to regional data centres. In this case, the Google host. This means,

using CDN transfers the responsibility of hosting files from your own servers

to a series of external ones. This also offers an advantage that if the visitor of

your web page has already downloaded a copy of AngularJS from the same

CDN, there is no need to re-download it.

We are using the CDN versions of the library throughout this tutorial.

Example

Now let us write a simple example using AngularJS library. Let us create an HTML

filemyfirstexample.html shown as below:

<!doctype html>

<html>

 <head>

 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.3.0-
beta.17/angular.min.js"></script>

 </head>

 <body ng-app="myapp">

 <div ng-controller="HelloController" >

 <h2>Welcome {{helloTo.title}} to the world of Tutorialspoint!</h2>

 </div>

 <script>

 angular.module("myapp", [])

 .controller("HelloController", function($scope) {

 $scope.helloTo = {};

 $scope.helloTo.title = "AngularJS";

 });

 </script>

 </body>

</html>

Let us go through the above code in detail:

Include AngularJS

We include the AngularJS JavaScript file in the HTML page so that we can use it:

<head>

 <script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">
</script>

</head>

You can check the latest version of AngularJS on its official website.

Point to AngularJS app

Next, it is required to tell which part of HTML contains the AngularJS app. You can

do this by adding the ng-app attribute to the root HTML element of the AngularJS

app. You can either add it to html element or body element as shown below:

<body ng-app="myapp">

</body>

View

The view is this part:

<div ng-controller="HelloController" >

 <h2>Welcome {{helloTo.title}} to the world of Tutorialspoint!</h2>

</div>

ng-controller tells AngularJS which controller to use with this view. helloTo.title tells

AngularJS to write the model value named helloTo.title in HTML at this location.

Controller

The controller part is:

<script>

 angular.module("myapp", [])

 .controller("HelloController", function($scope) {

 $scope.helloTo = {};

 $scope.helloTo.title = "AngularJS";

 });

</script>

This code registers a controller function named HelloController in the angular module

named myapp. We will study more about modules and controllers in their respective

chapters. The controller function is registered in angular via the

angular.module(...).controller(...) function call.

The $scope parameter model is passed to the controller function. The controller

function adds a helloTo JavaScript object, and in that object it adds a title field.

http://localhost/angularjs/angularjs_modules.htm
http://localhost/angularjs/angularjs_controllers.htm

Execution

Save the above code as myfirstexample.html and open it in any browser. You get to

see the following output:

What happens when the page is loaded in the browser ? Let us see:

 HTML document is loaded into the browser, and evaluated by the browser.

 AngularJS JavaScript file is loaded, the angular global object is created.

 The JavaScript which registers controller functions is executed.

 Next, AngularJS scans through the HTML to search for AngularJS apps as well

as views.

 Once the view is located, it connects that view to the corresponding controller

function.

 Next, AngularJS executes the controller functions.

 It then renders the views with data from the model populated by the

controller. The page is now ready.

 Angular JS Tutorial

Model View Controller or MVC as it is popularly called, is a software design pattern

for developing web applications. A Model View Controller pattern is made up of the

following three parts:

 Model - It is the lowest level of the pattern responsible for maintaining data.

 View - It is responsible for displaying all or a portion of the data to the user.

 Controller - It is a software Code that controls the interactions between the

Model and View.

MVC is popular as it isolates the application logic from the user interface layer and

supports separation of concerns. The controller receives all requests for the

application and then works with the model to prepare any data needed by the view.

The view then uses the data prepared by the controller to generate a final

presentable response. The MVC abstraction can be graphically represented as

follows.

3. MVC ARCHITECTURE

The model

The model is responsible for managing application data. It responds to the request

from view and to the instructions from controller to update itself.

The view

A presentation of data in a particular format, triggered by the controller's decision

to present the data. They are script-based template systems such as JSP, ASP, PHP

and very easy to integrate with AJAX technology.

The controller

The controller responds to user input and performs interactions on the data model

objects. The controller receives input, validates it, and then performs business

operations that modify the state of the data model.

AngularJS is a MVC based framework. In the coming chapters, let us see how

AngularJS uses MVC methodology.

 Angular JS Tutorial

Before creating actual Hello World ! application using AngularJS, let us see the parts

of a AngularJS application. An AngularJS application consists of following three

important parts:

 ng-app : This directive defines and links an AngularJS application to HTML.

 ng-model : This directive binds the values of AngularJS application data to

HTML input controls.

 ng-bind : This directive binds the AngularJS Application data to HTML tags.

Creating AngularJS Application

Step 1: Load framework
Being a pure JavaScript framework, it can be added using <Script> tag.

<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">

</script>

Step 2: Define AngularJS application using ng-app directive.

<div ng-app="">

...

</div>

Step 3: Define a model name using ng-model directive.

<p>Enter your Name: <input type="text" ng-model="name"></p>

Step 4: Bind the value of above model defined using ng-bind directive.

<p>Hello !</p>

Executing AngularJS Application

Use the above mentioned three steps in an HTML page.

4. FIRST APPLICATION

testAngularJS.htm

<html>

<title>AngularJS First Application</title>

<body>

<h1>Sample Application</h1>

<div ng-app="">

<p>Enter your Name: <input type="text" ng-model="name"></p>

<p>Hello !</p>

</div>

<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">
</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser. Enter your name and see the

result.

How AngularJS integrates with HTML

 The ng-app directive indicates the start of AngularJS application.

 The ng-model directive creates a model variable named name, which can be

used with the HTML page and within the div having ng-app directive.

 The ng-bind then uses the name model to be displayed in the HTML

tag whenever user enters input in the text box.

 Closing </div> tag indicates the end of AngularJS application.

 Angular JS Tutorial

AngularJS directives are used to extend HTML. They are special attributes starting

with ng-prefix. Let us discuss the following directives:

 ng-app - This directive starts an AngularJS Application.

 ng-init - This directive initializes application data.

 ng-model - This directive defines the model that is variable to be used in

AngularJS.

 ng-repeat - This directive repeats HTML elements for each item in a

collection.

ng-app directive

The ng-app directive starts an AngularJS Application. It defines the root element. It

automatically initializes or bootstraps the application when the web page containing

AngularJS Application is loaded. It is also used to load various AngularJS modules in

AngularJS Application. In the following example, we define a default AngularJS

application using ng-app attribute of a <div> element.

<div ng-app="">

...

</div>

ng-init directive

The ng-init directive initializes an AngularJS Application data. It is used to assign

values to the variables. In the following example, we initialize an array of countries.

We use JSON syntax to define the array of countries.

<div ng-app="" ng-init="countries=[{locale:'en-US',name:'United States'},

 {locale:'en-GB',name:'United Kingdom'},

 {locale:'en-FR',name:'France'}]">

...

5. DIRECTIVES

</div>

ng-model directive

The ng-model directive defines the model/variable to be used in AngularJS

Application. In the following example, we define a model named name.

<div ng-app="">

...

<p>Enter your Name: <input type="text" ng-model="name"></p>

</div>

ng-repeat directive

ng-repeat directive repeats HTML elements for each item in a collection. In the

following example, we iterate over the array of countries.

<div ng-app="">

...

<p>List of Countries with locale:</p>

 <li ng-repeat="country in countries">

 {{ 'Country: ' + country.name + ', Locale: ' + country.locale }}

</div>

Example

The following example shows the use of all the above mentioned directives.

testAngularJS.htm

<html>

<title>AngularJS Directives</title>

<body>

<h1>Sample Application</h1>

<div ng-app="" ng-init="countries=[{locale:'en-US',name:'United States'},

 {locale:'en-GB',name:'United Kingdom'},

 {locale:'en-FR',name:'France'}]">

<p>Enter your Name: <input type="text" ng-model="name"></p>

<p>Hello !</p>

<p>List of Countries with locale:</p>

 <li ng-repeat="country in countries">

 {{ 'Country: ' + country.name + ', Locale: ' + country.locale }}

</div>

<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">
</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser. Enter your name and see the

result.

 Angular JS Tutorial

Expressions are used to bind application data to HTML. Expressions are written inside

double curly braces such as in {{ expression}}. Expressions behave similar to ng-

bind directives. AngularJS expressions are pure JavaScript expressions and output

the data where they are used.

Using numbers

<p>Expense on Books : {{cost * quantity}} Rs</p>

Using String

<p>Hello {{student.firstname + " " + student.lastname}}!</p>

Using Object

<p>Roll No: {{student.rollno}}</p>

Using Array

<p>Marks(Math): {{marks[3]}}</p>

Example

The following example shows use of all the above mentioned expressions:

testAngularJS.htm

<html>

<title>AngularJS Expressions</title>

<body>

<h1>Sample Application</h1>

6. EXPRESSIONS

<div ng-app="" ng-init="quantity=1;cost=30;
student={firstname:'Mahesh',lastname:'Parashar',rollno:101};marks=[80,90,75
,73,60]">

<p>Hello {{student.firstname + " " + student.lastname}}!</p>

<p>Expense on Books : {{cost * quantity}} Rs</p>

<p>Roll No: {{student.rollno}}</p>

<p>Marks(Math): {{marks[3]}}</p>

</div>

<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">
</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

 Angular JS Tutorial

AngularJS application mainly relies on controllers to control the flow of data in the

application. A controller is defined using ng-controller directive. A controller is a

JavaScript object that contains attributes/properties, and functions. Each controller

accepts $scope as a parameter, which refers to the application/module that the

controller needs to handle.

<div ng-app="" ng-controller="studentController">

...

</div>

Here, we declare a controller named studentController, using ng-controller directive.

As a next step, we define it as follows:

<script>

function studentController($scope) {

 $scope.student = {

 firstName: "Mahesh",

 lastName: "Parashar",

 fullName: function() {

 var studentObject;

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

}

</script>

 The studentController is defined as a JavaScript object with $scope as an

argument.

 The $scope refers to application which uses the studentController object.

7. CONTROLLERS

 The $scope.student is a property of studentController object.

 The firstName and the lastName are two properties of $scope.student object.

We pass the default values to them.

 The property fullName is the function of $scope.student object, which returns

the combined name.

 In the fullName function, we get the student object and then return the

combined name.

 As a note, we can also define the controller object in a separate JS file and

refer that file in the HTML page.

Now we can use studentController's student property using ng-model or using

expressions as follows:

Enter first name: <input type="text" ng-model="student.firstName">

Enter last name: <input type="text" ng-model="student.lastName">

You are entering: {{student.fullName()}}

 We bound student.firstName and student.lastname to two input boxes.

 We bound student.fullName() to HTML.

 Now whenever you type anything in first name and last name input boxes,

you can see the full name getting updated automatically.

Example

The following example shows the use of controller:

testAngularJS.htm

<html>

<head>

<title>Angular JS Controller</title>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="" ng-controller="studentController">

Enter first name: <input type="text" ng-model="student.firstName">

Enter last name: <input type="text" ng-model="student.lastName">

You are entering: {{student.fullName()}}

</div>

<script>

function studentController($scope) {

 $scope.student = {

 firstName: "Mahesh",

 lastName: "Parashar",

 fullName: function() {

 var studentObject;

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

}

</script>

<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">
</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

 Angular JS Tutorial

Filters are used to modify the data. They can be clubbed in expression or directives

using pipe (|) character. The following list shows commonly used filters.

S.No. Name Description

1 uppercase converts a text to upper case text.

2 lowercase converts a text to lower case text.

3 currency formats text in a currency format.

4 filter filter the array to a subset of it based on provided criteria.

5 orderby orders the array based on provided criteria.

Uppercase Filter

This adds uppercase filter to an expression using pipe character. Here, we add

uppercase filter to print student name in capital letters.

Enter first name:<input type="text" ng-model="student.firstName">

Enter last name: <input type="text" ng-model="student.lastName">

Name in Upper Case: {{student.fullName() | uppercase}}

Lowercase Filter

This adds lowercase filter to an expression using pipe character. Here, we add

lowercase filter to print student name in small letters.

Enter first name:<input type="text" ng-model="student.firstName">

Enter last name: <input type="text" ng-model="student.lastName">

Name in Lower Case: {{student.fullName() | lowercase}}

Currency Filter

This adds currency filter to an expression that returns a number. Here, we add

currency filter to print fees using currency format.

8. FILTERS

Enter fees: <input type="text" ng-model="student.fees">

fees: {{student.fees | currency}}

Filter Filter

To display only required subjects, we use subjectName as filter.

Enter subject: <input type="text" ng-model="subjectName">

Subject:

 <li ng-repeat="subject in student.subjects | filter: subjectName">

 {{ subject.name + ', marks:' + subject.marks }}

Orderby Filter

To order subjects by marks, we use orderBy marks.

Subject:

 <li ng-repeat="subject in student.subjects | orderBy:'marks'">

 {{ subject.name + ', marks:' + subject.marks }}

Example

The following example shows use of all the above mentioned filters.

testAngularJS.htm

<html>

<head>

<title>Angular JS Filters</title>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="" ng-controller="studentController">

<table border="0">

<tr><td>Enter first name:</td><td><input type="text" ng-
model="student.firstName"></td></tr>

<tr><td>Enter last name: </td><td><input type="text" ng-
model="student.lastName"></td></tr>

<tr><td>Enter fees: </td><td><input type="text" ng-
model="student.fees"></td></tr>

<tr><td>Enter subject: </td><td><input type="text" ng-
model="subjectName"></td></tr>

</table>

<table border="0">

<tr><td>Name in Upper Case: </td><td>{{student.fullName() |
uppercase}}</td></tr>

<tr><td>Name in Lower Case: </td><td>{{student.fullName() |
lowercase}}</td></tr>

<tr><td>fees: </td><td>{{student.fees | currency}}</td></tr>

<tr><td>Subject:</td><td>

 <li ng-repeat="subject in student.subjects | filter: subjectName
|orderBy:'marks'">

 {{ subject.name + ', marks:' + subject.marks }}

</td></tr>

</table>

</div>

<script>

function studentController($scope) {

 $scope.student = {

 firstName: "Mahesh",

 lastName: "Parashar",

 fees:500,

 subjects:[

 {name:'Physics',marks:70},

 {name:'Chemistry',marks:80},

 {name:'Math',marks:65}

],

 fullName: function() {

 var studentObject;

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

}

</script>

<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">
</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser. See the result.

 Angular JS Tutorial

Table data is generally repeatable. The ng-repeat directive can be used to draw table

easily. The following example shows the use of ng-repeat directive to draw a table:

<table>

 <tr>

 <th>Name</th>

 <th>Marks</th>

 </tr>

 <tr ng-repeat="subject in student.subjects">

 <td>{{ subject.name }}</td>

 <td>{{ subject.marks }}</td>

 </tr>

</table>

Table can be styled using CSS Styling.

<style>

table, th , td {

 border: 1px solid grey;

 border-collapse: collapse;

 padding: 5px;

}

table tr:nth-child(odd) {

 background-color: #f2f2f2;

}

table tr:nth-child(even) {

 background-color: #ffffff;

9. TABLES

}

</style>

Example

The following example shows use of all the above mentioned directives.

testAngularJS.htm

<html>

<head>

<title>Angular JS Table</title>

<style>

table, th , td {

 border: 1px solid grey;

 border-collapse: collapse;

 padding: 5px;

}

table tr:nth-child(odd) {

 background-color: #f2f2f2;

}

table tr:nth-child(even) {

 background-color: #ffffff;

}

</style>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="" ng-controller="studentController">

<table border="0">

<tr><td>Enter first name:</td><td><input type="text" ng-
model="student.firstName"></td></tr>

<tr><td>Enter last name: </td><td><input type="text" ng-
model="student.lastName"></td></tr>

<tr><td>Name: </td><td>{{student.fullName()}}</td></tr>

<tr><td>Subject:</td><td>

<table>

 <tr>

 <th>Name</th>

 <th>Marks</th>

 </tr>

 <tr ng-repeat="subject in student.subjects">

 <td>{{ subject.name }}</td>

 <td>{{ subject.marks }}</td>

 </tr>

</table>

</td></tr>

</table>

</div>

<script>

function studentController($scope) {

 $scope.student = {

 firstName: "Mahesh",

 lastName: "Parashar",

 fees:500,

 subjects:[

 {name:'Physics',marks:70},

 {name:'Chemistry',marks:80},

 {name:'Math',marks:65},

 {name:'English',marks:75},

 {name:'Hindi',marks:67}

],

 fullName: function() {

 var studentObject;

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

}

</script>

<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">
</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

 Angular JS Tutorial

The following directives are used to bind application data to attributes of HTML DOM

elements:

S.No. Name Description

1 ng-disabled Disables a given control.

2 ng-show Shows a given control.

3 ng-hide Hides a given control.

4 ng-click Represents a AngularJS click event.

ng-disabled Directive

Add ng-disabled attribute to an HTML button and pass it a model. Bind the model to

a checkbox and see the variation.

<input type="checkbox" ng-model="enableDisableButton">Disable Button

<button ng-disabled="enableDisableButton">Click Me!</button>

ng-show Directive

Add ng-show attribute to an HTML button and pass it a model. Bind the model to a

checkbox and see the variation.

<input type="checkbox" ng-model="showHide1">Show Button

<button ng-show="showHide1">Click Me!</button>

ng-hide Directive

Add ng-hide attribute to an HTML button and pass it a model. Bind the model to a

checkbox and see the variation.

<input type="checkbox" ng-model="showHide2">Hide Button

10. HTML DOM

<button ng-hide="showHide2">Click Me!</button>

ng-click Directive

Add ng-click attribute to an HTML button and update a model. Bind the model to

HTML and see the variation.

<p>Total click: {{ clickCounter }}</p></td>

<button ng-click="clickCounter = clickCounter + 1">Click Me!</button>

Example

The following example shows use of all the above mentioned directives.

testAngularJS.htm

<html>

<head>

<title>AngularJS HTML DOM</title>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="">

<table border="0">

<tr>

 <td><input type="checkbox" ng-model="enableDisableButton">Disable
Button</td>

 <td><button ng-disabled="enableDisableButton">Click Me!</button></td>

</tr>

<tr>

 <td><input type="checkbox" ng-model="showHide1">Show Button</td>

 <td><button ng-show="showHide1">Click Me!</button></td>

</tr>

<tr>

 <td><input type="checkbox" ng-model="showHide2">Hide Button</td>

 <td><button ng-hide="showHide2">Click Me!</button></td>

</tr>

<tr>

 <td><p>Total click: {{ clickCounter }}</p></td>

 <td><button ng-click="clickCounter = clickCounter + 1">Click
Me!</button></td>

</tr>

</table>

</div>

<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">
</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

Angular JS Tutorial

AngularJS supports modular approach. Modules are used to separate logic such as

services, controllers, application etc. from the code and maintain the code clean. We

define modules in separate js files and name them as per the module.js file. In the

following example, we are going to create two modules:

 Application Module - used to initialize an application with controller(s).

 Controller Module - used to define the controller.

Application Module

Here is a file named mainApp.js that contains the following code:

var mainApp = angular.module("mainApp", []);

Here, we declare an application mainApp module using angular.module function

and pass an empty array to it. This array generally contains dependent modules.

Controller Module

studentController.js

mainApp.controller("studentController", function($scope) {

 $scope.student = {

 firstName: "Mahesh",

 lastName: "Parashar",

 fees:500,

 subjects:[

 {name:'Physics',marks:70},

 {name:'Chemistry',marks:80},

 {name:'Math',marks:65},

 {name:'English',marks:75},

 {name:'Hindi',marks:67}

11. MODULES

],

 fullName: function() {

 var studentObject;

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

});

Here, we declare a controller studentController module using mainApp.controller

function.

Use Modules

<div ng-app="mainApp" ng-controller="studentController">

..

<script src="mainApp.js"></script>

<script src="studentController.js"></script>

Here, we use application module using ng-app directive, and controller using ng-

controller directive. We import the mainApp.js and studentController.js in the main

HTML page.

Example

The following example shows use of all the above mentioned modules.

testAngularJS.htm

<html>

<head>

<title>Angular JS Modules</title>

<style>

table, th , td {

 border: 1px solid grey;

 border-collapse: collapse;

 padding: 5px;

}

table tr:nth-child(odd) {

 background-color: #f2f2f2;

}

table tr:nth-child(even) {

 background-color: #ffffff;

}

</style>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="mainApp" ng-controller="studentController">

<table border="0">

<tr><td>Enter first name:</td><td><input type="text" ng-
model="student.firstName"></td></tr>

<tr><td>Enter last name: </td><td><input type="text" ng-
model="student.lastName"></td></tr>

<tr><td>Name: </td><td>{{student.fullName()}}</td></tr>

<tr><td>Subject:</td><td>

<table>

 <tr>

 <th>Name</th>

 <th>Marks</th>

 </tr>

 <tr ng-repeat="subject in student.subjects">

 <td>{{ subject.name }}</td>

 <td>{{ subject.marks }}</td>

 </tr>

</table>

</td></tr>

</table>

</div>

<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">
</script>

<script src="mainApp.js"></script>

<script src="studentController.js"></script>

</body>

</html>

mainApp.js

var mainApp = angular.module("mainApp", []);

studentController.js

mainApp.controller("studentController", function($scope) {

 $scope.student = {

 firstName: "Mahesh",

 lastName: "Parashar",

 fees:500,

 subjects:[

 {name:'Physics',marks:70},

 {name:'Chemistry',marks:80},

 {name:'Math',marks:65},

 {name:'English',marks:75},

 {name:'Hindi',marks:67}

],

 fullName: function() {

 var studentObject;

 studentObject = $scope.student;

 return studentObject.firstName + " " + studentObject.lastName;

 }

 };

});

Output

Open the file textAngularJS.htm in a web browser. See the result.

 Angular JS Tutorial

AngularJS enriches form filling and validation. We can use ng-click event to handle

the click button and use $dirty and $invalid flags to do the validation in a seamless

way. Use novalidate with a form declaration to disable any browser-specific

validation. The form controls make heavy use of AngularJS events. Let us have a

look at the events first.

Events

AngularJS provides multiple events associated with the HTML controls. For example,

ng-click directive is generally associated with a button. AngularJS supports the

following events:

 ng-click

 ng-dbl-click

 ng-mousedown

 ng-mouseup

 ng-mouseenter

 ng-mouseleave

 ng-mousemove

 ng-mouseover

 ng-keydown

 ng-keyup

 ng-keypress

 ng-change

Let us go through ng-click:

ng-click

Reset data of a form using on-click directive of a button.

<input name="firstname" type="text" ng-model="firstName" required>

<input name="lastname" type="text" ng-model="lastName" required>

<input name="email" type="email" ng-model="email" required>

12. FORMS

<button ng-click="reset()">Reset</button>

<script>

 function studentController($scope) {

 $scope.reset = function(){

 $scope.firstName = "Mahesh";

 $scope.lastName = "Parashar";

 $scope.email = "MaheshParashar@tutorialspoint.com";

 }

 $scope.reset();

}

</script>

Validate Data

The following can be used to track error.

 $dirty - states that value has been changed.

 $invalid- states that value entered is invalid.

 $error- states the exact error.

Example

Following example will showcase all the above mentioned directives.

testAngularJS.htm

<html>

<head>

<title>Angular JS Forms</title>

<style>

table, th , td {

 border: 1px solid grey;

 border-collapse: collapse;

 padding: 5px;

}

table tr:nth-child(odd) {

 background-color: #f2f2f2;

}

table tr:nth-child(even) {

 background-color: #ffffff;

}

</style>

</head>

<body>

<h2>AngularJS Sample Application</h2>

<div ng-app="" ng-controller="studentController">

<form name="studentForm" novalidate>

<table border="0">

<tr><td>Enter first name:</td><td><input name="firstname" type="text" ng-
model="firstName" required>

 <span style="color:red" ng-show="studentForm.firstname.$dirty &&
studentForm.firstname.$invalid">

 First Name is
required.

</td></tr>

<tr><td>Enter last name: </td><td><input name="lastname" type="text" ng-
model="lastName" required>

 <span style="color:red" ng-show="studentForm.lastname.$dirty &&
studentForm.lastname.$invalid">

 Last Name is
required.

</td></tr>

<tr><td>Email: </td><td><input name="email" type="email" ng-model="email"
length="100" required>

<span style="color:red" ng-show="studentForm.email.$dirty &&
studentForm.email.$invalid">

 Email is
required.

 Invalid email
address.

</td></tr>

<tr><td><button ng-click="reset()">Reset</button></td><td><button

ng-disabled="studentForm.firstname.$dirty &&
studentForm.firstname.$invalid ||

 studentForm.lastname.$dirty &&
studentForm.lastname.$invalid ||

 studentForm.email.$dirty &&
studentForm.email.$invalid"

ng-click="submit()">Submit</button></td></tr>

</table>

</form>

</div>

<script>

function studentController($scope) {

 $scope.reset = function(){

$scope.firstName = "Mahesh";

$scope.lastName = "Parashar";

$scope.email = "MaheshParashar@tutorialspoint.com";

 }

 $scope.reset();

}

</script>

<script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">
</script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

Angular JS Tutorial

AngularJS supports the concept of Separation of Concerns using services

architecture. Services are JavaScript functions, which are responsible to perform

only specific tasks. This makes them individual entities which are maintainable and

testable. The controllers and filters can call them on requirement basis. Services are

normally injected using dependency injection mechanism of AngularJS.

AngularJS provides many inbuilt services. For example, $http, $route, $window,

$location etc. Each service is responsible for a specific task such as the $http is used

to make ajax call to get the server data, the $route is used to define the routing

information, and so on. The inbuilt services are always prefixed with $ symbol.

There are two ways to create a service:

 Factory

 Service

Using Factory Method

In this method, we first define a factory and then assign method to it.

 var mainApp = angular.module("mainApp", []);

 mainApp.factory('MathService', function() {

 var factory = {};

 factory.multiply = function(a, b) {

 return a * b

 }

 return factory;

 });

Using Service Method

In this method, we define a service and then assign method to it. We also inject an

already available service to it.

mainApp.service('CalcService', function(MathService){

17. SERVICES

 this.square = function(a) {

return MathService.multiply(a,a);

}

});

Example

The following example shows use of all the above mentioned directives:

testAngularJS.htm

<html>

<head>

 <title>Angular JS Forms</title>

</head>

<body>

 <h2>AngularJS Sample Application</h2>

 <div ng-app="mainApp" ng-controller="CalcController">

<p>Enter a number: <input type="number" ng-model="number" />

 <button ng-click="square()">X²</button>

<p>Result: {{result}}</p>

 </div>

 <script
src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.15/angular.min.js">
</script>

 <script>

 var mainApp = angular.module("mainApp", []);

 mainApp.factory('MathService', function() {

 var factory = {};

 factory.multiply = function(a, b) {

 return a * b

 }

 return factory;

 });

 mainApp.service('CalcService', function(MathService){

 this.square = function(a) {

 return MathService.multiply(a,a);

 }

 });

 mainApp.controller('CalcController', function($scope, CalcService) {

 $scope.square = function() {

 $scope.result = CalcService.square($scope.number);

 }

 });

 </script>

</body>

</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

Chapter 1: Getting started with firebase

Remarks

Firebase is a Backend as a Service (Baas) very useful for mobile app development.

It provides many features like Authentication & Security, Realtime Database & File Storage,
Analytics, Push Notifications, AdMod and many others

It provides the SDK for Android, iOS, Web, NodeJS, C++ and Java Server

Versions

Platform SDK Version Release date

Firebase JavaScript SDK 3.7.0 2017-03-01

Firebase C++ SDK 3.0.0 2107-02-27

Firebase Unity SDK 3.0.0 2107-02-27

Firebase iOS SDK 3.14.0 2017-02-23

Firebase Android SDK 10.2 2017-02-15

Firebase Admin Node.js SDK 4.1.1 2017-02-14

Firebase Admin Java SDK 4.1.2 2017-02-14

Examples

Add Firebase to Your Android Project

Here the steps required to create a Firebase project and to connect with an Android app.

Add Firebase to your app

Create a Firebase project in the Firebase console and click Create New Project.1.

Click Add Firebase to your Android app and follow the setup steps.2.

When prompted, enter your app's package name.
It's important to enter the package name your app is using; this can only be set when you
add an app to your Firebase project.

3.

https://firebase.google.com/
https://firebase.google.com/features/
https://firebase.google.com/docs/
https://firebase.google.com/support/release-notes/js#3.7.0
https://firebase.google.com/support/release-notes/cpp-relnotes#3.0.0
https://firebase.google.com/support/release-notes/unity#3.0.0
https://firebase.google.com/support/release-notes/ios#3.14.0
https://firebase.google.com/support/release-notes/android#20170215
https://firebase.google.com/support/release-notes/admin/node#4.1.1
https://firebase.google.com/support/release-notes/admin/java#4.1.2
https://firebase.google.com/console/

To add debug signing certificate SHA1 which is required for Dynamic Links, Invites, and
Google Sign-In support in Auth, go to your project in Android Studio, click on Gradle tab on
the right side of your window, click on Refresh button, go to project(root) -> Tasks -> android -
> signingReport. This will generate MD5 and SHA1 both in Run tab. Copy paste SHA1 into
firebase console.

4.

At the end, you'll download a google-services.json file. You can download this file again at
any time.

5.

If you haven't done so already, copy this into your project's module folder, typically app/.6.

The next step is to Add the SDK to integrate the Firebase libraries in the project.

Add the SDK

To integrate the Firebase libraries into one of your own projects, you need to perform a few basic
tasks to prepare your Android Studio project. You may have already done this as part of adding
Firebase to your app.

Add rules to your root-level build.gradle file, to include the google-services plugin:1.

buildscript {
 // ...
 dependencies {

// ...
classpath 'com.google.gms:google-services:3.0.0'

 }
}

Then, in your module Gradle file (usually the app/build.gradle), add the apply plugin line at the
bottom of the file to enable the Gradle plugin:

apply plugin: 'com.android.application'

android {
 // ...
}

dependencies {
 // ...
 compile 'com.google.firebase:firebase-core:9.4.0'
}

// ADD THIS AT THE BOTTOM
apply plugin: 'com.google.gms.google-services'

The final step is to add the dependencies for the Firebase SDK using one or more libraries
available for the different Firebase features.

Gradle Dependency Line Service

com.google.firebase:firebase-core:9.4.0 Analytics

com.google.firebase:firebase-database:9.4.0 Realtime Database

com.google.firebase:firebase-storage:9.4.0 Storage

com.google.firebase:firebase-crash:9.4.0 Crash Reporting

com.google.firebase:firebase-auth:9.4.0 Authentication

com.google.firebase:firebase-messaging:9.4.0 Cloud Messaging / Notifications

com.google.firebase:firebase-config:9.4.0 Remote Config

com.google.firebase:firebase-invites:9.4.0 Invites / Dynamic Links

com.google.firebase:firebase-ads:9.4.0 AdMob

com.google.android.gms:play-services-appindexing:9.4.0 App Indexing

Setting up Firebase for IOS

Firstly, you want to go to firebase dashboard and create a new project using the 'Create New
Project' button.

1.

You want to create a new project by adding the name of your app for example I put mine as
'Cool app name' then choose your region and press 'Create Project'

2.

http://i.stack.imgur.com/54Gai.png

After creating project you will be directed to this page which is the dashboard and from here
you have to pick a platform which you want to install firebase to for this example we will
choose IOS.

3.

http://i.stack.imgur.com/bHBZe.png

After selecting IOS you should see the same pop up as the one from the image below asking
for the IOS Bundle and the app store id. You will only need to provide the IOS Bundle
because our app isn't on the app store yet.

4.

http://i.stack.imgur.com/s89CX.png

Get the bundle ID from xcode after creating a xcode project anyway you usually would after
that you can get the bundle id for your application on the app Genral view in xcode it will be
the first field at the top and once you get it paste it into the Bundle field in firebase for
example mine would be 'MauginInc.KIKOO'

5.

http://i.stack.imgur.com/4BOxn.png

After you have done that and pressed 'Next' a 'GoogleService-Info.plist' file will download
and what you will need to do is move that into the root folder of your app within xcode

6.

http://i.stack.imgur.com/RD9ic.png

You will want to initialise pods and install the firebase pods you need you cam do this by
going into your terminal and navigate to your xcode project folder and follow these
instructions given by firebase.

7.

http://i.stack.imgur.com/dSWoA.png

Finally you want to configure you app to let swift do what it does best and that is making app
development a whole lot more easier and efficient all you need to do is edit you
AppDelegate.swift files the same the pop up shows you.

8.

http://i.stack.imgur.com/Td9ho.png

That's all you now have firebase installed in your xcode project for IOS

Getting started in Firebase with a simple Hello World web app in JavaScript

This example will demonstrate how to get started with Firebase in your web apps with JavaScript.

We are going to add a text child in our Firebase Database and display it in realtime on our web
app.

Lets get started.

http://i.stack.imgur.com/oqSPQ.png

Go to the Firebase Console - https://console.firebase.google.com and create a new project.
Enter the project name, Country/region and click on create project.

•

Now create a file index.html on your computer. And add the following code to it.

 <body>
<p>Getting started with Firebase</p>
<h1 id="bigOne"></h1>
<script>

// your firebase JavaScript code here
 </script>

 </body>

•

Now go to your project on Firebase Console and you can see this •

https://console.firebase.google.com
https://i.stack.imgur.com/R1ogK.png

Now click on Add Firebase to your web app. You will the following pop up, click on copy
button

•

https://i.stack.imgur.com/4Rnwv.png

Now go to your index.html file and add the snippet to the script section as following

 <body>

<p>Getting started with Firebase</p>
<h1 id="bigOne"></h1>

 <script src="https://www.gstatic.com/firebasejs/3.7.4/firebase.js"></script>
 <script>
 // Initialize Firebase
 var config = {

apiKey: "apiKey",
authDomain: "authDomain",
databaseURL: "databaseURL",
storageBucket: "storageBucket",
messagingSenderId: "messagingSenderId"

 };
 firebase.initializeApp(config);
 </script>

•

https://i.stack.imgur.com/ckbS0.png

 </body>

Now you have completed adding Firebase initialization code. Now we need to get our text
value from the database.

•

To do that add the following code (Initialize Firebase already added in last step. Don't re-
add) inside the script in index.html

 <script>

 // Initialize Firebase
 var config = {

apiKey: "apiKey",
authDomain: "authDomain",
databaseURL: "databaseURL",
storageBucket: "storageBucket",
messagingSenderId: "messagingSenderId"

 };
 firebase.initializeApp(config);

 // getting the text value from the database
 var bigOne = document.getElementById('bigOne');
 var dbRef = firebase.database().ref().child('text');
 dbRef.on('value', snap => bigOne.innerText = snap.val());

 </script>

•

Now we are all done with the index.html file and now let's go the Database in Firebase
Console.

•

You will see that its blank and empty right now. Lets add the a text child in the database
and add any value to it.

•

Now click on ADD button.•

Now go the RULES section in the Database.•

For development purpose right now, we will right now enable all the read and write queries.•

https://i.stack.imgur.com/RHRrW.jpg
https://i.stack.imgur.com/Vmuvo.png

 {
 "rules": {

".read": "true",
".write": "true"

 }
 }

Now open index.html in the browser•

You will see the text value on your page as following -•

Now if you go back to your database and change the text child value to something else, you
will see that the text in the browser also changes without any refresh or reload. This is how
realtime database works on Firebase.

•

Read Getting started with firebase online: https://riptutorial.com/firebase/topic/816/getting-started-
with-firebase

https://i.stack.imgur.com/nyYrf.png
https://i.stack.imgur.com/9eCVP.png
https://riptutorial.com/firebase/topic/816/getting-started-with-firebase
https://riptutorial.com/firebase/topic/816/getting-started-with-firebase

Chapter 1: Getting started with Docker

Remarks

Docker is an open-source project that automates the deployment of applications inside software
containers. These application containers are similar to lightweight virtual machines, as they can be
run in isolation to each other and the running host.

Docker requires features present in recent linux kernels to function properly, therefore on Mac
OSX and Windows host a virtual machine running linux is required for docker to operate properly.
Currently the main method of installing and setting up this virtual machine is via Docker Toolbox
that is using VirtualBox internally, but there are plans to integrate this functionality into docker
itself, using the native virtualisation features of the operating system. On Linux systems docker run
natively on the host itself.

Versions

Version Release Date

17.05.0 2017-05-04

17.04.0 2017-04-05

17.03.0 2017-03-01

1.13.1 2016-02-08

1.12.0 2016-07-28

1.11.2 2016-04-13

1.10.3 2016-02-04

1.9.1 2015-11-03

1.8.3 2015-08-11

1.7.1 2015-06-16

1.6.2 2015-04-07

1.5.0 2015-02-10

Examples

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://www.docker.com/toolbox
https://github.com/moby/moby/blob/17.05.x/CHANGELOG.md
https://github.com/moby/moby/blob/moby/CHANGELOG.md
https://github.com/docker/docker/blob/17.03.x/CHANGELOG.md
https://github.com/docker/docker/blob/v1.13.1/CHANGELOG.md
https://github.com/docker/docker/releases/tag/v1.12.0
https://github.com/docker/docker/blob/v1.11.2/CHANGELOG.md
https://github.com/docker/docker/blob/v1.10.3/CHANGELOG.md
https://github.com/docker/docker/blob/v1.9.1/CHANGELOG.md
https://github.com/docker/docker/blob/v1.8.3/CHANGELOG.md
https://github.com/docker/docker/blob/v1.7.1/CHANGELOG.md
https://github.com/docker/docker/blob/v1.6.2/CHANGELOG.md
https://github.com/docker/docker/blob/v1.5.0/CHANGELOG.md

Installing Docker on Mac OS X

Requirements: OS X 10.8 “Mountain Lion” or newer required to run Docker.

While the docker binary can run natively on Mac OS X, to build and host containers you need to
run a Linux virtual machine on the box.

1.12.0

Since version 1.12 you don't need to have a separate VM to be installed, as Docker can use the
native Hypervisor.framework functionality of OSX to start up a small Linux machine to act as
backend.

To install docker follow the following steps:

Go to Docker for Mac1.
Download and run the installer.2.
Continue through installer with default options and enter your account credentials when
requested.

3.

Check here for more information on the installation.

1.11.2

Until version 1.11 the best way to run this Linux VM is to install Docker Toolbox, that installs
Docker, VirtualBox and the Linux guest machine.

To install docker toolbox follow the following steps:

Go to Docker Toolbox1.
Click the link for Mac and run the installer.2.
Continue through installer with default options and enter your account credentials when
requested.

3.

This will install the Docker binaries in /usr/local/bin and update any existing Virtual Box
installation. Check here for more information on the installation.

To Verify Installation:

1.12.0

Start Docker.app from the Applications folder, and make sure it is running. Next open up
Terminal.

1.

1.11.2

Open the Docker Quickstart Terminal, which will open a terminal and prepare it for use for
Docker commands.

1.

Once the terminal is open type2.

https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/
https://www.docker.com/toolbox
https://docs.docker.com/v1.11/mac/step_one/

$ docker run hello-world

If all is well then this should print a welcome message verifying that the installation was
successful.

3.

Installing Docker on Windows

Requirements: 64-bit version of Windows 7 or higher on a machine which supports Hardware
Virtualization Technology, and it is enabled.

While the docker binary can run natively on Windows, to build and host containers you need to run
a Linux virtual machine on the box.

1.12.0

Since version 1.12 you don't need to have a separate VM to be installed, as Docker can use the
native Hyper-V functionality of Windows to start up a small Linux machine to act as backend.

To install docker follow the following steps:

Go to Docker for Windows1.
Download and run the installer.2.
Continue through installer with default options and enter your account credentials when
requested.

3.

Check here for more information on the installation.

1.11.2

Until version 1.11 the best way to run this Linux VM is to install Docker Toolbox, that installs
Docker, VirtualBox and the Linux guest machine.

To install docker toolbox follow the following steps:

Go to Docker Toolbox1.
Click the link for Windows and run the installer.2.
Continue through installer with default options and enter your account credentials when
requested.

3.

This will install the Docker binaries in Program Files and update any existing Virtual Box
installation. Check here for more information on the installation.

To Verify Installation:

1.12.0

Start Docker from the Start menu if it hasn't been started yet, and make sure it is running.
Next upen up any terminal (either cmd or PowerShell)

1.

1.11.2

https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://www.docker.com/toolbox
https://docs.docker.com/v1.11/windows/step_one/

On your Desktop, find the Docker Toolbox icon. Click the icon to launch a Docker Toolbox
terminal.

1.

Once the terminal is open type

docker run hello-world

2.

If all is well then this should print a welcome message verifying that the installation was
successful.

3.

Installing docker on Ubuntu Linux

Docker is supported on the following 64-bit versions of Ubuntu Linux:

Ubuntu Xenial 16.04 (LTS)•
Ubuntu Wily 15.10•
Ubuntu Trusty 14.04 (LTS)•
Ubuntu Precise 12.04 (LTS)•

A couple of notes:

The following instructions involve installation using Docker packages only, and this
ensures obtaining the latest official release of Docker. If you need to install only using
Ubuntu-managed packages, consult the Ubuntu documentation (Not recommended
otherwise for obvious reasons).

Ubuntu Utopic 14.10 and 15.04 exist in Docker’s APT repository but are no longer
officially supported due to known security issues.

Prerequisites

Docker only works on a 64-bit installation of Linux.•
Docker requires Linux kernel version 3.10 or higher (Except for Ubuntu Precise 12.04, which
requires version 3.13 or higher). Kernels older than 3.10 lack some of the features required
to run Docker containers and contain known bugs which cause data loss and frequently
panic under certain conditions. Check current kernel version with the command uname -r.
Check this post if you need to update your Ubuntu Precise (12.04 LTS) kernel by scrolling
further down. Refer to this WikiHow post to obtain the latest version for other Ubuntu
installations.

•

Update APT sources

This needs to be done so as to access packages from Docker repository.

Log into your machine as a user with sudo or root privileges.1.
Open a terminal window.2.
Update package information, ensure that APT works with the https method, and that CA
certificates are installed.

3.

http://www.wikihow.com/Update-Ubuntu-Kernel

$ sudo apt-get update
$ sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common

Add Docker’s official GPG key:

 $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Verify that the key fingerprint is 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88
.

 $ sudo apt-key fingerprint 0EBFCD88

4.

pub 4096R/0EBFCD88 2017-02-22
Key fingerprint = 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88

uid Docker Release (CE deb) <docker@docker.com>
sub 4096R/F273FCD8 2017-02-22

Find the entry in the table below which corresponds to your Ubuntu version. This determines
where APT will search for Docker packages. When possible, run a long-term support (LTS)
edition of Ubuntu.

5.

Ubuntu Version Repository

Precise 12.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-precise main

Trusty 14.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-trusty main

Wily 15.10 deb https://apt.dockerproject.org/repo ubuntu-wily main

Xenial 16.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-xenial main

Note: Docker does not provide packages for all architectures. Binary artifacts are built
nightly, and you can download them from https://master.dockerproject.org. To install
docker on a multi-architecture system, add an [arch=...] clause to the entry. Refer to
Debian Multiarch wiki for details.

Run the following command, substituting the entry for your operating system for the
placeholder <REPO>.

$ echo "" | sudo tee /etc/apt/sources.list.d/docker.list

6.

Update the APT package index by executing sudo apt-get update.7.

Verify that APT is pulling from the right repository.8.

When you run the following command, an entry is returned for each version of Docker that is

https://wiki.debian.org/Multiarch/HOWTO#Setting_up_apt_sources

available for you to install. Each entry should have the URL https://apt.dockerproject.org/repo/.
The version currently installed is marked with ***.See the below example's output.

$ apt-cache policy docker-engine

 docker-engine:
 Installed: 1.12.2-0~trusty
 Candidate: 1.12.2-0~trusty
 Version table:
 *** 1.12.2-0~trusty 0

500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packages
100 /var/lib/dpkg/status

1.12.1-0~trusty 0
500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packages

1.12.0-0~trusty 0
500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packages

From now on when you run apt-get upgrade, APT pulls from the new repository.

Prerequisites by Ubuntu Version

For Ubuntu Trusty (14.04) , Wily (15.10) , and Xenial (16.04) , install the linux-image-extra-* kernel
packages, which allows you use the aufs storage driver.

To install the linux-image-extra-* packages:

Open a terminal on your Ubuntu host.1.

Update your package manager with the command sudo apt-get update.2.

Install the recommended packages.

$ sudo apt-get install linux-image-extra-$(uname -r) linux-image-extra-virtual

3.

Proceed to Docker installation4.

For Ubuntu Precise (12.04 LTS), Docker requires the 3.13 kernel version. If your kernel version is
older than 3.13, you must upgrade it. Refer to this table to see which packages are required for
your environment:

Package Description

linux-image-
generic-lts-
trusty

Generic Linux kernel image. This kernel has AUFS built in. This is required to
run Docker.

linux-headers-
generic-lts-
trusty

Allows packages such as ZFS and VirtualBox guest additions which depend
on them. If you didn’t install the headers for your existing kernel, then you
can skip these headers for the trusty kernel. If you’re unsure, you should
include this package for safety.

xserver-xorg-
lts-trusty

Optional in non-graphical environments without Unity/Xorg. Required when
running Docker on machine with a graphical environment.

Package Description

ligbl1-mesa-
glx-lts-trusty

To learn more about the reasons for these packages, read the installation
instructions for backported kernels, specifically the LTS Enablement Stack.
Refer to note 5 under each version.

To upgrade your kernel and install the additional packages, do the following:

Open a terminal on your Ubuntu host.1.

Update your package manager with the command sudo apt-get update.2.

Install both the required and optional packages.

$ sudo apt-get install linux-image-generic-lts-trusty

3.

Repeat this step for other packages you need to install.4.

Reboot your host to use the updated kernel using the command sudo reboot.5.

After reboot, go ahead and install Docker.6.

Install the latest version

Make sure you satisfy the prerequisites, only then follow the below steps.

Note: For production systems, it is recommended that you install a specific version so
that you do not accidentally update Docker. You should plan upgrades for production
systems carefully.

Log into your Ubuntu installation as a user with sudo privileges. (Possibly running sudo -su).1.

Update your APT package index by running sudo apt-get update.2.

Install Docker Community Edition with the command sudo apt-get install docker-ce.3.

Start the docker daemon with the command sudo service docker start.4.

Verify that docker is installed correctly by running the hello-world image.

 $ sudo docker run hello-world

5.

This command downloads a test image and runs it in a container. When the container runs, it
prints an informational message and exits.

Manage Docker as a non-root user

If you don’t want to use sudo when you use the docker command, create a Unix group called docker
and add users to it. When the docker daemon starts, it makes the ownership of the Unix socket
read/writable by the docker group.

https://wiki.ubuntu.com/Kernel/LTSEnablementStack
https://docs.docker.com/engine/installation/linux/ubuntulinux/#/install-a-specific-version

To create the docker group and add your user:

Log into Ubuntu as a user with sudo privileges.1.

Create the docker group with the command sudo groupadd docker.2.

Add your user to the docker group.

 $ sudo usermod -aG docker $USER

3.

Log out and log back in so that your group membership is re-evaluated.4.

Verify that you can docker commands without sudo permission.

 $ docker run hello-world

5.

If this fails, you will see an error:

 Cannot connect to the Docker daemon. Is 'docker daemon' running on this host?

Check whether the DOCKER_HOST environment variable is set for your shell.

 $ env | grep DOCKER_HOST

If it is set, the above command will return a result. If so, unset it.

 $ unset DOCKER_HOST

You may need to edit your environment in files such as ~/.bashrc or ~/.profile to prevent the
DOCKER_HOST variable from being set erroneously.

Installing Docker on Ubuntu

Requirements: Docker can be installed on any Linux with a kernel of at least version 3.10. Docker
is supported on the following 64-bit versions of Ubuntu Linux:

Ubuntu Xenial 16.04 (LTS)•
Ubuntu Wily 15.10•
Ubuntu Trusty 14.04 (LTS)•
Ubuntu Precise 12.04 (LTS)•

Easy Installation

Note: Installing Docker from the default Ubuntu repository will install an old version of
Docker.

To install the latest version of Docker using the Docker repository, use curl to grab and run the
installation script provided by Docker:

$ curl -sSL https://get.docker.com/ | sh

Alternatively, wget can be used to install Docker:

$ wget -qO- https://get.docker.com/ | sh

Docker will now be installed.

Manual Installation

If, however, running the installation script is not an option, the following instructions can be used to
manually install the latest version of Docker from the official repository.

$ sudo apt-get update
$ sudo apt-get install apt-transport-https ca-certificates

Add the GPG key:

$ sudo apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 \
 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D

Next, open the /etc/apt/sources.list.d/docker.list file in your favorite editor. If the file doesn’t
exist, create it. Remove any existing entries. Then, depending on your version, add the following
line:

Ubuntu Precise 12.04 (LTS):

deb https://apt.dockerproject.org/repo ubuntu-precise main

•

Ubuntu Trusty 14.04 (LTS)

deb https://apt.dockerproject.org/repo ubuntu-trusty main

•

Ubuntu Wily 15.10

deb https://apt.dockerproject.org/repo ubuntu-wily main

•

Ubuntu Xenial 16.04 (LTS)

deb https://apt.dockerproject.org/repo ubuntu-xenial main

•

Save the file and exit, then update your package index, uninstall any installed versions of Docker,
and verify apt is pulling from the correct repo:

$ sudo apt-get update
$ sudo apt-get purge lxc-docker
$ sudo apt-cache policy docker-engine

Depending on your version of Ubuntu, some prerequisites may be required:

Ubuntu Xenial 16.04 (LTS), Ubuntu Wily 15.10, Ubuntu Trusty 14.04 (LTS)•

sudo apt-get update && sudo apt-get install linux-image-extra-$(uname -r)

Ubuntu Precise 12.04 (LTS)

This version of Ubuntu requires kernel version 3.13. You may need to install additional
packages depending on your environment:

linux-image-generic-lts-trusty

Generic Linux kernel image. This kernel has AUFS built in. This is required to run Docker.

linux-headers-generic-lts-trusty

Allows packages such as ZFS and VirtualBox guest additions which depend on them. If you
didn’t install the headers for your existing kernel, then you can skip these headers for the
trusty kernel. If you’re unsure, you should include this package for safety.

xserver-xorg-lts-trusty

libgl1-mesa-glx-lts-trusty

These two packages are optional in non-graphical environments without Unity/Xorg.
Required when running Docker on machine with a graphical environment.

To learn more about the reasons for these packages, read the installation instructions for
backported kernels, specifically the LTS Enablement Stack — refer to note 5 under each
version.

Install the required packages then reboot the host:

$ sudo apt-get install linux-image-generic-lts-trusty

$ sudo reboot

•

Finally, update the apt package index and install Docker:

$ sudo apt-get update
$ sudo apt-get install docker-engine

Start the daemon:

$ sudo service docker start

Now verify that docker is running properly by starting up a test image:

$ sudo docker run hello-world

This command should print a welcome message verifying that the installation was successful.

Create a docker container in Google Cloud

You can use docker, without using docker daemon (engine), by using cloud providers. In this

example, you should have a gcloud (Google Cloud util), that connected to your account

docker-machine create --driver google --google-project `your-project-name` google-machine-type
f1-large fm02

This example will create a new instance, in your Google Cloud console. Using machine time f1-
large

Install Docker on Ubuntu

Docker is supported on the following 64-bit versions of Ubuntu Linux:

Ubuntu Xenial 16.04 (LTS)•
Ubuntu Wily 15.10•
Ubuntu Trusty 14.04 (LTS)•
Ubuntu Precise 12.04 (LTS)•

A couple of notes:

The following instructions involve installation using Docker packages only, and this
ensures obtaining the latest official release of Docker. If you need to install only using
Ubuntu-managed packages, consult the Ubuntu documentation (Not recommended
otherwise for obvious reasons).

Ubuntu Utopic 14.10 and 15.04 exist in Docker’s APT repository but are no longer
officially supported due to known security issues.

Prerequisites

Docker only works on a 64-bit installation of Linux.•
Docker requires Linux kernel version 3.10 or higher (Except for Ubuntu Precise 12.04, which
requires version 3.13 or higher). Kernels older than 3.10 lack some of the features required
to run Docker containers and contain known bugs which cause data loss and frequently
panic under certain conditions. Check current kernel version with the command uname -r.
Check this post if you need to update your Ubuntu Precise (12.04 LTS) kernel by scrolling
further down. Refer to this WikiHow post to obtain the latest version for other Ubuntu
installations.

•

Update APT sources

This needs to be done so as to access packages from Docker repository.

Log into your machine as a user with sudo or root privileges.1.
Open a terminal window.2.
Update package information, ensure that APT works with the https method, and that CA
certificates are installed.

3.

$ sudo apt-get update
$ sudo apt-get install apt-transport-https ca-certificates

http://www.wikihow.com/Update-Ubuntu-Kernel

Add the new GPG key. This commands downloads the key with the ID
58118E89F3A912897C070ADBF76221572C52609D from the keyserver hkp://ha.pool.sks-
keyservers.net:80 and adds it to the adv keychain. For more information, see the output of man
apt-key.

 $ sudo apt-key adv \
--keyserver hkp://ha.pool.sks-keyservers.net:80 \
--recv-keys 58118E89F3A912897C070ADBF76221572C52609D

4.

Find the entry in the table below which corresponds to your Ubuntu version. This determines
where APT will search for Docker packages. When possible, run a long-term support (LTS)
edition of Ubuntu.

5.

Ubuntu Version Repository

Precise 12.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-precise main

Trusty 14.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-trusty main

Wily 15.10 deb https://apt.dockerproject.org/repo ubuntu-wily main

Xenial 16.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-xenial main

Note: Docker does not provide packages for all architectures. Binary artifacts are built
nightly, and you can download them from https://master.dockerproject.org. To install
docker on a multi-architecture system, add an [arch=...] clause to the entry. Refer to
Debian Multiarch wiki for details.

Run the following command, substituting the entry for your operating system for the
placeholder <REPO>.

$ echo "" | sudo tee /etc/apt/sources.list.d/docker.list

6.

Update the APT package index by executing sudo apt-get update.7.

Verify that APT is pulling from the right repository.8.

When you run the following command, an entry is returned for each version of Docker that is
available for you to install. Each entry should have the URL https://apt.dockerproject.org/repo/.
The version currently installed is marked with ***.See the below example's output.

$ apt-cache policy docker-engine

 docker-engine:
 Installed: 1.12.2-0~trusty
 Candidate: 1.12.2-0~trusty
 Version table:
 *** 1.12.2-0~trusty 0

500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packages
100 /var/lib/dpkg/status

1.12.1-0~trusty 0

https://wiki.debian.org/Multiarch/HOWTO#Setting_up_apt_sources

500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packages
1.12.0-0~trusty 0

500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packages

From now on when you run apt-get upgrade, APT pulls from the new repository.

Prerequisites by Ubuntu Version

For Ubuntu Trusty (14.04) , Wily (15.10) , and Xenial (16.04) , install the linux-image-extra-* kernel
packages, which allows you use the aufs storage driver.

To install the linux-image-extra-* packages:

Open a terminal on your Ubuntu host.1.

Update your package manager with the command sudo apt-get update.2.

Install the recommended packages.

$ sudo apt-get install linux-image-extra-$(uname -r) linux-image-extra-virtual

3.

Proceed to Docker installation4.

For Ubuntu Precise (12.04 LTS), Docker requires the 3.13 kernel version. If your kernel version is
older than 3.13, you must upgrade it. Refer to this table to see which packages are required for
your environment:

Package Description

linux-image-
generic-lts-
trusty

Generic Linux kernel image. This kernel has AUFS built in. This is required to
run Docker.

linux-headers-
generic-lts-
trusty

Allows packages such as ZFS and VirtualBox guest additions which depend
on them. If you didn’t install the headers for your existing kernel, then you
can skip these headers for the trusty kernel. If you’re unsure, you should
include this package for safety.

xserver-xorg-
lts-trusty

Optional in non-graphical environments without Unity/Xorg. Required when
running Docker on machine with a graphical environment.

ligbl1-mesa-
glx-lts-trusty

To learn more about the reasons for these packages, read the installation
instructions for backported kernels, specifically the LTS Enablement Stack.
Refer to note 5 under each version.

To upgrade your kernel and install the additional packages, do the following:

Open a terminal on your Ubuntu host.1.

Update your package manager with the command sudo apt-get update.2.

https://wiki.ubuntu.com/Kernel/LTSEnablementStack

Install both the required and optional packages.

$ sudo apt-get install linux-image-generic-lts-trusty

3.

Repeat this step for other packages you need to install.4.

Reboot your host to use the updated kernel using the command sudo reboot.5.

After reboot, go ahead and install Docker.6.

Install the latest version

Make sure you satisfy the prerequisites, only then follow the below steps.

Note: For production systems, it is recommended that you install a specific version so
that you do not accidentally update Docker. You should plan upgrades for production
systems carefully.

Log into your Ubuntu installation as a user with sudo privileges. (Possibly running sudo -su).1.

Update your APT package index by running sudo apt-get update.2.

Install Docker with the command sudo apt-get install docker-engine.3.

Start the docker daemon with the command sudo service docker start.4.

Verify that docker is installed correctly by running the hello-world image.

 $ sudo docker run hello-world

5.

This command downloads a test image and runs it in a container. When the container runs, it
prints an informational message and exits.

Manage Docker as a non-root user

If you don’t want to use sudo when you use the docker command, create a Unix group called docker
and add users to it. When the docker daemon starts, it makes the ownership of the Unix socket
read/writable by the docker group.

To create the docker group and add your user:

Log into Ubuntu as a user with sudo privileges.1.

Create the docker group with the command sudo groupadd docker.2.

Add your user to the docker group.

 $ sudo usermod -aG docker $USER

3.

Log out and log back in so that your group membership is re-evaluated.4.

https://docs.docker.com/engine/installation/linux/ubuntulinux/#/install-a-specific-version

Verify that you can docker commands without sudo permission.

 $ docker run hello-world

5.

If this fails, you will see an error:

 Cannot connect to the Docker daemon. Is 'docker daemon' running on this host?

Check whether the DOCKER_HOST environment variable is set for your shell.

 $ env | grep DOCKER_HOST

If it is set, the above command will return a result. If so, unset it.

 $ unset DOCKER_HOST

You may need to edit your environment in files such as ~/.bashrc or ~/.profile to prevent the
DOCKER_HOST variable from being set erroneously.

Installating Docker-ce OR Docker-ee on CentOS

Docker has announced following editions:

-Docker-ee (Enterprise Edition) along with Docker-ce(Community Edition) and Docker
(Commercial Support)

This document will help you with installation steps of Docker-ee and Docker-ce edition in CentOS

Docker-ce Installation

Following are steps to install docker-ce edition

Install yum-utils, which provides yum-config-manager utility:

$ sudo yum install -y yum-utils

1.

Use the following command to set up the stable repository:

$ sudo yum-config-manager \
 --add-repo \
 https://download.docker.com/linux/centos/docker-ce.repo

2.

Optional: Enable the edge repository. This repository is included in the docker.repo file
above but is disabled by default. You can enable it alongside the stable repository.

 $ sudo yum-config-manager --enable docker-ce-edge

3.

You can disable the edge repository by running the yum-config-manager command with the --
disable flag. To re-enable it, use the --enable flag. The following command disables the edge
repository.

 $ sudo yum-config-manager --disable docker-ce-edge

•

Update the yum package index.

 $ sudo yum makecache fast

4.

Install the docker-ce using following command:

 $ sudo yum install docker-ce-17.03.0.ce

5.

Confirm the Docker-ce fingerprint

060A 61C5 1B55 8A7F 742B 77AA C52F EB6B 621E 9F35

If you want to install some other version of docker-ce you can use following command:

$ sudo yum install docker-ce-VERSION

Specify the VERSION number

6.

If everything went well the docker-ce is now installed in your system, use following command
to start:

 $ sudo systemctl start docker

7.

Test your docker installation:

 $ sudo docker run hello-world

you should get following message:

 Hello from Docker!
 This message shows that your installation appears to be working correctly.

8.

-Docker-ee (Enterprise Edition) Installation

For Enterprise Edition (EE) it would be required to signup, to get your <DOCKER-EE-URL>.

To signup go to https://cloud.docker.com/. Enter your details and confirm your email id. After
confirmation you would be given a <DOCKER-EE-URL>, which you can see in your
dashboard after clicking on setup.

1.

Remove any existing Docker repositories from /etc/yum.repos.d/2.

https://cloud.docker.com/

Store your Docker EE repository URL in a yum variable in /etc/yum/vars/. Replace
<DOCKER-EE-URL> with the URL you noted down in the first step.

 $ sudo sh -c 'echo "<DOCKER-EE-URL>" > /etc/yum/vars/dockerurl'

3.

Install yum-utils, which provides the yum-config-manager utility:

 $ sudo yum install -y yum-utils

4.

Use the following command to add the stable repository:

 $ sudo yum-config-manager \
 --add-repo \
 <DOCKER-EE-URL>/docker-ee.repo

5.

Update the yum package index.

 $ sudo yum makecache fast

6.

Install docker-ee

 sudo yum install docker-ee

7.

You can start the docker-ee using following command:

$ sudo systemctl start docker

8.

ReactJS

ReactJS is a simple, feature rich, component based JavaScript UI library. It can be used

to develop small applications as well as big, complex applications. ReactJS provides

minimal and solid feature set to kick-start a web application. React community

compliments React library by providing large set of ready-made components to develop

web application in a record time. React community also provides advanced concept like

state management, routing, etc., on top of the React library.

React versions

The initial version, 0.3.0 of React is released on May, 2013 and the latest version, 17.0.1

is released on October, 2020. The major version introduces breaking changes and the

minor version introduces new feature without breaking the existing functionality. Bug fixes

are released as and when necessary. React follows the Sematic Versioning (semver)

principle.

Features

The salient features of React library are as follows:

 Solid base architecture

 Extensible architecture

 Component based library

 JSX based design architecture

 Declarative UI library

Benefits

Few benefits of using React library are as follows:

 Easy to learn

 Easy to adept in modern as well as legacy application

 Faster way to code a functionality

 Availability of large number of ready-made component

 Large and active community

Applications

Few popular websites powered by React library are listed below:

 Facebook, popular social media application

 Instagram, popular photo sharing application

 Netflix, popular media streaming application

1. ReactJS — Introduction

 Code Academy, popular online training application

 Reddit, popular content sharing application

As you see, most popular application in every field is being developed by React Library.

ReactJS

This chapter explains the installation of React library and its related tools in your machine.

Before moving to the installation, let us verify the prerequisite first.

React provides CLI tools for the developer to fast forward the creation, development and

deployment of the React based web application. React CLI tools depends on the Node.js

and must be installed in your system. Hopefully, you have installed Node.js on your

machine. We can check it using the below command:

node --version

You could see the version of Nodejs you might have installed. It is shown as below for me,

v14.2.0

If Nodejs is not installed, you can download and install by visiting

https://nodejs.org/en/download/.

Toolchain

To develop lightweight features such as form validation, model dialog, etc., React library

can be directly included into the web application through content delivery network (CDN).

It is similar to using jQuery library in a web application. For moderate to big application,

it is advised to write the application as multiple files and then use bundler such as webpack,

parcel, rollup, etc., to compile and bundle the application before deploying the code.

React toolchain helps to create, build, run and deploy the React application. React

toolchain basically provides a starter project template with all necessary code to bootstrap

the application.

Some of the popular toolchain to develop React applications are:

 Create React App - SPA oriented toolchain

 Next.js - server-side rendering oriented toolchain

 Gatsby - Static content oriented toolchain

Tools required to develop a React application are:

 The serve, a static server to serve our application during development

 Babel compiler

 Create React App CLI

Let us learn the basics of the above mentioned tools and how to install those in this

chapter.

2. ReactJS — Installation

https://nodejs.org/en/download/

The serve static server

The serve is a lightweight web server. It serves static site and single page application. It

loads fast and consume minimum memory. It can be used to serve a React application.

Let us install the tool using npm package manager in our system.

npm install serve -g

Let us create a simple static site and serve the application using serve app.

Open a command prompt and go to your workspace.

cd /go/to/your/workspace

Create a new folder, static_site and change directory to newly created folder.

mkdir static_site

cd static_site

Next, create a simple webpage inside the folder using your favorite html editor.

<!DOCTYPE html>

<html>

 <head>

<meta charset="UTF-8" />

<title>Static website</title>

 </head>

 <body>

<div><h1>Hello!</h1></div>

 </body>

</html>

Next, run the serve command.

serve .

We can also serve single file, index.html instead of the whole folder.

serve ./index.html

Next, open the browser and enter http://localhost:5000 in the address bar and press

enter. serve application will serve our webpage as shown below.

The serve will serve the application using default port, 5000. If it is not available, it will

pick up a random port and specify it.

│ Serving! │

 │ │

 │ - Local: http://localhost:57311 │

 │ - On Your Network: http://192.168.56.1:57311 │

 │ │

 │ This port was picked because 5000 is in use. │

 │ │

 │ Copied local address to clipboard!

Babel compiler

Babel is a JavaScript compiler which compiles many variant (es2015, es6, etc.,) of

JavaScript into standard JavaScript code supported by all browsers. React uses JSX, an

extension of JavaScript to design the user interface code. Babel is used to compile the JSX

code into JavaScript code.

To install Babel and it’s React companion, run the below command:

npm install babel-cli@6 babel-preset-react-app@3 -g

...

...

+ babel-cli@6.26.0

+ babel-preset-react-app@3.1.2

updated 2 packages in 8.685s

Babel helps us to write our application in next generation of advanced JavaScript syntax.

Create React App toolchain

Create React App is a modern CLI tool to create single page React application. It is the

standard tool supported by React community. It handles babel compiler as well. Let us

install Create React App in our local system.

> npm install -g create-react-app

+ create-react-app@4.0.1

added 6 packages from 4 contributors, removed 37 packages and updated 12

packages in 4.693s

Updating the toolchain

React Create App toolchain uses the react-scripts package to build and run the application.

Once we started working on the application, we can update the react-script to the latest

version at any time using npm package manager.

npm install react-scripts@latest

Advantages of using React toolchain

React toolchain provides lot of features out of the box. Some of the advantages of using

React toolchain are:

 Predefined and standard structure of the application.

 Ready-made project template for different type of application.

 Development web server is included.

 Easy way to include third party React components.

 Default setup to test the application.

ReactJS

React library is built on a solid foundation. It is simple, flexible and extensible. As we

learned earlier, React is a library to create user interface in a web application. React’s

primary purpose is to enable the developer to create user interface using pure JavaScript.

Normally, every user interface library introduces a new template language (which we need

to learn) to design the user interface and provides an option to write logic, either inside

the template or separately.

Instead of introducing new template language, React introduces three simple concepts as

given below:

React elements

JavaScript representation of HTML DOM. React provides an API, React.createElement to

create React Element.

JSX

A JavaScript extension to design user interface. JSX is an XML based, extensible language

supporting HTML syntax with little modification. JSX can be compiled to React Elements

and used to create user interface.

React component

React component is the primary building block of the React application. It uses React

elements and JSX to design its user interface. React component is basically a JavaScript

class (extends the React.component class) or pure JavaScript function. React component

has properties, state management, life cycle and event handler. React component can be

able to do simple as well as advanced logic.

Let us learn more about components in the React Component chapter.

Workflow of a React application

Let us understand the workflow of a React application in this chapter by creating and

analyzing a simple React application.

Open a command prompt and go to your workspace.

cd /go/to/your/workspace

Next, create a folder, static_site and change directory to newly created folder.

mkdir static_site

cd static_site

Next, create a file, hello.html and write a simple React application.

3. ReactJS — Architecture

<!DOCTYPE html>

<html>

 <head>

<meta charset="UTF-8" />

<title>React Application</title>

 </head>

 <body>

<div id="react-app"></div>

<script src="https://unpkg.com/react@17/umd/react.development.js"

crossorigin></script>

<script src="https://unpkg.com/react-dom@17/umd/react-

dom.development.js" crossorigin></script>

<script language="JavaScript">

 element = React.createElement('h1', {}, 'Hello React!')

 ReactDOM.render(element, document.getElementById('react-app'));

</script>

 </body>

</html>

Next, serve the application using serve web server.

serve ./hello.html

Next, open your favorite browser. Enter http://localhost:5000 in the address bar and then

press enter.

Let us analyse the code and do little modification to better understand the React

application.

Here, we are using two API provided by the React library.

React.createElement

Used to create React elements. It expects three parameters:

 Element tag

 Element attributes as object

 Element content - It can contain nested React element as well

ReactDOM.render

Used to render the element into the container. It expects two parameters:

 React Element OR JSX

 Root element of the webpage

Nested React element

As React.createElement allows nested React element, let us add nested element as

shown below:

<script language="JavaScript">

 element = React.createElement('div', {},

React.createElement('h1', {}, 'Hello React!'));

 ReactDOM.render(element, document.getElementById('react-app'));

</script>

It will generate the below content:

<div><h1>Hello React!</h1></div>

Use JSX

Next, let us remove the React element entirely and introduce JSX syntax as shown below:

<!DOCTYPE html>

<html>

 <head>

<meta charset="UTF-8" />

<title>React Application</title>

 </head>

 <body>

<div id="react-app"></div>

<script src="https://unpkg.com/react@17/umd/react.development.js"

crossorigin></script>

<script src="https://unpkg.com/react-dom@17/umd/react-

dom.development.js" crossorigin></script>

<script

src="https://unpkg.com/@babel/standalone/babel.min.js"></script>

<script type="text/babel">

 ReactDOM.render(

 <div><h1>Hello React!</h1></div>,

 document.getElementById('react-app'));

</script>

 </body>

</html>

Here, we have included babel to convert JSX into JavaScript and added type=“text/babel”

in the script tag.

<script src="https://unpkg.com/@babel/standalone/babel.min.js"></script>

<script type="text/babel">

...

...

</script>

Next, run the application and open the browser. The output of the application is as follows:

Next, let us create a new React component, Greeting and then try to use it in the webpage.

<script type="text/babel">

 function Greeting() {

return <div><h1>Hello JSX!</h1></div>

 }

 ReactDOM.render(

<Greeting />,

document.getElementById('react-app'));

</script>

The result is same and as shown below:

By analyzing the application, we can visualize the workflow of the React application as

shown in the below diagram.

React app calls ReactDOM.render method by passing the user interface created using

React component (coded in either JSX or React element format) and the container to

render the user interface.

ReactDOM.render processes the JSX or React element and emits Virtual DOM.

Virtual DOM will be merged and rendered into the container.

Architecture of the React Application

React library is just UI library and it does not enforce any particular pattern to write a

complex application. Developers are free to choose the design pattern of their choice.

React community advocates certain design pattern. One of the patterns is Flux pattern.

React library also provides lot of concepts like Higher Order component, Context, Render

props, Refs etc., to write better code. React Hooks is evolving concept to do state

management in big projects. Let us try to understand the high level architecture of a React

application.

 React app starts with a single root component.

 Root component is build using one or more component.

 Each component can be nested with other component to any level.

 Composition is one of the core concepts of React library. So, each component is build

by composing smaller components instead of inheriting one component from another

component.

 Most of the components are user interface components.

 React app can include third party component for specific purpose such as routing,

animation, state management, etc.

ReactJS

As we learned earlier, React library can be used in both simple and complex application.

Simple application normally includes the React library in its script section. In complex

application, developers have to split the code into multiple files and organize the code into

a standard structure. Here, React toolchain provides pre-defined structure to bootstrap

the application. Also, developers are free to use their own project structure to organize

the code.

Let us see how to create simple as well as complex React application:

 Simple application using CDN

 Complex application using React Create App cli

 Complex application using customized method

Using CDN

Let us learn how to use content delivery network to include React in a simple web page.

Open a terminal and go to your workspace.

cd /go/to/your/workspace

Next, create a folder, static_site and change directory to newly created folder.

mkdir static_site

cd static_site

Next, create a new HTML file, hello.html.

<!DOCTYPE html>

<html>

 <head>

<meta charset="UTF-8" />

<title>Simple React app</title>

 </head>

 <body>

 </body>

</html>

Next, include React library.

<!DOCTYPE html>

<html>

 <head>

<meta charset="UTF-8" />

<title>Simple React app</title>

 </head>

 <body>

4. React — Creating a React Application

<script src="https://unpkg.com/react@17/umd/react.development.js"

crossorigin></script>

<script src="https://unpkg.com/react-dom@17/umd/react-

dom.development.js" crossorigin></script>

 </body>

</html>

Here,

 We are using unpkg CDN. unpkg is an open source, global content delivery

network supporting npm packages.

 @17 represent the version of the React library

 This is the development version of the React library with debugging option. To

deploy the application in the production environment, use below scripts.

<script src="https://unpkg.com/react@17/umd/react.production.min.js"

crossorigin></script>

<script src="https://unpkg.com/react-dom@17/umd/react-dom.production.min.js"

crossorigin></script>

Now, we are ready to use React library in our webpage.

Next, introduce a div tag with id react-app.

<!DOCTYPE html>

<html>

 <head>

<meta charset="UTF-8" />

<title>React based application</title>

 </head>

 <body>

<div id="react-app"></div>

<script src="https://unpkg.com/react@17/umd/react.development.js"

crossorigin></script>

<script src="https://unpkg.com/react-dom@17/umd/react-

dom.development.js" crossorigin></script>

 </body>

</html>

The react-app is a placeholder container and React will work inside the container. We can

use any name for the placeholder container relevant to our application.

Next, create a script section at the end of the document and use React feature to create

an element.

<!DOCTYPE html>

<html>

 <head>

<meta charset="UTF-8" />

<title>React based application</title>

 </head>

 <body>

<div id="react-app"></div>

<script src="https://unpkg.com/react@17/umd/react.development.js"

crossorigin></script>

<script src="https://unpkg.com/react-dom@17/umd/react-

dom.development.js" crossorigin></script>

<script language="JavaScript">

 element = React.createElement('h1', {}, 'Hello React!')

 ReactDOM.render(element, document.getElementById('react-app'));

</script>

 </body>

</html>

Here, the application uses React.createElement and ReactDOM.render methods provided

by React Library to dynamically create a HTML element and place it inside the react-app

section.

Next, serve the application using serve web server.

serve ./hello.html

Next, open the browser and enter http://localhost:5000 in the address bar and press

enter. serve application will serve our webpage as shown below.

We can use the same steps to use React in the existing website as well. This method is

very easy to use and consume React library. It can be used to do simple to moderate

feature in a website. It can be used in new as well as existing application along with other

libraries. This method is suitable for static website with few dynamic section like contact

form, simple payment option, etc., To create advanced single page application (SPA), we

need to use React tools. Let us learn how to create a SPA using React tools in upcoming

chapter.

Using Create React App tool

Let us learn to create an expense management application using Create React App tool.

Open a terminal and go to your workspace.

> cd /go/to/your/workspace

Next, create a new React application using Create React App tool.

> create-react-app expense-manager

It will a create new folder expense-manager with startup template code.

Next, go to expense-manager folder and install the necessary library.

cd expense-manager

npm install

The npm install will install the necessary library under node_modules folder.

Next, start the application.

npm start

Compiled successfully!

You can now view react-cra-web-app in the browser.

 Local: http://localhost:3000

 On Your Network: http://192.168.56.1:3000

Note that the development build is not optimized.

To create a production build, use npm run build.

Next, open the browser and enter http://localhost:3000 in the address bar and press

enter. The development web server will serve our webpage as shown below.

Let us analyse the structure of our React application.

Files and folders

The content of the React application is as follows:

|-- README.md

|-- node_modules

|-- package-lock.json

|-- package.json

|-- public

| |-- favicon.ico

| |-- index.html

| |-- logo192.png

| |-- logo512.png

| |-- manifest.json

| `-- robots.txt

`-- src

 |-- App.css

 |-- App.js

 |-- App.test.js

 |-- index.css

 |-- index.js

 |-- logo.svg

 |-- reportWebVitals.js

 `-- setupTests.js

Here,

The package.json is the core file representing the project. It configures the entire project

and consists of project name, project dependencies, and commands to build and run the

application.

{

 "name": "expense-manager",

 "version": "0.1.0",

 "private": true,

 "dependencies": {

 "@testing-library/jest-dom": "^5.11.6",

 "@testing-library/react": "^11.2.2",

 "@testing-library/user-event": "^12.6.0",

 "react": "^17.0.1",

 "react-dom": "^17.0.1",

 "react-scripts": "4.0.1",

 "web-vitals": "^0.2.4"

 },

 "scripts": {

 "start": "react-scripts start",

 "build": "react-scripts build",

 "test": "react-scripts test",

 "eject": "react-scripts eject"

 },

 "eslintConfig": {

 "extends": [

"react-app",

"react-app/jest"

]

 },

 "browserslist": {

 "production": [

">0.2%",

"not dead",

"not op_mini all"

],

 "development": [

 "last 1 chrome version",

"last 1 firefox version",

"last 1 safari version"

]

 }

}

The package.json refers the below React library in its dependency section.

 react and react-dom are core react libraries used to develop web application.

 web-vitals are general library to support application in different browser.

 react-scripts are core react scripts used to build and run application.

 @testing-library/jest-dom, @testing-library/react and @testing-library/user-

event are testing libary used to test the application after development.

 The public folder - Contains the core file, index.html and other web resources like

images, logos, robots, etc., index.html loads our react application and render it in

user’s browser.

 The src folder - Contains the actual code of the application. We will check it next

section.

Source code of the application

Let us check the each and every source code document of the application in this chapter.

 The index.js - Entry point of our application. It uses ReactDOM.render method to kick-

start and start the application. The code is as follows:

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import reportWebVitals from './reportWebVitals';

ReactDOM.render(

 <React.StrictMode>

 <App />

 </React.StrictMode>,

 document.getElementById('root')

);

// If you want to start measuring performance in your app, pass a function

// to log results (for example: reportWebVitals(console.log))

// or send to an analytics endpoint. Learn more: https://bit.ly/CRA-vitals

reportWebVitals();

Here,

React.StrictMode is a build-in component used to prevent unexpected bugs by analysing

the component for unsafe lifecycle, unsafe API usage, depreciated API usage, etc., and

throwing the relevant warning.

 App is our first custom and root component of the application. All other

components will be rendered inside the App component.

The index.css - Used to styles of the entire application. Let us remove all styles and

start with fresh code.

App.js - Root component of our application. Let us replace the existing JSX and show

simple hello react message as shown below:

import './App.css';

function App() {

 return (

 <h1>Hello React!</h1>

);

}

export default App;

 App.css - Used to style the App component. Let us remove all styles and start with

fresh code.

 App.test.js - Used to write unit test function for our component.

 setupTests.js - Used to setup the testing framework for our application.

 reportWebVitals.js - Generic web application startup code to support all browsers.

 logo.svg - Logo in SVG format and can be loaded into our application using import

keyword. Let us remove it from the project.

Customize the code

Let us remove the default source code of the application and bootstrap the application to

better understand the internals of React application.

Delete all files under src and public folder.

Next, create a folder, components under src to include our React components. The idea is

to create two files, <component>.js to write the component logic and <component.css>

to include the component specific styles.

The final structure of the application will be as follows:

|-- package-lock.json

|-- package.json

`-- public

 |-- index.html

`-- src

 |-- index.js

 `-- components

 | |-- mycom.js

 | |-- mycom.css

Let us create a new component, HelloWorld to confirm our setup is working fine. Create a

file, HelloWorld.js under components folder and write a simple component to emit Hello

World message.

import React from "react";

class HelloWorld extends React.Component {

 render() {

 return (

<div>

<h1>Hello World!</h1>

</div>

);

 }

}

export default HelloWorld;

Next, create our main file, index.js under src folder and call our newly created component.

import React from 'react';

import ReactDOM from 'react-dom';

import HelloWorld from './components/HelloWorld';

ReactDOM.render(

 <React.StrictMode>

 <HelloWorld />

 </React.StrictMode>,

 document.getElementById('root')

);

Next, create a html file, index.html (under public folder*), which will be our entry point of

the application.

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Expense Manager</title>

 </head>

 <body>

 <div id="root"></div>

 </body>

</html>

Run the application

Let us run the application by invoking the start script configured in package.json file.

> npm start

It will start the application in the local system and can be accessed through browser @

http://localhost:3000/.

> expense-manager@0.1.0 start D:\path\to\expense-manager

> react-scripts start

i ｢wds｣: Project is running at http://192.168.56.1/

i ｢wds｣: webpack output is served from

i ｢wds｣: Content not from webpack is served from D:\path\to\expense-

manager\public

i ｢wds｣: 404s will fallback to /

http://localhost:3000/

Starting the development server...

Compiled successfully!

You can now view expense-manager in the browser.

 Local: http://localhost:3000

 On Your Network: http://192.168.56.1:3000

Note that the development build is not optimized.

To create a production build, use npm run build.

Open your favorite browser and go to http://localhost:3000. The result of the application

is as shown below:

Using custom solution

As we learned earlier, Create react app is the recommended tool to kick-start the React

application. It includes everything to develop React application. But sometimes,

application does not need all the feature provided by Crzzeate React App and we want our

application to be small and tidy. Then, we can use our own customized solution to create

React application with just enough dependency to support our application.

To create a custom project, we need to have basic knowledge about four items.

 Package manager - High level management of application. We are using npm as

our default package manager.

 Compiler - Compiles the JavaScript variants into standard JavaScript supported by

browser. We are using Babel as our default compiler.

 Bundler - Bundles the multiple sources (JavaScript, html and css) into a single

deployable code. Create React App uses webpack as its bundler. Let us learn how to

use Rollup and Parcel bundler in the upcoming section.

 Webserver - Starts the development server and launch our application. Create React

App uses an internal webserver and we can use serve as our development server.

Using Rollup bundler

Rollup is one of the small and fast JavaScript bundlers. Let us learn how to use rollup

bundler in this chapter.

Open a terminal and go to your workspace.

cd /go/to/your/workspace

Next, create a folder, expense-manager-rollup and move to newly created folder. Also,

open the folder in your favorite editor or IDE.

mkdir expense-manager-rollup

cd expense-manager-rollup

Next, create and initialize the project.

npm init -y

Next, install React libraries (react and react-dom).

npm install react@^17.0.0 react-dom@^17.0.0 --save

Next, install babel and its preset libraries as development dependency.

npm install @babel/preset-env @babel/preset-react @babel/core @babel/plugin-

proposal-class-properties -D

Next, install rollup and its plugin libraries as development dependency.

npm i -D rollup postcss@8.1 @rollup/plugin-babel @rollup/plugin-commonjs

@rollup/plugin-node-resolve @rollup/plugin-replace rollup-plugin-livereload

rollup-plugin-postcss rollup-plugin-serve postcss@8.1 postcss-modules@4 rollup-

plugin-postcss

Next, install corejs and regenerator runtime for async programming.

npm i regenerator-runtime core-js

Next, create a babel configuration file, .babelrc under the root folder to configure the babel

compiler.

{

 "presets": [

[

 "@babel/preset-env",

 {

 "useBuiltIns": "usage",

 "corejs": 3,

 "targets": "> 0.25%, not dead"

 }

],

"@babel/preset-react"

],

 "plugins": [

"@babel/plugin-proposal-class-properties"

]

}

Next, create a rollup.config.js file in the root folder to configure the rollup bundler.

import babel from '@rollup/plugin-babel';

import resolve from '@rollup/plugin-node-resolve';

import commonjs from '@rollup/plugin-commonjs';

import replace from '@rollup/plugin-replace';

import serve from 'rollup-plugin-serve';

import livereload from 'rollup-plugin-livereload';

import postcss from 'rollup-plugin-postcss'

export default {

 input: 'src/index.js',

 output: {

file: 'public/index.js',

format: 'iife',

 },

 plugins: [

commonjs({

 include: [

 'node_modules/**',

],

 exclude: [

 'node_modules/process-es6/**',

],

}),

resolve(),

babel({

 exclude: 'node_modules/**'

}),

replace({

 'process.env.NODE_ENV': JSON.stringify('production'),

}),

postcss({

 autoModules: true

}),

livereload('public'),

serve({

 contentBase: 'public',

 port: 3000,

 open: true,

}), // index.html should be in root of project

]

}

Next, update the package.json and include our entry point (public/index.js and

public/styles.css) and command to build and run the application.

...

"main": "public/index.js",

"style": "public/styles.css",

"files": [

 "public"

],

"scripts": {

 "start": "rollup -c -w",

 "build": "rollup"

},

...

Next, create a src folder in the root directory of the application, which will hold all the

source code of the application.

Next, create a folder, components under src to include our React components. The idea is

to create two files, <component>.js to write the component logic and <component.css>

to include the component specific styles.

The final structure of the application will be as follows:

|-- package-lock.json

|-- package.json

|-- rollup.config.js

|-- .babelrc

`-- public

 |-- index.html

`-- src

 |-- index.js

 `-- components

 | |-- mycom.js

 | |-- mycom.css

Let us create a new component, HelloWorld to confirm our setup is working fine. Create a

file, HelloWorld.js under components folder and write a simple component to emit Hello

World message.

import React from "react";

class HelloWorld extends React.Component {

 render() {

 return (

<div>

<h1>Hello World!</h1>

</div>

);

 }

}

export default HelloWorld;

Next, create our main file, index.js under src folder and call our newly created component.

import React from 'react';

import ReactDOM from 'react-dom';

import HelloWorld from './components/HelloWorld';

ReactDOM.render(

 <React.StrictMode>

 <HelloWorld />

 </React.StrictMode>,

 document.getElementById('root')

);

Next, create a public folder in the root directory.

Next, create a html file, index.html (under public folder*), which will be our entry point of

the application.

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Expense Manager :: Rollup version</title>

 </head>

 <body>

 <div id="root"></div>

 <script type="text/JavaScript" src="./index.js"></script>

 </body>

</html>

Next, build and run the application.

npm start

The npm build command will execute the rollup and bundle our application into a single

file, dist/index.js file and start serving the application. The dev command will recompile

the code whenever the source code is changed and also reload the changes in the browser.

> expense-manager-rollup@1.0.0 build /path/to/your/workspace/expense-manager-

rollup

> rollup -c

rollup v2.36.1

bundles src/index.js → dist\index.js...

LiveReload enabled

http://localhost:10001 -> /path/to/your/workspace/expense-manager-rollup/dist

created dist\index.js in 4.7s

waiting for changes...

Next, open the browser and enter http://localhost:3000 in the address bar and press

enter. serve application will serve our webpage as shown below.

Using Parcel bundler

Parcel is fast bundler with zero configuration. It expects just the entry point of the

application and it will resolve the dependency itself and bundle the application. Let us learn

how to use parcel bundler in this chapter.

First, install the parcel bundler.

npm install -g parcel-bundler

Open a terminal and go to your workspace.

cd /go/to/your/workspace

Next, create a folder, expense-manager-parcel and move to newly created folder. Also,

open the folder in your favorite editor or IDE.

mkdir expense-manager-parcel

cd expense-manager-parcel

Next, create and initialize the project.

npm init -y

Next, install React libraries (react and react-dom).

npm install react@^17.0.0 react-dom@^17.0.0 --save

Next, install babel and its preset libraries as development dependency.

npm install @babel/preset-env @babel/preset-react @babel/core @babel/plugin-

proposal-class-properties -D

Next, create a babel configuration file, .babelrc under the root folder to configure the babel

compiler.

{

 "presets": [

"@babel/preset-env",

"@babel/preset-react"

],

 "plugins": [

"@babel/plugin-proposal-class-properties"

]

}

Next, update the package.json and include our entry point (src/index.js) and commands

to build and run the application.

...

"main": "src/index.js",

"scripts": {

 "start": "parcel public/index.html",

 "build": "parcel build public/index.html --out-dir dist"

},

...

Next, create a src folder in the root directory of the application, which will hold all the

source code of the application.

Next, create a folder, components under src to include our React components. The idea is

to create two files, <component>.js to write the component logic and <component.css>

to include the component specific styles.

The final structure of the application will be as follows:

|-- package-lock.json

|-- package.json

|-- .babelrc

`-- public

 |-- index.html

`-- src

 |-- index.js

 `-- components

 | |-- mycom.js

 | |-- mycom.css

Let us create a new component, HelloWorld to confirm our setup is working fine. Create a

file, HelloWorld.js under components folder and write a simple component to emit Hello

World message.

import React from "react";

class HelloWorld extends React.Component {

 render() {

 return (

<div>

<h1>Hello World!</h1>

</div>

);

 }

}

export default HelloWorld;

Next, create our main file, index.js under src folder and call our newly created component.

import React from 'react';

import ReactDOM from 'react-dom';

import HelloWorld from './components/HelloWorld';

ReactDOM.render(

 <React.StrictMode>

 <HelloWorld />

 </React.StrictMode>,

 document.getElementById('root')

);

Next, create a public folder in the root directory.

Next, create a html file, index.html (in the public folder), which will be our entry point of

the application.

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Expense Manager :: Parcel version</title>

 </head>

 <body>

 <div id="root"></div>

 <script type="text/JavaScript" src="../src/index.js"></script>

 </body>

</html>

Next, build and run the application.

npm start

The npm build command will execute the parcel command. It will bundle and serve the

application on the fly. It recompiles whenever the source code is changed and also reload

the changes in the browser.

> expense-manager-parcel@1.0.0 dev /go/to/your/workspace/expense-manager-parcel

> parcel index.html

Server running at http://localhost:1234

√ Built in 10.41s.

Next, open the browser and enter http://localhost:1234 in the address bar and press

enter.

To create the production bundle of the application to deploy it in production server, use

build command. It will generate a index.js file with all the bundled source code under dist

folder.

npm run build

> expense-manager-parcel@1.0.0 build /go/to/your/workspace/expense-manager-

parcel

> parcel build index.html --out-dir dist

√ Built in 6.42s.

dist\src.80621d09.js.map 270.23 KB 79ms

dist\src.80621d09.js 131.49 KB 4.67s

dist\index.html 221 B 1.63s

	WEB ESSENTIALS
	Web Essentials:
	Client-server paradigm:
	The Internet:
	Web Browsers:
	Web Server:
	Protocol:
	Internet Protocol:
	TCP/IP
	Hypertext Transfer Protocol (HTTP)
	Electronic Mail Protocols:
	Interactive Mail Access Protocol (IMAP)
	Internet Protocol (IP) Addresses:
	- Domain names
	HTTP:
	HTTP Message:
	Two types of HTTP Message:
	Fields
	.10 Request Message:
	Request Header:
	Response Line:
	HTTP Request Header:
	HTTP Method:
	Some common methods:
	Two methods that are mostly used are the GET and POST:
	The GET Method
	The POST Method
	HTTP response status codes
	1.12 HTTP
	Web Browsers :
	Web Servers:

	HTML 5
	HTML Tags and Elements
	HTML5 IMAGE:
	Inserting Images into Web Pages
	 HTML Ordered Lists
	Creating Tables in HTML
	HTML Image
	Text Fields
	Password Field
	Radio Buttons
	Checkboxes
	File Select box
	Textarea
	Select Boxes
	Submit and Reset Buttons

	HTML5 Audio
	Embedding Audio in HTML Document
	Using the HTML5 audio Element

	HTML5 Video
	Embedding Video in HTML Document
	Using the HTML5 video Element
	What are Semantic Elements?

	New Semantic Elements in HTML5
	HTML5 <section> Element
	Example
	HTML5 <article> Element

	Example (1)
	HTML5 <header> Element
	Example (2)
	HTML5 <footer> Element
	Example (3)
	HTML5 <figure> and <figcaption> Elements
	Example (4)

	Places to Visit
	Puglia's most famous sight is the unique conical houses (Trulli) found in the area around Alberobello, a declared UNESCO World Heritage Site.

	Semantic Elements in HTML5
	HTML5 Drag and Drop
	Drag and Drop
	HTML Drag and Drop Example

	OUTPUT
	HTML5 <nav> Element
	Example
	External, internal, and inline CSS styles
	Using external CSS stylesheets
	Using internal CSS stylesheets
	Using inline styles

	Conflicting rules
	Inheritance
	Properties

	CSS Animation Properties

	Client-side JavaScript
	Advantages of JavaScript
	Limitations of JavaScript
	INCLUDING JAVASCRIPT IN HTML FILE
	JavaScript in <head>...</head> section
	JavaScript in <body>...</body> section
	JavaScript in <body> and <head> Sections
	JavaScript in External File
	FunctionsayHello() {
	alert("Hello World")
	}
	JavaScript Display Possibilities
	Using window.alert()
	Using document.write()
	Using innerHTML
	Using console.log()
	Example
	SYNTAX OF JAVASCRIPT
	var x = 5; var y = 6; var z = x + y;
	Values
	Variables
	Operators
	var x = 5; var y = 6;
	Expressions
	Keywords
	var x = 5 + 6; var y = x * 10;
	Comments in JavaScript
	Identifiers
	Syntax
	Function Invocation
	return Statement
	Syntax
	Syntax (1)

	Properties
	Accessing Object Properties
	<!DOCTYPE html>
	<html><body>
	<p id="demo1"></p>
	<p id="demo"></p>
	<script>
	var person = {
	firstName: "XYZ",
	lastName : "ABC",
	id : 5566
	};
	document.getElementById("demo").innerHTML =person.firstName + " " + person.lastName;
	document.getElementById("demo1").innerHTML =person["firstName"] + " " + person.lastName;
	</script>
	</body></html>
	Methods
	User-Defined Objects
	The new Operator
	The Object() Constructor
	Syntax

	Converting Variables to Numbers
	The Number() Method - can be used to convert JavaScript variables to numbers:
	The parseInt() Method - parses a string and returns a whole number. Spaces are allowed. Only the first number is returned:
	The parseFloat() Method - parses a string and returns a number. Spaces are allowed. Only the first number is returned:
	The valueOf() Method - returns a number as a number.
	Global Methods
	Number Methods
	Syntax

	var answer = "It's alright"; var answer = "He is called 'Johnny'"; var answer = 'He is called "Johnny"';
	String Length
	Special Characters
	String Methods
	Syntax

	Here is the description of the parameters –
	Brackets
	Quantifiers
	Examples

	Literal characters
	Metacharacters
	Modifiers
	Using String search() With a Regular Expression
	Using String replace() With a Regular Expression
	What is the DOM?
	What is the HTML DOM?
	The DOM Programming Interface
	Example (1)
	The getElementById Method
	The innerHTML Property
	The HTML DOM Document
	Finding HTML Elements
	Changing HTML Elements
	Adding and Deleting Elements
	Adding Events Handlers
	Finding HTML Objects
	Example (2)
	Assign Events Using the HTML DOM
	The onload and onunload Events
	The onchange Event
	The onmouseover and onmouseout Events
	The onmousedown, onmouseup and onclick Events
	Create a web page using two image files, which switch between one another as the mouse pointer moves over the images. Use the on Mouse Over and on Mouse Out

	Syntax Errors
	Runtime Errors
	Logical Errors
	The try...catch...finally Statement
	The finally Statement
	Drawbacks of CGI programs
	Advantages of using Servlets
	HTTP (Hyper Text Transfer Protocol)
	Operations of Container:
	Server
	Web Server
	Application Server
	Content Type
	How a Servlet Application works

	Difference between Applet and Servlet
	The init() method :
	The service() method :
	The doGet() Method
	The doPost() Method
	The destroy() method :
	SERVLET ARCHITECTURE
	Architecture Diagram:
	A servlet is a Java class that can be loaded dynamically into and run by a special web server. This servlet-aware web server is called servlet container, which is also called a servlet engine in the early days of the servlet technology.
	Servlets interact with clients via request-response model based on HTTP. Because servlet technology works on top of HTTP, a servlet container must support HTTP as the protocol for client requests and server responses. However, a servlet container also...
	STEPS TO CREATE SERVLET APPLICATION USING TOMCAT SERVER
	1. Creating the Directory Structure
	Creating a Servlet
	Compiling a Servlet
	Create Deployment Descriptor
	Start the Server
	Starting Tomcat Server for the first time
	Run Servlet Application

	SERVLET API
	Interfaces in javax.servlet package
	Methods of Servlet interface
	The ServletConfig Interface
	The ServletRequest Interface
	Classes in javax.servlet package
	HttpSession
	GET method:
	POST method:
	Reading Form Data using Servlet:
	GET Method Example Using URL:
	<web-app xmlns=http://java.sun.com/xml/ns/j2ee
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
	version="2.4">
	<display-name>Servlet Form Data Handling</display-name>
	<servlet>
	<servlet-name>HelloFormData</servlet-name>
	<servlet-class>HelloFormData</servlet-class>
	</servlet>
	<servlet-mapping>
	<servlet-name>HelloFormData</servlet-name> (1)
	<url-pattern>/hello</url-pattern>
	</servlet-mapping>
	</web-app>
	index.html

	<!DOCTYPE html>
	<html>
	<head>
	<title>Servlet Read Form Data</title>
	</head>
	<body>
	<form action="./hello" method="GET">
	Enter your Name: <input type="text" name="name">
	<input type="submit" value="Submit" />
	</form>
	</body>
	</html>
	Read using POST method
	In the above HTML page in form tag instead of GET use as POST. Then in the servlet to read the form data add a doPost method as below,
	public void doPost(HttpServletRequest request,
	HttpServletResponse response)
	throwsServletException, IOException {
	doGet(request, response); }
	What is the difference between Get and Post?
	Why use Session Tracking?
	How Session Works

	Session Tracking Techniques
	How Cookie works
	Types of Cookie
	Non-persistent cookie
	Persistent cookie
	Advantage of Cookies
	Disadvantage of Cookies
	Cookie class
	Constructor of Cookie class
	Useful Methods of Cookie class
	Other methods required for using Cookies
	How to create Cookie?
	How to delete Cookie?
	How to get Cookies?
	Advantage of Hidden Form Field
	Disadvantage of Hidden Form Field:
	Example of using Hidden Form Field
	index.html
	FirstServlet.java
	SecondServlet.java
	web.xml
	Advantage of URL Rewriting
	Disadvantage of URL Rewriting
	Example of using URL Rewriting
	index.html (1)
	FirstServlet.java (1)
	SecondServlet.java (1)
	web.xml (1)
	How HttpSession works

	How to get the HttpSessionobject ?
	Commonly used methods of HttpSession interface
	Example of using HttpSession
	index.html (2)
	FirstServlet.java (2)
	SecondServlet.java (2)
	web.xml (2)
	Configuring Tomcat Manager
	Why use JDBC

	What is API?
	JDBC Architecture
	Common JDBC Components
	1) JDBC-ODBC bridge driver
	Advantages:
	Disadvantages:
	2) Native-API driver
	Advantage:
	Disadvantage:
	3) Network Protocol driver
	Disadvantages: (1)
	4) Thin driver
	Advantage: (1)
	Disadvantage: (1)
	First Create Your Database and Tables
	Hello JDBC MySQL using Servlet Example

	Advantage of JSP over Servlet
	1) Extension to Servlet
	JSP technology is the extension to servlet technology. We can use all the features of servlet in JSP. In addition to, we can use implicit objects, predefined tags, expression language and Custom tags in JSP which makes JSP development easy.
	2) Easy to maintain
	JSP can be easily managed because we can easily separate our business logic with presentation logic. In servlet technology, we mix our business logic with the presentation logic.
	3) Fast Development: No need to recompile and redeploy
	4) Less code than Servlet

	Why Use JSP?
	JSP Compilation:
	JSP Initialization:
	JSP Execution:
	JSP Cleanup:
	CONTROL-FLOW STATEMENTS:
	 JSP provides full power of Java to be embedded in your web application.
	 You can use all the APIs and building blocks of Java in your JSP programming including decision making statements, loops etc.
	Decision-Making Statements:
	 The if...else block starts out like an ordinary Scriptlet, but the Scriptlet is closed at each line with HTML text included between Scriptlet tags.
	Loop Statements:
	JSP Operators:
	JSP Literals:
	SCRIPTLET:
	JSP Scriptlet tag (Scripting elements)
	JSP Scripting elements
	JSP scriptlet tag
	Example of JSP scriptlet tag
	Example of JSP scriptlet tag that prints the user name

	JSP expression tag
	Syntax of JSP expression tag
	Example of JSP expression tag
	Note: Do not end your statement with semicolon in case of expression tag.

	Example of JSP expression tag that prints current time
	Example of JSP expression tag that prints the user name

	JSP Declaration Tag
	Syntax of JSP declaration tag
	Difference between JSP Scriptlet tag and Declaration tag
	Example of JSP declaration tag that declares field
	index.jsp
	Example of JSP declaration tag that declares method
	index.jsp (1)
	JSP Comments:
	JSP DIRECTIVES:
	1. page directive

	<%@ page attribute="value" %>
	2. include Directive:
	3. taglib Directive:
	JSP ACTIONS:
	JSP IMPLICIT OBJECTS:
	JSTL (JSP STANDARD TAG LIBRARY)
	Core Tags:
	Formatting tags:
	Number Format:

	SQL tags:
	XML tags:
	JSTL Functions:
	GET Method Example Using Form:
	GET Method Example Using URL:
	POST Method Example Using Form:
	Passing Checkbox Data to JSP Program

	Reading Checkbox Data
	Reading All Form Parameters:
	Reading All Form Parameters

	UNIT V FRONT PAGE
	Binder1
	UNIT 5 PART 1
	UNIT 5 PART 2
	Chapter 1: Getting started with firebase
	Remarks
	Versions
	Examples
	Add Firebase to Your Android Project

	Add Firebase to your app
	Add the SDK
	Setting up Firebase for IOS
	Getting started in Firebase with a simple Hello World web app in JavaScript

	Lets get started.

	UNIT 5 PART 3
	Chapter 1: Getting started with Docker
	Remarks
	Versions
	Examples
	Installing Docker on Mac OS X
	Installing Docker on Windows
	Installing docker on Ubuntu Linux
	Installing Docker on Ubuntu
	Create a docker container in Google Cloud
	Install Docker on Ubuntu
	Installating Docker-ce OR Docker-ee on CentOS

	Docker-ce Installation
	-Docker-ee (Enterprise Edition) Installation

	UNIT 5 PART 4

