

PRATHYUSHA

ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

REGULATION 2021

I YEAR - I SEMESTER

GE3151 - PROBLEM SOLVING AND PYTHON PROGRAMMING

GE3151 PROBLEM SOLVING AND PYTHON PROGRAMMING

COURSE OBJECTIVES:

 To understand the basics of algorithmic problem solving.

 To learn to solve problems using Python conditionals and loops.

 To define Python functions and use function calls to solve problems.

 To use Python data structures – lists, tuples, dictionaries to represent complex data.

 To do input/output with files in Python.

UNIT I COMPUTATIONAL THINKING AND PROBLEM SOLVING

Fundamentals of Computing – Identification of Computational Problems -Algorithms, building

blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart,

programming language), algorithmic problem solving, simple strategies for developing

algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of

sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA TYPES, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode, debugging; values and types: int, float, boolean, string, and

list; variables, expressions, statements, tuple assignment, precedence of operators, comments;

Illustrative programs: exchange the values of two variables, circulate the values of n variables,

distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS, STRINGS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained

conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return

values,

parameters, local and global scope, function composition, recursion; Strings: string

slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative

programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search

UNIT IV LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists,

list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods;

advanced list processing – list comprehension; Illustrative programs: simple sorting,

histogram, Students marks statement, Retail bill preparation.

UNIT V FILES, MODULES, PACKAGES

Files and exception: text files, reading and writing files, format operator; command line

arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs:

word count, copy file, Voter’s age validation, Marks range validation (0-100).

TOTAL : 45 PERIODS

COURSE OUTCOMES:

Upon completion of the course, students will be able to

CO1: Develop algorithmic solutions to simple computational problems.

CO2: Develop and execute simple Python programs.

CO3: Write simple Python programs using conditionals and looping for solving problems.

CO4: Decompose a Python program into functions.

CO5: Represent compound data using Python lists, tuples, dictionaries etc.

CO6: Read and write data from/to files in Python programs.

TEXT BOOKS: GE3151 Syllabus PROBLEM SOLVING AND PYTHON PROGRAMMING

1. Allen B. Downey, “Think Python: How to Think like a Computer Scientist”, 2nd Edition,

O’Reilly Publishers, 2016.

2. Karl Beecher, “Computational Thinking: A Beginner's Guide to Problem Solving

and programming”, 1st Edition, BCS Learning & Development Limited, 2017.

REFERENCES: GE3151 Syllabus PSPP

1. Paul Deitel and Harvey Deitel, “Python for Programmers”, Pearson Education, 1st Edition, 2021.

2. G Venkatesh and Madhavan Mukund, “Computational Thinking: A Primer for Programmers and

Data Scientists”, 1st Edition, Notion Press, 2021.

3. John V Guttag, "Introduction to Computation and Programming Using Python:

With Applications to Computational Modeling and Understanding Data‘‘, Third Edition, MIT Press

2021

4. Eric Matthes, “Python Crash Course, A Hands – on Project Based Introduction to Programming”,

2nd Edition, No Starch Press, 2019.

5. https://www.python.org/

6. Martin C. Brown, “Python: The Complete Reference”, 4th Edition, Mc-Graw Hill, 2018.

Algorithmic Problem Solving 1.1

1.1 ALGORITHMS

What is algorithm?

An algorithm is a finite number of clearly described, unambiguous ―”doable”
steps that can be systematically followed to produce a desired result for given input in
a finite amount of time . Algorithms are the initial stage of problem solving. Algorithms
can be simply stated as a sequence of actions or computation methods to be done for
solving a particular problem. An algorithm should eventually terminate and used to
solve general problems and not specific problems.

Al-Khwarizmi

The word ―algorithm is derived from the ninth-century Arab mathematician,
Al-Khwarizmi. He worked on ―written processes to achieve some goal. Computer

ALGORITHMIC PROBLEM SOLVING
Algorithms, building blocks of algorithms (statements, state, control
flow, functions), notation (pseudo code, flow chart, programming
language), algorithmic problem solving, simple strategies for
developing algorithms (iteration, recursion). Illustrative problems:
find minimum in a list, insert a card in a list of sorted cards, guess an
integer number in a range, Towers of Hanoi.

Unit I

Problem Solving and Python Programming1.2

algorithms are central to computer science. They provide step-by-step methods of
computation that computers can carry out. High speed computers can follow a given
set of instructions for their computation which are programs. Programs are built from
algorithms. However, the computation that a given computer performs is only as good
as the underlying algorithm used.

Features

 An algorithm is a collection of well-defined, unambiguous and effectively
computable instructions, if execute it will return the proper output.

 Well-defined- The instructions given in an algorithm should be simple and
defined well.

 Unambiguous- The instructions should be clear,there should not be ambiguity .

 Effectively computable- The instructions should be written step by step ,which
helps computer to understand the control flow.

We often use algorithm in our day-to-day life, but when and how?

 Our cooking receipe

 Our daily routine as a student

 When we buy something

 When we go outing

 Our class routine

How it helps?

To understand the usage of algorithm, look over the following conversation.

Algorithmic Problem Solving 1.3

Lets discuss about the conversation,tom wants brush his teeth, so he asks chitti
to bring brush,what happens chitti returns cleaning brush.

Why this was happened ?

Because the statement given by tom was not well defined and it is ambiguous
statement so chitti get confused and bring some brush to Tom.This is what happen if
the user gives ambiguity statement to the computer.Therefore an algorithm should be
simple and well defined.

How an algorithm should be?

It should be in simple English, what a programmer wants to say. It has a start, a
middle and an end. Probably an algorithm should have,

Start

1. In the middle it should have set of tasks that computer wants to do and
it should be in simple English and clear.

2. To avoid ambiguous should give no for each step.

Stop

Lets look over the simple example,

The following algorithm helps the computer to validate user’s email address.

Problem Solving and Python Programming1.4

Start

Create a variable to get the user’s email address clear the variable, incase
its not empty.

Ask the user for an email address.

Store the response in the variable.

Check the stored response to see if it is a valid email address Not valid?
Go back

Stop

Lets see how it works?

Why this Happened?

This was happened because the instructions given in an algorithm does not have
numbering for each step.So Chitti gets confused which step have to do. To avoid this
ambiguity ,we should number each step while writing an algorithm.

So let’s rewrite the algorithm....

Algorithmic Problem Solving 1.5

Step1: Start

Step2: Create a variable to get the user’s email address

Step3: Clear the variable, incase its not empty.

Step4: Ask the user for an email address.

Step5: Store the response in the variable.

Step6: Check the stored response to see if it is a valid email address

Step7: Not valid? Go back

Step8: Stop

Suggested link to refer :

Link 1 https://www.youtube.com/watch?v=AVScy7YsKM0
Link 2 https://www.youtube.com/watch?v=CvSOaYi89B4
Link 3 https://www.youtube.com/watch?v=Da5TOXCwLSg

1.2 BUILDING BLOCKS OF ALGORITHMS

Building blocks are necessary to decide how we want to manipulate units of
work. The basis of every algorithm is steps or blocks of operations.

The building blocks are:

 Statements
 State
 Control flow
 Functions

Statement is a single action in a computer.

In a computer statements might include some of the following actions

 input data-information given to the program

 process data-perform operation on a given input

 output data-processed result

State:

Transition from one process to another process under specified condition with
in a time is called state.

Problem Solving and Python Programming1.6

Control flow:

The process of executing the individual statements in a given order is called
control flow.The control can be executed in three ways

1. sequence

2. selection

3. iteration

It has been proven that any algorithm can be constructed from just three basic
building blocks. These three building blocks are Sequence, Selection, and Iteration
(Repetition).

Sequence

This describes a sequence of actions that a program carries out one after another,
unconditionally.Execute a list of statements in order. Consider an example,

Example 1.1 Algorithm for Baking Bread

Step1: Add flour.
Step 2: Add salt.
Step 3: Add yeast.
Step 4: Mix.
Step 5: Add water.
Step 6: Knead.
Step 7: Let rise.
Step 8: Bake.

Bread has been baked successfully.

Example 1.2 Algorithm for Addition of two numbers:

Step1: Start

Step 2: Get two numbers as input and store it in to a and b

Step 3: Set c = a+b

Step 4: Print c

Step 5: Stop.

Algorithmic Problem Solving 1.7

Example 1.3 Algorithm to prepare Green Tea

Step 1: Fill the kettle with water
Step 2: Boil the water in kettle
Step 3: Put the green tea leaves in the pot
Step 4: Pour the boiling water in the pot
Step 5: Steep the tea leaves for 2 – 3 minutes
Step 6: Stop

Example 1.4 Algorithm to multiply two numbers

Step 1: Input first number as A
Step 2: Input second number as B
Step 3: Set Mul = A*B
Step 4: Print Mul
Step 5: End

Example 1.5 Algorithm for interchanging of two numbers

Step 1 : Start
Start 2 : READ num1, num2
Start 3 : temp = num1
Start 4 : num1 = num2
Start 5 : num2 = temp
Start 6 : PRINT num1, num2
Start 7 : Stop

Selection

Control flow statements are able to make decisions based on the conditions.

Selection is the program construct that allows a program to choose between
different actions. Choose at most one action from several alternative conditions.

Problem Solving and Python Programming1.8

Algorithm for path chooser

Step 1: Check for the destination located from current position.
Step 2:If it is located in right then choose right way
Step 3:If it is located in left then choose left way.
Step 4:Else comeback and search for new way.

Path has been chosen successfully.

The decision statements are:

 if

 if/else

 switch

Entry

False True

Action 1 Action 2

Condition
to make
Decision

Algorithmic Problem Solving 1.9

The general form of the if construct can be:

IF condition then process

Although a program might seem like a linear path—one statement following
another— conditional statements act like intersections, allowing you to change
directions on the basis of a given condition.

A condition flow can also be stated in the following manner:

IFcondition
then process 1

ELSE
 process 2

This form is known as the if – else construct. Here, if the condition is true then
process 1 is

executed, else process 2 is executed.

Example 1.6 Algorithm for printing Grade

Marks Grade

Above 75 O

60-75 A

50-60 B

40-50 C

Less than 40 D

Step 1 : Enter the marks obtained as M
Step 2 : IF M > 75

Print “O”
Step 3 : IF M>=60 and M<75

Print “A”
Step 4 : IF M>50 and M<60

Print “B”

Problem Solving and Python Programming1.10

Step 5 : IF M>=40 and M<50
Print “C”

ELSE
Print “D”

[END of IF]
Step 6 : End

Example 1.7 Algorithm to find the equality of two numbers

Step 1 : Start
Step 2 : Input first number as A
Step 3 : Input second number as B
Step 4 : IF A==B

Print “Equal”
ELSE

Print “ Not Equal”
Strep 5 : Stop

Example 1.8 Algorithm to find the largest of three numbers

Step 1: Start
Step 2: Declare variables a,b and c.
Step 3: Read variables a,b and c.
Step 4: If a>b

If a>c
Display a is the largest number.

Else
Display c is the largest number.

Else
If b>c

Display b is the largest number.
Else

Display c is the greatest number.
Step 5: Stop

Algorithmic Problem Solving 1.11

Example 1.9 Algorithm to find biggest among 2 nos:

Step1: Start
Step 2: Get two numbers as input and store it in to a and b
Step 3: If a is greater than b then
Step 4: Print a is big
Step 5: else
Step 6: Print b is big
Step 7: Stop

Repetition

While Statement:

The WHILE construct is used to specify a loop with a test at the top. The beginning
and ending of the loop are indicated by two keywords WHILE and ENDWHILE.

The general form is:

WHILE condition
Sequence
END WHILE

FOR loop:

This loop is a specialized construct for iterating a specific number of times,
often called a “counting” loop. Two keywords, FOR and ENDFOR are used.

The general form is:

FOR iteration bounds
Sequence
END FOR

Repetition (loop) may be defined as a smaller program the can be executed several
times in a main program. Repeat a block of statements while a condition is true.

Example 1.10 Algorithm for Washing Dishes

Step1: Stack dishes by sink.
Step 2: Fill sink with hot soapy water.
Step 3: While moreDishes

Problem Solving and Python Programming1.12

Step 4: Get dish from counter,Wash dish
Step 5: Put dish in drain rack.
Step 6: End While
Step 7: Wipe off counter.
Step 8: Rinse out sink.

Example 1.11 Algorithm to calculate factorial no:

Step1: Start
Step 2: Read the number num.
Step 3: Initialize i is equal to 1 and fact is equal to 1
Step 4: Repeat step4 through 6 until I is equal to num
Step 5: fact = fact * i
Step 6: i = i+1
Step 7: Print fact
Step 8: Stop

Example 1.12 Algorithm to find the factorial of a number

Step 1. Read the value of n.
Step 2. i = 1 , F =1
Step 3. if (i > n) go to 7
Step 4. F = F * i
Step 5. i = i + 1
Step 6. go to 3
Step 7. Display the value of S
Step 8. Stop

Example 1.13 Algorithm to print numbers from 1 to 10

Step 1: Set i=1, n=10
Step 2: Repeat steps 3 and 4 while i<=n
Step 3: Print i
Step 4: Set i=i+1
[End of loop]
Step 5: End

Algorithmic Problem Solving 1.13

Recursion

Recursion is a technique of solving a problem by breaking it down into smaller
and smaller sub problems until you get to a small enough problem that it can be easily
solved. Usually, recursion involves a function calling itself until a specified a specified
condition is met.

Example 1.14 Algorithm for factorial using recursion

Step 1 : Start

Step 2 : Input number as n

Step 3 : Call factorial(n)

Step 4 : End

Factorial(n)
Step 1 : Set f=1
Step 2: IF n==1 then return 1

 ELSE
 Set f=n*factorial(n-1)

Step 3 : print f

Suggested Link to refer:

https://www.youtube.com/watch?v=wOnjfIXCVpU

Functions:

Functions allow us to conceive of our program as a bunch of sub-steps. When
any program seems too hard, just break the overall program into sub-steps! They allow
us to reuse code instead of rewriting it. Every programming language lets you create
blocks of code that, when called, perform tasks. All programming functions have input
and output. The function contains instructions used to create the output from its input.
The general form of a function definition has return type, parameter list, function
name and function body.

def function_name(parameter list):
body of the function

return [expression]

Problem Solving and Python Programming1.14

1.3 ALGORITHM NOTATIONS (EXPRESSING ALGORITHMS)

As we know that, an algorithm is a sequence of finite instructions, often used for
calculation and data processing.

Algorithms can be expressed in many kinds of notation, including

1.3.1 Pseudocode

Pseudo code consists of short, readable and formally styled English languages
used for explain an algorithm.

 It does not include details like variable declaration, subroutines.

 It is easier to understand for the programmer or non programmer to
understand the general working of the program, because it is not based on
any programming language.

 It gives us the sketch of the program before actual coding.

 It is not a machine readable

 Pseudo code can’t be compiled and executed.

A step-by-step method for
solving a problem or doing a task

Input List

Output List

Algorithm

Pseudocode

 Flowchart

 Programming
 Language

Algorithmic Problem Solving 1.15

 There is no standard syntax for pseudo code.

1.3.1.1 Guidelines for writing pseudo code

 Write one statement per line

 Capitalize initial keyword

 Indent to hierarchy

 End multiline structure

 Keep statements language independent

1.3.1.2 Common keywords used in pseudo code

The following gives common keywords used in pseudo codes.

1. This keyword used to represent a comment.

2. BEGIN,END: Begin is the first statement and end is the last statement.

3. INPUT, GET, READ: The keyword is used to inputting data.

4. COMPUTE, CALCULATE: used for calculation of the result of the given
expression.

5. ADD, SUBTRACT, INITIALIZE used for addition, subtraction and
initialization.

6. OUTPUT, PRINT, DISPLAY: It is used to display the output of the program.

7. IF, ELSE, ENDIF: used to make decision.

8. WHILE, ENDWHILE: used for iterative statements.

9. FOR, ENDFOR: Another iterative incremented/decremented tested
automatically.

1.3.1.3 How to write a pseudo code

Start by writing down the purpose of the process.
Write initial steps of pseudo code that set the stage for functions.
Write functional pseudo code.
Add comments, if necessary.
Read over the finished project for logic errors .
Review the pseudo code.

Problem Solving and Python Programming1.16

BEGIN
READ a,b
IF (a>b) THEN
DISPLAY a is greater
ELSE
DISPLAY b is greater
END IF
END

BEGIN
GET n
INITIALIZE i=1
FOR (i<=n) DO

PRINT i
i=i+1

ENDFOR
END

BEGIN
GET n
INITIALIZE i=1
WHILE (i<=n) DO

PRINT i
i=i+1

ENDWHILE
END

Advantages:
 Pseudo is independent of any language; it can be used by most programmers.
 It is easy to translate pseudo code into a programming language.
 It can be easily modified as compared to flowchart.
 Converting a pseudo code to programming language is very easy as

compared with converting a flowchart to programming language.
Disadvantages:

 It does not provide visual representation of the program’s logic.
 There are no accepted standards for writing pseudo codes.
 It cannot be compiled nor executed.
 For a beginner, It is more difficult to follow the logic or write pseudo code

as compared to flowchart.
Syntax for if else: Example: Greates of two numbers

IF (condition)THEN
statement
....

ELSE
statement
....

ENDIF
Syntax for For: Example: Print n natural numbers

FOR (start-value to end-value)DO
statement
....

Syntax for While: Example: Print n natural numbers

WHILE (condition) DO
statement
...

ENDWHILE

Algorithmic Problem Solving 1.17

pseudo code is made up of the following logic structure,

 Sequential logic

 Selection logic

 Iteration logic

Sequence Logic

 It is used to perform instructions in a sequence,that is one after another

 Thus,for sequence logic ,pseudocode instructions are written in an order in
which they are to be performed.

 The logic flow of pseudocode is from top to bottom.

Example 1.15 Pseudo code to add two numbers:

START
READ a,b
COMPUTE c by adding a &b
PRINT c
STOP

Selection Logic

 It is used for making decisions and for selecting the proper path out of two
or more alternative paths in program logic.

 It is also known as decision logic.

 Selection logic is depicted as either an IF..THEN or an IF…THEN..ELSE

Structure.

Example 1.16 Pseudocode to Find Biggest of two numbers:

START
READ a and b
IF a>b THEN
PRINT “A is big”
ELSE
PRINT “B is big”
ENDIF
STOP

Problem Solving and Python Programming1.18

Repetition Logic

 It is used to produce loops when one or more instructions may be executed
several times depending on some conditions.

 It uses structures called DO_WHILE,FOR and REPEAT__UNTIL

Example 1.17 Pseudocode to print first 10 natural numbers

START
INITIALIZE a?0
WHILE a<10
PRINT a
ENDWHILE
STOP

Suggested Link to refer :

https://www.youtube.com/watch?v=4jLO0vXPktU

1.3.2 Flowchart

A flowchart is a visual representation of the sequence of steps and decision needed
to perform a process.

Flow chart is defined as graphical representation of the logic for problem solving.

The purpose of flowchart is making the logic of the program clear in a visual
representation.

Flowchart symbols

Here are some of the common flowchart symbols.

Name Symbol Use in flowchart

Oval Denotes the beginning or end of a program.

Flow line Denotes the direction of logic flow in a
program.

Parallelogram Denotes either an input operation (e.g.,
INPUT) or an output operat ion (e.g.
PRINT)

Algorithmic Problem Solving 1.19

Rectangle Denotes a proces sto be carried out (e.g.,
an addition)

Diamond Denotes a decision (or branch) to be made.
The program should continue along one of
two routes (e.g, IF.THEN/ELSE)

Suggested Links : (Flowchart Symbols)
https://www.youtube.com/watch?v=kxZJv56BxU8

Rules for drawing a flowchart

1. The flowchart should be clear, neat and easy to follow.

2. The flowchart must have a logical start and finish.

3. Only one flow line should come out from a process symbol.

4. Only one flow line should enter a decision symbol. However, two or three flow
lines may leave the decision symbol.

5. Only one flow line is used with a terminal symbol.

6. Within standard symbols, write briefly and precisely.

7. Intersection of flow lines should be avoided.

NO
YES

Problem Solving and Python Programming1.20

Advantages of flowchart:

1. Communication: - Flowcharts are better way of communicating the logic of a
system to all concerned.

2. Effective analysis: - With the help of flowchart, problem can be analyzed in
more effective way.

3. Proper documentation: - Program flowcharts serve as a good program
documentation, which is needed for various purposes.

4. Efficient Coding: - The flowcharts act as a guide or blueprint during the systems
analysis and program development phase.

5. Proper Debugging: - The flowchart helps in debugging process.

6. Efficient Program Maintenance: - The maintenance of operating program
becomes easy with the help of flowchart. It helps the programmer to put efforts
more efficiently on that part.

Disadvantages of flow chart:

1. Complex logic: - Sometimes, the program logic is quite complicated. In that
case, flowchart becomes complex and clumsy.

2. Alterations and Modifications: - If alterations are required the flowchart may
require re-drawing completely.

3. Reproduction: - As the flowchart symbols cannot be typed, reproduction of
flowchart becomes a problem.

4. Cost: For large application the time and cost of flowchart drawing becomes
costly.

Flowchart is made up of the following logic structure,

 Sequential logic

 Selection logic

 Iteration logic

Sequence Logic

In a computer program or an algorithm, sequence involves simple steps which
are to be executed one after the other. The steps are executed in the same order in
which they are written.

Algorithmic Problem Solving 1.21

Below is an example set of instructions to add two numbers and display the
answer.

Selection Logic

Selection is used in a computer program or algorithm to determine which
particular step or set of steps is to be executed. This is also referred to as a ‘decision’.

A selection statement can be used to choose a specific path dependent on a
condition.

There are two types of selection:

 binary selection (two possible pathways)

 multi-way selection (many possible pathways)

Following is the example flowchart to find biggest among two numbers

BEGIN ADD Two Numbers

END Add Two Numbers

Display “The sum of your
two numbers is”;total

total = firstNumber +
secondNumber

get second Number

get first Number

Start

Read A, B

Yes No

Print A Print B

End

Is A > B

Problem Solving and Python Programming1.22

Example 1.18 Flow chart for biggest of three numbers

Example 1.19 Flow chart for sum of N Natural numbers

start

Is
B > C

Is
A > C

stop

Print
‘B is the

largest number

Print
‘C is the

largest number

Print
‘A is the

largest number

Yes YesNo No

No Yes

Read
A, B, C

Is
A > B

Start

Read N

Sum = sum + n

is N = 0?
No

N = N - 1

Yes

Display Sum

End

Algorithmic Problem Solving 1.23

Example 1.20 Roots of a quadratic equation ax2+bx+c=0

Repetition Logic

Repetition allows for a portion of an algorithm or computer program to be
executed any number of times dependent on some condition being met.

An occurrence of repetition is usually known as a loop.

The termination condition can be checked or tested at the beginning or end of
the loop, and is known as a pre-test or post-test, respectively.

Iteration & Recursion

Iteration and recursion are key Computer Science techniques used in creating
algorithms and developing software.

Start

Declare variables a, b, c, D, x1, x2,
rp and ip

Calculate discriminant
D b - 4ac

True Falseis
D > 0?

Display r1 and r2

Stop

r1 (-b+ D)/2a
r2 (-b- D)/2a

ip -b/2a
rp -(D)/2a

x1 rp + j ip
x1 rp - j ip

Problem Solving and Python Programming1.24

In simple terms, an iterative function is one that loops to repeat some part of the
code, and a recursive function is one that calls itself again to repeat the code.

Example 1.21 Flowchart to find factorial of given no

pre-test loop post-test

START

IS Num
> 1? Print Fact

Stop

Fact Fact * Num

Num Num-1

Yes

No

Fact 1, Num 0

Read Num

False

False

True

True

Condition

Condition

Process

Process

Algorithmic Problem Solving 1.25

1.3.3 Representation of Algorithm using Programming Language

 Algorithms describe the solution to a problem in terms of the data needed to
represent the problem instance and the set of steps necessary to produce the
intended result.

 Programming languages must provide a notational way to represent both the
process and the data.

 To this end, languages provide control constructs and data types.

Programming is the process of taking an algorithm and encoding it into a notation,
a programming language, so that it can be executed by a computer.

Although many programming languages and many different types of computers
exist, the important first step is the need to have the solution.

Without an algorithm there can be no program.

 Control constructs allow algorithmic steps to be represented in a convenient
yet unambiguous way.

 At a minimum, algorithms require constructs that perform sequential
processing, selection for decision-making, and iteration for repetitive control.

 As long as the language provides these basic statements, it can be used for
algorithm representation.

Simply we can say programming as like below

Programming is implementing the already solved problem (algorithm)
in a specific computer language where syntax and other relevant
parameters are different, based on different programming languages.

Low Level Language
(Machine Language)

Middle Level Language
(Assembly Language)

High Level Language

Use 1’s & 0’s to
create instructions

Ex: Binary Language

Use mnemonics to
create instructions

Assembly Language

Similar to
human language

COBOL, FORTRAN, BASIC
C, C++, JAV

Computer Languages

Problem Solving and Python Programming1.26

Low level Language(Machine level Language)

A low-level language is a programming language that deals with a computer’s
hardware components and constraints.

In simple we can say that ,low level language can only be understand by computer
processor and components.

Middle level Language(Intermediate Language)

Medium-level language serves as the bridge between the raw hardware and
programming layer of a computer system.

Medium-level language is also known as intermediate programming language
and pseudo language.

C intermediate language and Java byte code are some examples of medium-
level language.

High level Language (Human understandable Language)

A high-level language is any programming language that enables development
of a program in a much more user-friendly programming context.

High-level languages are designed to be used by the human operator or the
programmer.

They are referred to as “closer to humans.” In other words, their programming
style and context is easier to learn and implement than low-level languages

BASIC, C/C++ and Java are popular examples of high-level languages.

1.4 ALGORITHMIC PROBLEM SOLVING

“Algorithmic-problem solving”; this means solving problems that require the
formulation of an algorithm for their solution.

The formulation of algorithms has always been an important element of problem-
solving.

Why we need to go for algorithm to solve problem?

 A computer is a tool that can be used to implement a plan for solving a
problem.

 A computer program is a set of instructions for a computer. These instructions
describe the steps that the computer must follow to implement a plan.

Algorithmic Problem Solving 1.27

 An algorithm is a plan for solving a problem.

 A person must design an algorithm.

 A person must translate an algorithm into a computer program.

An algorithmic Development Process

Every problem solution starts with a plan. That plan is called an algorithm.

An algorithm is a plan for solving a problem.

There are many ways to write an algorithm.

 Some are very informal.

 some are quite formal.

 mathematical in nature.

 some are quite graphical.

Once we have an algorithm, we can translate it into a computer program in some
programming language. Our algorithm development process consists of five major
steps.

Step 1: Obtain a description of the problem.

Step 2: Analyze the problem.

Step 3: Develop a high-level algorithm.

Step 4: Refine the algorithm by adding more detail.

Step 5: Review the algorithm.

1. Understanding the Problem

 It is the process of finding the input of the problem that the algorithm solves.

 It is very important to specify exactly the set of inputs the algorithm needs
to handle.

 A correct algorithm is not one that works most of the time, but one that
works correctly for all legitimate inputs.

Ascertaining the Capabilities of the Computational Device

Problem Solving and Python Programming1.28

 If the instructions are executed one after another, it is called sequential
algorithm.

 If the instructions are executed concurrently, it is called parallel algorithm.

Choosing between Exact and Approximate Problem Solving

 The next principal decision is to choose between solving the problem exactly
or solving it approximately.

 Based on this, the algorithms are classified as exact algorithm and
approximation algorithm.

Understand the problem

Decide on:
computational means,

exact vs. approximate solving,
algorithm design technique

Design an algorithm

Prove correctness

Analyze the algorithm

Code the algorithm

Algorithmic Problem Solving 1.29

2. Deciding a data structure:

 Data structure plays a vital role in designing and analysis the algorithms.

 Some of the algorithm design techniques also depend on the structuring
data specifying a problem’s instance

 Algorithm+ Data structure=programs.

Algorithm Design Techniques

 An algorithm design technique (or “strategy” or “paradigm”) is a general
approach to solving problems algorithmically that is applicable to a variety
of proble ms from different areas of computing.

 Learning these techniques is of utmost importance for the following reasons.

 First, they provide guidance for designing algorithms for new problems,

 Second, algorithms are the cornerstone of computer science

Methods of Specifying an Algorithm

 Pseudocode is a mixture of a natural language and programming language-
like constructs. Pseudocode is usually more precise than natural language,
and its usage often yields more succinct algorithm descriptions.

 In the earlier days of computing, the dominant vehicle for specifying
algorithms was a flowchart, a method of expressing an algorithm by a
collection of connected geometric shapes containing descriptions of the
algorithm’s steps.

 Programming language can be fed into an electronic computer directly.
Instead, it needs to be converted into a computer program written in a
particular computer language. We can look at such a program as yet another
way of specifying the algorithm, although it is preferable to consider it as
the algorithm’s implementation.

3. Proving an Algorithm’s Correctness

 Once an algorithm has been specified, you have to prove its correctness.
That is, you have to prove that the algorithm yields a required result for
every legitimate input in a finite amount of time.

Problem Solving and Python Programming1.30

 A common technique for proving correctness is to use mathematical
induction because an algorithm’s iterations provide a natural sequence of
steps needed for such proofs.

 It might be worth mentioning that although tracing the algorithm’s
performance for a few specific inputs can be a very worthwhile activity, it
cannot prove the algorithm’s correctness conclusively. But in order to show
that an algorithm is incorrect, you need just one instance of its input for
which the algorithm fails.

4. Analysing an Algorithm

1. Efficiency.

Time efficiency, indicating how fast the algorithm runs, Space efficiency,
indicating how much extra memory it uses.

2. Simplicity.

 An algorithm should be precisely defined and investigated with
mathematical expressions.

 Simpler algorithms are easier to understand and easier to program.

 Simple algorithms usually contain fewer bugs.

5. Coding an Algorithm

 Most algorithms are destined to be ultimately implemented as computer
programs. Programming an algorithm presents both a peril and an
opportunity.

 A working program provides an additional opportunity in allowing an
empirical analysis of the underlying algorithm. Such an analysis is based on
timing the program on several inputs and then analysing the results obtained.

1.5 SIMPLE STRATEGIES FOR DEVELOPING ALGORITHMS

1. Iterations

2. Recursions

Iterations:

A sequence of statements is executed until a specified condition is true is called
iterations.

Algorithmic Problem Solving 1.31

BEGIN
GET n
INITIALIZE i=1
WHILE (i<=n) DO

PRINT i
i=i+1

ENDWHILE
END

BEGIN
GET n
INITIALIZE i=1
FOR (i<=n) DO

PRINT i
i=i+1

ENDFOR
END

Start

get n

i = 1

yesno

stop print i

i = i + 1

is
i <= n

1. for loop

2. While loop
Syntax for For: Example: Print n natural numbers

FOR (start-value to end-value)DO
statement

....
ENDFOR

Syntax for While: Example: Print n natural numbers

WHILE (condition) DO
statement
...

ENDWHILE

Problem Solving and Python Programming1.32

Recursions:

 A function that calls itself is known as recursion.

 Recursion is a process by which a function calls itself repeatedly until some
specified condition has been satisfied.

Example 1.22 Algorithm for factorial of n numbers using recursion:

Main function:

Step1: Start

Step2: Get n

Step3: call factorial(n)

Step4: print fact

Step5: Stop

Sub function factorial(n):

Step1: if(n==1) then fact=1 return fact

Step2: else fact=n*factorial(n-1) and return fact

Start

Get n

call factorial(n)

Print fact

Stop

No

Yes

factorial(n)

if(n = 1)

return factfact = n*factorial(n-1)

fact = 1

Algorithmic Problem Solving 1.33

Example 1.23 Pseudo code for factorial using recursion:

Main function:

BEGIN
GET n
CALL factorial(n)
PRINT fact
BIN

Sub function factorial(n):

IF(n==1) THEN
fact=1
RETURN fact
ELSE
RETURN fact=n*factorial(n-1)

1.6 EXAMPLE ALGORITHMS (ILLUSTRATIVE PROBLEMS)

1.6.1 Find minimum in a list

Problem: Given a list of positive numbers, return the smallest number on the
list.

Inputs: A list L of positive numbers. This list must contain at least one number.
(Asking for the smallest number in a list of no numbers is not a meaningful question.)

Outputs: A number n, which will be the smallest number of the list.

Algorithm:

1. Start

2. Get positive numbers from user and add it in to the List L

3. Set min to L[0].

4. For each number x in the list L, compare it to min. If x is smaller, set min to x.

5. min is now set to the minimum number in the list.

6. Stop

Problem Solving and Python Programming1.34

1.6.2 Insert a card in a list of sorted cards

1. Get a hand of unsorted cards

2. Set a marker for the sorted section after the first card of the hand

3. Repeat steps 4 through 6 until the unsorted section is empty

4. Select the first unsorted card

5. Swap this card to the left until it arrives at the correct sorted position.

6. Advance the marker to the right one card

7. Stop

1.6.2 Insert a card in a list of sorted cards

Algorithmic Problem Solving 1.35

Problem Solving and Python Programming1.36

Algorithmic Problem Solving 1.37

The sorting recursively been done until the cards are fully sorted. The final sorted
cards are

Algorithm:

1. Start
2. Ask for value to insert
3. Find the correct position to insert, If position cannot be found ,then

insert at the end.
4. Move each element from the backup to one position, until you get

position to insert.
5. Insert a value into the required position
6. Increase array counter
7. Stop

1.6.3 Guess an integer number in a range

Let’s play a little game to give you an idea of how different algorithms for the
same problem can have wildly different efficiencies.

The computer is going to randomly select an integer from 1 to 20. We have to
guess the number by making guesses until you find the number that the computer
chose.

Problem Solving and Python Programming1.38

Algorithm:

1. Start
2. Generate a random number from 1 to 20 and store it into the variable

number.
3. Ask the user to guess number between 1 and 20 and store it into guess

for six chances.
4. Check if guess is equal to number
5. If guess is greater than number print ,the number you guessed is greater
6. If guess is lesser then print,the number you guessed is lesser.
7. If guess is equal to number then,print you guessed is right.
8. If guess is not equal and chance is greater than six print you fail and

stop the execution
9. Stop

The following table shows the sample scenario of the range 1-10 that asks a
series of questions, reducing the problem size by about half each time.

Number First guess Second guess Third guess
1 Is it 6? Is it 3? Is it 1?

Too high Too high You win

2 Is it 5? Is it 2?
Too high You win

3 Is it 5? Is it 2? Is it 3?
Too high Too high You win

4 Is it 5? Is it 2? Is it 3?
Too high Too low Too low, so it must be 4.

5 Is it 5?
You Win

6 Is it 5? Is it 8? Is it 6?
Too Too High You Win

7 Is it 5? Is it 8? Is it 6?
Too low Too low Too low, so it must be 7

8 Is it 5? Is it 8?
Too low You win

Algorithmic Problem Solving 1.39

9 Is it 5? Is it 8? Is it 9?
Too low Too low You win

10 Is it 5? Is it 8? Is it 9?
Too low Too low Too low, so it must be 10

1.6.4 Tower of Hanoi

Tower of Hanoi is a very famous game.

In this game there are 3 rods(pegs) and N number of disks placed one over another
in decreasing size.

The objective of the game is to move the disks one by one from the first rod to
last rod.

And there is two one condition; only one disk can be moved at a time and we
cannot place a bigger disk on top of a smaller disk.

Problem Analysis:

We will first attempt to solve this problem for three disks to gain some insight
into the problem, and then develop a general solution for any number of disks. Thus,
we will solve the simple problem of moving three disks from peg A to peg C as shown
in Figure

A B C

The 3 pegs are labeled A, B and C

Our objective is to move the disks from peg A to peg C
in such a way that they are in the same order:

RED then GREEN then BLUE
from top to bottom as they are in peg A.

In this example we are
considering 3 disks.
They are placed in

decreasing size
from bottom to top

Problem Solving and Python Programming1.40

Towers of Hanoi Problem for Three Disks

First Move: Move 1

Remove the smallest disk and place it on either peg B or peg C.

Move 2:

If we place the smallest disk on peg B, place the next smallest disk on peg C.

If we place the smallest disk on peg C, place the next smallest disk on peg B.

After Move 1 and Move 2

Move 3:
We can place the disk currently on peg B back on peg A, but that will be undoing

what we just did in the last step. So in order to make progress, we move the smallest
disk on peg C somewhere.

We can move it on either peg A or peg B, since in each case it would be placed
on a larger disk. Let’s assume that we move the smallest disk currently on peg C on
top of the second smallest disk on peg B. This move results are shown in the figure.

After Move 3

1
2

3
A B C

3 2 1
B CA

3 2
1

B CA

Algorithmic Problem Solving 1.41

Move 4:

We can move the largest disk currently on peg A to peg C.

Then we can move the smallest disk from peg B to peg A, then move the second
smallest disk from peg B to peg C, and finally move the smallest disk from peg A to
peg C, thereby solving the problem.

After Move 4

Recursive solution for tower of Hanoi problem:

The fundamental step of a recursive solution for the Towers of Hanoi problem is
given below:

Step 1: View the stack as two stacks, one on top of the other. Call the top
stack Stack1, and the bottom stack Stack2.

Step 2: Recursively move Stack1 from peg A to peg B.

Step 3: Recursively move (the exposed) Stack2 from peg A to peg C.

Step 4: Recursively move Stack1 from peg B to peg C.

Repeat moving a stack of disks from one peg to another. It does not matter that
the stacks being moved are different, or are being moved between different pegs. Each
of the sub problems can be recursively solved in a similar way, and thus we can assume
that they can be solved without explicitly specifying how. How to break down a stack
of disks into two separate (sub) stacks?

1. Start
2. Move disk1 from pegA to pegC
3. Move disk2 from pegA to pegB
4. Move disk3 from pegC to pegB

4

2

1

3
1

2
3

CBA

Problem Solving and Python Programming1.42

5. Move disk1 from pegA to pegC
6. Move disk1 from pegB to pegA
7. Move disk2 from pegB to pegC
8. Move disk1 from pegA to peg C
Stop

Suggested Link to Refer :

Reference Link 1: https://www.youtube.com/watch?v=5_6nsViVM00

 Link 2 : https://www.youtube.com/watch?v=fffbT41IuB4

Assignments :

Try the following with Algorithm, flowchart and pseudo code.

1. Find the area of triangle

2. Area and circumference of a circle

3. Calculating simple interest

4. Calculating engineering cutoff

5. Greatest of two numbers

6. Greatest of three numbers

7. Check leap year or not

8. Check the number is odd or even

9. Check the number is positive or negative

10. Print all the prime numbers upto N

11. Print square and cube of a number

12. Print sum of N numbers

13. Find the factorial of a number

14. Convert Temperature from Fahrenheit (°F) to Celsius (°C)

Algorithmic Problem Solving 1.43

PART A QUESTION AND ANSWERS

1. Define Algorithm.

The word ―algorithm is derived from the ninth-century Arab mathematician,
Al-Khwarizmi. An algorithm is a finite number of clearly described, unambiguous
―doable steps.

It has to be followed to get the desired output.

It can be simply stated as a sequence of actions to be carried out to solve a
particular problem.

2. Write an algorithm for addition of two numbers.

Step 1: Start
Step 2: Declare variables num1, num2 and sum.
Step 3: Read values num1 and num2.

 Step 4: Add num1 and num2 and assign the result to sum. sum !num1+num2
Step 5: Display sum
Step 6: Stop

3. What are termed as the basic building blocks of an algorithm?

The basis of every algorithm is steps or blocks of operations. The building blocks
are:

 Sequencing – Instructions State

 Control Flow and Functions

4. Give the syntax of conditional statements.

The conditional statements act like intersections, allowing us to change directions
on the basis of a given condition.

The decision statements are:

 if
 if/else
 switch

If-else statement :
If condition

Problem Solving and Python Programming1.44

then process 1
else

 process 2

5. What is mean by repetition or loop?

Looping / Repetition/ Iteration means executing the same set of statements again
and again until a condition gets satisfied.

The looping statements in python are for, while and do while.

6. Give the syntax of for and while statements.

WHILE condition Sequence

END WHILE

FOR iteration bounds Sequence

END FOR

7. Define function.

Function allows us to frame the programs into sub process. It has a sub sets in
the program.

def function_name(parameter list):

body of the function return [expression]

8. Define recursion.

Recursion involves a function calling itself until a specified a specified condition
is met.

9. List the keywords for pseudo code. Looping and selection

Keywords :

Do While...EndDo;
Do Until...Enddo;
Case...EndCase;
If...Endif;
Generate, Compute, Process, etc.
Displaying : print, display, input, output, edit, test

Algorithmic Problem Solving 1.45

10. What is mean by pseudo code?

It is an informal high level way of algorithm. It focus on the concept of solving
a problem. It contains English phrases.

11. What are the symbols used in flowchart?

Symbol Name Function

12. Define flowchart.

A flowchart is a graphical or symbolic representation of a process. It is basically
used to design and document virtually complex processes

Process Indicates any type of internal
operation inside the Processor or
Memory

Input/Output Used for any Input / Output (I/O)
operat ion. Indicates that the
computer is to obtain data or
output results

Decision Used to ask a question that can be
answered in a binary format (Yes/
No, True/False)

Connector Allows the flowchart to be drawn
without intersect ing lines or
without a reverse flow

Predefined Process Used to invoke a subroutine or an
Interrupt program

Terminal Indicates the starting or ending of
the program, process, or interrupt
program

Flow Lines Shows direction of flow

Problem Solving and Python Programming1.46

13. What are the advantages of flowchart? Advantages of Using Flowcharts:

• Communication: Flowcharts are better way of communicating the logic

• Effective analysis: problem can be analyzed in more effective way

• Proper documentation: Program flowcharts serve as a good program
documentation

• Efficient Coding: The flowcharts act as a guide or blueprint

• Proper Debugging: The flowchart helps in debugging process.

• Efficient Program Maintenance: The maintenance of operating program
becomes easy

14. What are the disadvantages of flowcharts? Disadvantages of using
Flowcharts:

• Complex logic

• Alterations and Modifications

• Reproduction

15. Mention the difference between algorithm and pseudo code.

Algorithm Pseudo code

An algorithm gives a solution to a Pseudo code is one of the methods that
particular problem as a well defined could be used to represent an algorithm.
set of steps.

Algorithms can be written in natural Pseudo code is written in a format that
language is closely related to programming language

Algorithmic Problem Solving 1.47

PART – B QUESTIONS

1. Explain in detail about the Algorithmic problem solving

2. Detail on the building blocks of algorithm

3. Analyze the following problems:

a. Find minimum in a list

b. Insert a card in a list of sorted cards

c. Guess a number in a range

4. Discuss about Tower of Hanoi Problem

5. Write an algorithm, pseudo code and flowchart for finding the minimum number
in a list.

6. Write an algorithm, pseudo code and flow chart to find the factorial of a given
number.

7. Write an algorithm, pseudo code and flow chart for Fibonacci series.

8. Write an algorithm, pseudo code and flow chart to find whether a number is
prime or not.

Data, Expressions, Statements 2.1

2.1 INTRODUCTION

What is a program?

A computer program is a collection of instructions that perform a speciûc task
when executed by a computer.” - Process of writing a program is called programming.
Computer programs are written to solve speciûc problems.

What is logic?

Steps involved in solving a problem is known as Logic.There can be multiple
logic to solve the same problem. Algorithm is a widely used form of representing
Logic.

No. of teachers available= Total no. of teachers– No. of teachers busy in other
classes in 4th lecture – No. of teachers on leaveTop of Form.

Python programming language

 Python is an example of a high level language; other high-level languages
you might have heard of are C++, PHP, Pascal, C#, and Java.

 There are also low-level languages, sometimes referred to as machine
languages or assembly languages.

 Computers can only execute programs written in low-level languages.

 Thus programs written in the high level language have to be translated into
something more suitable before they can run.

DATA, EXPRESSIONS, STATEMENTS
Python interpreter and interactive mode; values and types: int, float,
booleans, strings, and lists; variables, expressions, statements, tuple
assignment, precedence of operators, comments; modules and
functions, function definition and use, flow of execution, parameters
and arguments; Illustrative programs: exchange the values of two
variables, circulate the values of n variables, test for leap year.

Unit II

Problem Solving and Python Programming2.2

 It is easier to program high level languages.

 These high level languages are executed in different computers.

Python features

Python is a High Level, Interpreted, Interactive and Object Oriented Programming
Language

 Beginners Language

 Extensive Standard Library

 Cross Platform Compatibility

 Interactive Mode

 Portable and Extendable

 Databases and GUI Programming

 Scalable and Dynamic Semantics

 Automatic Garbage Collection

High level languages – Only humans can understand

Interpreter / Compiler – Translate the high level language to machine language
and vice ersa Low level language – Only machine can understand (0s and 1s)

The engine that translates and runs Python is called the Python Interpreter:

There are two ways to use it:

1. Immediate mode or interactive mode and

2. Script mode.

Python interpreter and interactive mode

An interpreter is a computer program which executes other programs. Python
interpreter carries out instructions in your program. This interpreter can be used
interactively to test out instructions on the fly.

Python interpreters

Python interpreters are available for many operating systems, allowing Python
code to run on a wide variety of systems.

Data, Expressions, Statements 2.3

Two Parts

1. Python byte code compiler

The byte code compiler accepts human readable python expressions and
statements as input and produces machine readable python code as output.

2. A virtual Machine which executes python byte code.

The virtual machine accepts Python byte code as input. And executes the virtual
machine instructions represented by the byte code.

2.2 PYTHON MODES

1. Interactive mode

Interactive Mode, as the name suggests, allows us to interact with OS. Here,
when we type Python statement, interpreter displays the result(s) immediately. That
means, when we type Python expression / statement / command after the prompt (>>>),
the Python immediately responses with the output of it.

The three right arrows are the expression prompt. The prompt is telling you that
the Python system is waiting for you to type an expression. The window in which the
output is displayed and input is gathered is termed the console.

Let’s see what will happen when we type print “WELCOME TO PYTHON
PROGRAMMING” after the prompt.

>>>print “WELCOME TO PYTHON PROGRAMMING”

WELCOME TO PYTHON PROGRAMMING

Example:

>>> print 5+10
15

>>> Prompt
or

.py Script

bytecodeBytecode
Complier

.pyc Module import

Virtual
Machine

Program
Output

Problem Solving and Python Programming2.4

>>> x=10
>>>y=20
>>> print x*y

200

Almost all Python expressions are typed on a single line. An exception to this
rule occurs when expressions are typed in parenthesis. Each opening parenthesis must
be matched to a closing parenthesis. If the closing parenthesis is not found, a
continuation prompt is given. Normally this continuation prompt looks like an ellipsis,
that is, three dots.

(2 +...

The continuation prompt is telling you that there is more to the expression you
need to type. Fill in the rest of the expression, hit return, and the expression will be
evaluated as before:

 >>> (2+

……..3)

>>>5

Data, Expressions, Statements 2.5

2. Script Mode

In script mode, we type Python program in a file and then use interpreter to
execute the content of the file. Working in interactive mode is convenient for beginners
and for testing small pieces of code, as one can test them immediately.

But for coding of more than few lines, we should always save our code so that it
can be modified and reused.

Python, in interactive mode, is good enough to learn, experiment or explore, but
its only drawback is that we cannot save the statements and have to retype all the
statements once again to re-run them.

Example: Input any two numbers and to find Quotient and Remainder.

Code:

a = input (“Enter first number”)

b = input (“Enter second number”)

print “Quotient”, a/b

print “Remainder”, a%b

Enter first number10

Enter second number3

Quotient 3

2.3 VALUES AND DATA TYPES

2.3.1 VALUES

A value is one of the basic things a program. There are different values integers, float
and strings. The numbers with a decimal point belong to a type called float. The values
written in quotes will be considered as string, even it’s an integer. If type of value is
not known it can be interpreted as

Example:

>>> type(‘Hello, World!’)
<type ‘str’>
>>> type(17)
<type ‘int’>

Problem Solving and Python Programming2.6

>>> type(‘17’)
<type ‘str’>
>>> type(‘3.2’)
<type ‘str’>

Every object has:

 An Identity,

 A type, and

 A value.

2.3.2 Identifier

Identifier is the name given to entities like class, functions, variables etc. in
Python. It helps differentiating one entity from another.

Rules

1. Identifiers can be a combination of letters in lowercase (a to z) or uppercase
(A to Z) or digits (0 to 9) or an underscore (_). Names like myClass, var_1
and print_this_to_screen, all are valid example.

2. An identifier cannot start with a digit.

3. Keywords cannot be used as identifiers.

4. We cannot use special symbols like !, @, #, $, % etc. in our identifier.

5. Identifier can be of any length.

2.3.3 Data Type

Data Types

Numbers None Sequences Sets Mappings

Integer Floating
Point

Complex

Boolean

Strings Tuple List
Dictionary

Data, Expressions, Statements 2.7

It is a set of values, and the allowable operations on those values. It can be one
of the following:

Category Data Type Example

Numeric int 675

complex 2 + 5j

float 642.43

Textual String(will be discussed “John”
in detail later)

Logical Boolean True, False

2.3.3.1 Python Numbers

Number data types store numeric values. Number objects are created when you
assign a value to them.

For example

var1 = 1

var2 = 10

You can also delete the reference to a number object by using the del statement.
The syntax of the del statement is

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement.

For example

del var

del var_a, var_b

Python supports four different numerical types

 int (signed integers)

 long (long integers, they can also be represented in octal and hexadecimal)

 float (floating point real values)

 complex (complex numbers)

Problem Solving and Python Programming2.8

Examples

Here are some examples of numbers

int Long float complex

10 51924361L 0.0 3.14j

100 –0x19323L 15.20 45.j

–786 0122L –21.9 9.322e–36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

–0490 535633629843L –90. –.6545+0J

–0x260 –052318172735L –32.54e100 3e+26J

0x69 –4721885298529L 70.2–E12 4.53e–7j

Python allows you to use a lowercase l with long, but it is recommended that
you use only an uppercase L to avoid confusion with the number 1. Python displays
long integers with an uppercase L.

A complex number consists of an ordered pair of real floating-point numbers
denoted by x + yj, where x and y are the real numbers and j is the imaginary unit.

The built in numeric types supports the following operations:

x + y sum of x and y

x – y difference of x and y

x * y product of x and y

x / y quotent of x and y

x//y (floored) quotient of x and y

x%y remainder of x/y

–x x negated

+ x unchanged

abs(x) absolute value of magnitude of x

int(x) x converted to integer

long(x) x converted to long integer

Data, Expressions, Statements 2.9

float(x) x converted to floating point

complex(re.im) a complex number with real part re, imaginary part im. im
defaults to zero.

c.conjugate() conjugate of the complex number c. (Identity on real
numbers)

divmod(x, y) the pair (x//y, x%y)

pow(x, y) x to the power y

x**y x to the power y

2.3.3.2 Boolean

A Boolean value is either true or false. It is named after the British mathematician,
George Boole, who first formulated Boolean algebra.

In Python, the two Boolean values are True and False (the capitalization must be
exactly as shown), and the Python type is bool.

>>> type(True)

<class ‘bool‘>

>>> type(true)

Traceback (most recent call last):

File “<interactive input>”, line 1, in <module>

NameError: name ‘true‘ is not defined

Example:

>>> 5 == (3 + 2) # Is five equal 5 to the result of 3 + 2?

True

>>> 5 == 6

False

>>> j = “hel”

>>> j + “lo” == “hello”

True

Problem Solving and Python Programming2.10

2.3.4 String

A String in Python consists of a series or sequence of characters - letters, numbers,
and special characters.

Strings are marked by quotes:

 single quotes (‘ ‘)

Eg, ‘This a string in single quotes’

 double quotes (“ “)

Eg, “‘This a string in double quotes’”

 triple quotes(“”” “””)

Eg, This is a paragraph. It is made up of multiple lines and sentences.”””

 Individual character in a string is accessed using a subscript (index).

 Characters can be accessed using indexing and slicing operations

Example

str = ‘Hello World!’

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + “TEST” # Prints concatenated string

Output

Hello World!
H
lo
llo World!
Hello World!Hello World!
Hello World!TEST

Data, Expressions, Statements 2.11

Strings in Python can be enclosed in either single quotes (‘) or double quotes
(“), or three of each (‘ or “””)

>>>type(‘This is a string.‘) <class ‘str‘>

>>> type(“And so is this.”)

<class ‘str‘>

 >>>type(“””and this.”””)

<class ‘str‘>

 >>>type(‘‘‘and even this...‘‘‘)

<class ‘str‘>

Double quoted strings can contain single quotes inside them.

(“Alice‘s Cup”)

Single quoted strings can contain double quotes inside them

(‘Alice said ,”Hello”’)

Strings enclosed with three occurrences of either quote symbol are called triple
quoted strings. They can contain either single or double quotes:

>>>print(‘‘‘“Oh no”, she exclaimed, “Ben‘s bike is broken!”‘‘‘) “Oh no”,
she exclaimed, “Ben‘s bike is broken!”

 >>>Triple quoted strings can even span multiple lines:

>>>message = “””This message will

... span several

... lines.”””

>>>print(message)

 This message will span several lines.

2.3.5 Lists

 List is also a sequence of values of any type. Values in the list are called elements

 /items. These are mutable and indexed/ordered. List is enclosed in square
brackets ([]).

Problem Solving and Python Programming2.12

Example

list = [‘abcd’, 786 , 2.23, ‘john’, 70.2]

tinylist = [123, ‘john’]

print list # Prints complete list

print list[0] # Prints first element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

print tinylist * 2 # Prints list two times

print list + tinylist # Prints concatenated lists

Output

[‘abcd’, 786, 2.23, ‘john’, 70.200000000000003]
abcd
[786, 2.23]
[2.23, ‘john’, 70.200000000000003]
[123, ‘john’, 123, ‘john’]
[‘abcd’, 786, 2.23, ‘john’, 70.200000000000003, 123, ‘john’]

2.3.6 Variable

One of the most powerful features of a programming language is the ability to
manipulate variables. A variable is a name that refers to a value.

The assignment statement creates new variables and gives them values:

>>> message = “What’s up, Doc?”

>>> n = 17

>>> pi = 3.14159

This example makes three assignments. The first assigns the string “What’s up,
Doc?” to a new variable named message. The second gives the integer 17 to n, and the
third gives the floating-point number 3.14159 to pi.

The print statement also works with variables.

Data, Expressions, Statements 2.13

>>> print message What’s up, Doc?

>>> print n

17

>>> print pi

3.14159

The type of a variable is the type of the value it refers to.

>>> type(message) <type ‘str’>

>>> type(n)

<type ‘int’>

>>> type(pi)

 <type ‘float’>

Multiple Assignment

Python allows you to assign a single value to several variables simultaneously.
For example “

a = b = c = 1

Here, an integer object is created with the value 1, and all three variables are
assigned to the same memory location. You can also assign multiple objects to multiple
variables.

For example “

a,b,c = 1,2,”john”

Here, two integer objects with values 1 and 2 are assigned to variables a and b
respectively, and one string object with the value “john” is assigned to the variable c.

2.3.7 Keywords

Keywords define the language‘s rules and structure, and they cannot be used as
variable names. Python has thirty-one keywords:

Problem Solving and Python Programming2.14

and del from not while

as elif global or with

assert else if pass yield

break except import print

class exec in raise

continue finally is return

def for lambda try

2.3.8 Expressions And Statements

Expressions

An expression is a combination of values, variables, and operators. If you type
an expression on the command line, the interpreter evaluates it and displays the result:

>>> 1 + 1

2

Example : Finding area and perimeter

length = 5

breadth = 2

area = length * breadth

print(‘Area is’, area)

print(‘Perimeter is’, 2 * (length + breadth))

Output:

Area is 10

Perimeter is 14

Data, Expressions, Statements 2.15

Statements

A statement is an instruction that the Python interpreter can execute. We have
seen two kinds of statements: print and assignment. When you type a statement on the
command line, Python executes it and displays the result, if there is one. The result of
a print statement is a value. Assignment statements don‘t produce a result. A script
usually contains a sequence of statements. If there is more than one statement, the
results appear one at a time as the statements execute.

Example

print 1

 x = 2

print x

It produces the following output

1

2

2.3.9 Tuple Assignment

Tuples are a sequence of values of any type and are indexed by integers. They
are immutable. Tuples are enclosed in ().

Example

tuple = (‘abcd’, 786 , 2.23, ‘john’, 70.2)

tinytuple = (123, ‘john’)

print tuple # Prints complete list

print tuple[0] # Prints first element of the list

print tuple[1:3] # Prints elements starting from 2nd till 3rd

print tuple[2:] # Prints elements starting from 3rd element

print tinytuple * 2 # Prints list two times

print tuple + tinytuple # Prints concatenated lists

Problem Solving and Python Programming2.16

Output

(‘abcd’, 786, 2.23, ‘john’, 70.200000000000003)
abcd
(786, 2.23)
(2.23, ‘john’, 70.200000000000003)

(123, ‘john’, 123, ‘john’)
(‘abcd’, 786, 2.23, ‘john’, 70.200000000000003, 123, ‘john’)

The following code is invalid with tuple, because we attempted to update a tuple,
which is not allowed. Similar case is possible with lists –

tuple = (‘abcd’, 786 , 2.23, ‘john’, 70.2)

list = [‘abcd’, 786 , 2.23, ‘john’, 70.2]

 tuple[2] = 1000 # Invalid syntax with tuple

 list[2] = 1000 # Valid syntax with list

Python has a very powerful tuple assignment feature that allows a tuple of
variables on the left of an assignment to be assigned values from a tuple on the right
of the assignment.

(name, surname, b_year, movie, m_year, profession, b_place) = julia

This does the equivalent of seven assignment statements, all on one easy line.
One requirement is that the number of variables on the left must match the number of
elements in the tuple.

One way to think of tuple assignment is as tuple packing/unpacking.

In tuple packing, the values on the left are packed‘ together in a tuple:

>>> b = (“Bob”, 19, “CS”) # tuple packing

In tuple unpacking, the values in a tuple on the right are unpacked‘ into the
variables/names on the right:

>>> b = (“Bob”, 19, “CS”)

>>> (name, age, studies) = b # tuple unpacking

>>> name

Data, Expressions, Statements 2.17

‘Bob‘

 >>>age

19

>>>studies

‘CS’

Swapping in tuple assignment:

(a, b) = (b, a)

The left side is a tuple of variables; the right side is a tuple of values. Each value
is assigned to its respective variable. All the expressions on the right side are evaluated
before any of the assignments.

Naturally, the number of variables on the left and the number of values on the
right have to be the same:

>>> (a, b, c, d) = (1, 2, 3)

Value Error: need more than 3 values to unpack

2.3.10 Precedence of Operators

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is
called operator.

Order of operations

When more than one operator appears in an expression, the order of evaluation
depends on the rules of precedence. Python follows the same precedence rules for its
mathematical operators that mathematics does. The acronym PEMDAS is a useful
way to remember the order of operations:

1. Parentheses have the highest precedence and can be used to force an
expression to evaluate in the order you want. Since expressions in parentheses
are evaluated first, 2 * (3–1) is 4, and (1+1)**(5–2) is 8. You can also use
parentheses to make an expression easier to read, as in (minute * 100) / 60,
even though it doesn‘t change the result.

Problem Solving and Python Programming2.18

2. Exponentiation has the next highest precedence, so 2**1+1 is 3 and not 4, and
3*1**3 is 3 and not 27.

3. Multiplication and Division have the same precedence, which is higher than
Addition and Subtraction, which also have the same precedence. So 2*3–1 yields
5 rather than 4, and 2/3-1 is -1, not 1 (remember that in integer division, 2/3=0).

4. Operators with the same precedence are evaluated from left to right. So in the
expression minute*100/60, the multiplication happens first, yielding 5900/60,
which in turn yields 98. If the operations had been evaluated from right to left,
the result would have been 59*1, which is 59, which is wrong.

2.3.11 Operators

Types of Operators:

– Python language supports the following types of operators

 Arithmetic Operators

 Comparison (Relational) Operators

 Assignment Operators

 Logical Operators

 Bitwise Operators

 Membership Operators

 Identity Operators

Data, Expressions, Statements 2.19

Arithmetic operators:

Arithmetic operators are used to perform mathematical operations like addition,
subtraction, multiplication etc.

Arithmetic operators in Python

Operator Meaning Example

+ Add two operands or unary plus x+y

– Subtract right operand from the left or
unary minus x-y

* Multiply two operands x*y

/ Divide left operand by the right one (always
results into float) x/y

% Modulus - remainder of the division of left
operand by the right x%y

// x//y

** Exponent - left operand raised to the power
of right x**y(x to the power y)

Examples

a=10
b=5
print(“a+b=”,a+b)
print(“a-b=”,a-b)
print(“a*b=”,a*b)
print(“a/b=”,a/b)
print(“a%b=”,a%b)
print(“a//b=”,a//b)
print(“a**b=”,a**b)

Problem Solving and Python Programming2.20

 Output

a+b= 15
a-b= 5
a*b= 50
a/b= 2.0
a%b= 0
a//b= 2
a**b= 100000

Comparison (Relational) Operators:

 Comparison operators are used to compare values.

 It either returns True or False according to the condition. Assume, a=10
and b=5.

Operator Symbol Form Result

greater than > a > b True if a is greater than b; else False

less than < a < b True if a is less than b; else False

greater than or equal to >= a>=b True if a is greater than or equal to
b; false False

less than or equal to <= a <=b True if a is less than or equal to b;
else False

equal to == a==b True if a is equal to b; else False

not equal to != a!=b True if a is not equal to b; else False

Data, Expressions, Statements 2.21

Example

a=10

b=5

print(“a>b=>”,a>b)

print(“a>b=>”,a<b)

print(“a==b=>”,a==b)

print(“a!=b=>”,a!=b)

print(“a>=b=>”,a<=b)

print(“a>=b=>”,a>=b)

Output:

a>b=> True
a>b=> False
a==b=> False
a!=b=> True
a>=b=> False
a>=b=> True

Assignment Operators

Assignment Operator combines the effect of arithmetic and assignment operator

Operator Name Example Equivalent

+= Addition assignment 1 + = 8 i = i + 8

–= Subtraction assignment i –=8 i = i – 8

*= Multiplication assignment 1 * = 8 1 = 1 * 8

/= Float division assignment i / = 8 i = i / 8

//= Integer division assignment i //=8 i = i // 8

%= Remainder assignment i %=8 i \ i %8

**= Exponent assignment i **=8 i = i ** 8

Problem Solving and Python Programming2.22

Example

a = 21
b = 10
c = 0
c = a + b
print(“Line 1 - Value of c is “, c)
c += a
print(“Line 2 - Value of c is “, c)
c *= a
print(“Line 3 - Value of c is “, c)
c /= a
print(“Line 4 - Value of c is “, c)
c = 2
c %= a
print(“Line 5 - Value of c is “, c)
c **= a
print(“Line 6 - Value of c is “, c)
c //= a
print(“Line 7 - Value of c is “, c)

Output

Line 1 - Value of c is 31
Line 2 - Value of c is 52
Line 3 - Value of c is 1092
Line 4 - Value of c is 52.0
Line 5 - Value of c is 2
Line 6 - Value of c is 2097152
Line 7 - Value of c is 99864

Data, Expressions, Statements 2.23

Logical Operators

Symbol Description

or If any one of the operand is true, then the condition becomes true.

and If both the operands are true, then the condition becomes true.

not Reverses the state of operand/condition.

Example

a = True
b = False
print(‘a and b is’,a and b)
print(‘a or b is’,a or b)
print(‘not a is’,not a)

Output

x and y is False
x or y is True
not x is False

Bitwise Operators:

A bitwise operation operates on one or more bit patterns at the level of individual
bits.

Problem Solving and Python Programming2.24

Operator Description Example

& Binary Operator copies a bit to the result
AND if it exists in both operands

| Binary OR It copies a bit if it exists in either
operand.

^ Binary XOR It copies the bit if it is set in one
operand but not both.

~ Binary Ones It is unary and has the effect of
Complement ‘flipping’ bits.

<< Binary The left operands value is moved left
Left Shift by the number of bits specified by

the right operand.

>> Binary The left operands value is moved
Right Shift right by the number of bits specified

by the right operand.

Example:

a = 60 # 60 = 0011 1100
b = 13 # 13 = 0000 1101
c = 0

c = a & b; # 12 = 0000 1100
print “Line 1 - Value of c is “, c

c = a | b; # 61 = 0011 1101
print “Line 2 - Value of c is “, c

c = a ^ b; # 49 = 0011 0001
print “Line 3 - Value of c is “, c

c = ~a; # -61 = 1100 0011
print “Line 4 - Value of c is “, c

(a & b) (means 0000 1100)

(a | b) = 61 (means 0011 1101)

(a ^ b) = 49 (means 0011 0001)

(~a) = -61 (means 1100 0011
in 2’s complement form due to
a signed binary number.

a << 2 = 240 (means 1111
0000)

a >> 2 = 15 (means 0000 1111)

Data, Expressions, Statements 2.25

c = a << 2; # 240 = 1111 0000
print “Line 5 - Value of c is “, c

c = a >> 2; # 15 = 0000 1111
print “Line 6 - Value of c is “, c

Output:

Line 1 - Value of c is 12
Line 2 - Value of c is 61
Line 3 - Value of c is 49
Line 4 - Value of c is -61
Line 5 - Value of c is 240
Line 6 - Value of c is 15

Membership Operators:

These operators test whether a value is a member of a sequence. The sequence
may be a list, a string, or a tuple. We have two membership python operators- ‘in’ and
‘not in’.

Operator Description Example

in Evaluates to true if it finds a variable
in the specified sequence and false
otherwise.

not in Evaluates to true if it does not finds a
variable in the specified sequence and
false otherwise.

Example:

a. in

This checks if a value is a member of a sequence. In our example, we see that the
string ‘fox’ does not belong to the list pets. But the string ‘cat’ belongs to it, so it
returns True. Also, the string ‘me’ is a substring to the string ‘disappointment’.
Therefore, it returns true.

>>> pets=[‘dog’,’cat’,’ferret’]

x in y, here in results in a 1 if
x is a member of sequence y.

x not in y, here not in results
in a 1 if x is a member of
sequence y.

Problem Solving and Python Programming2.26

>>> ‘fox’ in pets

False

>>> ‘cat’ in pets

True

>>> ‘me’ in ‘disappointment’

True

b. not in

Unlike ‘in’, ‘not in’ checks if a value is not a member of a sequence.

>>> ‘pot’ not in ‘disappointment’

True

Identity Operator

Let us proceed towards identity Python Operator.

These operators test if the two operands share an identity. We have two identity
operators- ‘is’ and ‘is not’.

a. is

If two operands have the same identity, it returns True. Otherwise, it returns
False. Here, 2 is not the same as 20, so it returns False. Also, ‘2’ and “2” are the same.
The difference in quotes does not make them different. So, it returns True.

>>> 2 is 20

False

>>> ‘2’ is “2”

True

b. is not

2 is a number, and ‘2’ is a string. So, it returns a True to that.

>>> 2 is not ‘2’

True

Data, Expressions, Statements 2.27

Comments

As programs get bigger and more complicated, they get more difficult to read. It
is a good idea to add notes to your programs to explain in natural language what the
program is doing.

A comment in a computer program is text that is intended only for the human
reader — it is completely ignored by the interpreter.

There are two types of comments in python:

Single line comments

Multi line comments

Single Line Comments

In Python, the # token starts a comment..

Example

print(“Not a comment”)

#print(“Am a comment”)

Result

Not a comment

Multiple Line Comments

Multiple line comments are slightly different. Simply use 3 single quotes before
and after the part you want commented.

Example

’’

print(“We are in a comment”)

print (“We are still in a comment”)

’’

print(“We are out of the comment”)

Result

We are out of the comment

Problem Solving and Python Programming2.28

Suggested links to refer

What can you do with Python?

https://www.youtube.com/watch?v=hxGB7LU4i1I (Duration: 3:56).

Python Variables and Data Types

https://www.youtube.com/watch?v=657yt4gYjRo (Duration: 16:45)

https://www.youtube.com/watch?v=jfk6ZHdRyAQ

Food for Thought :What are the diûerent variables and data types used in the
video?

http://www.tutorialspoint.com/python/python_variable_types

OPERATORS

http://www.tutorialspoint.com/python/python_basic_operators.htm
Assignment Operators:

https://www.youtube.com/watch?v=_gFrIwXHfL0(Duration: 7:06)
Arithmetic Operators:

https://www.youtube.com/watch?v=lqtj8XM0leA(Duration: 10:40)
Relational Operators:

https://www.youtube.com/watch?v=Kte_yYE153M(Duration: 13:05)
Logical Operators

https://www.youtube.com/watch?v=Kte_yYE153M(Duration: 8:54)
What can you do with Python?

https://www.youtube.com/watch?v=hxGB7LU4i1I (Duration: 3:56).

2.4 MODULES AND FUNCTION

2.4.1 Modules

 Python has a way to put related code in a ûle and use that ûle in other Python
ûles. It is called a module. It allows logical organization of code. It can be
used to deûne variables, functions and classes.

 Grouping related code into module makes it easier to understand and use.

Data, Expressions, Statements 2.29

 Module is nothing but a Python ûle with ‘.py’ extension.

 Module must be imported before using it’s functions in any other module/
python file.

 Modules should have short, all-lowercase names. Underscores can be used
in the module name to improve readability.

Syntax to import a module:

 import <<modulename>>

Example

1. Math functions:

Python has a math module that provides mathematical functions.

>>> import math

This statement creates a module object named math. If you print the module
object, you get some information about it:

>>> print math

<module ‘math’ (built-in)>

The module object contains the functions and variables defined in the module.

To access one of the functions, you have to specify the name of the module and
the name of the function, separated by a dot (also known as a period). This format is
called dot notation.

import math

print(“The value of pi is”, math.pi)

Eg:

>>> math.sqrt(2)

2.0 0.707106781187

Problem Solving and Python Programming2.30

There are four ways to import a module in our program, they are

Import: It is simplest and most common
way to use modules in our code

Example :
import math
x = math pi
print(“The value of pi is”, x)

Output: The value of pi is
3.141592653589793

import with renaming:

We can import a module by renaming the
module as our wish.

Example :
import math as m
x = m.pi
print(“The value of pi is”, x)

Output: The value of pi is
3.141592653589793

2. Calendar functions :

Python has a cal module that provides calendar functions.

>>> import cal

Example:

import cal
x=cal.add(5,4)
print(x)

3. Random functions :

Python offers random module that can generate random numbers.

These are pseudo-random number as the sequence of number generated depends
on the seed.

from import: It is used to get a specific
function in the code instead of complete
file.

Example :
from math import pi
x = pi
print(“The value of pi is”, x)

Output: The value of pi is
3.141592653589793

import all:

We can import all names(definitions)
gotm s mofulr udinh*

Example :
from math import*
x = pi
print(“The value of pi is”, x)

Output: The value of pi is
3.141592653589793

Data, Expressions, Statements 2.31

1. Randint

Example : Randint accepts two parameters: a lowest and a highest number.
import random
print(random.randint(0, 5))

2. Random

Example : If you want a larger number, you can multiply it.
import random
print(random.random() * 100)

3. Choice

Example: Generate a random value from the sequence sequence.
import random
print(random.choice([‘red’, ‘black’, ‘green’]))z

4. Shuffle

Example :The shuffle function, shuffles the elements in list in place, so
they are in a random order.

from random import shuffle
x = [[i] for i in range(10)]
shuffle(x)
print(x)

5. Randrange

Example :Generate a randomly selected element from range(start, stop, step)

import random
for i in range(3):
print random.randrange(0, 101, 5)

2.4.2 Function

In Python, function is a group of related statements that perform a specific task.
Functions help break our program into smaller and modular chunks. As our program
grows larger and larger, functions make it more organized and manageable.

Problem Solving and Python Programming2.32

Need of function

Provide better modularity and high degree of reusability.

Python supports:

1. Built-in functions e.g. print()

2. User-deûned functions

i) Built in functions

Built in functions are the functions that are already created and stored in python.

These built in functions are always available for usage and accessed by a
programmer. It cannot be modified. Some examples are below :

abs () divmod () input ()

all () enumerate () int ()

any () eval () ininstance ()

basestring () execfile () issubclass ()

bin () file () iter ()

bool () filter () len ()

bytearray () float () list ()

callable () format () locals ()

chr () frozenset () long ()

classmethod () getattr () map ()

cmp () globals () max ()

compile () hasattr () memoryview ()

complex () hash () min ()

delattr () help () next ()

dict () hex () object ()

dir () id () oct ()

Data, Expressions, Statements 2.33

ii) User Defined Functions:

 User defined functions are the functions that programmers create for their
requirement and use.

 These functions can then be combined to form module which can be used
in other programs by importing them.

Advantages of user defined functions:

 Programmers working on large project can divide the workload by making
different functions.

 If repeated code occurs in a program, function can be used to include those
codes and execute when needed by calling that function.

Defining a function

 Function block start with a keyword def‘ followed by

function_name, paranthesis (()) and colon (:).

 Arguments are placed inside the parenthesis

 Function block can have optional statement/comment for documentation as
its first line.

 Every line inside code is indented return expression (statement) exits the
function by returning an expression to the caller function return statement
with no expression is same as return None.

Syntax

def NAME(LIST OF PARAMETERS):

STATEMENTS

return [expression]

The function definition have the following parts:

A header, which begins with a keyword and ends with a colon.

A body consisting of one or more Python statements, each indented the same
amount (4 spacesis the Python standard) from the header.

Problem Solving and Python Programming2.34

Calling a function

Function calls contain the name of the function being executed followed by a
list of values, called arguments, which are assigned to the parameters in the function
definition.

Example

Function definition is here
def printme(str):

“This prints a passed string into this function”
print (str)
return;

Now you can call printme function
printme(“I’m first call to user defined function!”)
printme(“Again second call to the same function”)

//Scope of a variable
def my_func():

x = 10
print(“Value inside function:”,x)
x = 20

my_func()
print(“Value outside function:”,x)

Output
Value inside function: 10
Value outside function: 20

def functionName() :

functionName() ;

Data, Expressions, Statements 2.35

Flow of Execution:

 The order in which statements are executed is called the flow of execution

 Execution always begins at the first statement of the program.

 Statements are executed one at a time, in order, from top to bottom.

 Function definitions do not alter the flow of execution of the program, but
remember that statements inside the function are not executed until the
function is called.

 Function calls are like a bypass in the flow of execution. Instead of going to
the next statement, the flow jumps to the first line of the called function,
executes all the statements there, and then comes back to pick up where it
left off.

Example

def f1():
print(“Moe”)

def f2():
f4()
print(“Meeny”)

def f3():
f2()
print(“Miny”)
f1()

def f4():
print(“Eeny”)
f3()

Output
Eeny
Meeny
Miny
Moe

Problem Solving and Python Programming2.36

2.4.3 Parameters And Arguments

Parameters:

 Parameters are the value(s) provided in the parenthesis when we write
function header.

 These are the values required by function to work.

 If there is more than one value required, all of them will be listed in parameter
list separated by comma.

 Example: def my_add(a,b):

Arguments :

 Arguments are the value(s) provided in function call/invoke statement.

 List of arguments should be supplied in same way as parameters are listed.

 Bounding of parameters to arguments is done 1:1, and so there should be
same number and type of arguments as mentioned in parameter list.

 Example: my_add(x,y)

Pass by value

In pass-by-value, the function receives a copy of the argument objects passed to
it by the caller, stored in a new location in memory.

Data, Expressions, Statements 2.37

Pass By reference

All parameters (arguments) in the Python language are passed by reference. It
means if you change what a parameter refers to within a function, the change also
reflects back in the calling function. For example:

2.4.4 Function Arguments

You can call a function by using the following types of formal arguments:

1. Required arguments

2. Keyword arguments

3. Default arguments

4. Variable-length arguments

Required arguments

The number of arguments in the function call should match exactly with the
function definition.

Problem Solving and Python Programming2.38

Example :

def my_details(name, age):
print(“Name: “, name)
print(“Age “, age)
return

my_details(“george”,56)
Output:

Name: george
Age 56

Keyword Arguments:

Python interpreter is able to use the keywords provided to match the values with
parameters even though if they are arranged in out of order.

Example:

def my_details(name, age):
print(“Name: “, name)
print(“Age “, age)
return

my_details(age=56,name=”george”)

Output:
Name: george
Age 56

Default Arguments:

Assumes a default value if a value is not provided in the function call for that
argument.

Example :

def my_details(name, age=40):
print(“Name: “, name)
print(“Age “, age)
return

my_details(name=”george”)

Data, Expressions, Statements 2.39

Output:

Name: george

Age 40

Variable length Arguments:

If we want to specify more arguments than specified while defining the function,
variable length arguments are used. It is denoted by * symbol before parameter.

Example :

def my_details(*name):

print(*name)

my_details(“rajan”,”rahul”,”micheal”,ärjun”)

Output:

rajan rahul micheal ärjun

2.4.5 The Anonymous Functions

These functions are called anonymous because they are not declared in the
standard manner by using the def keyword. You can use the lambda keyword to create
small anonymous functions.

Syntax

lambda [arg1 [,arg2,.....argn]]:expression

Example

Function definition is here

sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function

print “Value of total : “, sum(10, 20)

print “Value of total : “, sum(20, 20)

#When the above code is executed, it produces the following result “

Value of total : 30

Value of total : 40

Problem Solving and Python Programming2.40

2.4.6 Scope of Variables

All variables in a program may not be accessible at all locations in that program.
This depends on where you have declared a variable. The scope of a variable determines
the portion of the program where you can access a particular identifier. There are two
basic scopes of variables in Python “

Diûerent types of variables

Local variables

 Variables deûned inside the function have local scope

 Can be accessed only inside the function in which it is deûned

Example

def func1 () :

n = 10

print (‘n in func1 = ’, n)

def func2 () :

n = 20

print (‘n in func2 before call to func1 =’, n)

func1 ()

print (‘n in func2 after call to func1 =’, n)

>>> func2 ()

n in func2 before clal to func1 = 20

n in func1 = 10

n in func2 after clal to func1 = 20

Global variables

 Variables deûned outside the function have global scope.

 Variables can be accessed throughout the program by all other functions as
wellGlobal/Local variables.

Data, Expressions, Statements 2.41

Variable max is defi ned outside func1 and func2 and therefore “global” to
each

Suggested Link to Refer:

Built-in Functions in Python
https://www.youtube.com/watch?v=GTpl5yq3bvk (Duration: 10:40)
https://docs.python.org/3/library/functions.html

Defining Functions
https://www.youtube.com/watch?v=TkBLZk_hV5Y(Duration: 10:27)

Pass-by-Value vs. Pass-by-Reference

https://www.youtube.com/watch?v=hhCs-UllGfw (Duration: 2:52)

Types of function arguments
https://www.youtube.com/watch?v=RDzm2oHSAug (Duration: 11:38)
http://www.tutorialspoint.com/python/python_functions.htm

max = 100 # global variable

def func1 (count) :
 if count < max:
 .

def func2 (count) :
 for i in range (1, max) :
 .

global variable max
accessed

global variable max
accessed

Problem Solving and Python Programming2.42

ILLUSTRATIVE EXAMPLES

1. Python Program to swap or exchange the values of two variables

Method 1
a = 10
b = 20

 print(“before swapping\na=”, a, “ b=”, b)
 temp = a

a = b
b = temp

 print(“\nafter swapping\na=”, a, “ b=”, b)

Method 2

a = 30
b = 20
print(“\nBefore swap a = %d and b = %d” %(a, b))
a, b = b, a
print(“\nAfter swaping a = %d and b = %d” %(a, b))

2. Circulate the values of n Variables

l=[1,2,3,4,5]
print(l[::-1])

3. Python Program to test the year is leap or not

year=int(input(“Enter year to be checked:”))
if(year%4==0 and year%100!=0 or year%400==0):

print(“The year is a leap year!)
else:

print(“The year isn’t a leap year!)

Data, Expressions, Statements 2.43

ASSIGNMENT QUESTIONS

1. Program variables have data types such as: Integer; Float and String. After the
execution of the following snippet of code what are the data type of the three
variables var_one, var_two and var_three?

var_one = 57
var_two = 9.81
var_three = ‘What have the Romans ever done for us?’

2. The Data type of a variable defines the way in which the variable can be processed.
With this in mind what will happen when the following snippet of code is
executed.

var_one = ‘What have the Romans ever done for us?’
var_two = ‘He is not the messiah he is a very naughty boy!’
var_three = var_one * var_two

3. Write a Python program that accepts an integer (n) and computes the value of
n+nn+nnn

4. Write a program that calculates and prints the value according to the given
formula:

Q = Square root of [(2 * C * D)/H]
Following are the fixed values of C and H:
C is 50. H is 30.
D is the variable whose values should be input to your program in a comma-
separated sequence.

Example

Let us assume the following comma separated input sequence is given
to the program:
100,150,180
The output of the program should be:
18, 22, 24

5. A circular swimming pool is x metres in diameter. What volume of water does it
contain if the pool is the same depth at all points?

Problem Solving and Python Programming2.44

PROGRAM EXERCISES

1. Write a Python program to compute Greatest Common Divisor of two numbers
using function.

2. Write a Python program to swap two numbers using function.

3. Code a python program to accept two numbers m and n, find the quotient,
remainder and print the result.

4. Write a python program to merge a two list.

5. Write a python program to swap variables without using third variable.

6. Write a python program to add two numbers

7. Write a python program to find the area of a triangle

8. Write a python program to convert Celsius to Farenheit.

9. Write a python program to concatenate two strings

10. Write a python program to solve a quadratic equation

PART – A QUESTION AND ANSWERS

1. What is mean by high level and low level programming language?

High level language is a computer programming language that resembles natural
language or mathematical notation. It is human readable form. Eg: C, Java,
Python.

Low level language can be understood only by computers. (0,1)

2. What is mean by a python interpreter?

The engine that translates and runs Python is called the Python Interpreter. It is
available for many OS. Two parts of the interpreter are: (i) Python byte code
compiler (ii) A virtual machine

3. What are the two modes of python?

Interactive mode

Interactive Mode, as the name suggests, allows us to interact with OS. Here,
when we type Python statement, interpreter displays the result(s) immediately.
It acts as a calculator.

Data, Expressions, Statements 2.45

>>>print “WELCOME TO PYTHON PROGRAMMING”

WELCOME TO PYTHON PROGRAMMING

Script Mode

In script mode, we type Python program in a file and then use interpreter to
execute the content of the file.

4. Define continuation prompt.

The continuation prompt will notify you that there is more to the expression you
need to

type.

>>> (2 +
... 3) # continuation
5

5. What are application and system programs?

Application programs are developed for particular application. System programs
keep the hardware and software running together smoothly.

6. What is mean by values?

A value is one of the basic things a program works with, like a letter or a number.

These values are classified into different classes, or data types:

1,2 – Integers

‘Hello World‘- String

7. Define identifiers.

Identifier is the name given to entities like class, functions, variables etc. in
Python. It helps differentiating one entity from another.

8. What are the rules for declaring the identifiers?

1. Identifiers can be a combination of letters in lowercase (a to z) or uppercase
(A to Z) or digits (0 to 9) or an underscore (_).

2. An identifier cannot start with a digit.

3. Keywords cannot be used as identifiers.

Problem Solving and Python Programming2.46

4. We cannot use special symbols like !, @, #, $, % etc. in our identifier.

5. Identifier can be of any length.

9. Define data type.

The data type specifies the type of data which can be stored.

10. What is Boolean?

A Boolean value is either true or false. In Python, the two Boolean values are
True and False and the Python type is bool

11. What is the use of type() function?

The type function is used to identify the type of the variable.

>>> type(“Hello, World!”)
<class ‘str‘>
>>> type(17)
<class ‘int‘>

12. Define String.

It is an ordered sequence of letters/characters. They are enclosed in single quotes
(‘ ‘) or

double quotes (‘’ “).
str = ‘Hello World!’
>>> type(‘Hello World!‘)
<class ‘str‘>

13. Define Lists.

List is also a sequence of values of any type. Values in the list are called elements
/ items.

These are mutable and indexed/ordered. List is enclosed in square brackets ([]).

list = [‘abcd’, 786 , 2.23, ‘john’, 70.2]

14. Define variable.

A variable is a name that refers to a value.

The assignment statement creates new variables and gives them values.

Data, Expressions, Statements 2.47

>>> message = “Who is this?”

>>> n = 17

15. What is mean by multiple assignment?

Python allows you to assign a single value to several variables simultaneously.

For example “ a = b = c = 1

16. Define keywords.

Keywords define the language‘s rules and structure, and they cannot be used as
variable names. Python has thirty-one keywords. Eg: global, or, with, assert,
else, if, pass, yield

17. State the definition of statement.

A statement is an instruction that the Python interpreter can execute.

Eg: x=2

18. How will you assign a tuple?

Tuples are a sequence of values of any type and are indexed by integers. They
are immutable. Tuples are enclosed in (). Eg: tuple = (‘abcd’, 786 , 2.23, ‘john’,
70.2)

19. State the precedence of operators.

The operator precedence rule in python is used to execute the expression contains
more than one operator.

The precedence rule is:

P EMDAS –

1. Parenthesis

2. Exponentiation

3. Multiplication, Division (Same precedence) – If both comes, evaluate
from left to right

4. Addition , Subtraction (Same precedence) – If both comes, evaluate
from left to right

Problem Solving and Python Programming2.48

20. What are comments?

A comment in a computer program is text that is intended only for the human
reader
Comments are used for documenting our program.
It is useful in large programs.
It is not printed and ignored by the interpreter.
Types of comments:
Single line comments – Starts with # symbol.
Eg: #print(“Am a comment”)
Multi line comments – Starts and ends with three single quotes.
Eg:
‘’’

print(“We are in a comment”)
print (“We are still in a comment”)

‘’’

21. What is mean by modules?

Modules refer to a file containing Python statements and definitions.

A file containing Python code, for e.g.: example.py, is called a module.

We can use modules by :

import module1[, module2[,... moduleN]

22. What is mean by functions? Mention the syntax of functions

Function is a group of related statements that perform a specific task. Functions
help break our program into smaller and modular chunks.

Defining a function

Function block start with a keyword “def” followed by function_name,
paranthesis (()) and colon (:). Arguments are placed inside the parenthesis

Every line inside code is indented return expression (statement) exits the function
by returning an expression to the caller function

def NAME(LIST OF PARAMETERS):

Data, Expressions, Statements 2.49

STATEMENTS

return [expression]

23. How will you call a function?

A function call is used to call the function which substitutes the entire definition
of the function.

Eg:
def mul():
a=4
b=8
c=a*b
print(c)
mul() # function call

24. Define parameters.

Function calls contain the name of the function being executed followed by a
list of values, called arguments, which are assigned to the parameters in the
function definition.

Eg: def mul(a,b)

25. Define call by value and call by reference.

There are two ways to pass value or data to function, call by value and reference.

Original value is not modified in call by value but it is modified in call by
reference.

26. What is mean by local and global variables?

Variables that are defined inside a function body are called as local scope
variables.

Variables that are defined outside a function body are called as global scope variables.

Eg:

total = 0; # This is global variable.
def sum(arg1, arg2):
total = arg1 + arg2; # Here total is local variable.

Problem Solving and Python Programming2.50

27. Give the different types of function argument.

The four types of function arguments are:

1. Required arguments

2. Keyword arguments

3. Default arguments

4. Variable-length arguments

PART – B QUESTIONS

1. Discuss about the various operators in python.

2. Discuss about operator precedence in python with eg.

3. Explain in detail about functions and parameters.

4. Explain about the various arguments with eg.

5. What is the use of comments and modules. Explain

6. Write a program to

a. exchange the values of variables

b. circulate the value of n variables

c. find distance between two points

Control Flow, Functions 3.1

3.1 BOOLEAN VALUES AND OPERATOR

A Boolean expression (or logical expression) evaluates to one of two states true
or false. Python provides the boolean type that can be either set to False or True. The
following examples use the operator ==, which compares two operands and produces
True if they are equal and False otherwise:

Example 3.1:

>>> 5 == 5

True

>>> 5 == 6

False

True and False are special values that belong to the type bool; they are not strings:

Example 3.2:

>>> type(True)

<type ‘bool’>

>>> type(False)

<type ‘bool’>

CONTROL FLOW, FUNCTIONS
Conditionals: Boolean values and operators, conditional (if),
alternative (if-else), chained conditional (if-elif-else); Iteration: state,
while, for, break, continue, pass; Fruitful functions: return values,
parameters, local and global scope, function composition, recursion;
Strings: string slices, immutability, string functions and methods,
string module; Lists as arrays. Illustrative programs: square root,
gcd, exponentiation, sum an array of numbers, linear search, binary
search.

Unit III

Problem Solving and Python Programming3.2

Capitalization should be exact. Ignoring the proper use of upper or lower case,
will result in error.

Example 3.3:

>>> type(true)

Traceback (most recent call last):

File “<interactive input>, line 1 in <module>,

NameError: name ‘true‘ is not defined

3.1.1 Relational Operators

The relational operators (Comparison Operators) which return the Boolean values
are:

x != y x is not equal to y
x==y x is equal to y
x > y x is greater than y
x < y x is less than y
x >= y x is greater than or equal to y
x <= y x is less than or equal to y

Note: A common error is using the mathematical symbol = in the expressions
and it is an assignment operator. There are no operators like => or =<.

3.1.2 Logical Operators

There are three logical operators: and, or, and not. The semantics (meaning)of
these operators is similar to their meaning in English.

Example3.4:

x>0 True, if x is greater than zero.

x<5 True, if x is less than five.

n%2==0 or n%3==0 True, if either (any one) of the condition is True

True, if both the conditions are True

Control Flow, Functions 3.3

Example Program3.5:

Program 1:

n=88
if n%2 ==0 or n%3==0:

print(“yes”)

Output:
yes

Program 2:

n=6
if n%2==0 or n%3==0:

print(“yes”)

Output:
yes

The not operator negates a boolean expression, so not (x > y) is True if x > y is
False, that is, if x is less than or equal to y.

The expression on the left of the or operator is evaluated first: if the result is
True, Python does not evaluate the expression on the right — this is called short-
circuit evaluation.

Similarly, for the ―and operator, if the expression on the left yields False, Python
does not evaluate the expression on the right. So there are no unnecessary evaluations.

Python is not very strict. Any nonzero number is interpreted as True:
>>> 42 and True
True

Recommended online video tutorial link: Boolean values and operators
https://www.youtube.com/watch?v=xgzdb2hTdL0

3.1.3 Control Statement

A control statement is a statement that determines the control flow of a set of
instructions. There are three fundamental forms of control that programming languages
provide—

Problem Solving and Python Programming3.4

1. Sequential structure (if) – Instructions are executed in an order that they are
written

2. Selection Structure/Branching/Decision Making – Instructions are being
executed selectively based on conditions

 if statement
 If..else statement
 If..elif..else statement

3. Repetition structure/Looping/Iterative – Instructions are repeatedly executed

 while
 For

Unconditional Structure

 Break
 Continue
 Pass

Fig 3.1 Flow of Control Statements

True False
condition

Selection ControlSequential Control Iteractive Control

condition

loop
True False

Control Flow, Functions 3.5

3.1.3.1 IF Statement

Conditional statement checks conditions and change the behavior of the program
accordingly.

The simplest form is the if statement:

>>>if x > 0:

print(‘x is positive’)

The boolean expression after ―if is called the condition. If it is true, the indented
statement runs. If not, nothing happens.

The syntax of ‘if’ statement:

if <test_expression>:

<body>

Fig: 3.2 – Operation of IF statement

Compound statements

Syntax for Compound statements

Header
Body of if
if condition:

Statements

Test
Expression

Body of if

True

False

Problem Solving and Python Programming3.6

Statements like this are called compound statements. At least one statement must
be there inside the statement and there is no limit for the number of statements.
Occasionally, it is useful to have a body with no statements. In that case, we can use
the pass statement, which does nothing.

Example:

if x < 0:
pass

if grade>=70:
print (First class‘)

3.1.3.2 if-else Statement (Alternative)

The if..else statement evaluates test expression and will execute body of if only
when test condition is True. If the condition is False, body of else is executed.
Indentation is used to separate the blocks.

The syntax of ‘if..else’ statement:

if test condition:
Body of if

else:
Body of else

Fig 3.3 – Operation of IF..ELSE Statement

Test
Expression

Body of if

True

False

Body of else

Control Flow, Functions 3.7

Example:

if x % 2 == 0:
print(‘x is even’)

else:
print(‘x is odd’)

If the remainder when x is divided by 2 is 0, then we know that x is even, and the
program displays an appropriate message. If the condition is false, the second set of
statements runs. Since the condition must be true or false, exactly one of the alternatives
will run. The alternatives are called branches, because they are branches in the flow of
execution.

3.1.3.3 Chained Conditionals (IF-ELIF-ELSE Statement)

 Sometimes there are more than two possibilities and we need more than
two branches.

 The elif is short for else if. It allows us to check for multiple expressions.

 If the condition for if is False, it checks the condition of the next elif block
and so on.

 If all the conditions are False, body of else is executed.

 Only one block among the several if...elif...else blocks is executed according
to the condition.

 The if block can have only one else block. But it can have multiple elif
blocks.

Problem Solving and Python Programming3.8

The syntax of ‘if..elif..else’ statement:

if condition:
Body of if

elif condition:
Body of elif

else:
Body of else

Fig 3.4 – Operation of if..elif..else statement

Example 1:

if x < y:
print(‘x is less than y’)

elif x > y:
print(‘x is greater than y’)

else:
print(‘x and y are equal’)

elif is an abbreviation of ―else if . Again, exactly one branch will run. There is
no limit on the number of elif statements. If there is an else clause, it has to be at the
end, but there doesn‘t have to be one.

Test
Expression

of if

Body of if

True

False

FalseTest
Expression

of elif

Body of elif

True

Body of else

Control Flow, Functions 3.9

Example 2:

if choice == ‘a’:
draw_a()

elif choice == ‘b’:
draw_b()

elif choice == ‘c’:
draw_c()

Each condition is checked in order. If the first is false, the next is checked, and
so on. If one of them is true, the corresponding branch runs and the statement ends.

3.2 ITERATION

Iteration is repeating a set of instructions and controlling their execution for a
particular number of times. Iteration statements are also called as loops.

3.2.1 State

A new assignment makes an existing variable refer to a new value (and stop
referring to the old value).

>>> x = 5
>>> x
5
>>> x = 7
>>> x
7

The first time we display x, its value is 5; the second time, its value is 7. Python
uses the equal sign (=) for assignment. First, equality is a symmetric relationship and
assignment is not.

For example, in mathematics, if a = 7 then 7 = a. But in Python, the statement a
= 7 is legal and 7 = a is not. Also, in mathematics, a proposition of equality is either
true or false for all time. If a =b now, then a will always equal b. In Python, an
assignment statement can make two variables equal.

>>> a = 5
>>> b = a # a and b are now equal

Problem Solving and Python Programming3.10

>>> a = 3 # a and b are no longer equal
>>> b
5

The third line changes the value of ―a but does not change the value of ―b , so
they are no longer equal. A common kind of reassignment is an update, where the
new value of the variable depends on the old.

>>> x = x + 1

This means ―get the current value of x, add one, and then update x with the
new value. If we try to update a variable that doesn‘t exist, you get an error, because
Python evaluates the right side before it assigns a value to x:

>>> x = x + 1

NameError: name ‘x’ is not defined, Before you can update a variable, you have
to initialize it, usually with a simple assignment:

>>>x = 0
>>>x = x + 1

Updating a variable by adding 1 is called an increment; subtracting 1 is called a
decrement.

3.2.2 While loop

 Repeats a statement or block of statements while a given condition is TRUE.

 Tests the condition before executing the body of loop.
Or

A while statement is an iterative control statement that repeatedly executes a
set of statements based on a provided Boolean expression (condition).

Syntax of While Loop:
while condition:

statements

Example:

while n > 0:
print(n)
n = n – 1

Control Flow, Functions 3.11

The above while statement prints the value of n a number of times until n is
greater than zero.

The flow of execution for a while statement:

1. Determine whether the condition is true or false.

2. If false, exit the while statement and continue execution at the next statement.

3. If the condition is true, run the body and then go back to step 1

Fig 3.5 Operation of While Loop

The body of the loop should change the value of one or more variables so that
the condition becomes false eventually and the loop terminates. Otherwise the loop
will repeat forever, which is called an infinite loop. In the case of countdown, we can
prove that the loop terminates: if n is zero or negative, the loop never runs. Otherwise,
n gets smaller each time through the loop, so eventually we have to get to 0. For some
other loops, it is not so easy to tell.

Enter while loop

Test
Expression

False

True

Exit loop

Body of
while

Problem Solving and Python Programming3.12

Example: Python while Loop

Program to add natural numbers up to sum = 1+2+3+...+n
To take input from the user
n = 10
initialize sum and counter
sum = 0
 i = 1
 while i <= n:

sum = sum + i
i = i+1 # update counter

print(“The sum is”, sum) # print the sum

Output:

The sum is 55

In the above program, the test condition will be True as long as our counter
variable i is less than or equal to n. We need to increase the value of counter variable
in the body of the loop. This is very important (and mostly forgotten). Failing to do so
will result in an infinite loop (never ending loop). Finally the result is displayed.

While loop with else

We can have an optional else block with while loop as well. The else part is
executed if the condition in the while loop evaluates to False. The while loop can be
terminated with a break statement. In such case, the else part is ignored. Hence, a
while loop’s else part runs if no break occurs and the condition is false.

Example

 # Program to illustrate the use of else statement with the while loop
counter = 0
while counter < 3:

print(“Inside loop”)
counter = counter + 1

 else:
print(“Inside else”)

Control Flow, Functions 3.13

Output

Inside loop
Inside loop
Inside loop
Inside else

Here, we use a counter variable to print the string Inside loop three times. On the
forth iteration, the condition in while becomes False. Hence, the else part is executed.

3.2.3 For Loop

The for loop in Python is used to iterate over a sequence (list, tuple, string) or
other iterable objects. Iterating over a sequence is called traversal. The for loops are
used to construct definite loops.

Syntax of FOR LOOP:

for val in sequence:

Body of for

Here, val is the variable that takes the value of the item inside the sequence on
each iteration. Loop continues until we reach the last item in the sequence. The body
of for loop is separated from the rest of the code using indentation.

Fig 3.6. Operation of FOR LOOP

for each
item in

sequence

Yes

No

Exit loop

Body of for

Fig: operation of for loop

Last
item

reached?

Problem Solving and Python Programming3.14

Example 1:

for k in [4, 2 ,3, 1]:
print (k)

Output:
4
2
3
1

Example 2:

for k in [‘Apple’, ‘Banana’, ‘Pear’]:

print(k)

Output:

Apple
Banana
Pear

The range() function:

 We can generate a sequence of numbers using range() function. range(10)
will generate numbers from 0 to 9 (10 numbers).

 We can also define the start, stop and step size as range(start,stop,step size).
step size defaults to 1 if not provided.

 This function does not store all the values in memory, it would be inefficient.
So it remembers the start, stop, step size and generates the next number on
the go.

 To force this function to output all the items, we can use the function list().

Example:

sum = 0
for k in range(1, 11):

sum = sum + k

Control Flow, Functions 3.15

The values in the generated sequence include the starting value, up to but not
including the ending value. For example, range(1, 11) generates the sequence [1, 2, 3,
4, 5, 6, 7, 8,9, 10].

The range function is convenient when long sequences of integers are needed.
Actually, range does not create a sequence of integers. It creates a generator function
able to produce each next item of the sequence when needed.

for i in range(4):

print(‘Hello!’)

for loop with else

A for loop can have an optional else block as well. The else part is executed if
the items in the sequence used in for loop exhausts. break statement can be used to
stop a for loop. In such case, the else part is ignored. Hence, a for loop’s else part runs
if no break occurs.

Example:

digits = [0, 1, 5]
for i in digits:

print(i)
 else:

print(“No items left.”)

Output:

0
1
5
No items left.

Here, the for loop prints items of the list until the loop exhausts. When the for
loop exhausts, it executes the block of code in the else and prints No items left.

3.2.4 Break

Break statement is used to break the loop. For example, suppose you want to
take input from the user until they type done.

Problem Solving and Python Programming3.16

Fig 3.7 Flowchart of Break

You could write:

while True:
line = input(‘> ‘)
if line == ‘done’:

break
print(line)
print(‘Done!’)

The loop condition is True, which is always true, so the loop runs until it hits the
break statement. Each time through, it prompts the user with an angle bracket. If the
user types done, the break statement exits the loop. Otherwise the program echoes
whatever the user types and goes back to the top of the loop.

Here‘s a sample run:

> not done
 not done

> done
Done!

Enter loop

False

Exit loop

Yes

True

No

test expression
of loop

break?

Remaining body
of loop

Control Flow, Functions 3.17

This way of writing while loops is common because you can check the condition
anywhere in the loop (not just at the top) and you can express the stop condition
affirmatively (―stop when this happens) rather than negatively (―keep going until
that happens).

3.2.5 Continue statement

The continue statement is used to skip the rest of the code inside a loop for the
current iteration only. Loop does not terminate but continues on with the next iteration.

Example: Python continue

Program to show the use of continue statement inside loops

 for val in “string”:
if val == “i”:

continue
print(val)

 print(“The end”)

Output

s
t
r
n
g
The end

This program is same as the above example except the break statement has been
replaced with continue. We continue with the loop, if the string is “i”, not executing
the rest of the block. Hence, we see in our output that all the letters except “i” gets
printed.

Problem Solving and Python Programming3.18

Fig 3.8 Flowchart of Continue

3.2.6 Pass

It is used when a statement is required syntactically but you do not want any
command or code to execute. The pass statement is a null operation; nothing happens
when it executes. The pass is also useful in places where your code will eventually
go, but has not been written yet.

We generally use it as a placeholder.

Suppose we have a loop or a function that is not implemented yet, but we want
to implement it in the future. They cannot have an empty body. The interpreter would
complain. So, we use the pass statement to construct a body that does nothing.

Example:

for letter in ‘Python’:
if letter == ‘h’:

pass
print ‘This is pass block’

print ‘Current Letter :’, letter
print “Good bye!”

Enter loop

False

Exit loop

True

No

test expression
of loop

continue?

Remaining body
of loop

Yes

Control Flow, Functions 3.19

Output:

Current Letter : P
Current Letter : y
Current Letter : t
This is pass block
Current Letter : h
Current Letter : o
Current Letter : n
Good bye!

Difference between various iterations Pass Continue Break

Pass

 Statement simply means ‘do nothing’

When the python interpreter encounters the pass statement, it simply
continues with its execution

Continue

 Continue with the loop

resume execution at the top of the loop or goes to next iteration

Break

 Breaks the loop

When a break statement is encountered, it terminates the block and gets the
control out of the loop

While

 Indefinite Loops

The exit condition will be evaluated again, and execution resumes from the
top.

For

 Definite Loop

The item being iterated over will move to its next element.

Problem Solving and Python Programming3.20

3.3 FRUITFUL FUNCTIONS

3.3.1 Return Value

The functions with return values are called as fruitful functions. The built-in
functions we have used, such as abs, pow, and max, have produced results. Calling
each of these functions generates a value, which we usually assign to a variable or use
as part of an expression.

biggest = max(3, 7, 2, 5)

x = abs(3 - 11) + 10

But so far, none of the functions we have written has returned a value.

The first example is area, which returns the area of a circle with the given radius:

def area(radius):

temp = 3.14159 * radius**2

return temp

We have seen the return statement before, but in a fruitful function the return
statement includes a return value. This statement means: Return immediately from
this function and use the following expression as a return value. The expression
provided can be arbitrarily complicated, so we could have written this function more
concisely:

def area(radius):

return 3.14159 * radius**2

On the other hand, temporary variables like temp often make debugging easier.
Sometimes it is useful to have multiple return statements, one in each branch of a
conditional. We have already seen the built-in abs, now we see how to write our own:

def absolute_value(x):
if x < 0:

return -x
else:

return x

Since these return statements are in an alternative conditional, only one will be
executed. As soon as one is executed, the function terminates without executing any

Control Flow, Functions 3.21

subsequent statements. Another way to write the above function is to leave out the
else and just follow the if condition by the second return statement.

def absolute_value(x):
if x < 0:

return -x
return x

Think about this version and convince yourself it works the same as the first
one. Code that appears after a return statement, or any other place the flow of execution
can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through
the program hits a return statement. The following version of absolute value fails to
do this:

def absolute_value(x):
if x < 0:

return -x
elif x > 0:

return x

This version is not correct because if x happens to be 0, neither condition is true,
and the function ends without hitting a return statement. In this case, the return value
is a special value called None:

>>> print

absolute_value(0)

None

None is the unique value of a type called the NoneType:

>>> type(None)

All Python functions return None whenever they do not return another value.
The scope of an identifier is the region of program code in which the identifier can be
accessed, or used.

Problem Solving and Python Programming3.22

3.3.2 Scope

There are three important scopes in Python:

 Local scope refers to identifiers declared within a function. These identifiers
are kept in the namespace that belongs to the function, and each function
has its own namespace.

 Global scope refers to all the identifiers declared within the current module,
or file.

 Built-in scope refers to all the identifiers built into Python—those like range
and min that can be used without having to import anything, and are (almost)
always available.

Python (like most other computer languages) uses precedence rules: the same
name could occur in more than one of these scopes, but the innermost, or local scope,
will always take precedence over the global scope, and the global scope always gets
used in preference to the built-in scope.

Let‘s start with a simple example:

def range(n):
return 123*n
print(range(10))

Using the scope lookup rules determines this: our own range function, not the
built-in one, is called, because our function range is in the global namespace, which
takes precedence over the built in names. So although names likes range and min are
built-in, they can be ―hidden from your use if you choose to define your own variables
or functions that reuse those names.

n = 10
2 m = 3
def f(n):

m = 7
return 2*n+m

print(f(5), n, m)

This prints 17 10 3. The reason is that the two variables m and n in lines 1 and 2
are outside the function in the global namespace. Inside the function, new variables
called n and m are created just for the duration of the execution of f. These are created

Control Flow, Functions 3.23

in the local namespace of function f. Within the body of f, the scope lookup rules
determine that we use the local variables m and n. By contrast, after we‘ve returned
from f, the n and m arguments to the print function refer to the original variables on
lines 1 and 2, and these have not been changed in any way by executing function f.
Notice too that the def puts name f into the global namespace here. So it can be called
on line 7. What is the scope of the variable n on line 1? Its scope—the region in which
it is visible—is lines 1, 2, 6, 7. It is hidden from view in lines 3, 4, 5 because of the
local variable n.

3.3.3 Composition

You can call one function from within another. This ability is called composition.

Example:

Write a function that takes two points, the center of the circle and a point on the
perimeter, and computes the area of the circle. Assume that the center point is stored
in the variables xc and yc, and the perimeter point is in xp and yp. The first step is to
find the radius of the circle, which is the distance between the two points.

radius = distance(xc, yc, xp, yp)

The second step is to find the area of a circle with that radius and return it. Again
we will useone of our earlier functions:

result = area(radius)
return result

#Wrapping that up in a function, we get:

def area2(xc, yc, xp, yp):
radius = distance(xc, yc, xp, yp)
result = area(radius)
return result

We called this function area2 to distinguish it from the area function defined earlier.
The temporary variables radius and result are useful for development, debugging, and
single-stepping through the code to inspect what is happening, but once the program is
working, we can make it more concise by composing the function calls:

def area2(xc, yc, xp, yp):
return area(distance(xc, yc, xp, yp))

Problem Solving and Python Programming3.24

3.3.4 Recursion

Recursion is the process of calling the function that is currently executing. It is
legal for one function to call another; it is also legal for a function to call itself. An
example of recursive function to find the factorial of an integer.

Example:

0! = 1

n! = n(n - 1)!

This definition says that the factorial of 0 is 1, and the factorial of any other
value, n, is n multiplied by the factorial of n - 1.

So 3! is 3 times 2!, which is 2 times 1!, which is 1 times 0!. Putting it all together,
3! equals 3 times 2 times 1 times 1, which is 6.

The flow of execution for this program is similar to the flow of countdown. If
we call factorial with the value 3:

 Since 3 is not 0, we take the second branch and calculate the factorial of n-1...

 Since 2 is not 0, we take the second branch and calculate the factorial of n-1...

 Since 1 is not 0, we take the second branch and calculate the factorial of n-1...

 Since 0 equals 0, we take the first branch and return 1 without making any
more recursive calls.

 The return value, 1, is multiplied by n, which is 1, and the result is returned.

 The return value, 1, is multiplied by n, which is 2, and the result is returned.

 The return value (2) is multiplied by n, which is 3, and the result, 6, becomes
the return value of the function call that started the whole process.

 The return values are shown being passed back up the stack. In each frame,
the return value is the value of result, which is the product of n and recurse.
In the last frame, the local variables recurse and result do not exist, because
the branch that creates them does not run.

Control Flow, Functions 3.25

Example:

An example of a recursive function to find the factorial of a number

def factorial(x):
“””This is a recursive functionto find the factorial of an integer”””
if x == 1:

return 1
else:

return (x * factorial(x-1))
num = 3
print(“The factorial of”, num, “is”, factorial(num))

Output:

The factorial of 3 is 6

An example of to find the factorial of a number without using Recursion function

n=int(input(“Enter number:”))
fact=1
while(n>0):

fact=fact*n
n=n-1

print(“Factorial of the number is: “)
print(fact)

__main__

factorial

factorial

factorial

factorial n 0

n 1

n 2

n 3 recurse 2

recurse 1

recurse 1 result 1

result 2

result 6
6

2

1

1

Problem Solving and Python Programming3.26

The Advantages of recursion

1. Recursive functions make the code look clean and elegant.

2. A complex task can be broken down into simpler sub-problems using
recursion.

3. Sequence generation is easier with recursion than using some nested iteration.

The Disadvantages of recursion

1. Sometimes the logic behind recursion is hard to follow through.

2. Recursive calls are expensive (inefficient) as they take up a lot of memory
and time.

3. Recursive functions are hard to debug.

3.4 STRINGS

A string is a sequence of characters. You can access the characters one at a time
with the bracket operator:

>>> fruit = ‘banana’
letter = fruit[1]

The second statement selects character number 1 from fruit and assigns it to
letter. The expression in brackets is called an index. The index indicates which character
in the sequence you want (hence the name).But you might not get what you expect:

>>> letter
‘a’

For most people, the first letter of ‘banana’ is b, not a. But for computer scientists,
the index is an offset from the beginning of the string, and the offset of the first letter
is zero.

>>> letter = fruit[0]
>>> letter
‘b’

So b is the 0th letter (―zero-eth) of ‘banana’, a is the 1th letter (―one-eth),
and n is the 2th letter (―two-eth). As an index you can use an expression that contains
variables and operators:

Control Flow, Functions 3.27

>>> i = 1

>>> fruit[i]

 ‘a’

But the value of the index has to be an integer. Otherwise you get:

>>> letter = fruit[1.5]

TypeError: string indices must be integers

3.4.1 String slices

A segment of a string is called a slice. Selecting a slice is similar to selecting a
character:

>>> s = ‘Monty Python’
>>> s[0:5]
‘Monty’
>>> s[6:12]
‘Python’

The operator [n:m] returns the part of the string from the ―n-eth character to
the ―m-eth character, including the first but excluding the last. This behavior is
counter intuitive, butit might help to imagine the indices pointing between the
characters. If you omit the first index (before the colon), the slice starts at the beginning
of the string.

If you omit the second index, the slice goes to the end of the string:

>>> fruit = ‘banana’
>>> fruit[:3]
‘ban’
>>> fruit[3:]
‘ana’

If the first index is greater than or equal to the second the result is an empty
string, represented by two quotation marks:

>>> fruit = ‘banana’
>>> fruit[3:3]
‘’

Problem Solving and Python Programming3.28

An empty string contains no characters and has length 0, but other than that, it is
the same as any other string.

3.4.2 Immutability

It is tempting to use the [] operator on the left side of an assignment, with the
intention of changing a character in a string.

For example:

>>> greeting = ‘Hello, world!’

>>> greeting[0] = ‘J’

TypeError: ‘str’ object does not support item assignment

The ―object in this case is the string and the ―item is the character you tried to
assign. The reason for the error is that strings are immutable, which means you can‘t
change an existing string. The best you can do is create a new string that is a variation
on the original:

>>> greeting = ‘Hello, world!’

>>> new_greeting = ‘J’ + greeting[1:]

>>> new_greeting

‘Jello, world!’

This example concatenates a new first letter onto a slice of greeting. It has no
effect on the original string.

Length

The len function, when applied to a string, returns the number of characters in a
string:

>>> fruit = “banana”

>>> len(fruit)

6

The index starts counting form zero. In the above string, the index value in from
0 to 5.

To get the last character, we have to subtract 1 from the length of fruit:

Control Flow, Functions 3.29

size = len(fruit)

last = fruit[size-1]

Alternatively, we can use negative indices, which count backward from the end
of the string.

The expression fruit[-1] yields the last letter, fruit[-2] yields the second to last,
and so on.

3.4.3 String methods

Strings provide methods that perform a variety of useful operations. A method is
similar to a function—it takes arguments and returns a value—but the syntax is
different. For example, the method upper takes a string and returns a new string with
all uppercase letters.

Upper method:

Instead of the function syntax upper(word), it uses the method syntax
word.upper().

>>> word = ‘banana’
>>> new_word = word.upper()
>>> new_word
‘BANANA’

This form of dot notation specifies the name of the method, upper, and the name
of the string to apply the method to, word. The empty parentheses indicate that this
method takes no arguments. A method call is called an invocation; in this case, we
would say that we are invoking upper on word.

Find Method:

The find method can find character and sub strings in a string.

>>> word = ‘banana’
>>> index = word.find(‘a’)
>>> index
1
>>> word.find(‘na’)
2

Problem Solving and Python Programming3.30

By default, find starts at the beginning of the string, but it can take a second
argument, the index where it should start:

>>> word.find(‘na’, 3)

4

This is an example of an optional argument; find can also take a third argument,
the index where it should stop:

>>> name = ‘bob’
>>> name.find(‘b’, 1, 2)
-1

This search fails because b does not appear in the index range from 1 to 2, not
including 2.

Split Method:

One of the most useful methods on strings is the split method: it splits a single
multi-word string into a list of individual words, removing all the whitespace between
them. The input string can be read as a single string, and will be split.

>>> ss = “Well I never did said Alice”
>>> wds = ss.split()
>>> wds
[‘Well‘, ‘I‘, ‘never‘, ‘did‘, ‘said‘, ‘Alice‘]

String format method

The easiest and most powerful way to format a string in Python 3 is to use the
format method.

Program:

s1 = “His name is {0}!”.format(“Arthur”)

print(s1)

name = “Alice”

age = 10

s2 = “I am {1} and I am {0} years old.”.format(age, name)

Control Flow, Functions 3.31

Output:

His name is Arthur!

I am Alice and I am 10 years old.

The template string contains place holders, ... {0} ... {1} ... {2} ... etc. The
format method substitutes its arguments into the place holders. The numbers in the
place holders are indexes that determine which argument gets substituted. Each of the
replacement fields can also contain a format specification — it is always introduced
by the : symbol . This modifies how the substitutions are made into the template, and
can control things like: whether the field is aligned to the left <, center ^, or right > the
width allocated to the field within the result string (a number like 10) the type of
conversion if the type conversion is a float, you can also specify how many decimal
places are wanted.

print(“Pi to three decimal places is {0:.3f}”.format(3.1415926))

3.4.4 Looping and counting

The following program counts the number of times the letter a appears in a string:

Example:

word = ‘banana’
count = 0
for letter in word:
if letter == ‘a’:
count = count + 1
print(count)

This program demonstrates another pattern of computation called a counter.
The variable count is initialized to 0 and then incremented each time an a is found.
When the loop exits, count contains the result—the total number of a‘s.

3.4.5 String module

The Python Standard Library is a collection of built-in modules , each providing
specific functionality beyond what is included in the ―core part of Python.

This string module contains a number of functions to process standard
Python strings.

Problem Solving and Python Programming3.32

Example: Using the string module

import string

text = “Monty Python’s Flying Circus”

print “upper”, “=>”, string.upper(text)

print “lower”, “=>”, string.lower(text)

print “split”, “=>”, string.split(text)

print “join”, “=>”, string.join(string.split(text), “+”)

print “replace”, “=>”, string.replace(text, “Python”, “Java”)

print “find”, “=>”, string.find(text, “Python”), string.find(text, “Java”)

print “count”, “=>”, string.count(text, “n”)

upper => MONTY PYTHON’S FLYING CIRCUS

 lower => monty python’s flying circus

split => [‘Monty’, “Python’s”, ‘Flying’, ‘Circus’]

join => Monty+Python’s+Flying+Circus replace => Monty Java’s Flying Circus

find => 6 -1

count => 3

String Example Program:

1. Write a python program to count the number of vowels in a string

Program:
string=raw_input(“Enter string:”)
vowels=0
for i in string:
 if(i==’a’ or i==’e’ or i==’i’ or i==’o’ or i==’u’ or i==’A’ or i==’E’ or i==’I’
or i==’O’ or i==’U’):
 vowels=vowels+1
print(“Number of vowels are:”)
print(vowels)

Output 1:
Enter string:Hello world

Control Flow, Functions 3.33

Number of vowels are:
3

Output 2:
Enter string:WELCOME
Number of vowels are:
3

2. Write a Python program to count the occurrences of each word in a given
sentence

Program:

def word_count(str):
 counts = dict()
 words = str.split()
 for word in words:
 if word in counts:
 counts[word] += 1
 else:
 counts[word] = 1
 return counts
print(word_count(‘the quick brown fox jumps over the lazy dog.’))

Output:

{‘the’: 2, ‘jumps’: 1, ‘brown’: 1, ‘lazy’: 1, ‘fox’: 1, ‘over’: 1, ‘quick’: 1, ‘dog.’: 1}

3.5 LISTS AS ARRAYS

 Arrays and lists are both used in Python to store data.

 NumPy is used to create an array in python.

 It is a module which contains array.

 They are used to store any type of data and can be indexed.

 The functions which can be performed in list and array are distinct.

Problem Solving and Python Programming3.34

Example 1:

x = array([3, 6, 9, 12])
x/3.0x
print(x)

Output:

array([1, 2, 3, 4])

Example 2:

y = [3, 6, 9, 12]
y/3.0
print(y)
The program will result in the error.Arithmetic calculations – can be done
in array.
Storing data efficiently – Array

3.6 ILLUSTRATIVE PROGRAMS

1. Compute the GCD of two numbers

Program:

def gcd(m,n):
if m<n:

(m,n)=(n,m)
while (m%n)==0:

return (m)
else:
return(gcd(n,m%n))
a=150
b=50
g=gcd(a,b)
print(g)

Output:

50

Control Flow, Functions 3.35

2. Compute the exponent of a number.

Program:

def exp(m,n):
return m**n
i=input(“Enter the base:”)
j=input(“Enter the pow:”)
d=exp(i,j)
print d

Output:

Enter the base: 40
Enter the pow: 2
1600

3. Linear Search in Python Programming

Program:

list = [4, 2, 8, 9, 3, 7]

x= int(input(“Enter number to search:)) found = False

for i in range(len(list)):

if(list[i] == x):

found = True

print(“%d found at %dth position”%(x,i))

break

if(found == False):

print(“%d is not in list”%x)

Output:

Enter number to search: 2

Problem Solving and Python Programming3.36

4. Binary Search using Python Programming

Program:

def binarySearch(alist, item):
first = 0
last = len(alist)-1
found = False
while first<=last and not found:

midpoint = (first + last)//2
if alist[midpoint] == item:

found = True
else:

if item < alist[midpoint]:
last = midpoint-1

else:
first = midpoint+1

return found
testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binarySearch(testlist, 3))
print(binarySearch(testlist, 13))

Output:
False
True

5. Sum an array of N numbers

Program

x=[1,2,3,4,5]
sum=0
for s in range(0,len(x)):

sum=sum+x[s]
print(sum)

Output:

15

Control Flow, Functions 3.37

Suggested Links to Refer

1. https://www.youtube.com/watch?v=-nJvt_7l-sk – if..else
2. https://www.youtube.com/watch?v=1QfPTboc1Pw – elif and nested if
3. https://www.youtube.com/watch?v=UZRD8rmOC7M – if
4. https://www.youtube.com/watch?v=9LgyKiq_hU0 - For loop
5. https://www.youtube.com/watch?v=D0Nb2Fs3Q8c – While loop
6. https://www.youtube.com/watch?v=aUXi4L8eUmw – Break, Continue, Pass

NPTEL – You Tube Link:

1. https://www.youtube.com/watch?v=9MmC_uGjBsM&feature=youtu.be – GCD

2. https://www.youtube.com/watch?v=I7zOYKF4AHc&feature=youtu.be – String

3. https://www.youtube.com/watch?v=oe6iF3yzMo8&feature=youtu.be – Control
Flow

ASSIGNMENT:

Write python program for the following:

1. Display all even numbers between 50 and 80 (both inclusive) using “for”
loop.

2. Add natural numbers up to n where n is taken as an input from user. Print
the sum.

3. Prompt the user to enter a number. Print whether the number is prime or
not.

4. Print Fibonacci series till nth term where n is taken as an input from user.

Hint – Fibonacci series is a series of numbers in which each number is the
sum of the two preceding numbers. Series start from 1 and goes like : 1, 1,
2, 3, 5, 8, 13 ….

5. Find the first N prime Numbers.

6. Program that reads a positive integer and then prints out all the positive
divisors of that integer.

Hint – The positive divisor of positive integer 36 are 36,18,12,9,6,4,3,2
and 1.

Problem Solving and Python Programming3.38

7. Program that reads a character and prints out whether or not it is a vowel or
consonant.

8. Program to print the first ‘n’ numbers divisible by 7

PART A QUESTION AND ANSWERS

1. What are the two Boolean values in python

A Boolean value is either True or False.

Python type – bool.

2. What is an operator?

Operator is used to perform operations between operands.

Eg: c+d

+ - operator

C,d – operands

3. Specify the three fundamental forms of control statement

The three forms of control statements are:

 Sequential control
 Iterative control
 Selective control

4. Write the difference between if and if else statement?

If statement – Its used to check a condition and execute the statements.

if(c==5):

print(“five”)

If else is ―alternative execution , in which there are two possibilities and the
condition determines which one runs.

if(c==5):

print(“five”)

else:

print(“not five”)

Control Flow, Functions 3.39

5. What is iteration?

Iteration is repeating a set of instructions and controlling their execution for a
particular number of times. Iteration statements are also called as loops.

6. Specify the use of range function in for loop.

The range function is generator and able to produce next item of the sequence
when needed.

It is used in a for loop.

Eg: for val in values: print(val)

7. Differentiate break and continue statement with example

The continue statement rejects all the remaining statements in the current iteration
of the loop and moves the control back to the top of the loop.

Break statement is used to break the loop.

Eg:

for number in range(1,5):

if(number==3):

continue

print(number)

Output:
1
2
4
for number in range(1,5):
if(number==3):
break
print(number)

Output:
1
2
3

Problem Solving and Python Programming3.40

8. What is the use of pass statement in python?

It is used when a statement is required syntactically but you do not want any
command or code to execute. The pass statement is a null operation; nothing
happens when it executes.

Eg:

for letter in ‘Python’:
if letter == ‘h’:
pass

9. Describe about dead code.

Code that ppears after a return statement, or any other place the flow of execution
can never reach, is called dead code.

def absolute_value(x):
if x < 0:
return -x
return x

10. What refers to local and global scope?

Local scope refers to identifiers declared within a function. These identifiers are
kept in the namespace that belongs to the function, and each function has its
own namespace.

Global scope refers to all the identifiers declared within the current module, or
file.

Built-in scope refers to all the identifiers built into Python

11. Which function is called composition?

A function calls one function with another is called composition.

Eg:

def val():

result = area(radius)

return result

Control Flow, Functions 3.41

12. What is a recursion? How it differs from loop?

The function which calls itself again and again is called recursion.

Eg:

def factorial(n):
if n == 0:
return 1
else:
recurse = factorial(n-1)
result = n * recurse
return result

13. What is a srting? Mention that how do we represent a string in python?

A string is a sequence, which means it is an ordered collection of other values.

Strings can be represented in python using single quotes, double quotes or triple
double quotes.

Eg: >>> fruit = ‘orange’

14. How does indexing differ from slice operation?

Indexing is assigning the address of every character in string.

Eg: s=”hello”

S[0]=h, s[1]=e, s[2]=l, s[3]=l,s[4]=o

A segment of a string is called a slice. Selecting a slice is similar to selecting a
character.

S=”hello”

S[2:]=”llo”

15. What is string immutability?

We cant exchange the characters of the string. This is called as immutable.

>>> greeting = ‘Hello, world!’

>>> greeting[0] = ‘J’

Problem Solving and Python Programming3.42

TypeError: ‘str’ object does not support item assignment

16. List out the methods in string type.

The methods are:

Upper, find, split, string format, etc..

17. Write a python program for exponent of a number

def exp(m,n):
return m**n
i=input(“Enter the base:”)
j=input(“Enter the pow:”)
d=exp(i,j)
print d

18. Define fruitful functions.

Functions which returns a value is called as fruitful function.

def sum(c,d):
e=c+d
return (e)
print(sum(2,3))

19. Define python array.

Arrays and lists are both used in Python to store data.

NumPy is used to create an array in python.

It is a module which contains array.

They are used to store any type of data and can be indexed.

Control Flow, Functions 3.43

PART B QUESTIONS

1. Discuss about the iteration statements(state, while, for, break, continue, pass)

2. Discuss about the conditional statements(if, if-else, if-elif)

3. Explain about the function composition and recursion with eg.

4. Discuss about the fruitful functions with eg.

5. Explain about the string operations with programs.

6. Write a program to

a. Find the square root of a number

b. Calculate gcd of two numbers

c. Find the exponent of a number

d. Find the sum of array of numbers

7. Write a program to

a. Perform binary search

b. Linear search

LIsts, Tuples, Dictionaries 4.1

4.1 LISTS

List is an ordered sequence of items. Values in the list are called elements /
items. It can be written as a list of comma-separated items (values) between square
brackets []. Items in the lists can be of different data types.

Example:

ps = [10, 20, 30, 40]

qs = [“spam”, “bungee”, “swallow”]

The first example is a list of four integers. The second is a list of three strings.
The elements of a list don t have to be the same type. The following list contains a
string, a float, an integer, and another list: zs = [“hello”, 2.0, 5, [10, 20]]

A list within another list is said to be nested. Finally, a list with no elements is
called an empty list, and is denoted [].

A list of Integers : [1951,1952,1953,1958,1957]

A list of Strings : [„orange , blue , yellow]

An empty list : []

LISTS, TUPLES, DICTIONARIES
Lists: list operations, list slices, list methods, list loop, mutability,
aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple
as return value; Dictionaries: operations and methods; advanced list
processing - list comprehension; Illustrative programs: selection sort,
insertion sort, merge sort, histogram.

Unit IV

Problem Solving and Python Programming4.2

4.1.1 List Operations:

Operations Examples Description

create a list >>> a=[2,3,4,5,6,7,8,9,10] in this way we can create alist
>>> print(a) at compile time
[2, 3, 4, 5, 6, 7, 8, 9, 10]

Indexing >>> print(a[0]) Accessing the item in the
2 position 0
>>> print(a[8]) Accessing the item in the
10 position 8
>>> print(a[-1]) Accessing a last elementusing
10 negative indexing.

Slicing >>> print(a[0:3]) Printing a part of the list.
[2, 3, 4]
>>> print(a[0:])
[2, 3, 4, 5, 6, 7, 8, 9, 10]

Concatenation >>>b=[20,30] Adding and printing theitems of
>>> print(a+b) two lists.q
[2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30]

Repetition >>> print(b*3) Create a multiple copies ofthe
[20, 30, 20, 30, 20, 30] same list.

Updating >>> print(a[2]) Updating the list using index
4>>> a[2]=100 value.
>>> print(a)
[2, 3, 100, 5, 6, 7, 8, 9, 10]

Membership >>> a=[2,3,4,5,6,7,8,9,10] Returns True if element ispresent
>>> 5 in a in list. Otherwisereturns false.
True
>>> 100 in a
False
>>> 2 not in a
False

Comparison >>> a=[2,3,4,5,6,7,8,9,10] Returns True if all elementsin both
>>>b=[2,3,4] elements are same.Otherwise
>>> a==b returns false
False
>>> a!=b
True

LIsts, Tuples, Dictionaries 4.3

4.1.2 List Slicing

The slice operation uses the square brackets. This is termed indexing, or slicing.
An index or slice returns a portion of a larger value. In a string this can be used to
produce a substring. Index values start at zero, and extend upwards to the number of
characters in the string minus one. When a single argument is given it is one character
out of the string. When two integers are written, separated by a colon, it is termed a
slice. The second value is an ending position. A portion of the string starting at the
given position up to but not including the ending position is produced.

Syntax:

Listname[start:stop]

Listname[start:stop:steps]

Example :

Slices Example Description

a[0:3] >>> a=[9,8,7,6,5,4] Printing a part of a list from 0 to 2.
>>> a[0:3]
[9, 8, 7]

a[:4] >>> a[:4] Default start value is 0. soprints from 0
[9, 8, 7, 6] to 3

a[1:] >>> a[1:] default stop value will ben-1. so prints
[8, 7, 6, 5, 4] from 1 to 5

a[:] >>> a[:] Prints the entire list.
[9, 8, 7, 6, 5, 4]

a[2:2] >>> a[2:2] print an empty slice
[]

a[0:6:2] >>> a[0:6:2] Slicing list values with stepsize 2.
[9, 7, 5]

a[::-1] >>> a[::-1] Returns reverse of given listvalues
[4, 5, 6, 7, 8, 9]

Problem Solving and Python Programming4.4

4.1.3 List Methods

Methods used in lists are used to manipulate the data quickly. These methods
work only on lists. They do not work on the other sequence types that are not mutable,
that is, the values they contain cannot be changed, added, or deleted.

Syntax:

List_name.method_name(element/index/list)

syntax example description

a.append(element)

a.insert(index,element)

a.extend(b)

a.index(element)

a.sort()

a.reverse()

a.pop()

a.pop(index)

Add an element to the end of the
list

Insert an item at the defined
index

Add all elements of a list to the
another list

Returns the index of the first
matched item

Sort items in a list in ascending
order

Reverse the order of items in the
list

Removes and returns an
element at the last element

Remove the particular element
and return it.

>>> a=[1,2,3,4,5]
>>> a.append(6)
>>> print(a)
[1, 2, 3, 4, 5, 6]

>>> a.insert(0,0)
>>> print(a)
[0, 1, 2, 3, 4, 5, 6]

>>> b=[7,8,9]
>>> a.extend(b)
>>> print(a)
[0, 1, 2, 3, 4, 5, 6, 7, 8,9]

>>> a.index(8)
8

>>> a.sort()
>>> print(a)
[0, 1, 2, 3, 4, 5, 6, 7, 8]

>>> a.reverse()
>>> print(a)
[8, 7, 6, 5, 4, 3, 2, 1, 0]

>>> a.pop()
0

>>> a.pop(0)
8

LIsts, Tuples, Dictionaries 4.5

a.remove(element)

a.count(element)

a.copy()

len(list)

min(list)

max(list)

a.clear()

del(a)

append():

Example 1:

animal = [‘cat’, ‘dog’, ‘rabbit’]
animal.append(‘goat’)
print(‘Updated animal list: ‘, animal)

Output:

Updated animal list: [‘cat’, ‘dog’, ‘rabbit’, ‘goat’]

>>> a.remove(1)
>>> print(a)
[7, 6, 5, 4, 3, 2]

>>> a.count(6)
1

>>> b=a.copy()
>>> print(b)
[7, 6, 5, 4, 3, 2]

>>> len(a)
6

>>> min(a)
2

>>> max(a)
7

>>> a.clear()
>>> print(a)
[]

>>> del(a)
>>> print(a)
Error: name ‘a’ is not
defined

Removes an item from the list

Returns the count of number of
items passed as an argument

Returns a shallow copy of the
list

Return the length of the length

Return the minimum element in
a list

Return the maximum element in
a list.

Removes all items from the list.

Delete the entire list.

Problem Solving and Python Programming4.6

Example 2:

animal = [‘cat’, ‘dog’, ‘rabbit’]
wild_animal = [‘tiger’, ‘fox’]
animal.append(wild_animal)
print(‘Updated animal list: ‘, animal)

Output:

Updated animal list: [‘cat’, ‘dog’, ‘rabbit’, [‘tiger’, ‘fox’]]

insert():

Example:

vowel = [‘a’, ‘e’, ‘i’, ‘u’]
vowel.insert(3, ‘o’)
print(‘Updated List: ‘, vowel)

Output:

Updated List: [‘a’, ‘e’, ‘i’, ‘u’, ‘o’]

extend():

Example:

language = [‘French’, ‘English’, ‘German’]
language1 = [‘Spanish’, ‘Portuguese’]
language.extend(language1)
print(‘Language List: ‘, language)

Output:
Language List: [‘French’, ‘English’, ‘German’, ‘Spanish’, ‘Portuguese’]

Index():

Example 1:

vowels = [‘a’, ‘e’, ‘i’, ‘o’, ‘i’, ‘u’]
index = vowels.index(‘e’)
print(‘The index of e:’, index)
index = vowels.index(‘i’)
print(‘The index of i:’, index)

LIsts, Tuples, Dictionaries 4.7

Output:

The index of e: 1

The index of e: 2

Example 2:

vowels = [‘a’, ‘e’, ‘i’, ‘o’, ‘u’]
index = vowels.index(‘p’)
print(‘The index of p:’, index)

Output:

ValueError: ‘p’ is not in list

remove():

Example:

animal = [‘cat’, ‘dog’, ‘rabbit’]
animal.remove(‘rabbit’)
print(‘Updated animal list: ‘, animal)

Output:

Updated animal list: [‘cat’, ‘dog’]

clear():

Example:

list = [{1, 2}, (‘a’), [‘1.1’, ‘2.2’]]
list.clear()
print(‘List:’, list)
Output: List: []

Sort():

Example 1:

vowels = [‘e’, ‘a’, ‘u’, ‘o’, ‘i’]
vowels.sort()
print(‘Sorted list:’, vowels)

Problem Solving and Python Programming4.8

Output:

Sorted list: [‘a’, ‘e’, ‘i’, ‘o’, ‘u’]

Example 2:

vowels = [‘e’, ‘a’, ‘u’, ‘o’, ‘i’]
vowels.sort(reverse=True)
print(‘Sorted list (in Descending):’, vowels)

Output:

Updated List: [‘a’, ‘e’, ‘i’, ‘u’, ‘o’]

reverse():

Example:

os = [‘Windows’, ‘macOS’, ‘Linux’]
print(‘Original List:’, os)
os.reverse()
print(‘Updated List:’, os)

Output:

Original List: [‘Windows’, ‘macOS’, ‘Linux’]
Updated List: [‘Linux’, ‘macOS’, ‘Windows’]

Example:

os = [‘Windows’, ‘macOS’, ‘Linux’]
print(‘Original List:’, os)
reversed_list = os[::-1]
print(‘Updated List:’, reversed_list)

Output:

Original List: [‘Windows’, ‘macOS’, ‘Linux’]
Updated List: [‘Linux’, ‘macOS’, ‘Windows’]

Pop():

Example:

language = [‘Python’, ‘Java’, ‘C++’, ‘French’, ‘C’]

LIsts, Tuples, Dictionaries 4.9

return_value = language.pop(3)
print(‘Return Value: ‘, return_value)
print(‘Updated List: ‘, language)

Output:

Return Value: French
Updated List: [‘Python’, ‘Java’, ‘C++’, ‘C’]

Example:

language = [‘Python’, ‘Java’, ‘C++’, ‘Ruby’, ‘C’]
print(‘When index is not passed:’)
print(‘Return Value: ‘, language.pop())
print(‘Updated List: ‘, language)
print(‘\nWhen -1 is passed:’)
print(‘Return Value: ‘, language.pop(-1))
print(‘Updated List: ‘, language)
print(‘\nWhen -3 is passed:’)
print(‘Return Value: ‘, language.pop(-3))
print(‘Updated List: ‘, language)

Output:

When index is not passed:

Return Value: C

Updated List: [‘Python’, ‘Java’, ‘C++’, ‘Ruby’]

When -1 is passed:

Return Value: Ruby

Updated List: [‘Python’, ‘Java’, ‘C++’]

When -3 is passed:

Return Value: Python

Updated List: [‘Java’, ‘C++’]

Problem Solving and Python Programming4.10

4.1.4 List loop

Python’s for statement provides a convenient means of iterating over lists.

For loop:

A for statement is an iterative control statement that iterates once for each element
in a specified sequence of elements. Thus, for loops are used to construct definite
loops.

Syntax:

for val in sequence:

Example1:

a=[10,20,30,40,50]
for i in a:
print(i)

Output :

1
2
3
4
5

Example 2 :

a=[10,20,30,40,50]
for i in range(0,len(a),1):
print(i)

Output :

0
1
2
3
4

LIsts, Tuples, Dictionaries 4.11

Example 3 :

a=[10,20,30,40,50]
for i in range(0,len(a),1):
print(a[i])

Output ;

10
20
30
40
50

While loop:

The while loop in Python is used to iterate over a block of code as long as the
test expression (condition) is true.When the condition is tested and the result is false,
the loop body will be skipped and the first statement after the while loop will be
executed.

Syntax:

while (condition):
body of while

Example : Sum of Elements in a List

a=[1,2,3,4,5]
i=0
sum=0
while i<len(a):

sum=sum+a[i]
i=i+1

print(sum)

4.1.5 List Mutability

Lists are mutable. When the bracket operator appears on the left side of an
assignment, it Identifies the element of the list that will be assigned.

Problem Solving and Python Programming4.12

Example:

Changing Single Element

>>> a=[1,2,3,4,5]
>>> a[0]=100
>>> print(a)
[100, 2, 3, 4, 5]

Changing multiple element

>>> a=[1,2,3,4,5]
>>> a[0:3]=[100,100,100]
>>> print(a)
[100, 100, 100, 4, 5]

The elements from a list can also be removed by assigning the empty list to
them.

>>> a=[1,2,3,4,5]
>>> a[0:3]=[]
>>> print(a)
[4, 5]

The elements can be inserted into a list by squeezing them into an empty
slice at the desired location.

>>> a=[1,2,3,4,5]
>>> a[0:0]=[20,30,45]
>>> print(a)
[20,30,45,1, 2, 3, 4, 5]

4.1.6 List Aliasing

Creating a copy of a list is called aliasing. When you create a copy both list will
be having same memory location. Changes in one list will affect another list. Aliasing
refers to having different names for same list values.

Example :

a= [10,20,30,40]
b=a

LIsts, Tuples, Dictionaries 4.13

print (b)
a is b
b[2]=35
print(a)
print(b)

Output :

[10,20,30,40]
True
[10,20,30,40]
[10,20,35,40]

In this a single list object is created and modified using the subscript operator.
When the first element of the list named “a” is replaced, the first element of the list
named “b” is also replaced. This type of change is what is known as a side effect. This
happens because after the assignment b=a, the variables a and b refer to the exact
same list object.

They are aliases for the same object. This phenomenon is known as aliasing. To
prevent aliasing, a new object can be created and the contents of the original can be
copied which is called cloning.

4.1.7 List Cloning

To avoid the disadvantages of copying we are using cloning. Creating a copy of
a same list of elements with two different memory locations is called cloning. Changes
in one list will not affect locations of another list.

a
10 20 30 40

0 1 2 3
a = [10, 20, 30]

a
10 20 30 40

0 1 2 3

b

0 1 2 3

b = [10, 20, 30]

a
10 20 30 40

0 1 2 3

b

0 1 2 3

b [2] = 35

Problem Solving and Python Programming4.14

Cloning is a process of making a copy of the list without modifying the original
list.

1. Slicing

2. list()method

3. copy() method

Cloning using Slicing

>>>a=[1,2,3,4,5]
>>>b=a[:]
>>>print(b)
[1,2,3,4,5]
>>>a is b
False

Cloning using List() method
>>>a=[1,2,3,4,5]
>>>b=list
>>>print(b)
[1,2,3,4,5]
>>>a is b
false
>>>a[0]=100
>>>print(a)
>>>a=[100,2,3,4,5]
>>>print(b)
>>>b=[1,2,3,4,5]

Cloning using copy() method

a=[1,2,3,4,5]
>>>b=a.copy()
>>> print(b) [1, 2, 3, 4, 5]
>>> a is b
False

LIsts, Tuples, Dictionaries 4.15

4.1.8 List Parameters

In python, arguments are passed by reference. If any changes are done in the
parameter which refers within the function, then the changes also reflects back in the
calling function. When a list to a function is passed, the function gets a reference to
the list.

Passing a list as an argument actually passes a reference to the list, not a copy of
the list. Since lists are mutable, changes made to the elements referenced by the
parameter change the same list that the argument is referencing.

Example1 :

def remove(a):
a.remove(1)

a=[1,2,3,4,5]
remove(a)
print(a)

Output:

[2,3,4,5]

Example 2:

def inside(a):
for i in range(0,len(a),1):

a[i]=a[i]+10
print(“inside”,a)

a=[1,2,3,4,5]
inside(a)
print(“outside”,a)

Output

inside [11, 12, 13, 14, 15]
outside [11, 12, 13, 14, 15]

Example 3
def insert(a):

a.insert(0,30)

Problem Solving and Python Programming4.16

a=[1,2,3,4,5]
insert(a)
print(a)

Output

[30, 1, 2, 3, 4, 5]

Suggested links to Refer :

List :
https://www.tutorialspoint.com/videotutorials/
video_course_view.php?course=python_online_training&chapter=python_basic_list_operation
List Using for Loop:
https://www.youtube.com/watch?v=YT6ldZuBW4Y
Python List functions:
https://www.youtube.com/watch?v=96Wr1OO-4d8
Python Slicing:
https://www.youtube.com/watch?v=iD6a0G8MnjA

4.2 TUPLES

A tuple is an immutable linear data structure. Thus, in contrast to lists, once a
tuple is defined, it cannot be altered. Otherwise, tuples and lists are essentially the
same. To distinguish tuples from lists, tuples are denoted by parentheses instead of
square brackets.

Benefit of Tuple:

 Tuples are faster than lists.

 If the user wants to protect the data from accidental changes, tuple can be
used.

 Tuples can be used as keys in dictionaries, while lists can’t.

An empty tuple is represented by a set of empty parentheses, ().The elements
of tuples are accessed the same as lists, with square brackets, Any attempt to alter a
tuple is invalid. Thus, delete, update, insert, and append operations are not defined
on tuples.

LIsts, Tuples, Dictionaries 4.17

4.2.1 Operations on Tuples

1. Indexing
2. Slicing
3. Concatenation
4. Repetitions
5. Membership
6. Comparison

Creating a tuple

>>>a=(20,40,60,”apple”,”ball”)

Indexing

>>>print(a[0])
20

>>> a[2]
60

Slicing

>>>print(a[1:3])
(40,60)

Concatenation

>>> b=(2,4)
>>>print(a+b)
>>>(20,40,60,”apple”,”ball”,2,4)

Repetition

>>>print(b*2)
>>>(2,4,2,4)

Membership

>>> a=(2,3,4,5,6,7,8,9,10)
>>> 5 in a
True

Problem Solving and Python Programming4.18

>>> 100 in a
False
>>> 2 not in a
False

Comparison

>>> a=(2,3,4,5,6,7,8,9,10)
>>>b=(2,3,4)
>>> a==b

False
>>> a!=b

True

4.2.2 Tuple methods

Tuple is immutable so changes cannot be done on the elements of a tuple once it
is assigned.

a.index(tuple)

>>> a=(1,2,3,4,5)
>>> a.index(5)

4

a.count(tuple)

>>>a=(1,2,3,4,5)
>>> a.count(3)

1

len(tuple)

>>> len(a)
5

min(tuple)

>>> min(a)
1

LIsts, Tuples, Dictionaries 4.19

max(tuple)

>>> max(a)
5

del(tuple)

>>> del(a)

4.2.3 Tuple Assignment

Tuple assignment allows variables on the left of an assignment operator and
values of tuple on the right of the assignment operator.

Multiple assignment works by creating a tuple of expressions from the right
hand side, and a tuple of targets from the left, and then matching each expression to a
target.Because multiple assignments use tuples to work, it is often termed tuple
assignment.

Uses of Tuple assignment:

It is often useful to swap the values of two variables.

Example:

Swapping using temporary variable:

a=20
b=50
temp = a
a = b
b = temp
print(“value after swapping is”,a,b)

Swapping using tuple assignment:

a=20
b=50
(a,b)=(b,a)
print(“value after swapping is”,a,b)

Multiple assignments:

Multiple values can be assigned to multiple variables using tuple assignment.

Problem Solving and Python Programming4.20

>>>(a,b,c)=(1,2,3)
>>>print(a)

1
>>>print(b)

2
>>>print(c)

3

4.2.4 Tuple as return value

A Tuple is a comma separated sequence of items. It is created with or
without (). A function can return one value. if you want to return more than one value
from a function. We can use tuple as return value.

Example :

Example1: Output:

def div(a,b):
r=a%b
q=a//b
return(r,q)

a=eval(input(“enter a value:”))
b=eval(input(“enter b value:”))
r,q=div(a,b)
print(“reminder:”,r)
print(“quotient:”,q)

Example2: Output:

def min_max(a):
small=min(a)

 big=max(a)
 return(small,big)
a=[1,2,3,4,6]
small,big=min_max(a)
print(“smallest:”,small)
print(“biggest:”,big)

enter a value:4
enter b value:3
reminder: 1
quotient: 1

smallest: 1
biggest: 6

LIsts, Tuples, Dictionaries 4.21

4.2.5 Tuple as argument

The parameter name that begins with * gathers argument into a tuple.

Example:

def printall(*args):
print(args)
printall(2,3,’a’)

Output :

(2, 3, ‘a’)

Suggested Links to Refer

Tuples : https://www.youtube.com/watch?v=R8mOaSIHT8U
Tuple as Paramerter : https://www.youtube.com/watch?v=sgnP62EXUtA
Tuple assignment : https://www.youtube.com/watch?v=AhSW1sEOzWY

4.3 DICTIONARIES

A dictionary organizes information by association, not position.

Example: when you use a dictionary to look up the definition of “mammal,”
you don t start at page 1; instead, you turn directly to the words beginning with “M.”
Phone books, address books, encyclopedias, and other reference sources also organize
information by association. In Python, a dictionary associates a set of keys with data
values. A Python dictionary is written as a sequence of key/value pairs separated by
commas. These pairs are sometimes called entries. The entire sequence of entries is
enclosed in curly braces ({ and }). A colon (:) separates a key and its value.

Note : Elements in Dictionaries are accessed via keys and not by their position.

Here are some example dictionaries:

dict = {‘Name’: ‘Zara’, ‘Age’: 7, ‘Class’: ‘First’}
print “dict[‘Name’]: “, dict[‘Name’]
print “dict[‘Age’]: “, dict[‘Age’]

Output:

dict[‘Name’]: Zara
dict[‘Age’]: 7

Problem Solving and Python Programming4.22

If we attempt to access a data item with a key, which is not part of the dictionary,
we get an error. We can even create an empty dictionary—that is, a dictionary that
contains no entries. We would create an empty dictionary in a program that builds a
dictionary from scratch.

4.3.1 Dictionary Operations

Operations on dictionary:

1. Accessing an element

2. Update

3. Add element

4. Membership

Creating a dictionary

>>> a={1:”one”,2:”two”}
>>> print(a)

{1: ‘one’, 2: ‘two’}

Accessing an element

>>> a[1]
‘one’

>>> a[0]
KeyError: 0

Update

>>> a[1]=”ONE”
>>> print(a)

{1: ‘ONE’, 2: ‘two’}

Add element

>>> a[3]=”three”
>>> print(a)
{1: ‘ONE’, 2: ‘two’, 3: ‘three’}

LIsts, Tuples, Dictionaries 4.23

Membership

a={1: ‘ONE’, 2: ‘two’, 3: ‘three’}

>>> 1 in a

True

>>> 3 not in a

False

4.3.2 Dictionary Methods

Method Example Description

a.copy() a={l: ‘ONE’. 2: ‘two’. 3: ‘three’}
>>> b=a.copy()
>>> print(b)
{1: ‘ONE’, 2: ‘two’. 3: ‘three’}

a.items() >>> a.items()
diet_items([(l, ‘ONE’). (2. ‘two’).
(3. ‘three’)])

a.keys() >> a.keys()
diet keys([1, 2,])

a.values() >>> a.values()
diet_valuesf ([‘ONE’. ‘two’, ‘three’])

a.pop(key) >>> a.pop(3)
‘three’
>>> print(a)
{1: ‘ONE’. 2: ‘two’}

setdefault >>> a.setdefault(3,“three”)
(key.value) ‘three’

>>> print(a)
{1: ‘ONE’. 2: ‘two’, 3: ‘three’}
>>> a.setdefault(2)
‘two’

It returns copy of the
dictionary, here copy of
dictionary ‘a’ get stored in
to dictionary ‘b’

Return a new view of the
dict ionary’s it ems. It
displays a list of
dictionary’s (key, value)
tuple pairs.

It displays list of keys in a
dictionary

It displays list of values in
dictionary

Remove the element with
key and return its value
from the dictionary.

If key is in the dictionary,
return its value. If key is not
present, insert key with a
value of dict ionary and
return dictionary.

Problem Solving and Python Programming4.24

a.update >>> b={4:”four”}
(dictionary) >>> a.update(b)

>>> print(a)
{1: ‘ONE’, 2: ‘two’, 3: ‘three’, 4: ‘four’}

fromkeys() >>> key={“apple”.”ball”}
>>> value=“for kids”
>>> d=dict.fromkeys(key,value)
>>> print(d)
{‘apple’: ‘for kids’, ‘ball’: ‘for kids’}

len(a) a={l: ‘ONE’, 2: ‘two’, 3: ‘three’}
>>>lena(a)
3

clear() a={1: ‘ONE’, 2: ‘two’. 3: ‘three’}
>>>a.clear()
>>>print(a)
>>>{}

del(a) a={l: ‘ONE’, 2: ‘two’. 3: ‘three’}
>>> del(a)

4.4 ADVANCED LIST PROCESSING

1. List Comprehension:

List comprehensions provide a concise way to apply operations on a list. It creates
a new list in which each element is the result of applying a given operation in a list. It
consists of brackets containing an expression followed by a “for” clause, then a list.
The list comprehension always returns a result list.

Syntax:

list=[expression for item in list if conditional]

Example 1:

>>>L=[x**2 for x in range(0,5)]
>>>print(L)

Output :
[0, 1, 4, 9, 16]

It will add the dictionary
with the existing dictionary

It creates a dictionary from
key and values.

It returns the length of the
list

Remove all elements form
the dictionary.

It will delete the entire
dictionary.

LIsts, Tuples, Dictionaries 4.25

Example 2 :

>>>[x for x in range(1,10) if x%2==0]

Output :

[2, 4, 6, 8]

Example 3 :

>>>[x+3 for x in [1,2,3]]

Output :

[4, 5, 6]

Example 4 :

 >>> [x*x for x in range(5)]

Output :

[0, 1, 4, 9, 16]

2. Nested list:

List inside another list is called nested list.

Example:

>>> a=[56,34,5,[34,57]]
>>> a[0]
56
>>> a[3]
[34, 57]
>>> a[3][0]
34
>>> a[3][1]
57

Problem Solving and Python Programming4.26

Reference Links :

List :

NPTEL : https://www.youtube.com/watch?time_continue=4&v=0y5HOotxpys
https://www.youtube.com/watch?v=ffMgNo17Ork

Youtube : https://www.youtube.com/watch?v=ohCDWZgNIU0

Tuples

NPTEL : https://www.youtube.com/watch?time_continue=6&v=lR8DWx2fcbQ
Youtube : https://www.youtube.com/watch?v=vQItTnigtrg

Courseera : https://www.coursera.org/lecture/python-for-applied-data-science/
list-and-tuples-bUWEy

Dictionaries:

NPTEL : https://www.youtube.com/watch?time_continue=1&v=lR8DWx2fcbQ
Youtube : https://www.youtube.com/watch?v=V8CQkDTt7eA

ILLUSTRATIVE PROGRAMS

1. Program for matrix addition

X = [[12,7,3],
 [4 ,5,6],
 [7 ,8,9]]

Y = [[5,8,1],
 [6,7,3],
 [4,5,9]]

result = [[0,0,0],
 [0,0,0],
 [0,0,0]]

iterate through rows
for i in range(len(X)):

LIsts, Tuples, Dictionaries 4.27

 # iterate through columns
 for j in range(len(X[0])):
 result[i][j] = X[i][j] + Y[i][j]

for r in result:
 print(r)

2. Program for matrix subtraction

X = [[12,7,3],
 [4 ,5,6],
 [7 ,8,9]]

Y = [[5,8,1],
 [6,7,3],
 [4,5,9]]

result = [[0,0,0],
 [0,0,0],
 [0,0,0]]
iterate through rows
for i in range(len(X)):
 # iterate through columns
 for j in range(len(X[0])):
 result[i][j] = X[i][j] - Y[i][j]

for r in result:
 print(r)

3. Program for matrix Multiplication

X = [[12,7,3],
 [4 ,5,6],
 [7 ,8,9]]

Problem Solving and Python Programming4.28

3x4 matrix
Y = [[5,8,1,2],
 [6,7,3,0],
 [4,5,9,1]]
result is 3x4
result = [[0,0,0,0],
 [0,0,0,0],
 [0,0,0,0]]
iterate through rows of X
for i in range(len(X)):
 # iterate through columns of Y
 for j in range(len(Y[0])):
 # iterate through rows of Y
 for k in range(len(Y)):
 result[i][j] += X[i][k] * Y[k][j]
for r in result:
 print(r)

4. Program for Selection Sort

Selection sort is one of the simplest sorting algorithms. It is similar to the hand
picking where we take the smallest element and put it in the first position and the
second smallest at the second position and so on.

We first check for smallest element in the list and swap it with the first element
of the list. Again, we check for the smallest number in a sublist, excluding the first
element of the list as it is where it should be (at the first position) and put it in the
second position of the list. We continue repeating this process until the list gets sorted.

LIsts, Tuples, Dictionaries 4.29

Working of selection sort:

Let’s code this in Python

a = [23,78,45,8,32,56]
i = 0
while i<len(a):
 #smallest element in the sublist
 smallest = min(a[i:])
 #index of smallest element
 index_of_smallest = a.index(smallest)
 #swapping
 a[i],a[index_of_smallest] = a[index_of_smallest],a[i]
 i=i+1
print (a)

23 78 45 8 32 56 Original list

78 45 23 32 568

8 23

Unsorted

Unsorted

After pass 1

45 78 32 56 56 After pass 2

8 23 32 After pass 3

Unsorted

UnsortedSorted

78 45 56

8 23 32 45 78 56

Sorted

Sorted

After pass 4

After pass 58 23 32 45 56 78

Problem Solving and Python Programming4.30

Output

[8,23,32,45,56,78]

5. Program for insertion sort

Insertion sort is similar to arranging the documents of a bunch of students in
order of their ascending roll number. Starting from the second element, we compare it
with the first element and swap it if it is not in order. Similarly, we take the third
element in the next iteration and place it at the right place in the sublist of the first and
second elements (as the sublist containing the first and second elements is already
sorted). We repeat this step with the fourth element of the list in the next iteration and
place it at the right position in the sublist containing the first, second and the third
elements. We repeat this process until our list gets sorted.

LIsts, Tuples, Dictionaries 4.31

Let us code this in python

a = [12,3,1,5,8]
#iterating over a
for i in a:
 j = a.index(i)
 #i is not the first element
 while j>0:
 #not in order
 if a[j-1] > a[j]:
 #swap
 a[j-1],a[j] = a[j],a[j-1]
 else:
 #in order
 break
 j = j-1
print (a)

Output :

[1,3,5,8,12]

Explanation of the code

for i in a – We are iterating over the list ‘a’

while j>0 – Index of the current element is positive. This means that the element
at the index of ‘j’ is not the first element and we need to compare the values.

if a[j-1] > a[j] – These two elements are not in order. We need to swap them. else
– The elements are in order, we can break the while loop.

a[j-1],a[j] = a[j],a[j-1] – Swapping.

6. Program for merge sort

Merge sort is a divide-and-conquer algorithm based on the idea of breaking down
a list into several sub-lists until each sublist consists of a single element and merging
those sublists in a manner that results into a sorted list.

Problem Solving and Python Programming4.32

Python Code

def mergeSort(nlist):
 print(“Splitting “,nlist)
 if len(nlist)>1:
 mid = len(nlist)//2

3 1 4 1 5 9 2 6 5 4

3 1 4 1 5

3 1 4 1 5

3 1 4 1 5

1 5

1 5

31

1 4 5

1 1 3 4 5 2 4 5 6 9

1 1 3 4 4 5 52 6 9

4 5 6

4 5

5 42 9

5 4629

29 6 5 4

9 2 6 5 4

LIsts, Tuples, Dictionaries 4.33

 lefthalf = nlist[:mid]
 righthalf = nlist[mid:]

 mergeSort(lefthalf)
 mergeSort(righthalf)
 i=j=k=0
 while i < len(lefthalf) and j < len(righthalf):
 if lefthalf[i] < righthalf[j]:
 nlist[k]=lefthalf[i]
 i=i+1
 else:
 nlist[k]=righthalf[j]
 j=j+1
 k=k+1

 while i < len(lefthalf):
 nlist[k]=lefthalf[i]
 i=i+1
 k=k+1

 while j < len(righthalf):
 nlist[k]=righthalf[j]
 j=j+1
 k=k+1
 print(“Merging “,nlist)
nlist = [14,46,43,27,57,41,45,21,70]
mergeSort(nlist)
print(nlist)

Output:
Splitting [14, 46, 43, 27, 57, 41, 45, 21, 70]
Splitting [14, 46, 43, 27]
Splitting [14, 46]
Splitting [14]
Merging [14]

Problem Solving and Python Programming4.34

Splitting [46]
———
Merging [14, 21, 27, 41, 43, 45, 46, 57, 70]
[14, 21, 27, 41, 43, 45, 46, 57, 70]

Flowchart

def mergeSort(nlist)

print(”Splitting”, nlist)

len(nlist)>1?

mid = len(nlist)//2
lefthalf = nlist[:mid]
righthalf = nlist[mid:]
mergeSort(lefthalf)
mergeSort(righthalf)
i = j = k = 0

Yes

No

i < len(lefthalf) and j
< len(righthalf)?

lefthalf[i] <
righthalf[j]? i < len(lefthalf) ?

Yes

YesYes

No

NoNo

nlist[k] = lefthalf[1]
i = i + 1

nlist[k] = righthalf[1]
j = j + 1

nlist[k] = lefthalf[i]
i = i + 1

k = k + 1

Yes No

K = K + 1

j < len(righthalf) ?

nlist[k] = righthalf[j]
j = j + 1
k = k + 1

print(”Merging”, nlist)

End

LIsts, Tuples, Dictionaries 4.35

7. Python program for printing histogram

Write a Python program to create a histogram from a given list of integers.

def histogram(items):
 for n in items:
 output = ‘’
 times = n
 while(times > 0):
 output += ‘*’
 times = times - 1
 print(output)
histogram([2, 3, 6, 5])

Output:

**

8. Python program to print the calendar of the month

import calendar
y=int(input(“enter year:”))
m=int(input(“enter month:”))
print(calendar.month(y,m))

Output:

enter year: 2018
enter month: 8
 August 2018
Mo Tu We Th Fr Sa Su
 1 2 3 4 5
 6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

Problem Solving and Python Programming4.36

Suggested Link to Refer :

Selection Sort : https://www.youtube.com/watch?v=mI3KgJy_d7Y
Insertion Sort : https://www.youtube.com/watch?v=Nkw6Jg_Gi4w
Quick Sort(NPTEL) : https://youtu.be/zjqzrcljMlI
Merge Sort (NPTEL) : https://youtu.be/V7fvTmhqokM

Reference:

http://interact ivepython.org/courselib/static/pythonds/SortSearch/
TheMergeSort.html

PRACTICE PROBLEMS

1. Write a python Program to calculate the average of numbers in a list

2. Write a python Program to find the maximum and minimum number in a list

3. Write a python Program to list even and odd numbers of a list

4. Write a Python program

i. To add new elements to the end of the list

ii. To reverse elements in the list

iii. To display same list elements multiple times.

iv. To concatenate two list.

v. To sort the elements in the list in ascending order.

5. Write a Python program for cloning the list and aliasing the list.

6. Write a Python program: “tuple1 = (10,50,20,40,30)”

i. To display the elements 10 and 50 from tuple1

ii. To display length of a tuple1.

iii. To find the minimum element from tuple1.

iv. To add all elements in the tuple1.

v. To display same tuple1 multiple times

LIsts, Tuples, Dictionaries 4.37

7. Write a Python program

i. To create a dictionary

ii. To adding an element to dictionary

iii. To display length of the dictionary.

iv. To updating element in dictionary.

v. To remove all elements from the dictionary.

8. Write a python program to accept ‘n’ names, sort names in alphabetic order and
print the result.

9. Write a python program to store ‘n’ names in a list and sort the list using
selection sort.

10. Write a python program to merge two lists.

11. Write a python program to remove duplicates from a list.

12. Write a python program to find the 1st and 2nd largest element in the list.

ASSIGNMENT QUESTIONS

1. With a given integral number n, write a program to generate a dictionary that
contains (i, i*i) such that is an integral number between 1 and n (both included).
and then the program should print the dictionary.

Suppose the following input is supplied to the program:
8
Then, the output should be:
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64}

Hints:

In case of input data being supplied to the question, it should be assumed to be a
console input.

Consider use dict()

2. Define a function which can print a dictionary where the keys are numbers
between 1 and 3 (both included) and the values are square of keys.

Problem Solving and Python Programming4.38

Hints:

Use dict[key]=value pattern to put entry into a dictionary.
Use ** operator to get power of a number.

3. Define a function which can print a dictionary where the keys are numbers
between 1 and 20 (both included) and the values are square of keys.

Hints:

Use dict[key]=value pattern to put entry into a dictionary.
Use ** operator to get power of a number.
Use range() for loops.

4. Define a function which can generate and print a list where the values are square
of numbers between 1 and 20 (both included).

Hints:

Use ** operator to get power of a number.
Use range() for loops.
Use list.append() to add values into a list.

5. With a given tuple (1,2,3,4,5,6,7,8,9,10), write a program to print the first half
values in one line and the last half values in one line.

Hints: Use [n1:n2] notation to get a slice from a tuple.

6. By using list comprehension, please write a program to print the list after
removing the 0th, 2nd, 4th,6th numbers in [12,24,35,70,88,120,155].

Hints:

Use list comprehension to delete a bunch of element from a list.
Use enumerate() to get (index, value) tuple.

7. With a given list [12,24,35,24,88,120,155,88,120,155], write a program to print
this list after removing all duplicate values with original order reserved.

Hints:

Use set() to store a number of values without duplicate.

LIsts, Tuples, Dictionaries 4.39

8. Define the variables x and y as lists of numbers, and z as a tuple.
x=[1, 2, 3, 4, 5]
y=[11, 12, 13, 14, 15]
z=(21, 22, 23, 24, 25)
(a) What is the value of 3*x?
(b) What is the value of x+y?
(c) What is the value of x-y?
(d) What is the value of x[1]?
(e) What is the value of x[0]?
(f) What is the value of x[-1]?
(g) What is the value of x[:]?
(h) What is the value of x[2:4]?
(i) What is the value of x[1:4:2]?
(j) What is the value of x[:2]?
(k) What is the value of x[::2]?
(l) What is the result of the following two expressions?
x[3]=8
print x
(m) What is the result of the above pair of expressions if the list x were
replaced with the tuple z?

9. An assignment statement containing the expression a[m:n] on the left side and a
list on the right side can modify list a. Complete the following table by supplying
the m and n values in the slice assignment statement needed to produce the
indicated list from the given original list.

Original List Target List Slice indices
m n

[2, 4, 6, 8 , 10] [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
[2, 4, 6, 8 , 10] [–10, –8, –6, –4, –2, 0, 2, 4, 6, 8, 10]
[2, 4, 6, 8 , 10] [2, 3, 4, 5, 6, 7, 8, 10]
[2, 4, 6, 8 , 10] [2, 4, 6, ‘a’, ‘b’, ‘c’, 8, 10]
[2, 4, 6, 8 , 10] [2, 4, 6, 8, 10]
[2, 4, 6, 8 , 10] []
[2, 4, 6, 8 , 10] [10, 8, 6, 4, 2]
[2, 4, 6, 8 , 10] [2, 4, 6]
[2, 4, 6, 8 , 10] [6, 8, 10]
[2, 4, 6, 8 , 10] [2, 10]
[2, 4, 6, 8 , 10] [4, 6, 8]

Problem Solving and Python Programming4.40

PART A QUESTION AND ANSWERS

1. Define python list.

The list is written as a sequence of data values separated by commas. There are
several ways to create a new list; the simplest is to enclose the elements in
square brackets ([and]): ps = [10, 20, 30, 40]

2. Write the different ways to create the list.

List1=[4,5,6].
List2=[]
List2[0]=4
List2[1]=5
List2[2]=6

3. Give an example for nest list

A list within the another list is called as nested list.

Eg: zs = [“hello”, 2.0, 5, [10, 20]]

4. Write the syntax for accessing the list elements.

The way to access list elements is index operator.

Eg: List1=[4,5,6]
List1[0]=4
List1[1]=5
List1[2]=6

5. List out the methods used in list.

Append, Extend, Insert, Index, sort, reverse, pop, remove, clear

6. Write a python program for reversing a list.
vowels = [‘e’, ‘a’, ‘u’, ‘o’, ‘i’] vowels.sort(reverse=True)
print(‘Sorted list (in Descending):’, vowels)

7. Write a python program to add a single element to the end of the list.
vowels = [‘e’, ‘a’, ‘u’, ‘i’]
vowels.append(‘o’)

LIsts, Tuples, Dictionaries 4.41

8. Write a python program to print the list elements using for loop.
num=[10,22,33,44,50,66]

for k in num: print (k)

9. Is list is mutable? Justify your answer.

List elements can be changed once after initializing the list. This is called as
mutability.

>>> numbers = [42, 123]

>>> numbers[1] = 5

>>> numbers[42, 5]

10. Write difference between list aliasing and cloning.

An object with more than one reference has more than one name, the object is
aliased. If the aliased object is mutable, changes made with one alias affect the
other. Clone changes are not being affected the other copy of list.

11. How tuple is differ from list?

Tuples are created by using ().
Tuples are immutable.
List is created by using [].
List is mutable.

12. Explain how tuples are used as return values

A function can only return one value, but if the value is a tuple, the effect is the
same as returning multiple values.

>>> t = divmod(7, 3)

>>> t (2,1)

13. What is a dictionary? Give an example.

Python dictionary is written as a sequence of key/value pairs separated by
commas. These pairs are sometimes called entries. The entire sequence of entries
is enclosed in curly braces ({ and }). A colon (:) separates a key and its value.

Eg: dict = {‘Name’: ‘Zara’, ‘Age’: 7}

Problem Solving and Python Programming4.42

14. List out the methods used in dictionary.

Get, fromkeys, clear, copy, items, pop,popitem, setdefault, update, etc. How do
we done the membership test in dictionary?

>>>C={1:1,2:2}
>>>2 in C True

15. Write a python program for iterating the dictionary elements.

squares = {1: 1, 3: 9, 5: 25, 7: 49}

for i in squares: print(squares[i])

16. What is called entries in dictionary?

Python dictionary is written as a sequence of key/value pairs separated by
commas. These pairs are sometimes called entries.

17. List out the built in functions of dictionary.

The functions in dictionary : len(), any(), all(), comp(), sorted()

PART B QUESTIONS

1. Discuss about tuple in detail.

2. Define list. Mention the list operations with programs.

3. Explain about advanced list processing and list comprehension.

4. Discuss about Dictionaries, its operations and methods.

5. Code programs :

a. Insertion sort

b. Selection sort

c. Merge sort

d. Histogram

Files, Modules, Packages 5.1

5.1 FILES

File is a named location on disk to store related information. It is used to
permanently store data in a non-volatile memory (e.g. hard disk).

Since, random access memory (RAM) is volatile which loses its data when
computer is turned off, we use files for future use of the data.

When we want to read from or write to a file we need to open it first. When we
are done, it needs to be closed, so that resources that are tied with the file are freed.
Hence, in Python, a file operation takes place in the following order.

1. Open a file

2. Read or write (perform operation)

3. Close the file

5.1.1 Opening a file

Python has a built-in function open() to open a file. This function returns a file
object, also called a handle, as it is used to read or modify the file accordingly.

>>> f = open(“test.txt”) # open file in current directory

>>> f = open(“C:/Python33/README.txt”) # specifying full path

We can specify the mode while opening a file. In mode, we specify whether we
want to read ‘r’, write ‘w’ or append ‘a’ to the file. We also specify if we want to open
the file in text mode or binary mode.

FILES, MODULES, PACKAGES
Files and exception: text files, reading and writing files, format
operator; command line arguments, errors and exceptions, handling
exceptions, modules, packages; illustrative programs: word count,
copy file.

Unit V

Problem Solving and Python Programming5.2

The default is reading in text mode. In this mode, we get strings when reading
from the file. On the other hand, binary mode returns bytes and this is the mode to be
used when dealing with non-text files like image or exe files.

The open function gets two arguments

1. File Name Name of the file

2. Mode indicates that files is opened to write

5.1.2 Python File Modes

Mode Description

‘r’ Open a file for reading. (default)

‘x’ Open a file for exclusive creation. If the file already exists, the operation
fails.

‘a’ Open for appending at the end of the file without truncating it. Creates a
new file if it does not exist.

‘t’ Open in text mode. (default)

‘b’ Open in binary mode.

‘+’ Open a file for updating (reading and w

f = open(“test.txt”) # equivalent to ‘r’ or ‘rt’

f = open(“test.txt”,’w’) # write in text mode

f = open(“img.bmp”,’r+b’) # read and write in binary mode

Hence, when working with files in text mode, it is highly recommended to specify
the encoding type.

f = open(“test.txt”,mode = ‘r’)

5.1.3 Closing a File

When we are done with operations to the file, we need to properly close it.

Closing a file will free up the resources that were tied with the file and is done
using the close() method.

f= open(“test.txt”,’r’) # perform file operations

f.close()

Files, Modules, Packages 5.3

5.1.4 Reading and writing

Reading from a file

A txt file is generally stored in the secondary media like hard disk drive, CD.

We know how to open and close a file object. But what are the actual commands
for reading? There are three ways to read from a file.

 read([n])

 readline([n])

 readlines()

Note: that n is the number of bytes to be read.

read() method

my_file=open(“D:\\new_dir\\multiplelines.txt”,”r”)

my_file.read()

The read() method just outputs the entire file if number of bytes are not given in
the argument. If you execute my_file.read(3), you will get back the first three characters
of the file

my_file=open(“D:\\new_dir\\multiplelines.txt”,”r”)

my_file.read(3)

readline (n)

Outputs at most n bytes of a single line of a file. It does not read more than one
line.

my_file.close ()

my_file=open (“D:\\new_dir\\multiplelines.txt”,”r”)

#Use print to print the line else will remain in buffer and replaced by next
statement

print(my_file.readline())

outputs first two characters of next line

print(my_file.readline(2))

Problem Solving and Python Programming5.4

readlines()

This method maintains a list of each line in the file

my_file=open(“D:\\new_dir\\multiplelines.txt”,”r”)

my_file.readlines()

5.1.5 Writing to a file

Writing methods also come in a pair: .write () and .writelines (). Like the
corresponding reading methods, .write() handles a single string, while .writelines()
handles a list of strings.

Below, .write() writes a single string each time to the designated output file:

>>> fout = open(‘hello.txt’, ‘w’)

>>> fout.write(‘Hello, world!\n’) # .write(str)

>>> fout.write(‘My name is Homer.\n’)

>>> fout.write(“What a beautiful day we’re having.\n”)

>>> fout.close()

This time, we have tobuy, a list of strings, which .writelines() writes out at once:

>>> tobuy = [‘milk\n’, ‘butter\n’, ‘coffee beans\n’, ‘arugula\n’]

>>> fout = open(‘grocerylist.txt’, ‘w’)

>>> fout.writelines(tobuy) # .writelines(list)

>>> fout.close()

Note that all strings in the examples have the line break ‘\n’ at the end. Without
it, all strings will be printed out on the same line

Example for writing a file:

file = open(“testfile.txt”, “w”)

file.write(“This is a test”)

file.write(“To add more lines.”)

file.close()

Files, Modules, Packages 5.5

Examples

The following function copies a file, reading and writing up to fifty characters
at a time.

def copyFile(oldFile, newFile):

f1 = open(oldFile, “r”)

f2 = open(newFile, “w”)

while True:

text = f1.read(50)

if text == “”:

break

f2.write(text)

f1.close()

f2.close()

return

Simple Examples

To open a text file, use:

fh = open(“hello.txt”, “r”)

To read a text file, use:

fh = open(“hello.txt”,”r”)

print fh.read()

To read one line at a time, use:

fh = open(“hello”.txt”, “r”)

print fh.readline()

To read a list of lines use:

fh = open(“hello.txt.”, “r”)

print fh.readlines()

Problem Solving and Python Programming5.6

To write to a file, use:

fh = open(“hello.txt”,”w”)

write(“Hello World”)

fh.close()

To write to a file, use:

fh = open(“hello.txt”, “w”)

lines_of_text = [“a line of text”, “another line of text”, “a third line”]

fh.writelines(lines_of_text)

fh.close()

To append to file, use:

fh = open(“Hello.txt”, “a”)

write(“Hello World again”)

fh.close

To close a file, use

fh = open(“hello.txt”, “r”)

print fh.read()

fh.close()

Suggested Links to refer:

Link: https://www.youtube.com/watch?v=efpFDaXOG6Y

Link: https://www.youtube.com/watch?v=dkLTmpldS-w

Link: https://www.youtube.com/watch?v=9Lu6597k2mg

Link: https://www.youtube.com/watch?v=sNVpwjGdfiE

Files, Modules, Packages 5.7

5.1.6 Format operator

String objects have one unique built-in operation:

The % operator(modulo).this is also known as the stringformatting or
interpolation operator.

The format operator % are replaced with zero or more elements of values. The
built-in format() method returns a formatted representation of the given value controlled
by the format specifier.

The syntax of format() is: format(value[, format_spec])

The format() method takes two parameters:

 value - value that needs to be formatted

 format_spec - The specification on how the value should be formatted.

Example:

d, f and b are type
integer
print(format(453, “d”))
float arguments print(format(978.2229911, “f”))
binary format
print(format(2, “b”))

This will returns the following output

453
978.222991
10

Basic formatting

Simple positional formatting is probably the most common use-case. Use it if
the order of your arguments is not likely to change and you only have very few elements
you want to concatenate.

Old ‘%S %S’ % (‘one’, ‘two’)

New ‘{ } { }’, format (‘one’, ‘two’)

Output o n e t w o

Problem Solving and Python Programming5.8

Old ‘%d %d’ % (1, 2)

New ‘{ } { }’, format (1, 2)

Output 1 2

An alternative is to use the format operator, %. When applied to integers, % is
the modulus operator. A format sequence can appear anywhere in the string,so we can
embed a value in a sentence:

print(‘In %d years I have spotted %g %s.’ % (3, 0.1, ‘camels’))

This will results

In 3 years I have spotted 0.1 camels.

The number of elements in the tuple has to match the number of format sequences
in the string.

Also, the types of the elements have to match the format sequences:

Example

Suppose if our code is

%d %d %d’ % (1, 2)

Then this will generate an error like Type Error: not enough arguments for format
string

5.1.7 Command line arguments

What are command line arguments in python?

In the command line, we can start a program with additional arguments. These
arguments are passed into the program.

Python programs can start with command line arguments.

For example: $python program.py image.bmp

Where program.py and image.bmp is are arguments.

How to use command line arguments in python?

We can use modules to get arguments.

Files, Modules, Packages 5.9

Sys argv

You can get access to the command line parameters using the sys module.
len(sys.argv) contains the number of arguments. To print all of the arguments simply
execute str(sys.argv)

#!/usr/bin/python

import sys

print(‘Arguments:’, len(sys.argv))

print(‘List:’, str(sys.argv))

Example:

$ python3 example.py image.bmp color

Arguments: 3

List: [‘example.py’, ‘image.bmp’, ‘color’]

Storing command line arguments

You can store the arguments given at the start of the program in variables.For
example, an image loader program may start like this:

#!/usr/bin/python

#!/usr/bin/python

import sys

print(‘Arguments:’, len(sys.argv))

print(‘List:’, str(sys.argv))

if sys.argv < 2:

 print(‘To few arguments, please specify a filename’)

filename = sys.argv[1]

print(‘Filename:’, filename)

 Another example:

 (‘Arguments:’, 2)

 (‘List:’, “[‘example.py’, ‘world.png’]”)

 (‘Filename:’, ‘world.png’)

Problem Solving and Python Programming5.10

Suggested Links to refer

Open, Read, Display a text file :
Link : https://www.youtube.com/watch?v=dkLTmpldS-w

Create a Text File
Link : https://www.youtube.com/watch?v=DRZdfd5_rdg

Format Method
Link : https://www.youtube.com/watch?v=mmJPx6YsOMI

Command Line arguments
Link : https://www.youtube.com/watch?v=d3uv23jvp4w

Linkhttps://www.tutorialspoint.com/python_online_training/
python_from_command_line.asp

5.2 ERRORS AND EXCEPTIONS

In Python, there are two kinds of errors: syntax errors and exceptions.

Syntax Errors

This is an error, Raised when there is an error in Python syntax.

Example:

if a<5

File “<interactive input>”, line 1

if a < 5

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little „arrow pointing at the
earliest point in the line where the error was detected.

Exceptions

An exception is an error that happens during execution of a program. When that
error occurs, Python generate an exception that can be handled, which avoids your
program to crash. The types in the example are ZeroDivisionError, NameError and
TypeError.

Files, Modules, Packages 5.11

Example

>>> 10 * (1/0)

Traceback (most recent call last):

File “<stdin>”, line 1,

in <module> ZeroDivisionError:

division by zero

>>> 4 + spam*3

Traceback (most recent call last):

File “<stdin>”, line 1, in <module>

NameError: name ‘spam’ is not defined

>>> ‘2’ + 2

Traceback (most recent call last):

File “<stdin>”, line 1, in <module>

TypeError: Can’t convert ‘int’ object to str

implicitly

Why use Exceptions?

Exceptions are convenient in many ways for handling errors and special
conditions in a program. When you think that you have a code which can produce an
error then you can use exception handling.

Raising an Exception

You can raise an exception in your own program by using the raise exception
statement. Raising an exception breaks current code execution and returns the exception
back until it is handled.

Problem Solving and Python Programming5.12

5.2.1 List of Standard Exceptions

Exception Name Description

Exception Base class for all exceptions

StopIteration Raised when the next() method of an iterator does not point
to any object.

SystemExit Raised by the sys.exit() function.

StandardError Base class for all built-in exceptions except StopIteration
and SystemExit.

ArithmeticError Base class for all errors that occur for numeric calculation.

OverflowError Raised when a calculation exceeds maximum limit for a
numeric type.

FloatingPointError Raised when a floating point calculation fails.

ZeroDivisionError Raised when division or modulo by zero takes place for
all numeric types

AssertionError Raised in case of failure of the Assert statement.

AttributeError Raised in case of failure of at tribute reference or
assignment.

EOFError Raised when there is no input from either the raw_input()
or input()function and the end of file is reached.

ImportError Raised when an import statement fails.

KeyboardInterrupt Raised when the user interrupts program execution, usually
by pressing Ctrl+c.

LookupError Base class for all lookup errors.

IndexError Raised when an index is not found in a sequence.

KeyError Raised when the specified key is not found in the
dictionary.

NameError Raised when an identifier is not found in the local or global
namespace.

Files, Modules, Packages 5.13

UnboundLocalError Raised when trying to access a local variable in a function
or methodbut no value has been assigned to it.

EnvironmentError Base class for all exceptions that occur outside the
Python environment.

IOError Raised when an input/ output operation fails, such as
the print statement or the open() function when trying to
open a file that does not exist.

IOError Raised for operating system-related errors.

SyntaxError Raised when there is an error in Python syntax.

IndentationError Raised when indentation is not specified properly.

SystemError Raised when the interpreter finds an internal problem, but
when this error is encountered the Python interpreter does
not exit.

SystemExit Raised when Python interpreter is quit by using the
sys.exit()function. If not handled in the code, causes the
interpreter to exit.

TypeError Raised when an operation or function is attempted that is
invalid for the specified data type.

ValueError Raised when the built-in function for a data type has the
valid type of arguments, but the arguments have invalid
values specified

RuntimeError Raised when a generated error does not fall into any
category.

NotImplementedError Raised when an abstract method that needs to be
implemented in an inherited class is not actually
implemented.

5.2.2 Handling Exceptions

It is possible to write programs that handle selected exceptions. Exception is an
event, which occurs during the execution of program and disrupts the normal flow of
programs instructions. When a python script raises an exception, it must either handle

Problem Solving and Python Programming5.14

the exception immediately otherwise terminates and quit. If you have some suspicious
code that may raise an exception , you can defend your program by placing the
suspicious code in a try: block. After the try: block, include an except: statement,
followed by a block of code which handles the problem as elegantly as possible.

Different ways of exception handling in python are:

 try… except

try… finally

try…except

a single try statement can have multiple except statements.

Useful when we jave a try block that may throw different types of exceptions.
Code in else- block executes if the code in the try:block does not raise an exception

Syntax:

try:

You do your operations here;

......................

except ExceptionI:

If there is ExceptionI, then execute this block.

except ExceptionII:

If there is ExceptionII, then execute this block.

......................

else:

If there is no exception then execute this block.

Try Raise Except

Exception may
occur

Raise
the exception

Catch if
exception occurs

Files, Modules, Packages 5.15

Checklist To Handle An Exception In Python.

Here is a checklist for using the Python try statement effectively. A single try
statement can have multiple except statements depending on the requirement. In this
case, a try block contains statements that can throw different types of exceptions. We
can also add a generic except clause which can handle all possible types of exceptions.
We can even include an else clause after the except clause. The code in the else block
will execute if the code in the try block doesn t raise any exception

Example:

while True:
try:

n = raw_input(“Please enter an integer: “)
n = int(n)
break

except ValueError:
print(“No valid integer! Please try again ...”)

print “Great, you successfully entered an integer!”

Output

Please enter a number: 23.5

Traceback (most recent call last):

File “<stdin>”, line 1, in <module>

ValueError: invalid literal for int() with base 10: ’23.5'

It’s a loop, which breaks only, if a valid integer has been given.

The example script works like this:

The while loop is entered. The code within the try clause will be executed
statement by statement. If no exception occurs during the execution, the execution
will reach the break statement and the while loop will be left. If an exception occurs,
i.e. in the casting of n, the rest of the try block will be skipped and the except clause
will be executed. The raised error, in our case a Value Error, has to match one of the
names after except. In our example only one, i.e. “Value Error:”. After having printed
the text of the print statement, the execution does another loop. It starts with a new
raw input ().

Problem Solving and Python Programming5.16

Example:

num1=10
num2=2
list1=[10,20,30]
try:

num3=num1/num2
print(num3)
print(list1[4])

except ZeroDivisionError:
print(“Division By Zero”)

except IndexError:
print(“Index out of range”)

except:
print(“Not Specific Error”)

print(num1)
print(num2)

The above code prints the following output
5.0
Index out of range
10
2

try ..finally

finally block is a place to put anny code that must execute irrespective of try
block raised an exception or not. except block can be used with finally block

syntax:

try:
you do your operations here;
………………………………….
Due to any exceptions this may be skipped.

except:
…………………………..

Files, Modules, Packages 5.17

finally:
this would always be executed

Example:

num=4
try:

res=num/0
print(res)

except:
print(“Zero division error”)

finally:
print(“inside finally”)

print(“Out of try except”)
The above code will prints the following output

Zero division error

inside finally
Out of try except

Suggested Links to refer

Link 1 : https://www.youtube.com/watch?v=NIWwJbo-9_8

Link 2 : https://www.youtube.com/watch?v=hrR0WrQMhSs

5.3 MODULES

A Python module is simply a Python source file, which can expose classes,
functions and global variables. When imported from another Python source file, the
file name is treated as a namespace. A module is a file containing Python definitions
and statements intended for use in other Python programs. There are many Python
modules that come with Python as part of the standard library.

Random numbers

Uses of Random numbers, To play a game of chance where the computer needs
to throw some dice, pick a number, or flip a coin,

 To shuffle a deck of playing cards randomly,

Problem Solving and Python Programming5.18

 To allow/make an enemy spaceship appear at a random location and start
shooting at the player,

 To simulate possible rainfall when we make a computerized model for
estimating the environmental impact of building a dam,

 For encrypting banking sessions on the Internet Python provides a module
random that helps with tasks like this.

Example

import random

Create a black box object that generates

random numbers rng = random.Random()

dice_throw = rng.randrange(1,7) # Return an int, one of

1,2,3,4,5,6 delay_in_seconds = rng.random() * 5.0

Repeatability and Testing

Random number generators are based on a deterministic algorithm — repeatable
and predictable. So they re called pseudo-random generators — they are not genuinely
random. They start with a seed value. Each time you ask for another random number,
you ll get one based on the current seed attribute, and the state of the seed (which is
one of the attributes of the generator) will be updated.

The time module

This module provides a number of functions to deal with dates and the time
within a day. It s a thin layer on top of the C runtime library. A given date and time can
either be represented as a floating point value (the number of seconds since a reference
date, usually January 1st, 1970), or as a time tuple. The time module has a function
called clock that is recommended for this purpose. Whenever clock is called, it returns
a floating point number representing how many seconds have elapsed since your
program started running

Example :

import time; # This is required to include time module.
ticks = time.time()
print “Number of ticks since 12:00am, January 1, 1970:”, ticks

Files, Modules, Packages 5.19

Output:

Number of ticks since 12:00am, January 1, 1970: 7186862.73399

Getting current time

import time;
localtime = time.asctime(time.localtime(time.time()))
print “Local current time :”, localtime

Output:

(‘Local current time :’, ‘Mon Jul 09 21:32:29 2018’)

The math module

The math module contains the kinds of mathematical functions you d typically
find on your calculator (sin, cos, sqrt, asin, log, log10) and some mathematical constants
like pi and e:

Example:

import math
print(math.pi)
print(math.e)
print(math.sqrt(4.0))
print(math.radians(90))
print(math.sin(math.radians(90)))

this would print the following results
3.141592653589793
2.718281828459045
2.0
1.5707963267948966
1.0

Creating your own modules

Python allows you to create our own modules is to save our script as a file with
a .py extension.

def remove_at(pos, seq):

return seq[:pos] + seq[pos+1:]

Problem Solving and Python Programming5.20

We can now use our module, both in scripts we write, or in the interactive Python
interpreter.

To do so, we must first import the module.

import seqtools

s = “A string!”
seqtools.remove_at(4, s)
 A sting!

Namespaces

A namespace is a collection of identifiers that belong to a module, or to a function,
(and as we will see soon, in classes too). Generally, we like a namespace to hold
“related” things, e.g. all the math functions, or all the typical things we d do with
random numbers. Each module has its own namespace, so we can use the same identifier
name in multiple modules without causing an identification problem.

Module1.py

question = “What is the meaning of Life, the Universe, and Everything?”

answer = 42

Module2.py

question = “What is your quest?”

answer = “To seek the holy grail.”

We can now import both modules and access question and answer in each:

import module1
import module2
print(module1.question)
print(module2.question)
print(module1.answer)
print(module2.answer)

Will output the following:

What is the meaning of Life, the Universe, and Everything?
What is your quest?

Files, Modules, Packages 5.21

42
To seek the holy grail.

Scope and lookup rules

The scope of an identifier is the region of program code in which the identifier
can be accessed, or used.

There are three important scopes in Python:

Local scope refers to identifiers declared within a function. These identifiers are
kept in the namespace that belongs to the function, and each function has its own
namespace.

Global scope refers to all the identifiers declared within the current module, or
file. Built-in scope refers to all the identifiers built into Python — those like range and
min that can be used without having to import anything, and are (almost) always
available.

Example

def range(n):
return 123*n

print(range(10))
this would print
1230
n = 10
m = 3
def f(n):
m = 7
return 2*n+m
print(f(5), n, m)
the above code will prints 17 10 3

Attributes and the dot operator

Variables defined inside a module are called attributes of the module. We ve
seen that objects have attributes too: for example, most objects have a __doc__ attribute,
some functions have a __annotations__ attribute. Attributes are accessed using the
dot operator (.). The question attribute of module1 and module2 is accessed using
module1.question and module2.question.

Problem Solving and Python Programming5.22

Modules contain functions as well as attributes, and the dot operator is used to
access them in the same way. seqtools.remove_at refers to the remove_at function in
the seqtools module. When we use a dotted name, we often refer to it as a fully qualified
name, because we re saying exactly which question attribute we mean.

Three import statement variants

Here are three different ways to import names into the current namespace, and
to use them:

1. import math x = sqrt(10)

2. from math import

cos, sin, sqrt x =

sqrt(10)

3. from math import *

x = sqrt(10)

Suggested Links to refer

Link 1 : https://www.youtube.com/watch?v=UK97NoQK23k

Link2 : https://www.youtube.com/watch?v=fPrzjXiXpnc

5.4 PYTHON PACKAGES

A Python package refers to a directory of Python module(s). This feature comes
in handy for organizing modules of one type at one place.

A python package is normally installed in:

/usr/lib/python/site-packages # for linux

C:/Python27/Lib/site-packages/ # for windows

To use the package in a script, you will have to first initialize the package using:

mypackage/__init__.pymypackage/mymodule.py

Files, Modules, Packages 5.23

You can then import the package

import mypackage.mymodule
or
from mypackage.mymodule import myclass

In addition to creating ones own packages, Python is home a large and growing
collection of packages (from individual programmers) which is available from the
Python Package Index.

Package installation

There are two standard methods for installing a package.

pip install

The pip install script is available within our scientific Python installation and is
very easy to use (when it works). During the installation process you already saw
many examples of pip install in action. Features include:

If supplied with a package name then it will query the PyPI site to find out about
that package.

Assuming the package is there then pip install will automatically download and
install the package.

Will accept a local tar file (assuming it contains an installable Python package)
or a URL pointing to a tar file.

Can install in the user package area via pip install <package or URL> —user

python setup.py install

Some packages may fail to install via pip install. Most often there will be some
obvious (or not) error message about compilation or missing dependency. In this case
the likely next step is to download the installation tar file and untar it. Go into the
package directory and look for files like:

INSTALL

README

setup.py

setup.cfg

Problem Solving and Python Programming5.24

If there is an INSTALL or README file then hopefully you will find useful
installation instructions. Most well-behaved python packages do the installation via a
standard setup.py script. This is used as follows:

python setup.py —help # get options

python setup.py install # install in the python area (root / admin req’d)

python setup.py install —user # install to user’s package area

Here is an example. Suppose we are developing a game, one possible organization
of packages and modules could be as shown in the figure below.

Suggested Links to refer

Link 1: https://www.youtube.com/watch?v=qh3mJ1elP8I

Link2 : https://www.youtube.com/watch?v=qmsTqQbcBNM

Package

Sub-Package Sub-Package Sub-Package

Game

Sound Image Level
init.py

init.py _init_.py _init_.py

load.py open.py start.py

play.py change.py load.py

over.pyclose.pypause.py

Files, Modules, Packages 5.25

SAMPLE PROGRAMS

1. Program to count the no of words in a given sentence

while True:
print(“Enter ‘x’ for exit.”)
string = input(“Enter any string: “)
if string == ‘x’:

break
else:

word_length = len(string.split())
print(“Number of words =”,word_length,”\n”)

Output:

Enter ‘x’ for exit.
Enter any string: Prathyusha ENgineering College
Number of words = 3

2. To find the most frequent appearance of words in the text.

 from string import punctuation
from operator import itemgetter
 N = 10
words = {}
words_gen = (word.strip(punctuation).lower()
 for line in open(“license.txt”)
for word in line.split())
for word in words_gen:

words[word] = words.get(word, 0) + 1

top_words = sorted(words.iteritems(), key=itemgetter(1), reverse=True)[:N]
 for word, frequency in top_words:

if frequency>100:
print (“%s: %d” % (word, frequency))

Problem Solving and Python Programming5.26

Output:

the: 338
the: 338
:255
of: 220
 or: 174
 and: 151
 in: 132
 this: 120
to: 105
software: 103

3. To count word frequency in a given text

test_string=input(“Enter string:”)
l=[]
l=test_string.split()
wordfreq=[l.count(p) for p in l]
print(dict(zip(l,wordfreq)))

Output:

Enter string: All is Well All is Well

{‘All’: 2, ‘is’: 2, ‘Well’: 2}

4. program to copy file from one place to another

from shutil import copyfile
from sys import exit
source = input(“Enter source file with full path: “)
target = input(“Enter target file with full path: “)
adding exception handling
try:

copyfile(source, target)
except IOError as e:

print(“Unable to copy file. %s” % e)
exit(1)

except:

Files, Modules, Packages 5.27

print(“Unexpected error:”, sys.exc_info())
exit(1)

print(“\nFile copy done!\n”)

while True:
print(“Do you like to print the file ? (y/n): “)
check = input()
if check == ‘n’:

break
elif check == ‘y’:

file = open(target, “r”)
print(“\nHere follows the file content:\n”)
print(file.read())
file.close()
print()
break

else:
continue

ASSIGNMENT QUESTIONS

1. Write a Python program to append text to a file and display the text.

2. Write a Python program to read a file line by line and store it into a list.

3. Write a python program to find the longest words in a file.

4. Write a Python program to assess if a file is closed or not.

Problem Solving and Python Programming5.28

PART A QUESTION AND ANSWERS

1. Define a file

Files are collection of data. It is stored in computer memory and can be taken
any time we require it. Each file is identified by a unique name. In general a text
file is a file that contains printable characters and whitespace, organized into
lines separated by newline characters.

Eg: file.txt

2. List the two methods used for installing python pacakage.

There are two standard methods for installing a package.

pip install

The pip install script is available within our scientific Python installation.

python setup.py install

3. What python package refers to?

A Python package refers to a directory of Python module.

To import a package :

import mypackage.mymodule

4. How do we import the packages in python? Give and example.

We can then import the package by:

import mypackage.mymodule
or
from mypackage.mymodule import myclass

5. What is the use of dot(.) operator?

Variables defined inside a module are called attributes of the module. Attributes
are accessed using the dot operator (.)

6. Define namespaces in python.

A namespace is a collection of identifiers that belong to a module, or to a function.

Each module has its own name space.

Files, Modules, Packages 5.29

7. Write a program to generate a numbers using random module.

import random
rng = random.Random()
dice_throw = rng.randrange(1,7)

8. What is called exception?

Exception is an event , which occurs during the execution of program and distrupts
the normal flow of programs instructions.

9. What are the two ways to handle the exceptions.

The two ways to handle exception is:

try.... catch
try...finally

10. What is syntax error ? Give an example.

This is an error, Raised when there is an error in Python syntax.

Example:

if a<5
File “<interactive input>”, line 1
if a < 5
^

SyntaxError: invalid syntax

11. Describe about the command line arguments.

The sys.argv is a list in Python, which contains the command-line arguments
passed to the script. With the len(sys.argv) function you can count the number of
arguments.

12. Discover the format operator available in files.

A format sequence can appear anywhere in the string,so we can embed a value
in a sentence: print(‘In %d years I have spotted %g %s.’ % (3, 0.1, ‘camels’))

‘{} {}’.format(1,2)

1 2

Problem Solving and Python Programming5.30

13. Write a program to write a data in a file.

Eg:
f = open(“pec.dat”,”w”)
f.write(“Welcome to PEC”)
f.close()

Eg:
Text=f.read()
Print text

14. What are modules?

A Python module is simply a Python source file, which can expose classes,
functions and global variables.

Wg: import math

PART B QUESTIONS

1. Explain about files with file operations.

2. Discuss on errors, exceptions and exception handling.

3. Discuss about modules and how will we create own modules.

4. Explain about packages and command line arguments.

