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COURSE OBJECTIVES:  

• To understand the basics of image processing techniques for computer vision.  

• To learn the techniques used for image pre-processing.  

• To discuss the various object detection techniques.  

• To understand the various Object recognition mechanisms.  

• To elaborate on the video analytics techniques.  

 

 

UNIT I   INTRODUCTION         6  

Computer Vision – Image representation and image analysis tasks - Image representations – 

digitization – properties – color images – Data structures for Image Analysis - Levels of image 

data representation - Traditional and Hierarchical image data structures.  

  

 UNIT II   IMAGE PRE-PROCESSING            6  

Local pre-processing - Image smoothing - Edge detectors - Zero-crossings of the second 

derivative - Scale in image processing - Canny edge detection - Parametric edge models - Edges 

in multispectral images - Local pre-processing in the frequency domain - Line detection by local 

preprocessing operators - Image restoration.  

  

 UNIT III  OBJECT DETECTION USING MACHINE LEARNING                            6  

Object detection– Object detection methods – Deep Learning framework for Object 

detection– bounding box approach-Intersection over Union (IoU) –Deep Learning 

Architectures-R-CNN-Faster R-CNN-You Only Look Once(YOLO)-Salient features-Loss 

Functions-YOLO architectures  

  

 UNIT IV  FACE RECOGNITION AND GESTURE RECOGNITION         6  

Face Recognition-Introduction-Applications of Face Recognition-Process of Face 

Recognition- DeepFace solution by Facebook-FaceNet for Face Recognition- Implementation 

using FaceNetGesture Recognition.  

 UNIT V   VIDEO ANALYTICS            6  

Video Processing – use cases of video analytics-Vanishing Gradient and exploding gradient 

problem - RestNet architecture-RestNet and skip connections-Inception Network-GoogleNet 

architecture Improvement in Inception v2-Video analytics-RestNet and Inception v3.  

                                                                                                                      30 PERIODS  

  



 

 

 

 

 

  30 PERIODS 

LIST OF EXERCISES                 

1. Write a program that computes the T-pyramid of an image.  

2. Write a program that derives the quad tree representation of an image using the 

homogeneity criterion of equal intensity  

3. Develop programs for the following geometric transforms: (a) Rotation (b) Change of 

scale (c) Skewing (d) Affine transform calculated from three pairs of corresponding 

points (e) Bilinear transform calculated from four pairs of corresponding points.  

4. Develop a program to implement  Object Detection and Recognition  

5. Develop a program for motion analysis using moving edges, and apply it to your image 

sequences.  

6. Develop a program for Facial Detection and Recognition  

7. Write a program for event detection in video surveillance system  

                                                                                                       TOTAL: 60 PERIODS 

COURSE OUTCOMES:  

At the end of this course, the students will be able to:  

CO1: Understand the basics of image processing techniques for computer vision and video 

analysis.  

CO2: Explain the techniques used for image pre-processing.  

CO3: Develop various object detection techniques.  

CO4: Understand the various face recognition mechanisms.  

CO5: Elaborate on deep learning-based video analytics.  

TEXT BOOK:  

1. Milan Sonka, Vaclav Hlavac, Roger Boyle, “Image Processing, Analysis, and Machine 

Vision”, 4nd edition, Thomson Learning, 2013.  



 

2. Vaibhav Verdhan, 2021, Computer Vision Using Deep Learning Neural Network 

Architectures with Python and Keras, Apress 2021(UNIT-III,IV and V)  
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CCS349    IMAGE AND VIDEO ANALYTICS   

  
 UNIT I  : INTRODUCTION             

Computer Vision – Image representation and image analysis tasks - Image representations – 

digitization – properties – color images – Data structures for Image Analysis - Levels of image 

data representation - Traditional and Hierarchical image data structures.   

 
  

         

1.1. INTRODUCTION:  

  

Vision allows humans to perceive and understand the world surrounding them, while 

computer vision aims to duplicate the effect of human vision by electronically perceiving 

and understanding an image.  

Giving computers the ability to see is not an easy task—we live in a three-

dimensional (3D) world, and when computers try to analyze objects in 3D space, the 

visual sensors available (e.g., TV cameras) usually give two-dimensional (2D) images, 

and this projection to a lower number of dimensions incurs an enormous loss of 

information. Sometimes, equipment will deliver images that are 3D but this may be of 

questionable value: analyzing such datasets is clearly more complicated than 2D, and 

sometimes the  

‘three-dimensionality’ is less than intuitive to us . . . terahertz scans are an example of 

this. Dynamic scenes such as those to which we are accustomed, with moving objects or 

a moving camera, are increasingly common and represent another way of making 

computer vision more complicated.  

Figure 1.1 could be witnessed in thousands of farmyards in many countries, and serves 

to illustrate just some of the problems that we will face.  

  

  

Figure1.1 : A frame from a video of a typical 

farm- yard scene: the cow is one of a number 

walking naturally from right to left.   

There are many reasons why we might wish to 

study scenes such as this, which are attractively 

simple to us. The beast is moving slowly, it is 

clearly black and white, its movement is 

rhythmic, etc.; however, automated analysis is 

very troubled—in fact, the animal’s boundary is often very difficult to distinguish clearly 



 

from the background, the motion of the legs is self-occluding and (subtly) the concept of 

‘cow-shaped’ is not something easily encoded. The application from which this picture 

was taken made use of many of the algorithms: starting at a low level, moving features  

were identified and grouped. A ‘training phase’ taught the system what a cow might look 

like in various poses (see Figure 1.2), from which a model of a ‘moving’ cow could be 

derived (see Figure 1.3).  

  

  

All Variation  

  

  

  

Front Legs Variation  

  

  

  

Rear Legs Variation  

  

  

Inter−animal Variation  

  

  

   

  

Figure 1.2: Various models for a cow Shadow: a straight-line boundary approximation 

has been learned from training data and is able to adapt to different animals and different 

forms of occlusion.   

  

These models could then be fitted to new (‘unseen’) video sequences. Crudely, at this 

stage anomalous behavior such as lameness could be detected by the model failing to fit 

properly, or well.  

Model   1   Model   2   Model   3   



 

Thus we see a sequence of operations—image capture, early processing, 

segmentation, model fitting, motion prediction, qualitative/quantitative conclusion—that 

is characteristic of image understanding and computer vision problems. Each of these 

phases (which may not occur sequentially!) may be addressed by a number of algorithms 

which we  

 
shall cover in due course.  

The application was serious; there is a growing need in modern agriculture for 

automatic monitoring of animal health, for example to spot lameness. A limping cow is 

trivial for a human to identify, but it is very challenging to do this automatically.  

 
  

Figure 1.3: Three frames from a cow sequence: notice the model can cope with partial 

occlusion as the animal enters the scene, and the different poses exhibited.   

This example is relatively simple to explain, but serves to illustrate that many 

computer vision techniques use the results and methods of mathematics, pattern 

recognition, artificial intelligence (AI), psycho-physiology, computer science, 

electronics, and other scientific disciplines.  

  

1.2. COMPUTER VISION:  

  

  Computer vision is a field of artificial intelligence (AI) enabling computers to derive 

information from images, videos and other inputs.  

  

Why is computer vision difficult?  

Six complex landscape of computer vision are.  

  

1) Loss of information in 3D→   2D is a phenomenon which occurs in typical image 

capture devices such as a camera or an eye. Their geometric properties have been 

approximated by a pinhole model for centuries (a box with a small hole in it—a  



 

‘camera obscura’ in Latin). This physical model corresponds to a mathematical model 

of perspective projection; Figure 1.4 summarizes the principle. The projective 

transformation maps points along rays but does not preserve angles and collinearity.  

  

 
real candle pinhole  image   virtual 

image  plane  

The main trouble with the pinhole model and a single available view is that the 

projective transformation sees a small object close to the camera in the same way as a big object 

remote from the camera. In this case, a human needs a ‘yardstick’ to guess the actual size of the 

object which the computer does not have. 2)  

 

previous knowledge and experience is brought to the current observation. Human ability to 

reason allows representation of long-gathered knowledge, and its use to solve new problems. 

Artificial intelligence has worked for decades to endow computers with the capability to 

understand observations; while progress has been tremendous, the practical ability of a 

machine to understand observations remains very limited.  

From the mathematical logic and/or linguistics point of view, image interpretation 

can be seen as a mapping  

interpretation: image data −→ model .  

The (logical) model means some specific world in which the observed objects make sense. 

Examples might be nuclei of cells in a biological sample, rivers in a satellite image, or parts 

in an industrial process being checked for quality. There may be several interpretations of 

the same image(s). Introducing interpretation to computer vision allows us to use concepts 

from mathematical logic, linguistics as syntax (rules describing correctly formed 

expressions), and semantics (study of meaning). Considering observations (images) as an 

instance of formal expressions, semantics studies relations between expressions and their 

meanings. The interpretation of image(s) in computer vision can be understood as an 

instance of semantics.  

The interpretation of images, which is unconsciously solved by humans, serves as the  

fundamental basis for computer vision.  When a human tries to understand an image then 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Figure 1.4 :  The pinhole  model  

of   imaging   geometry   does   not   

distinguish size of objects.     

  

  



 

Practically, if the image understanding algorithms know into which particular 

domain the observed world is constrained, then automatic analysis can be used for 

complicated problems.  

3) Noise is inherently present in each measurement in the real world. Its existence calls 

for mathematical tools which are able to cope with uncertainty; an example is 

probability theory. Of course, more complex tools make the image analysis much 

more complicated compared to standard (deterministic) methods.  

4) Too much data. Images are big, and video—increasingly the subject of vision 

applications–correspondingly bigger. Technical advances make processor and 

memory requirements much less of a problem than they once were, and much can be 

achieved with consumer level products. Nevertheless, efficiency in problem solutions 

is still important and many applications remain short of real-time performance.  

5) Brightness measured in images is given by complicated image formation physics. 

The radiance ( brightness, image intensity) depends on the irradiance≈   (light 

source type, intensity and position), the observer’s position, the surface local 

geometry, and the surface reflectance properties. The inverse tasks are ill-posed—

for example, to reconstruct local surface orientation from intensity variations. For this 

reason, imagecapture physics is usually avoided in practical attempts at image 

understanding. Instead, a direct link between the appearance of objects in scenes and 

their interpretation is sought.  

6) Local window vs. need for global view. Commonly, image analysis algorithms 

analyze a particular storage bin in an operational memory (e.g., a pixel in the image) 

and its  local neighborhood; the computer sees the image through a keyhole; this 

makes it very difficult to understand more global context.  This problem has a long 

tradition in artificial intelligence: in the 1980s McCarthy argued that formalizing 

context was a crucial step toward the solution of the problem of generality. It is often 

very difficult to interpret an image if it is seen only locally or if only a few local 

keyholes are available. Figure 1.5 illustrates this pictorially. How context is taken into 

account is  an important facet of image analysis.  

  

Figure 1.5: Illustration of the world seen 

through several keyholes providing only a local 

context.    

It is very difficult to guess what object is 

depicted; the complete image is shown in Figure 

1.6.   

  

  



 

  

  

  

  

Figure 1.6: It is easy for humans to interpret an 

image if it is seen globally: compare to Figure 1.5.  

  

1.3 IMAGE REPRESENTATION AND IMAGE ANALYSIS TASKS:  

  

Image understanding by a machine can be seen as an attempt to find a relation between 

input image(s) and previously established models of the observed world. Transition from 

the input image(s) to the model reduces the information contained in the image to relevant 

information for the application domain. This process is usually divided into several steps 

and several levels representing the image are used.   

The bottom layer contains raw image data and the higher levels interpret the data. 

Computer vision designs these  intermediate representations and algorithms serving to 

establish and maintain relations between entities within and between layers.  

Image representation can be roughly divided according to data organization into four 

levels.   

The boundaries between individual levels are inexact, and more detailed divisions are 

also proposed in the literature. Figure 1.7 suggests a bottom up approach, from signals 

with almost no abstraction, to the highly abstract description needed for image 

understanding. The flow of information does not need to be unidirectional; often feedback 

loops are introduced which allow the modification of algorithms according to 

intermediate results.  

This hierarchy of image representation and related algorithms is frequently 

categorized in an even simpler way—low-level image processing and high-level image 

understanding.  

Low-level processing methods usually use very little knowledge about the content of 

images. In the case of the computer knowing image content, it is usually provided by 

high-level algorithms or directly by a human who understands the problem domain.  

 Low- level methods may include image compression, pre-processing methods for 

noise filtering, edge extraction, and image sharpening. Low- level image processing uses 

data which resemble the input image; for example, an input  image captured by a TV 

camera is 2D in nature, being described by an image function f (x, y) whose value is 

usually brightness depending on the co-ordinates x, y of the location in the image.  

  



 

If the image is to be processed using a computer it will be digitized first, after which 

it may be represented by a rectangular matrix with elements corresponding to the 

brightness at appropriate image locations.   

More probably, it will be presented in color, usually three channels: red, green and 

blue. Very often, such a data set will   be part of a video stream with an associated frame 

rate. Nevertheless, the raw material will be a set or sequence of matrices which represent 

the inputs and outputs of low-level  image processing.  

High-level processing is based on knowledge, goals, and plans of how to achieve those 

goals, and artificial intelligence methods are widely applicable. High-level computer 

vision tries to imitate human cognition and the ability to make decisions according to  the 

information contained in the image.  

 In the example described, high-level knowledge would be related to the ‘shape’ of a 

cow and the subtle interrelationships between the different parts of that shape, and their 

(inter-) dynamics.  

High-level vision begins with some form of formal model of the world, and then the 

‘reality’ perceived in the form of digitized images is compared to the model. A match is 

attempted, and when differences emerge, partial matches (or subgoals) are sought that 

overcome them; the computer switches to low-level image processing to find information 

needed to update the model. This process is then repeated iteratively, and ‘understanding’ 

an image thereby becomes a co-operation between top-down and bottom-up processes. A 

feedback loop is introduced in which high-level partial results create tasks for low-level 

image processing, and the iterative image understanding process should eventually 

converge to the global goal.  

Computer vision is expected to solve very complex tasks, the goal being to obtain similar 

results to those provided by biological systems. To illustrate the complexity of these tasks, 

consider Figure 1.8 in which a particular image representation is presented— the value 

on the vertical axis gives the brightness of its corresponding location in the [gray-scale] 

image. Consider what this image might be before looking at Figure 1.9, which is a rather 

more common representation of the same image.  

  

  

  

  



 

  
  

  

  

  

  

  

  

  

  

  

Figure 1.8: An unusual image 

representation.   

  

  

  

  

  



 

  
Figure 1.9: Another representation of Figure 1.8.  

  

Both representations contain exactly the same information, but for a human observer 

it is very difficult to find a correspondence between them, and without the second, it is 

unlikely that one would recognize the face of a child. The point is that a lot of a priori 

knowledge is used by humans to interpret the images; the machine only begins with an 

array of numbers and so will be attempting to make identifications and draw conclusions 

from data that to us are more like Figure 1.8 than Figure 1.9. Increasingly, data capture 

equipment is providing very large data sets that do not lend themselves to straightforward 

interpretation by humans—we have already mentioned terahertz imaging as an example.   

Internal image representations are not directly understandable—while the computer 

is able to process local parts of the image, it is difficult for it to locate global knowledge. 

General knowledge, domain-specific knowledge, and information extracted from the 

image will be essential in attempting to ‘understand’ these arrays of numbers.  

Low-level computer vision techniques overlap almost completely with digital image 

processing, which has been practiced for decades. The following sequence of processing 

steps is commonly seen:   

An image is captured by a sensor (such as a camera) and digitized; then the computer 

suppresses noise (image pre-processing) and may   be enhances some object features 

which are relevant to understanding the image. Edge extraction is  an example of 

processing carried out at this stage.  

Image segmentation is the next step, in which the computer tries to separate objects 

from the image background and from each other. Total and partial segmentation may be 

distinguished; total segmentation is possible only for very simple tasks, an example being 

the recognition of dark non-touching objects from a light background. For example, in 

analyzing images of printed text (an early step in optical character recognition, OCR) 

even this superficially simple problem is very hard to solve without error. In more 

complicated problems (the general case), low-level image processing techniques handle 

the partial segmentation tasks, in which only the cues which will aid further high-level 



 

processing are extracted. Often, finding parts of object boundaries is an example of 

lowlevel partial segmentation.  

Object description and classification in a totally segmented image are also understood 

as  

part of low-level image processing. Other low-level operations are image compression, and 

techniques to extract information from (but not understand) moving scenes.  

  

  

Low-level image processing and high-level computer vision differ in the data used.   

Low-level data are comprised of original images represented by matrices composed 

of brightness (or similar) values, while high-level data originate in images as well, but only 

those data which are relevant to high-level goals are extracted, reducing the data quantity 

considerably.  

High-level data represent knowledge about the image content—for example, object size, 

shape, and mutual relations between objects in the image. High-level data are usually 

expressed in symbolic form.  

Many low-level image processing methods were proposed in the 1970s or earlier: 

research is trying to find more efficient and more general algorithms and is implementing 

them on more technologically sophisticated equipment, in particular, parallel machines 

(including GPU’s) are being used to ease the computational load. The requirement for 

better and faster algorithms is fuelled by technology delivering larger images (better 

spatial or temporal resolution), and color.  

 A complicated and so far unsolved problem is how to order low-level steps to solve 

a specific task, and the aim of automating this problem has not yet been achieved. It is 

usually still a human operator who finds a sequence of relevant operations, and domain- 

specific knowledge and uncertainty cause much to depend on this operator’s intuition and 

previous experience.  

High-level vision tries to extract and order image processing steps using all available 

knowledge—image understanding is the heart of the method, in which feedback from 

high-level to low-level is used. Unsurprisingly this task is very complicated and 

computationally intensive.   

Consider 3D vision problems for a moment. We adopt the user’s view, i.e., what tasks 

performed routinely by humans would be good to accomplish by machines. What  is the 

relation of these 3D vision tasks to low-level (image processing) and high-level (image 

analysis) algorithmic methods? There is no widely accepted view in the academic 

community. Links between (algorithmic) components and representation levels are 

tailored to the specific application solved, e.g., navigation of an autonomous vehicle. 

These applications have to employ specific knowledge about the problem solved to be 



 

competitive with tasks which humans solve. Many researchers in different fields work on 

related   problems and research in ‘cognitive systems’ could be the key which may 

disentangle the complicated world of perception which includes also computer vision.  

Figure 1.10 depicts several 3D vision tasks and algorithmic components expressed on 

different abstraction levels. In most cases, the bottom-up and top-down approach is adopted 

to fulfill the task.  

  

   
  

Figure 1.10: Several 3D computer vision tasks from the user’s point of view are on the 

upper line (filled). Algorithmic components on different hierarchical levels support it in 

a bottom-up fashion.   

  

1.4. IMAGE, ITS REPRESENTATIONS AND 

PROPERTIES  
  

   Image representations:  

Mathematical models are often used to describe images.   

A monochrome or monochromatic image, object or palette is composed of one color (or 

values of one color). Images using only shades of grey are called grayscale (typically 

digital) or black-and-white (typically analog).  

A scalar function might be sufficient to describe a monochromatic image, while vector 

functions may be used to represent color images consisting of  three component colors.  

Functions are categorized as   

 Continuous  

 Discrete  

Dig ital.   

A continuous function has continuous domain and range; if the domain set is discrete, 

then we have a discrete function; if the range set is also discrete, then we have a digital 

function. Many of these functions will be linear, and correspondingly simple to  deal with.  



 

Image can be modeled by a continuous function of two variables f (x, y) where (x, y) 

are co-ordinates in a plane, or perhaps three variables f (x, y, t), where t is time. This 

model is reasonable in the great majority of applications. Nevertheless, it is worth 

realizing that an ‘image’ may be acquired in many ways. We shall note often that color is 

the norm, even when algorithms are presented for monochromatic images, but we do not 

need to constrain ourselves to the visible spectrum. Infra-red cameras are now very 

common (for example, for night-time surveillance). Other parts of the electro-magnetic 

[EM] spectrum may also be used; microwave imaging, for example, is becoming widely 

available. Further, image acquisition outside the EM spectrum is also common: in the 

medical domain, datasets are generated via magnetic resonance (MR),                 X-ray 

computed tomography (CT), ultrasound etc. All of these approaches generate large arrays 

of data requiring analysis and understanding and with increasing frequency these arrays 

are of 3 or more dimensions.   

  

The continuous image function  

The (gray-scale) image function values correspond to brightness at image points. The 

function value can express other physical quantities as well (temperature, pressure 

distribution, distance from the observer, etc.). Brightness integrates different optical 

quantities—using brightness as a basic quantity allows us to avoid the complicated 

process of image formation.  

The image on the retina or on a camera sensor is intrinsically two-dimensional (2D). 

We shall call such an image bearing information about brightness points an intensity 

image. The 2D image on the imaging sensor is commonly the result of projection of a 

three-dimensional (3D) scene. The simplest mathematical model for this is a pin-hole 

camera.  

  

  

  



 

  

  

The image plane is the plane that contains the object's projected image.  

The 2D intensity image is the result of a perspective projection of the 3D scene, which 

is modeled by the image captured by a pin-hole camera illustrated in Figure 2.1. In this 

figure, the image plane has been reflected with respect to the XY plane in order not to get 

a mirrored image with negative co-ordinates. The quantities x, y, and z  are coordinates 

of the point X in a 3D scene, and f is the distance from the pinhole to the image plane. 

f is commonly called the focal length because in lenses it has a similar meaning. The 

projected point u has co-ordinates (u, v) in the 2D image plane, which can easily be 

derived from similar triangles.  

  

  
A non-linear perspective projection is often approximated by a linear parallel (or 

orthographic) projection, where                                   f . Implicitly, 𝑥 says that the 

orthographic projection is a limiting case→ ∞ of  the perspective→ ∞ projection  for faraway 

objects.  

When 3D objects are mapped into the camera plane by perspective projection, a lot of 

information disappears because such a transform is not one-to-one.   

  

Recovering information lost by perspective projection is only one, problem of computer 

vision—another is understanding image brightness.   

The only information available in an intensity image is the brightness of the appropriate 

pixel, which is dependent on a number of independent factors such as object surface 

reflectance properties (given by the surface material, microstructure, and marking), 

illumination properties, and object surface orientation with respect to viewer and light 

source.  

 It is a non-trivial and again ill-posed problem to separate these components when trying 

to recover the 3D geometry of an object from the intensity image.  

Some applications work with 2D images directly—for example, an image of a flat 

specimen viewed by a microscope with transparent illumination, a character drawn on a 

sheet of paper, the image of a fingerprint, etc. Many basic and useful methods used in digital 

image analysis do not therefore depend on whether the object was originally 2D or 3D.   

Image processing often deals with static images, in which time is constant. A 

monochromatic static image is represented by a continuous image function f (x, y) whose 

arguments are coordinates in the plane.   



 

Computerized image processing uses digital image functions which are usually rep 

resented by matrices, so co-ordinates are natural numbers. The domain of the image function 

is a region R in the plane  

 R =   (x, y), 1 ≤ x ≤ xm, 1 ≤ y ≤ yn   ,  (2.2)  

where xm, yn represent the maximal co-ordinates. The function has a limited domain— 

infinite summation or integration limits can be used, as the image function value is zero 

outside the domain R. The customary orientation of co-ordinates in an image is in the normal 

Cartesian fashion (horizontal x-axis, vertical y-axis, origin bottom-left), although the (row, 

column, origin top-left) orientation used in matrices is also often used.  

The range of image function values is also limited; by convention, in monochromatic   

images the lowest value corresponds to black and the highest to white. Brightness values 

bounded by these limits are gray-levels.  The quality of a digital image grows in proportion 

to the spatial, spectral, radiometric, and time resolutions. The spatial resolution is given by 

the proximity of image samples in the image plane; spectral resolution is given by the 

bandwidth of the light frequencies captured by the sensor; radiometric resolution 

corresponds to the number of distinguishable gray-levels; and time resolution is given by 

the interval between time samples at which images are captured. The question of time 

resolution is important in dynamic image analysis, where time sequences of images are 

processed.  

Images f (x, y) can be treated as deterministic functions or as realizations of stochastic 

processes. Mathematical tools used in image description have roots in linear system theory, 

integral transforms, discrete mathematics, and the theory of stochastic processes.  

Mathematical transforms usually assume that the image function f (x, y) is ‘well- behaved’, 

meaning that the function is integrable, has an invertible Fourier transform, etc.   

       

Image digitization  

An image to be processed by computer must be represented using an appropriate discrete 

data structure, for example, a matrix.  

An image captured by a sensor is expressed as a continuous function f (x, y) of two 

coordinates in the plane.   

Image digitization means that the function f (x, y) is sampled into a matrix with M rows and 

N columns. Image quantization assigns to each continuous sample an integer value—the 

continuous range of the image function f (x, y) is split into K intervals. The finer the sampling 

(i.e., the larger M and N ) and quantization (the larger K), the better the approximation of the 

continuous image function f (x, y) achieved.  

Image function sampling poses two questions. First, the sampling period should be 

determined—this is the distance between two neighboring sampling points in the image. 

Second, the geometric arrangement of sampling points (sampling grid) should be set.  



 

  

Sampling  

A continuous image is digitized at sampling points. These sampling points are ordered 

in the plane, and their geometric relation is called the grid. The digital image   is then a data 

structure, usually a matrix. Grids used in practice are usually square (Figure 2.2a) or 

hexagonal (Figure 2.2b). It is important to distinguish the grid from the raster; the raster is 

the grid on which a neighborhood relation between points is defined.  

  

  
  

One infinitely small sampling point in the grid corresponds to one picture element also 

called a pixel or image element in the digital image; in a three-dimensional image, an image 

element is called a voxel (volume element). The set of pixels together covers the entire 

image; however, the pixel captured by a real digitization device has finite size (since the 

sampling function is not a collection of ideal Dirac impulses but a collection of limited 

impulses). The pixel is a unit which is not further divisible from the image analysis point of 

view. We shall often refer to a pixel as a ‘point’.  

  

Quantization  

A value of the sampled image fs(j ∆x, k ∆y) is expressed as a digital value in image 

processing.   

The transition between continuous values of the image function (brightness) and its digital 

equivalent is called quantization.   

The number of quantization levels should be high enough to permit human perception of 

fine shading details in the image.  

Most digital image processing devices use quantization into k equal intervals. If b bits are 

used to express the values of the pixel brightness then the number of brightness levels is k =  

2b.  

 Eight bits per pixel per channel (one each for red, green, blue) are commonly used although 

systems using other numbers (e.g., 16) can be found. An efficient computer representation 

of brightness values in digital images requires that eight bits, four bits, or one bit are used 

per pixel, meaning that one, two, or eight pixel brightness can be stored in one byte.  



 

The main problem in images quantized with insufficient brightness levels is the 

occurrence of false contours which effect arises when the number of brightness levels is 

lower than that which humans can easily distinguish. This number is dependent on many 

factors—for example, the average local brightness—but displays which avoid this effect 

will normally provide a range of at least 100 intensity levels. This problem can be reduced 

when quantization into intervals of unequal length is used; the size of intervals  

corresponding to less probable brightness in the image is enlarged.   

  

  

 
  

 (a)  (b)  

 
  

 (c)  (d)  

Figure 2.3: Brightness levels. (a) 64. (b) 16. (c) 4. (d) 2. © Cengage Learning 2015.  

  

Figures 3.11a and 2.3a-d demonstrate the effect of reducing the number of brightness 

levels in an image. An original image with 256 brightness levels has its number of brightness  

 
levels reduced to 64 (Figure 2.3a), and no degradation is perceived. Figure 2.3b uses 16 

brightness levels and false contours begin to emerge, and this becomes clearer in Figure 2.3c 

with four brightnesses and in Figure 2.3d with only two.  

  



 

1.5.DIGITAL IMAGE PROPERTIES  

  

A digital image has several properties, both metric and topological, which are some- what 

different from those of continuous two-dimensional functions. Human perception of digital 

images is a frequent aspect, since judgment of image quality is also important.  

  

Metric and topological properties of digital images  

A digital image consists of picture elements with finite size—these pixels carry informa tion 

about the brightness of a particular location in the image. Usually (and we assume this 

hereafter) pixels are arranged into a rectangular sampling grid. Such a digital image is 

represented by a two-dimensional matrix whose elements are natural numbers 

corresponding to the quantization levels in the brightness scale.  

Some intuitively clear properties of continuous images have no straightforward anal- ogy 

in the domain of digital images. Distance is an important example. Any function D holding 

the following three condition is a ‘distance’ (or a metric)  

  

D(p, q) 0 ; D(p, q) = 0 if and only if p = q ,  identity,   
≥  

 D(p, q) = D(q, p) ,  symmetry,  

 D(p, r) ≤ D(p, q) + D(q, r) ,  triangular inequality.  

The distance between points with co-ordinates (i, j) and (h, k) may be defined in several 

different ways.  

The Euclidean distance DE known from classical geometry and everyday experi ence is 

defined by  

 (2.3)  

The advantage of Euclidean distance is that it is intuitively obvious. The disadvantages  are 

costly calculation due to the square root, and its non-integral value.  

The distance between two points can also be expressed as the minimum number of 

elementary steps in the digital grid which are needed to move from the starting point to  the 

end point. If only horizontal and vertical moves are allowed, the ‘city block’ distance 

distance D4 is obtained (also called the L1 metric or Manhattan distance, because of the 

analogy with the distance between two locations in a city with a rectangular grid of streets): 

D4 (i, j ) , (h, k)   = |  i − h | + | j − k |  . (2.4)  

If moves in diagonal directions are allowed in the digitization grid, we obtain the distance 

D8, or ‘chessboard’ distance. D8 is equal to the minimal number of king- moves on the 

chessboard from one part to another:  



 

(2.5) These 

distance definitions are illustrated in Figure 2.4.  

  

  

Figure 2.4: Distance metrics De, D4, and D8.   

  

Pixel adjacency is another important concept in digital images. Two pixels (p, q) are 

called 4-neighbors if they have distance D4(p, q) = 1. Analogously, 8-neighbors have D8(p, 

q) = 1—see Figure 2.5.  

  

  

  
It will become necessary to consider important sets consisting of several adjacent 

pixels—regions (in set theory, a region is a connected set). More descriptively, we can 

define a path from pixel P to pixel Q as a sequence of points A1, A2, . . ., An, where A1 = P,   

An = Q, and Ai+1 is a neighbor of Ai, i = 1, . . . , n   1; then a region is a set of pixels in which 

there is a  path between any pair of its pixels, all of whose pixels also belong to the set.  

If there is a path between two pixels in the set of pixels in the image, these pixels are 

called contiguous  

  

The relation ‘to be contiguous’ is reflexive, symmetric, and transitive and therefore defines a 

decomposition of the set (the image in our case) into equivalence classes (regions). Figure 2.6 

illustrates a binary image decomposed by the relation ‘contiguous’ into three regions.  



 

  

Figure 2.6: The relation ‘to be contiguous’ de- 

composes an image into individual regions. The 

Japanese Kanji character meaning ‘near from here’ 

decomposes into 3 regions.   

  

Assume that Ri are disjoint regions in the image which were created by the relation ‘to 

be contiguous’, and further assume (to avoid special cases) that these regions do not touch 

the image bounds. Let R be the union of all regions Ri; R
C be the set complement of R with 

respect to the image. The subset of RC which is contiguous with the image bounds is called 

the background, and the remainder of the complement RC is called holes. A region is called 

simple contiguous if it has no holes. Equivalently, the complement of a simply contiguous 

region is contiguous. A region with holes is called multiple contiguous.  

Note that the concept of region uses only the property ‘to be contiguous’. Secondary 

properties can be attached to regions which originate in image data interpretation. It is 

common to call some regions in the image objects; a process which determines which 

regions in an image correspond to objects in the world is a part of image segmentation and 

is discussed in Chapters 6 and 7.  

The brightness of a pixel is a very simple property which can be used to find objects in 

some images; if, for example, a pixel is darker than some predefined value (threshold), then 

it belongs to the object. All such points which are also contiguous constitute one object. A 

hole consists of points which do not belong to the object and are surrounded by the object, 

and all other points constitute the background. An example is the black printed text on this 

white sheet of paper, in which individual letters are objects. White areas surrounded by the 

letter are holes, for example, the area inside the letter ‘o’. Other white parts of the paper are 

the background.  

These neighborhood and contiguity definitions on the square grid create interesting 

paradoxes. Figure 2.7a shows two digital line segments with 45◦ slope. If 4-connectivity is 

used, the lines are not contiguous at each of their points. An even worse conflict with 

intuitive understanding of line properties is also illustrated; two perpendicular lines do 

intersect in one case (upper right intersection) and do not intersect in another case (lower 

left), as they do not have any common point (i.e., their set intersection is empty).  

  



 

  
  

It is known from Euclidean geometry that each closed curve (e.g., a circle) divides the 

plane into two non-contiguous regions. If images are digitized in a square grid using 

8connectivity, we can draw a line from the inner part of a closed curve into the outer part 

which does not intersect the curve (Figure 2.7b). This implies that the inner and outer parts 

of the curve constitute only one region because all pixels of the line belong to only one 

region, giving another paradox. One possible solution to contiguity paradoxes is to treat 

objects using 4-neighborhoods and background using 8-neighborhoods (or vice versa).   

  

These problems are typical on square grids—a hexagonal grid (see Figure 2.2), how- 

ever, solves many of them. Any point in the hexagonal raster has the same distance to all its 

six neighbors. There are some problems peculiar to the hexagonal raster as well (for 

example, it is difficult to express a Fourier transform on it). For reasons of simplicity and 

ease of processing, most digitizing devices use a square grid despite the known drawbacks.  

An alternative approach to the connectivity problems is to use discrete topology based 

on cellular complexes. This approach develops a complete strand of image encoding and 

segmentation that deals with many issues we shall come to later, such as the representation 

of boundaries and regions. The idea, first proposed by the German mathematician Riemann 

in the nineteenth century, considers families of sets of different dimensions; points, which 

are 0-dimensional sets, may then be assigned to sets containing higher-dimensional 

structures (such as pixel arrays). This approach permits the removal of the paradoxes we 

have seen.  

The distance transform—also called the distance function or chamfering algorithm 

or simply chamfering—is a simple application of the concept of distance. The idea is 

important as it provides the basis of several fast algorithms that will be seen multiple times 

in this book. The distance transform provides the distance of pixels from some image subset 

(perhaps describing objects or some features). The resulting ‘image’ has pixel values of 0 

for elements of the relevant subset, low values for close pixels, and then high values for 

pixels remote from it—the appearance of this array gives the name to the technique.  



 

For illustration, consider a binary image, in which ones represent the objects and zeros 

the background. The input image is shown in Figure 2.8 and the result of the D4 distance 

transform is illustrated in Figure 2.9.  

To calculate the transform, a two-pass algorithm has been suggested for distances D4 and 

D8. The idea is to traverse the image by a small local mask. The first pass starts from the 

top-left of the image and moves horizontally  

  

  
left to right until it reaches the bounds of the image and then returns to the beginning of the 

next row. The second pass goes from the bottom-right corner in the opposite bottom-up, 

right to left direction using a different local mask. The effectiveness of the algorithm comes 

from propagating the values of the previous image investigation in a ‘wave-like’ manner. 

The masks used in calculations are shown in Figure 2.10.  



 

 
  

  

 
(a) (b)  (c)  

Figure 2.11: Three distances used often in distance transform calculations—the input 

consists of three isolated ‘ones’. Output distance is visualized as intensity; lighter values 

denote higher distances. Contour plots are superimposed for better visualization. (a) 

Euclidean distance DE .  

(b) City block distance D4. (c) Chessboard distance D8.   

  



 

This algorithm needs obvious adjustments at image boundaries, where the sets AL and 

BR are truncated. It is open to various improvements by using different distance calculations. 

Distance transform performance for DE, D4, D8 on an input consisting only of three distinct 

‘ones’ is shown in Figure 2.11.  

The distance transform has many applications, e.g., in discrete geometry, path planning 

and obstacle avoidance in mobile robotics, finding the closest feature in the image, and 

skeletonization.  

An edge is a further important concept used in image analysis. This is a local property 

of a pixel and its immediate neighborhood—it is a vector given by a magnitude and direction 

which tells us how fast the image intensity varies in a small neighborhood of a pixel. Images 

with many brightness levels are used for edge computation, and the gradient of the image 

function is used to compute edges. The edge direction is perpendicular to the gradient 

direction which points in the direction of the fastest image function growth.   

The related concept of the crack edge creates a structure between pixels in a similar 

manner to that of cellular complexes. However, it is more pragmatic and less mathematically 

rigorous. Four crack edges are attached to each pixel, which are defined by its relation to its 

4-neighbors. The direction of the crack edge is that of increasing bright- ness, and is a 

multiple of 90◦, while its magnitude is the absolute difference between the brightness of the 

relevant pair of pixels. Crack edges are illustrated in Figure 2.12 and may be be used in 

considering image segmentation.  

  

The border (boundary) of a region is another important concept in image analysis. The 

border of a region R is the set of pixels within the region that have one or more neighbors 

outside R. The definition corresponds to an intuitive understanding of the border as a set of 

points at the bound of the region. This definition is sometimes referred to as the inner 

border to distinguish it from the outer border, that is, the border of the background (i.e., 

its complement) of the region. Inner and outer borders are illustrated in Figure 2.13. Due to 

the discrete nature of the image, some inner border elements which would be distinct in the 

continuous case coincide in the discrete case, as can be seen with the one-pixel-wide line at 

the right of Figure 2.13.  

  



 

  

While edges and borders are related, they are not the same thing. ‘Border’ is a global 

concept related to a region, while ‘edge’ expresses local properties of an image function. 

One possibility for finding boundaries is chaining the significant edges (points with high 

gradient of the image function). Methods of this kind are described in Section 6.2.  

A region is described as convex if any two points within it are connected by a straight 

line segment, and the whole line lies within the region—see Figure 2.14. The property of 

convexity decomposes all regions into two equivalence classes: convex and non-convex.  

  

  
  

A convex hull of a region is the smallest convex region containing the input (possibly 

non-convex) region. Consider an object whose shape resembles the letter ‘R’ (see Figure 

2.15). Imagine a thin rubber band pulled around the object; the shape of the rubber band 

provides the convex hull of the object.   

 
Topological properties are not based on the distance concept. Instead, they are invariant 

to homeomorphic transforms which can be illustrated for images as rubber sheet 

transforms. Imagine a small rubber balloon with an object painted on it; topo- logical 

properties of the object are those which are invariant to arbitrary stretching of the rubber 

sheet. Stretching does not change contiguity of the object parts and does not change the 

number of holes in regions. We use the term ‘topological properties’ of the region to describe 

its qualitative properties invariant to small changes (e.g., the property of being convex), even 

though an arbitrary homeomorphic transformation can change a convex region to a 

nonconvex one and vice versa. Considering the rubber sheet analogy, we mean that the 

stretching of the sheet is only gentle.   

  

An object with non-regular shape can be represented by a collection of its topological 

components, Figure 2.15. The set inside the convex hull which does not belong to an object 

is called the deficit of convexity. This can be split into two subsets: lakes (dark gray) are 

  



 

fully surrounded by the object; and bays (light gray) are contiguous with the border of the 

convex hull of the object.  

The convex hull, lakes, and bays are sometimes used for object description; these 

features are used in Chapter 8 (object description) and in Chapter 13 (mathematical 

morphology).  

  

Histograms  

The brightness histogram hf (𝑥) of an image provides the frequency of the brightness value 

𝑥 in the image—the histogram of an image with L gray-levels is represented by a 

onedimensional array with L elements.  

 

  

The histogram provides a natural bridge between images and a probabilistic description. 

We might want to find a first-order probability function p1(𝑥; x, y) to indicate the probability 

that pixel (x, y) has brightness 𝑥. Dependence on the position of the pixel is not of interest 

in the histogram; the function p1(𝑥) is of interest and the brightness histogram is its estimate. 

The histogram is often displayed as a bar graph, see Figure 2.16.  

  

The histogram is usually the only global information about the image which is avail- 

able. It is used when finding optimal illumination conditions for capturing an image, gray-

scale transformations, and image segmentation to objects and background. Note  

  



 

 

  

Figure 2.16: Original image (a) and its brightness histogram (b).   

  

  

   



 

that one histogram may correspond to several images; for instance, a change of the object 

position on a constant background does not affect it.  

The histogram of a digital image typically has many local minima and maxima, which 

may complicate its further processing. This problem can be avoided by local smoothing of 

the histogram; this may be done, for example, using local averaging of neighboring 

histogram elements as the base, so that a new histogram h'f (𝑥) is calculated according to  

  

 
where K is a constant representing the size of the neighborhood used for smoothing. This 

algorithm would need some boundary adjustment, and carries no guarantee of removing all 

local minima.   

  

Entropy  

If a probability density p is known then image information content can be estimated 

regardless of its interpretation using entropy H. The concept of entropy has roots in 

thermodynamics and statistical mechanics but it took many years before it was related to 

information. The information-theoretic formulation comes from Shannon and is often called 

information entropy.  

An intuitive understanding of information entropy relates to the amount of uncertainty 

about an event associated with a given probability distribution. The entropy can serve as an 

measure of ‘disorder’. As the level of disorder rises, entropy increases and events are less 

predictable.  

Entropy is formally defined assuming a discrete random variable X with possible 

outcomes (called also states) x1, . . . , xn. Let p(xk) be the probability of the outcome xk, k = 

1, . . . n. Then the entropy is defined as  

  
  

The entropy of the random variable X is the sum, over all possible outcomes k of X, of the 

product of the probability of outcome xk with the logarithm of the inverse of the probability 

of xk.  

n 
  

=   −   



 

The base of the logarithm in this formula determines the unit in which entropy is measured. If 

this base is two then the entropy is given in bits. Recall that the probability density p(xk) 

needed to calculate the entropy is often estimated using a gray- level histogram in image 

analysis.  

Entropy measures the uncertainty about the realization of a random variable. For 

Shannon, it served as a proxy capturing the concept of information contained in a message 

as opposed to the portion of the message that is strictly determined and predictable by 

inherent structures. For example, we shall explore entropy to assess redundancy in an image 

for image compression.  

  

  

Visual perception of the image  

Anyone who creates or uses algorithms or devices for digital image processing should take 

into account the principles of human image perception. If an image is to be analyzed by a 

human the information should be expressed using variables which are easy to perceive; these 

are psycho-physical parameters such as contrast, border, shape, texture, color, etc. Humans 

will find objects in images only if they may be distinguished effortlessly from the 

background. A detailed description of the principles of human visual perception can be found 

in. Human perception of images provokes many illusions, the understanding of which 

provides valuable clues about visual mecha nisms.   

The situation would be relatively easy if the human visual system had a linear response 

to composite input stimuli—i.e., a simple sum of individual stimuli. A decrease of some 

stimulus, e.g., area of the object in the image, could be compensated by its intensity, contrast, 

or duration. In fact, the sensitivity of human senses is roughly logarithmically proportional 

to the intensity of an input signal. In this case, after an initial logarithmic transformation, 

response to composite stimuli can be treated as linear.  

Contrast  

Contrast is the local change in brightness and is defined as the ratio between average 

brightness of an object and the background. Strictly speaking, we should talk about 

luminance4 instead of brightness if our aim is to be physically precise. The human eye is 

logarithmically sensitive to brightness, implying that for the same perception, higher 

brightness requires higher contrast.  

Apparent brightness depends very much on the brightness of the local surroundings; this 

effect is called conditional contrast. Figure 2.17 illustrates this with five circles of the same 

size surrounded by squares of different brightness. Humans perceive the brightness of the 

small circles as different.  



 

 
  

Figure 2.17: Conditional contrast effect. Circles inside squares have the same brightness 

and are perceived as having different brightness values. © Cengage Learning 2015.  

  

  

Acuity  

Acuity is the ability to detect details in an image. The human eye is less sensitive to slow 

and fast changes in brightness in the image plane but is more sensitive to intermediate 

changes. Acuity also decreases with increasing distance from the optical axis.  

Resolution in an image is firmly bounded by the resolution ability of the human eye; 

there is no sense in representing visual information with higher resolution than that of  

 
the viewer. Resolution in optics is defined as the inverse value of a maximum viewing angle 

between the viewer and two proximate points which humans cannot distinguish, and so fuse 

together.  

Human vision has the best resolution for objects which are at a distance of about 250 

mm from an eye under illumination of about 500 lux; this illumination is provided by a 60 

W bulb from a distance of 400 mm. Under these conditions the distance between two 

distinguishable points is approximately 0.16 mm.  

  

Some visual illusions  

Human perception of images is prone to many illusions.   

  

Object borders carry a lot of information for humans. Boundaries of objects and simple 

patterns such as blobs or lines enable adaptation effects similar to conditional contrast, 

mentioned above. The Ebbinghaus illusion is a well-known example—two circles of the 

same diameter in the center of images appear to have different diameters (Figure 2.18).  

  
  



 

Perception of one dominant shape can be fooled by nearby shapes. Figure 2.19 shows 

parallel diagonal line segments which are not perceived as parallel. Figure 2.20 contains 

rows of black and white squares which are all parallel. However, the vertical zigzag squares 

disrupt our horizontal perception.  

  

  
  

  

Perceptual grouping  

Perceptual grouping [Palmer, 1999] is a principle used in computer vision to aggregate 

elements provided by low-level operations such as edges, which are small blobs to bigger 

chunks having some meaning. Its roots are in Gestalt psychology first postulated by 

Wertheimer in 1912 [Brett King and Wertheimer, 2005]. Gestalt psychology proposes that 

the operational principle of the mind and brain is holistic, parallel, and with self- organizing 

tendencies.  

Gestalt theory was meant to have general applicability; its main tenets, however, were 

induced almost exclusively from observations on visual perception. The overriding theme 

of the theory is that stimulation is perceived in organized or configuration terms. Gestalt in 

German means configuration, structure or pattern of physical, biological, or psychological 

phenomena so integrated to constitute a functional unit with properties not derivable by 

summation of its parts. Patterns take precedence over elements and have properties that are 

not inherent in the elements themselves.  

  



 

  
Figure 2.21: Grouping according to properties of elements.   

  

  

The human ability to group items according to various properties is illustrated in Figure 

2.21. Perceived properties help people to connect elements together based on strongly 

perceived properties as parallelism, symmetry, continuity and closure taken in a loose sense 

as illustrated in Figure 2.22.  

  

  
  

Figure 2.22: Illustration of properties perceived in images which allow humans to group 

together elements in cluttered scenes.  

  

It has been demonstrated that mimicking perceptual grouping in machine vision system 

is a plausible technique. It permits the creation of more meaningful chunks of information 

from meaningless outcomes of low-level operations such as edge detection. Such grouping 

is useful in image understanding. This principle will be used in this book mainly for image 

segmentation.  

  

Image quality  

An image might be degraded during capture, transmission, or processing, and measures of 

image quality can be used to assess the degree of degradation. The quality required naturally 

depends on the purpose for which an image is used.  

Methods for assessing image quality can be divided into two categories: subjective and 

objective. Subjective methods are often used in television technology, where the ultimate 

criterion is the perception of a selected group of professional and lay viewers. They appraise 



 

an image according to a list of criteria and give appropriate marks. Details about subjective 

methods may be found in [Pratt, 1978].  

  

  

Objective quantitative methods measuring image quality are more interesting for our 

purposes. Ideally such a method also provides a good subjective test, and is easy to apply; 

we might then use it as a criterion in parameter optimization. The quality of an image f (x, 

y) is usually estimated by comparison with a known reference image g(x, y) [Rosenfeld and 

Kak, 1982], and a synthesized image is often used for this purpose. One class of methods 

uses simple measures such as the mean quadratic difference  (g  f )2, but this does not 

distinguish Σ − a few big differences from many small differences. Instead of the mean 

quadratic difference, the mean absolute difference or simply maximal absolute difference 

may be used. Correlation between images f and g is another alternative.  

Another class measures the resolution of small or proximate objects in the image. An 

image consisting of parallel black and white stripes is used for this purpose; then the number 

of black and white pairs per millimeter gives the resolution.  

  

 2.2.1  Noise in images  

Real images are often degraded by some random errors—this degradation is usually called 

noise. Noise can occur during image capture, transmission, or processing, and may be 

dependent on, or independent of, the image content.  

  

1) white noise  

  

white noise is a random signal having equal intensity at different frequencies, giving it a 

constant power spectral density.  

  

2) Gaussian noise  

Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a 

probability density function  equal to that of the normal distribution (which is also known as 

the Gaussian distribution)  

  

3) Additive   noise  

  

Additive noise is the undesired abrupt signal that gets added into some genuine signal.  

  

4) Multiplicative    noise  



 

Multiplicative noise is the undesired abrupt signal that gets multiplied into some genuine signal.  

  

5) Quantization noise  

  

Quantization noise results when a continuous random variable is converted to a discrete one or 

when a discrete random  variable is converted to one with fewer levels. In images, quantization 

noise often occurs in the acquisition process.  

  

6) Impulse noise  

  

Impulse noise is a category of noise that includes unwanted, almost instantaneous sharp sounds 

—typically caused by electromagnetic interference, scratches on disks, gunfire, explosions, and 

synchronization issues in digital audio.  

7) Salt and pepper noise  

  

salt-‐and-‐pepper noise describes a situation where random pixels get replaced by  

extremely dark or bright values.  

  

  

  

1.6 COLOR IMAGES  

  

Human color perception adds a subjective layer on top of underlying objective physical 

properties—the wavelength of electromagnetic radiation.   

color may be considered a psycho-physical phenomenon.  

Color has long been used in painting, photography and films to display the surrounding 

world to humans in a similar way to that in which it is perceived in reality. There is  

considerable literature on the variants in the naming of colors across languages, which is a 

very subtle affair. The human visual system is not very precise in perceiving color in absolute 

terms; if we wish to express our notion of color precisely  we would describe it relative to 

some widely used color which is used as a standard: e.g.,  

the red of a British pillar box. There are whole industries which present images to humans— 

the press, films, displays, and hence a desire for color constancy. In computer vision, we 

have the advantage of using a camera as a measuring device, which yields measurements in 

absolute quantities.  

Newton reported in the 17th century that white light from the sun is a spectral mixture, 

and used the optical prism to perform decomposition. This was a radical idea to propose at 



 

time; over 100 years later influential scientists and philosophers such as Goethe refused to 

believe it.  

  

 2.3.1  Physics of color  

The electromagnetic spectrum is illustrated in Figure 2.23.  

Only a narrow section of the electromagnetic spectrum is visible to a human, with 

wavelength from approximately 380 nm to 740 nm. Visible colors with the wavelengths 

shown in Figure 2.24 are called spectral colors and are those which humans see when white 

light is decomposed using a Newtonian prism, or which are observed in a rainbow on the 

sky. Colors can be represented as combinations of the primary colors, e.g., red,  

  

  

  
  

Figure 2.23: Division of the electromagnetic spectrum (ELF is Extremely Low 

Frequencies).  

  

  

  

  
 .  

Figure 2.24: Wavelength λ of the spectrum visible to humans.  

  



 

green, and blue, which for the purposes of standardization have been defined as 700 nm, 

546.1 nm, and 435.8 nm, respectively [Pratt, 1978], although this standardization does not 

imply that all colors can be synthesized as combinations of these three.  

The intensity of irradiation for different wavelengths λ usually changes. This varia tion 

is expressed by a power spectrum (called also power spectrum distribution) S(λ). Why do 

we see the world in color? There are two predominant physical mechanisms describing what 

happens when a surface is irradiated. First, the surface reflection rebounds incoming energy 

in a similar way to a mirror. The spectrum of the reflected light remains the same as that of 

the illuminant and it is independent of the surface— recall that shiny metals ‘do not have a 

color’. Second, the energy diffuses into the material and reflects randomly from the internal 

pigment in the matter. This mechanism is called body reflection and is predominant in 

dielectrics such as plastic or paints. Figure 2.25 illustrates both surface reflection (mirroring 

along surface normal n) and body reflection.  

Colors are caused by the properties of pigment particles which absorb certain wavelengths 

from the incoming illuminant wavelength spectrum.  

Most sensors used for color capture, e.g., in cameras, do not have direct access to color; the 

exception is a spectrophotometer which in principle resembles Newton’s prism. Incoming 

irradiation is decomposed into spectral colors and intensity along the spectrum with 

changing wavelength λ is measured in a narrow wavelength band, for in- stance, by a 

mechanically moved point sensor. Actual spectrophotometers use diffraction gratings 

instead of a glass prism.  

  

  

  
  

  

  

Figure 2.25: Observed color of objects is caused by certain wavelength absorptions by 

pigment particles in dielectrics.   

  

  



 

Sometimes, intensities measured in several narrow bands of wavelengths are collected 

in a vector describing each pixel. Each spectral band is digitized independently and is 

represented by an individual digital image function as if it were a monochromatic image. In  

this way, multispectral images are created. Multispectral images are commonly used in 

remote sensing from satellites, airborne sensors and in industry. Wavelength usually span 

from ultraviolet through the visible section to infrared. For instance, the LAND- SAT 7 

satellite transmits digitized images in eight spectral bands from near-ultraviolet to infrared.  

  

Color perceived by humans  

Evolution has developed a mechanism of indirect color sensing in humans and some 

animals. Three types of sensors receptive to the wavelength of incoming irradiation have 

been established in humans, thus the term trichromacy. Color sensitive receptors on the 

human retina are the cones. The other light sensitive receptors on the retina are the  rods 

which are dedicated to sensing monochromatically in low ambient light conditions. Cones 

are categorized into three types based on the sensed wavelength range: S (short) ≈  with 

maximum sensitivity≈  at nm, M (medium) at 560 nm, and L (long) at 610 nm. Cones  

S, M, L are occasionally called cones B, G and R, respectively, but that is slightly 

misleading. We do not see red solely because an L cone is activated. Light with equally 

distributed wavelength spectrum looks white to a human, and an  

unbalanced spectrum appears as some shade of color.  

The reaction of a photoreceptor or output from a sensor in a camera can be modeled 

mathematically. Let i be the specific type of sensor, i = 1, 2, 3, (the retinal cone type S, M, 

L in the human case). Let Ri(λ) be the spectral sensitivity of the sensor, I(λ) be the spectral 

density of the illumination, and S(λ) describe how the surface patch reflects each wavelength 

of the illuminating light. The spectral response qi of the i-th sensor, can be modeled by 

integration over a certain range of wavelengths  

  

  
  

Consider the cone types S, M, L. How does the vector (qS, qM , qL) represent the color of the 

surface patch? It does not according to equation (2.16) since the output from the 

photosensors depends on the three factors I(λ), S(λ) and R(λ). Only the factor S(λ) is related 

to the surface patch. Only in the ideal case, when the illumination is perfectly white, i.e., 

I(λ) = 1, can we consider (qS, qM , qL) as an estimate of the color of the surface.  



 

Figure 2.26 illustrates qualitatively the relative sensitivities of S, M, L cones. 

Measurements were taken with the white light source at the cornea so that absorption of 

wavelength in cornea, lens and inner pigments of the eye is taken into account [Wandell, 

1995].  

A phenomenon called color metamer is relevant. A metamer, in general, means two things 

that are physically different but perceived as the same. Red and green adding to produce 

yellow is a color metamer, because yellow could have also been produced by a spectral color. 

The human visual system is fooled into perceiving that red and green is the same as yellow.  

  

  

  

  
Figure 2.26: Relative sensitivity of S, M, L cones of the human eye to wave- length.   

  

  

Consider a color matching experiment in which someone is shown a pattern consisting 

of two adjacent color patches. The first patch displays a test light—a spectral color of certain 

wavelength. The second patch is created as an additive combination of three selected 

primary lights, e.g., colors red=645.2 nm, green=525.3 nm and blue=444.4 nm. The observer 

is asked to control the red, green and blue intensities until both patches look identical. This 

color matching experiment is possible because of the color metamer. The result of 

measurements (redrawn from [Wandell, 1995]) is in Figure 2.27. Negative lobes can be seen 

on the curves for red and green in this figure. This would seem to be impossible. For 

wavelengths exhibiting negative values the three additive lights do not perceptually match 

the spectral color because it is darker. If the perceptual match has to be obtained then the 

observer has to add the intensity to the patch corresponding to the spectral color. This 

increase of this intensity is depicted as a decrease in the color matching function. Hence the 

negative values.  



 

  
  

Figure 2.27: Color matching functions ob- tained in the color matching experiment. 

Intensities of the selected primary colors which perceptually match spectral color of given 

wavelength λ.   

  

Human vision is prone to various illusions. Perceived color is influenced, besides the 

spectrum of the illuminant, by the colors and scene interpretation surrounding the observed 

color. In addition, eye adaptation to changing light conditions is not very fast and perception is 

influenced by adaptation. Nevertheless, we assume for simplicity that the spectrum of light 

coming to a point on the retina fully determines the color.  

Since color can be defined by almost any set of primaries, the world community agreed 

on primaries and color matching functions which are widely used. The color model was 

introduced as a mathematical abstraction allowing us to express colors as tuples of numbers, 

typically as three or four values of color components. Being motivated by the press and the 

development of color film, in 1931, CIE (International Commission on Illumination, still 

acting in Lausanne, Switzerland) issued a technical standard called XYZ color space.  

  

The standard is given by the three imaginary lights X=700.0 nm, Y =546.1 nm, Z=435.8 

nm and by the color matching functions X(λ), Y (λ) and Z(λ) corresponding to the perceptual 

ability of an average human viewing a screen through an aperture providing a 2◦ field of 

view. The standard is artificial because there is no set of physically realizable primary lights 

that would yield the color matching functions in the experiment. Nevertheless, if we wanted 

to characterize the imaginary lights then, roughly speaking, X red, Y green and Z blue. The 

CIE standard is an example of an absolute standard, i.e., defining unambiguous 

representation of color which does not depend on other external factors. There are more 

recent and more precise absolute standards: CIELAB 1976 (ISO 13665) and Hunter Lab  



 

(http://www.hunterlab.com). Later, we will also dis- cuss relative color standards such as 

RGB color space: there are several RGB color spaces used—two computer devices may 

display the same RGB image differently.  

  

The XYZ color standard fulfills three requirements:  

• Unlike the color matching experiment yielding negative lobes of color matching 

functions, the matching functions of XYZ space are required to be non-negative.  

• The value of Y (λ) should coincide with the brightness (luminance).  

• Normalization is performed to assure that the power corresponding to the three color 

matching functions is equal (i.e., the area under all three curves is equal). The resulting 

color matching functions are shown in Figure 2.28. The actual color is a mixture (more 

precisely a convex combination) of  

 cX X + cY Y + cZ Z ,  (2.17)  

where 0 cX , cY , cZ 1 are weights (intensities) in the mixture. The subspace of colors 

perceivable by humans≤  is called≤  the color gamut and is demonstrated in Figure 2.29.  

  
  

  

  



 

  
3D figures are difficult to represent, and so a planar view of a 3D color space is used. 

The projection plane is given by the plane passing through extremal points on all three  

 axes, i.e., points X, Y, Z. The new 2D coordinates x, y are obtained as  

  

  
The result of this plane projection is the CIE chromaticity diagram, see Figure 2.30. The 

horseshoe like subspace contains colors which people are able to see. All mono- chromatic 

spectra visible to humans map into the curved part of the horseshoe—their wavelengths are 

shown in Figure 2.30.  

Display and printing devices use three selected real primary colors (as opposed to three 

synthetic primary colors of XYZ color space). All possible mixtures of these primary colors 

fail to cover the whole interior of the horseshoe in CIE chromaticity diagram. This situation 

is demonstrated qualitatively for three particular devices in Figure 2.31.  

  



 

  
  

  

  

  

Color spaces  

  

Several different primary colors and corresponding color spaces are used in practice, and 

these spaces can be transformed into each other. If the absolute color space is used then the 

transformation is the one-to-one mapping and does not lose information (except for rounding 

errors). Because color spaces have their own gamuts, information is lost if the transformed 

value appears out of the gamut. See [Burger and Burge, 2008] for a full explanation and for 

algorithms; here, we list several frequently used color spaces.  

The RGB color space has its origin in color television where Cathode Ray Tubes (CRT) 

were used. RGB color space is an example of a relative color standard (as opposed to the 

absolute one, e.g., CIE 1931). The primary colors (R–red, G–green and B–blue) mimicked 

phosphor in CRT luminophore. The model uses additive color mixing to inform what kind 

of light needs to be emitted to produce a given color. The value of a particular color is 

expressed as a vector of three elements—intensities of three primary colors,×  and a 

transformation to a different color space is expressed by a 3 3 matrix. Assume that values 

for each primary are quantized to m −=  2n values; let the highest − intensity value be k = m 

1; then (0, 0, 0) is black,  



 

(k, k, k) is (television) white, (k, 0, 0) is ‘pure’ red, and so on. The value k = 255 = 28    1 is 

common, i.e., 8 bits per color channel. There are 2563 = 224 = 16, 777, 216 possible colors in 

such a discretized space.  

  

  

  
  

Figure 2.32: RGB color space with primary colors red, green, blue and secondary colors 

yellow, cyan, magenta. Gray-scale images with all intensities lie along the dashed line 

connecting black and white in RGB color space.   

  

The RGB model may be thought of as a 3D co-ordinatization of color space (see Figure 

2.32); note the secondary colors which are combinations of two pure primaries. There are 

specific instances of the RGB color model such as sRGB, Adobe RGB and Adobe Wide 

Gamut RGB, which differ slightly in transformation matrices and the gamut. One of the 

transformations between RGB and XYZ color spaces is  

  

  
The US and Japanese color television formerly used YIQ color space. The Y com- 

ponent describes intensity and I, Q represent color. YIQ is another example of additive  

  

color mixing. This system stores a luminance value with two chrominance values, corre 

sponding approximately to the amounts of blue and red in the color. This color space 

corresponds closely to the YUV color model in the PAL television norm (Australia, Eu- 



 

rope, except France, which uses SECAM). YIQ color space is rotated 33◦ with respect to the 

YUV color space. The YIQ color model is useful since the Y component provides all that is 

necessary for a monochrome display; further, it exploits advantageous properties of the 

human visual system, in particular our sensitivity to luminance, the perceived energy of a 

light source.  

The CMY—for Cyan, Magenta, Yellow—color model uses subtractive color mixing 

which is used in printing processes. It describes what kind of inks need to be applied so the 

light reflected from the white substrate (paper, painter’s canvas) and passing through the 

inks produces a given color. CMYK stores ink values for black in addition. Black can be 

generated from C, M and Y components but as it is abundant in printed documents, it is of 

advantage to have a special black ink. Many CMYK colors spaces are used for different sets 

of inks, substrates, and press characteristics (which change the color transfer function for 

each ink and thus change the appearance).  

HSV – Hue, Saturation, and Value (also known as HSB, hue, saturation, brightness) is 

often used by painters because it is closer to their thinking and technique. Artists commonly 

use three to four dozen colors (characterized by the hue; technically, the dominant 

wavelength). If another color is to be obtained then it is mixed from the given ones, for 

example, ‘purple’ or ‘orange’. The painter also wants colors of different saturation, e.g., to 

change ‘fire brigade red’ to pink. She will mix the ‘fire brigade red’ with white (and/or black) 

to obtain the desired lower saturation. The HSV color model is illustrated in Figure 2.33.  

  

  
Figure 2.33: HSV color model illustrated as a cylinder and unfolded cylinder. © Cengage Learn- 

ing 2015. A color version of this figure may be seen in the color inset—Plate 3.  

  

HSV decouples intensity information from color, while hue and saturation corre- spond  

to human perception, thus making this representation very useful for developing image 

processing algorithms. This will become clearer as we proceed to describe image 

enhancement algorithms (for example, equalization Algorithm 5.1), which if applied to 



 

each component of an RGB model would corrupt the human sense of color, but which 

would work more or less as expected if applied to the intensity component of HSV (leav- 

ing the color information unaffected). HSL (hue, saturation, lightness/luminance), also 

known as HLS or HSI (hue, saturation, intensity) is similar to HSV. ‘Lightness’ replaces 

‘brightness’. The difference is that the brightness of a pure color is equal to the brightness 

of white, while the lightness of a pure color is equal to the lightness of a medium gray.  

  

  

 Models 

 Color 

 Applications  

  

Palette images:  

  

Palette images (also called indexed images) provide a simple way to reduce the amount of 

data needed to represent an image. The pixel values constitute a link to a lookup table (also 

called a color table, color map, palette). The table contains as many entries as the range of 

possible values in the pixel, which is typically 8 bits 256 values. Each entry of the table ≡ 

maps the pixel value to the color, so there are three values, one for each of three color 

components. In the typical case of the RGB color model, values for red, green and blue are 

provided. It is easy to see that this approach would reduce data consumption to one-third if 

each of the RGB channels had originally been using 8 bits (plus size of the look up table). 

 
spaces  

 

Colorimetric  XYZ  Colorimetric calculations  

Device oriented, nonuniform 

spaces  

RGB, UIQ  Storage, processing, coding, 

color TV  

Device oriented, Uniform 

spaces  

LAB, LUV  Color difference, analysis  

User oriented  HSL, HIS  Color perception, computer 

graphics  



 

Many widely used image formats for raster images such as TIFF, PNG and GIF can store 

palette images.  

If the number of colors in the input image is less than or equal to the number of entries in 

the lookup table then all colors can be selected and no loss of information occurs. Such 

images may be cartoon movies, or program outputs. In the more common case, the number of 

colors in the image exceeds the number of entries in the lookup table, a subset of colors has 

to be chosen, and a loss of information occurs.  

This color selection may be done many ways. The simplest is to quantize color space 

regularly into cubes of the same size. In the 8 bit example, there would be 8  ×   8×    8  = 512 

such cubes. If there is, e.g., a green frog in green grass in the picture then there will not be 

enough shades of green available in the lookup table to display the image well. In such a 

case, it is better to check which colors appear in the image by creating histograms for all 

three color components and quantize them to provide more shades for colors which occur in 

the image frequently. If an image is converted to a palette representation then the nearest 

color (in some metric sense) in the lookup table is used to represent the original color. This 

is an instance of vector quantization which is widely used in analyzing large multi-

dimensional datasets. It is also possible to view the occupation by the pixels of RGB space 

as a cluster analysis problem, susceptible to algorithms such as k-means.  

The term pseudo-color is usually used when an original image is gray-level and is 

displayed in color; this is often done to exploit the color discriminatory power of human 

vision. The same palette machinery as described above is used for this purpose; a palette is 

loaded into the lookup table which visualizes the particular gray-scale image the best. It 

could either enhance local changes, or might provide various views of the image. Which 

palette to choose depends on the semantics of the image and cannot be derived from image 

statistics alone. This selection is an interactive process.  

Almost all computer graphics cards work with palette images directly in hardware. The 

content of the lookup table will be filled by the programmer.  

  

  

Color constancy  

  

Consider the situation in which the same surface is seen under different illumination, e.g., 

for a Rubik’s cube in Figure 2.34. The same surface colors are shown fully illuminated and 

in shadow. The human vision system is able to abstract to a certain degree from the 

illumination changes and perceive several instances of a particular color as the same. This 

phenomenon is called color constancy. Of course, it would be desirable to equip artificial 

perception systems based on photosensors with this ability too, but this is very challenging.  

   



 

  



 

  
  

  

Figure 2.34: Color constancy: The Rubik cube is captured in sunlight, and two of three 

visible sides of the cube are in shadow. The white balance was set in the shadow area. 

There are six colors on the cube: R-red, G-green, B-blue, O-orange, W-white, and Y-

yellow. The assignment of the six available colors to 3 9 visible color patches is shown 

on the right. Notice how different the same color patch can be: see RGB values for the 

three instances of orange. © Cengage Learning 2015.×  A color version of this figure may 

be seen in the color inset—Plate 4.  

  

Recall equation (2.16) which models the spectral response qi of the i-th sensor by 

integration over a range of wavelengths as a multiplication of three factors: spectral 

sensitivity Ri(λ) of the sensor i = 1, 2, 3, spectral density of the illumination I(λ), and 

surface reflectance S(λ). A color vision system has to calculate the vector qi for each pixel 

as if I(λ) = 1. Unfortunately, the spectrum of the illuminant I(λ) is usually unknown.  

Assume for a while the ideal case in which the spectrum I(λ) of the illuminant is 

known. Color constancy could be obtained by dividing the output of each sensor with its 

sensitivity to the illumination. Let qi' be the spectral response after compensation for the 

illuminant (called von Kries coefficients), qi' = ρi qi, where  

  

  

  
  

Partial color constancy can be obtained by multiplying color responses of the three 

photosensors with von Kries coefficients ρi.  

In practice, there are several obstacles that make this procedure intractable. First, the 

illuminant spectrum I(λ) is not known; it can only be guessed indirectly from reflec tions 

in surfaces. Second, only the approximate spectrum is expressed by the spectral response 

qi of the i-th sensor. Clearly the color constancy problem is ill-posed and cannot be solved 

without making additional assumptions about the scene.  



 

Several such assumptions have been suggested in the literature. It can be assumed that 

the average color of the image is gray. In such a case, it is possible to scale the sensitivity 

of each sensor type until the assumption becomes true. This will result in an insensitivity 

to the color of the illumination. This type of color compensation is often used in automatic 

white balancing in video cameras. Another common assumption is that the brightest point 

in the image has the color of the illumination. This is true when the scene contains 

specular reflections which have the property that the illuminant is reflected without being 

transformed by the surface patch.  

The problem of color constancy is further complicated by the perceptual abilities of 

the human visual system. Humans have quite poor quantitative color memory, and also 

perform color adaptation. The same color is sensed differently in different local contexts.  

  

1.7. DATA STRUCTURES FOR IMAGE ANALYSIS  

  

Data and an algorithm are the two essentials of any program. Data organization often 

considerably affects the simplicity of the selection and the implementation of an 

algorithm, and the choice of data structures is therefore a fundamental question when 

writing a program.   

  

1.8: LEVELS OF IMAGE DATA REPRESENTATION  

The aim of computer visual perception is to find a relation between an input image and 

models of the real world. During the transition from the raw input image to the model, 

image information becomes denser and semantic knowledge about the interpretation of 

image data is used more. Several levels of visual information representation are defined 

on the way between the input image and the model; computer vision then comprises a 

design of the:  

• Intermediate representations (data structures).  

• Algorithms used for the creation of representations and introduction of relations 

between them.  

The representations can be stratified in four levels [Ballard and Brown, 1982]—however, 

there are no strict borders between them and a more detailed classification of the 

representational levels is used in some applications. These four representational levels are 

ordered from signals at a low level of abstraction to the description that a human can 

perceive. The information flow between the levels may be bi-directional, and for some 

specific uses, some representations can be omitted.  

  

1) The lowest representational level—iconic images—consists of images 

containing original data: integer matrices with data about pixel brightness. 

Images of this kind are also outputs of pre-processing operations used for 

highlighting some aspects of the image important for further treatment.  

2) The second level is segmented images. Parts of the image are joined into 

groups that probably belong to the same objects. For instance, the output of 

the segmentation of a scene with polyhedra is either line segments coinciding 

with borders or two-dimensional regions corresponding to faces of bodies. It 



 

is useful to know something about the application domain while doing image 

segmentation; it is then easier to deal with noise and other problems associated 

with erroneous image data.  

3) The third level is geometric representations holding knowledge about 2D 

and 3D shapes. Quantification of a shape is very difficult but also very 

important. Geometric representations are useful while doing general and 

complex simulations of the influence of illumination and motion in real 

objects. We also need them for the transition between natural raster images 

acquired by a camera) and data used in computer graphics (CAD— computer-

aided design, DTP— desktop publishing).  

4) The fourth representational level is relational models. They give us the ability 

to treat data more efficiently and at a higher level of abstraction. A priori 

knowledge about the case being solved is usually used in processing of this 

kind. Artificial intelligence (AI) techniques are often explored; the 

information gained from the image may be represented by semantic nets or 

frames.  

An example will illustrate a priori knowledge. Imagine a satellite image of a piece of 

land, and the task of counting planes standing at an airport; the a priori knowledge is the 

position of the airport, which can be deduced, for instance, from a map. Relations to other 

objects in the image may help as well, e.g., to roads, lakes, or urban areas. Additional a 

priori knowledge is given by geometric models of planes for which we are searching. 

Segmentation will attempt to identify meaningful regions such as runways, planes and 

other vehicles, while third-level reasoning will try to make these identifications more 

definite. Fourth-level reasoning may, for example, determine whether the plane is 

arriving, departing or undergoing maintenance, etc.  

  

1.9.TRADITIONAL IMAGE DATA STRUCTURES  

Traditional image data structures such as matrices, chains, graphs, lists of object 

properties, and relational databases are important not only for the direct representation of 

image information, but also as a basis for more complex hierarchical methods of image 

representation.  

  

 1.9.1.  Matrices  

A matrix is the most common data structure for low-level representation of an image. 

Elements of the matrix are integer numbers corresponding to brightness, or to another 

property of the corresponding pixel of the sampling grid. Image data of this kind are 

usually the direct output of the image-capturing device. Pixels of both rectangular and 

hexagonal sampling grids can be represented by a matrix. The correspondence between 

data and matrix elements is obvious for a rectangular grid; with a hexagonal grid every 

even row in the image is shifted half a pixel to the right.  

Image information in the matrix is accessible through the co-ordinates of a pixel that 

correspond with row and column indices. The matrix is a full representation of the image, 

independent of the contents of image data—it implicitly contains spatial relations among 

semantically important parts of the image. The space is two-dimensional in the case of an 

image. One very natural spatial relation is the neighborhood relation. Some special 

images that are represented by matrices are:  



 

  

• A binary image (an image with two brightness levels only) is represented by a 

matrix containing only zeros and ones.  

  

• Several matrices can contain information about one multispectral image. Each 

single matrix contains one image corresponding to one spectral band.  

  

• Matrices of different resolution are used to obtain hierarchical image data 

structures. Such hierarchical representations can be very convenient for parallel 

computers with the ‘processor array’ architecture.  

  

Most programming languages use a standard array data structure to represent a matrix. 

Historically, memory limitations were a significant obstacle to image applications, but 

this is no longer the case.  

There is much image data in the matrix. Algorithms can be sped up if global 

information is derived from the original image matrix first—global information is more 

concise and occupies less memory. We have already mentioned the most popular exam- 

ple of global information—the histogram. Looking at the image from a probabilistic point 

of view, the normalized histogram is an estimate of the probability density of a 

phenomenon: that an image pixel has a certain brightness.  

Another example of global information is the co-occurrence matrix [Pavlidis, 1982], 

which represents an estimate of the probability of two pixels appearing in a spatial 

relationship in which a pixel (i1, j1) has intensity 𝑥 and a pixel (i2, j2) has intensity  

y. Suppose that the probability depends only on a certain spatial relation r between a pixel 

of brightness 𝑥 and a pixel of brightness y; then information about the relation r is 

recorded in the square co-occurrence matrix Cr, whose dimensions correspond to the 

number of brightness levels of the image. To reduce the number of matrices Cr, introduce 

some simplifying assumptions; first consider only direct neighbors, and then treat 

relations as symmetrical (without orientation). The following algorithm calculates the co-

occurrence matrix Cr from the image f (i, j).  

  

Algorithm 4.1: Co-occurrence matrix Cr(𝑥, y) for the relation r  

1. Set  Cr(𝑥, y) = 0  for  all  𝑥,  y  ∈ [0, L],  where  L is  the  maximum  brightness.  

2. For all pixels (i1, j1) in the image, determine all (i2, j2) which have the relation  
r  
with the pixel (i1, j1), and perform  

         
 Cr f (i1, j1), f (i2, j2) = Cr f (i1, j1), f (i2, j2) + 1 .  

  

If the relation r is to be a southern or eastern 4-neighbor of the pixel (i1, j1), or identity, 

elements of the co-occurrence matrix have some interesting properties. Diagonal elements of 

the matrix Cr(k, k) are equal to the area of the regions in the image with brightness k, and so 

correspond to the histogram. Off-diagonal elements Cr(k, j) are equal to the length of the 

border dividing regions with brightnesses k and j, k j. For instance, in an image with low 

contrast, the elements of the co-occurrence matrix that are far from the diagonal are equal to 

zero or are very small. For high-contrast images the opposite is true.  



 

The main reason for considering co-occurrence matrices is their ability to describe 

texture: this approach is introduced in Chapter 15.  

The integral image is another matrix representation that holds global image 

information [Viola and Jones, 2001]. It is constructed so that its values ii(i, j) in the 

location (i, j) represent the sums of all the original image pixel-values left of and above 

(i, j):  

   

where f is the original image. The integral image can be efficiently computed in a single 

image pass using recurrences:  

Algorithm 4.2: Integral image construction  

1. Let s(i, j) denote a cumulative row sum, and set s(i, −1) = 0.  

2. Let ii(i, j) be an integral image, and set ii(−1, j) = 0.  

3. Make a single row-by-row pass through the image. For each pixel (i, j) calculate 

the cumulative row sums s(i, j) and the integral image value ii(i, j) using  

s(i, j) = s(i, j − 1) + f (i, j) , (4.2) ii(i, j) = ii(i − 1, j) + s(i, j) 

. (4.3) 

4. After completing a single pass through the image, the integral image ii is con- 

structed.  

  

  

The main use of integral image data structures is in rapid calculation of simple 

rectangle image features at multiple scales. This kind of features is used for rapid object 

identification (Section 10.7) and for object tracking (Section 16.5).  

Figure 4.1 illustrates that any rectangular sum can be computed using four array 

references, and so a feature reflecting a difference between two rectangles requires eight 

references. Considering the rectangle features shown in Figure 4.2a,b, the two-rectangle 

features require only six array references since the rectangles are adjacent. Similarly, the 

three- and four-rectangle features of Figure 4.2c,d can be calculated using eight and nine 

references to the integral image values, respectively. Such features can be computed 

extremely efficiently and in constant time once the integral image is formed.  

  

  

  

  



 

Figure 4.1: Calculation of rectangle features from an integral image. The sum of pixels 

within rectangle D can be obtained using four array references. Dsum−  = ii(δ) + ii(α) 

(ii(β) + ii(γ)), where ii(α) is the value of the integral image at point α (and similarly for β, 

γ, δ). .  

  

  

Figure 4.2: Rectangle-based features may be calculated from an integral image by 

subtraction of the sum of the shaded rectangle(s) from the non-shaded rectangle(s). The 

figure shows (a,b) two- rectangle, (c) three-rectangle, and (d) four-rectangle features. 

Sizes of the individual rectangles can be varied to yield different features as well as 

features at different scales.   Contributions from the regions may be normalized to account 

for possibly unequal region sizes. © Cengage Learning 2015.  

  

Chains  

Chains are used for the description of object borders in computer vision. One element of 

the chain is a basic symbol; this approach permits the application of formal language 

theory for computer vision tasks. Chains are appropriate for data that can be arranged as 

a sequence of symbols, and the neighboring symbols in a chain usually correspond to the 

neighborhood of primitives in the image. The primitive is the basic descriptive element 

that is used in syntactic pattern recognition.  

This rule of proximity (neighborhood) of symbols and primitives has exceptions—for 

example, the first and the last symbol of the chain describing a closed border are not 

neighbors, but the corresponding primitives in the image are. Similar inconsistencies are 

typical of image description languages, too. Chains are linear structures, which is why 

they cannot describe spatial relations in the image on the basis of neighborhood or 

proximity.  

Chain codes are often used for the description of object borders, or other one-pixel-

wide lines in images. The border is defined by the co-ordinates of its reference pixel and 

the sequence of symbols corresponding to the line of the unit length in several pre-defined 

orientations. Notice that a chain code is of a relative nature; data are expressed with 

respect to some reference point. Figure 4.3 shows an example of a chain code in which 

where 8neighborhoods are used—4-neighborhoods can be used as well.   

  

 



 

Figure 4.3: An example chain code; the reference pixel starting the chain is marked by 

an arrow: 00077665555556600000006444444442221111112234445652211.   

  

If local information is needed from the chain code, then it is necessary to search 

through the whole chain systematically. For instance, if we want to know whether the 

border turns somewhere to the left by 90◦, we must just find a sample pair of symbols in 

the chain—it is simple. On the other hand, a question about the shape of the border near 

the pixel (i0, j0) is not trivial. It is necessary to investigate all chain elements until the 

pixel (i0, j0) is found and only then we can start to analyze a short part of the border that 

is close to the pixel (i0, j0).  

The description of an image by chains is appropriate for syntactic pattern recognition 

based on formal language theory methods. When working with real images, the problem 

of how to deal with uncertainty caused by noise arises, which is why several syntactic 

analysis techniques with deformation correction have arisen [Lu and Fu, 1978]. Another 

way to deal with noise is to smooth the border or to approximate it by another curve. This 

new border curve is then described by chain codes [Pavlidis, 1977].  

Run length coding has been used for some time to represent strings of symbols in an 

image matrix. For simplicity, consider a binary image first. Run length coding records 

only areas that belong to objects in the image; the area is then represented as a list of lists. 

Various schemes exist which differ in detail—a representative one describes each row of 

the image by a sublist, the first element of which is the row number. Subsequent terms 

are coordinate pairs; the first element of a pair is the beginning of a run and the second is 

the end (the beginning and the end are described by column coordinates). There can be 

several such sequences in the row. Run length coding is illustrated in Figure 4.4. The main 

advantage of run length coding is the existence of simple algorithms for intersections and 

unions of regions in the image.  

Run length coding can be used for an image with multiple brightness levels as well— 

in this case sequences of neighboring pixels in a row that has constant brightness are 

considered. In the sublist we must record not only the beginning and the end of the 

sequence, but its brightness, too.  

  

  
Figure 4.4: Run length coding; the code is ((1114)(214)(52355)).  

  

  

  

Topological data structures  

Topological data structures describe the image as a set of elements and their relations; 

these relations are often represented using graphs. A graph G = (V, E) is an algebraic 

structure which consists of a set of  nodes    and a set of arcs E = { e1, 

e2,  



 

. . . , em  } . Each arc ek is incident to an unordered (or ordered) pair of nodes {vi, vj } which 

are not necessarily distinct. The degree of a node is equal to the number of incident arcs 

of the node.  

A weighted graph is a graph in which values are assigned to arcs, to nodes, or to both— 

these values may, for example, represent weights, or costs.  

The region adjacency graph is typical of this class of data structures, in which  nodes 

correspond to regions and neighboring regions are connected by an arc. The segmented 

image consists of regions with similar properties (brightness, texture, color, . . .) that 

correspond to some entities in the scene, and the neighborhood relation is fulfilled when 

the regions have some common border. An example of an image with areas labeled by 

numbers and the corresponding region adjacency graph is shown in Figure 4.5; the label 

0 denotes pixels out of the image. This label is used to indicate regions that touch borders 

of the image in the region adjacency graph.  

  
  

The region adjacency graph has several attractive features. If a region encloses other 

regions, then the part of the graph corresponding with the areas inside can be separated 

by a cut in the graph. Nodes of degree 1 represent simple holes.  

Arcs of the graph can include a description of relations between neighboring 

regions— the relations to be to the left or to be inside are common. It can be used for 

matching with a stored pattern for recognition purposes.  

The region adjacency graph is usually created from the region map, which is a matrix 

of the same dimensions as the original image matrix whose elements are identification 

labels of the regions. To create the region adjacency graph, borders of all regions in the               

image are traced, and labels of all neighboring regions are stored. The region adjacency 

graph can also easily be created from an image represented by a quadtree (Section 4.3.2).  

The region adjacency graph stores information about the neighbors of all regions in 

the image explicitly. The region map contains this information as well, but it is much 

more difficult to recall from there. If we want to relate the region adjacency graph to the 

region map quickly, it is sufficient for a node in the region adjacency graph to be marked 

by the identification label of the region and some representative pixel (e.g., the top left 

pixel of the region).  

Construction of the boundary data structures that represent regions is not trivial, and 

is considered in Section 6.2.3. Region adjacency graphs can be used to approach region 

merging (where, for instance, neighboring regions thought to have the same image 

interpretation are merged into one region)—this topic is considered in Section 10.10. In 

particular, note that merging representations of regions that may border each other more 

than once can be intricate, for example, with the creation of ‘holes’ not present before the 

merge—see Figure 4.6.  



 

 

Relational structures  

Relational databases [Kunii et al., 1974] can also be used for representation of 

information from an image; all the information is then concentrated in relations between 

semantically important parts of the image—objects—that are the result of segmentation. 

Relations are recorded in the form of tables. An example of such a representation is shown 

in Figure 4.7 and Table 4.1, where individual objects are associated with their names and 

other features, e.g., the top-left pixel of the corresponding region in the image. Relations 

between objects are expressed in the relational table. Here, such a relation is to be inside; 

for example, the object 7 (pond) is situated inside the object 6 (hill).  

  

 

Figure 4.7: Description of objects using relational structure.   

  

  

  

  

  

No 

.  

Object 

name  

Color  Min. 

row  

Min. 

col.  

Insid 

e  

1  sun  white  5  40  2  

2  sky  blue  0  0  –  

3  cloud  gray  20  180  2  

4  tree trunk  brown  95  75  6  

5  tree crown  green  53  63  –  

6  hill  light 

green  

97  0  –  

7  pond  blue  100  160  6  

  

Table 4.1: Relational table. © Cengage Learning 2015.  

  

Description by means of relational structures is appropriate for higher levels of image 

understanding. In this case searches using keys, similar to database searches, can be used 

to speed up the whole process.  

  

    

  

  

  

  
  



 

1.10  HIERARCHICAL DATA STRUCTURES  

Computer vision is by its nature very computationally expensive, if for no other reason 

than the large amount of data to be processed. Usually a very quick response is expected 

because video real-time or interactive systems are desirable. One of the solutions is to use 

parallel computers (in other words brute force). Unfortunately there are many computer 

vision problems that are very difficult to divide among processors, or decompose in any 

way. Hierarchical data structures make it possible to use algorithms which decide a 

strategy for processing on the basis of relatively small quantities of data. They work at 

the finest resolution only with those parts of the image for which it is essential, using 

knowledge instead of brute force to ease and speed up the processing. We are going to 

introduce two typical hierarchical structures, pyramids and quadtrees.  

  

Pyramids  

Pyramids are among the simplest hierarchical data structures. We distinguish between 

M-pyramids (matrix-pyramids) and T-pyramids (tree-pyramids).  

A Matrix-pyramid (M-pyramid) is a sequence { ML, ML 1, . . . , M0  } of images, 

where ML has the same dimensions and elements as the original image, and − Mi 1 is 

derived from the Mi by reducing the resolution by one-half. When creating pyramids, it is 

customary to work with square matrices having dimensions equal to powers of 2—then 

M0 corresponds to one pixel only.  

M-pyramids are used when it is necessary to work with an image at different 

resolutions simultaneously. An image having one degree smaller resolution in a pyramid 

contains four times less data, so it is processed approximately four times as quickly.  

Often it is advantageous to use several resolutions simultaneously rather than choose 

just one image from the M-pyramid. For such algorithms we prefer to use tree-pyramids, 

a tree structure.   

  

 Let 2L  be the size of an original image (the highest resolution).  A tree- pyramid (T- 

pyramid) is defined by:  

  

1. A  set  of  nodes  P  =  { p = (k, i, j)                        such  that  level  k  [0, L];  i, j 

 [0, 2k  − 1]}  

2. A mapping F between subsequent nodes Pk−1, Pk of the pyramid  

F (k, i, j) = (k − 1, floor(i/2), floor(j/2)) .  

3. A function V  that maps a node of the pyramid P  to Z, where Z is the subset of the 

whole numbers corresponding to the number of brightness levels, for example, Z 

=  

{0, 1, 2, . . . , 255}.  

Nodes of a T-pyramid correspond for a given k with image points of an M-pyramid; 

elements of the set of  nodes P ={ (k, i, j)  } correspond with individual matrices in the 

Mpyramid—k is called the level of the pyramid. An image P ={  (k, i, j)  }  for a specific k 

constitutes an image at the kth level of the pyramid. F is the so-called parent mapping, 

which is defined for all nodes Pk of the T-pyramid except its root (0, 0, 0). Every node of 



 

the T-pyramid has four child nodes except leaf nodes, which are nodes of level L that 

correspond to the individual pixels in the image.  

  

  

  

Values of individual nodes of the T-pyramid are defined by the function V . Values of 

leaf nodes are the same as values of the image function (brightness) in the original image  

at  the  finest  resolution;  the  image  size  is  2L.   Values  of  nodes    

  

in  other  levels  of the tree are either an arithmetic mean of four child nodes or they are 

defined by coarser sampling, meaning that the value of one child (e.g., top left) is used.  

Figure 4.8 shows the structure of a simple T-pyramid.  

The number of image pixels used by an M-pyramid for storing all matrices is given by  

  

  

where N is the dimension of the original matrix (the image of finest resolution)—usually a  

power  of  two, 2L.  

The T-pyramid is represented in memory similarly. Arcs of the tree need not be 

recorded because addresses of the both child and parent nodes are easy to compute due 

to the regularity of the structure. An algorithm for the effective creation and storing of a 

Tpyramid is given in [Pavlidis, 1982].  

  

Quadtrees  

Quadtrees are modifications of T-pyramids. Every node of the tree except the leaves has 

four children (NW, north-western; NE, north-eastern; SW, south-western; SE, south- 

eastern). Similarly to T-pyramids, the image is divided into four quadrants at each 

hierarchical level; however, it is not necessary to keep nodes at all levels. If a parent node 

has four children of the same value (e.g., brightness), it is not necessary to record   

  



 

  

            Figure 4.9: Quadtree..  

  

them. This representation is less expensive for an image with large homogeneous regions; 

Figure 4.9 is an example of a simple quadtree.  

An advantage of image representation by means of quadtrees is the existence of simple 

algorithms for addition of images, computing object areas, and statistical moments. The 

main disadvantage of quadtrees and pyramid hierarchical representations is their 

dependence on the position, orientation, and relative size of objects. Two similar images 

with just very small differences can have very different pyramid or quadtree 

representations. Even two images depicting the same, slightly shifted scene, can have 

entirely different representations.  

These disadvantages can be overcome using a normalized shape of quadtree in which 

we do not create the quadtree for the whole image, but for its individual objects. Geo- 

metric features of objects such as the center of gravity and principal axis are used; the 

center of gravity and principal axis of every object are derived first and then the smallest 

enclosing square centered at the center of gravity having sides parallel with the principal 

axes is located. The square is then represented by a quadtree. An object described by a 

normalized quadtree and several additional items of data (co- ordinates of the center of 

gravity, angle of main axes) is invariant to shifting, rotation, and scale.  

  

  

Quadtrees are usually represented by recording the whole tree as a list of its individual 

nodes, every node being a record with several items characterizing it. An example is given 

in Figure 4.10. In the item Node type there is information about whether the node is a leaf 

or inside the tree. Other data can be the level of the node in the tree, position in the picture, 

code of the node, etc. This kind of representation is expensive in memory. Its advantage 

is easy access to any node because of pointers between parents and children.  

Node type  

Pointer to the NW son  

Pointer to the NE son  

Pointer to the SW son  

Pointer to the SE son  

Pointer to the father  

Other data  

  

Figure 4.10: Record describing a quadtree node.  

.  

It is possible to represent a quadtree with less demand on memory by means of a leaf 

code. Any point of the picture is coded by a sequence of digits reflecting successive 

divisions of the quadtree; zero means the NW (north-west) quadrant, and likewise for 

other quadrants: 1-NE, 2-SW, 3-SE. The most important digit of the code (on the left) 

corresponds to the division at the highest level, the least important one (on the right) with 

the last division. The number of digits in the code is the same as the number of levels of 



 

the quadtree. The whole tree is then described by a sequence of pairs—the leaf code and 

the brightness of the region. Programs creating quadtrees can use recursive procedures to 

advantage.  

T-pyramids are very similar to quadtrees, but differ in two basic respects. A T- pyramid 

is a balanced structure, meaning that the corresponding tree divides the image regardless 

of the contents, which is why it is regular and symmetric. A quadtree is not balanced. The 

other difference is in the interpretation of values of the individual nodes. Quadtrees have 

seen widespread application, particularly in the area of Geographic Information Systems 

(GIS) where, along with their three-dimensional generalization octrees, they have proved 

very useful in hierarchical representation of layered data.  

  

  

  

Other pyramidal structures  

The pyramidal structure is widely used, and has seen several extensions and modi- fications.  

Recalling that a (simple)  M-pyramid was defined as a sequence of images { ML, ML 1, . . 

. , M0} in which Mi is a 2   x  2 reduction of Mi+1, we can define the notion of a reduction 

window; for every cell c of Mi, the reduction window is its set of children in Mi+1, w(c). 

Here, a cell is any single element of the image Mi at the corresponding level of pyramidal 

resolution. If the images are constructed such that all interior cells have the same number 

of neighbors (e.g., a square grid, as is customary), and they all have the same number of 

children, the pyramid is called regular.  

A taxonomy of regular pyramids may be constructed by considering the reduction 

window together with the reduction factor λ, which defines the rate at which the image 

area decreases between levels;  

−  

  

In the simple case, in which reduction windows do not overlap and are× 2     2, we have λ  

= 4; if we choose to let the reduction windows overlap, the factor will reduce. The notation 

used to describe this characterization of regular pyramids is (reduction win- 

dow)/(reduction factor ). Figure 4.11 illustrates some simple examples.  

The reduction window of a given cell at level i may be propagated down to higher 

resolution than level i + 1. For a cell ci at level i, we can write w0(ci) = w(ci), and then 

recursively define  

   (4.5)  

k(ci) is the equivalent window that covers all cells at level i+k+1 that link to the cell ci. 

Note that the shape of this window is going to depend on the type of pyramid—for 

example, an n × n/2 pyramid will generate octagonal equivalent windows, while for an  

≤   



 

  
  

Figure 4.11: Several regular pyramid definitions.  

 (a) 2 x  2/4. (b) 2  x  2/2. (c) 3 x   3/2. (Solid dots are at the higher level, i.e., the 

lowerresolution level.)   

  

nx  n/4 pyramid they will be square. Use of non-square windows prevents domination of 

square features, as is the case for simple 2x 2/4 pyramids.  

 The 2   2/4 pyramid is widely used and is what is usually called an ‘image pyramid’;× 

  the  

2 2/2 structure is often referred to as an ‘overlap pyramid’. 5  ×   5/2 pyramids have×  

been used in compact image coding, where the image pyramid is augmented by a 

Laplacian pyramid of differences.   Here, the Laplacian at a given level is computed as 

the per-pixel difference between the image at that level, and the image derived by 

‘expanding’ the image at the next lower resolution. The Laplacian may be expected to 

have zero (or close) values in areas of low contrast, and therefore be amenable to 

compression.  

Irregular pyramids are derived from contractions of graphical representations of 

images (for example, region adjacency graphs). Here, a graph may be reduced to a smaller 

one by selective removal of arcs and nodes. Depending on how these selections are made, 

important structures in the parent graph may be retained while reducing its overall 

complexity. The pyramid approach is quite general and lends itself to many 

developments—for example, the reduction algorithms need not be deterministic.  

 

  



 

CCS349 / IMAGE AND VIDEO ANALYTICS  

  
UNIT II    IMAGE PRE-PROCESSING         

         

Local pre-processing - Image smoothing - Edge detectors - Zero-crossings of the 

second derivative - Scale in image processing - Canny edge detection - Parametric edge 

models - Edges in multispectral images - Local pre-processing in the frequency domain - 

Line detection by local preprocessing operators - Image restoration.   

  

 
  

2.1. Local pre-processing:  
Local pre-processing methods are divided into two groups according to the goal 

of the processing.   

1) Smoothing aims to suppress noise or other small fluctuations in the image; 

it is equivalent to the suppression of high frequencies in the Fourier transform 

domain. Unfortunately, smoothing also blurs all sharp edges that bear 

important information about the image.   

2) Gradient operators are based on local derivatives of the image function. 

Derivatives are bigger at locations of the image where the image function 

undergoes rapid changes, and the aim of gradient operators is to indicate such 

locations in the image.   

Gradient operators have a similar effect to suppressing low frequencies 

in the Fourier transform domain.   

Noise is often high frequency in nature;  if a gradient operator is applied to 

an image, the noise level increases simultaneously. Clearly, smoothing and 

gradient operators have conflicting aims. Some pre-processing algorithms solve 

this problem and permit smoothing and edge enhancement simultaneously.  

  

Another classification of local pre-processing methods is according to the 

transformation properties; linear and non-linear transformations can be 

distinguished. Linear operations calculate the resulting value in the output image 

pixel f (i, j) as a linear combination of brightnesses in a local neighborhood O of 

the pixel g(i, j) in the input image. The contribution of the pixels in the 

neighborhood O is weighted by coefficients h:  

  

   (5.23)  

Equation (5.23) is equivalent to discrete convolution with the kernel h, which 

is called a convolution mask. Rectangular neighborhoods are often used with an 

odd number of pixels in rows and columns, enabling specification of the central 

pixel of the neighbor- hood.  



 

The choice of the local transformation, size, and shape of the neighborhood 

depends strongly on the size of objects in the processed image. If objects are 

rather large, an image can be enhanced by smoothing of small degradations.  

  

2.2  Image smoothing:  

Image smoothing uses redundancy in image data to suppress noise, usually 

by some form of averaging of brightness values in some neighborhood . 

Smoothing poses the problem of blurring sharp edges, and so we shall consider 

smoothing methods which are edge preserving here, the average is computed 

only from points in the neighborhood which have similar properties to the point 

being processed.  

Local image smoothing can effectively eliminate impulse noise or 

degradations appearing as thin stripes, but does not work if degradations are large 

blobs or thick stripes. Such problems may be addressed by image restoration 

techniques.  

  

Averaging, statistical principles of noise suppression  

Assume that the noise value ν at each pixel is an independent random variable 

with zero mean and standard deviation σ. We might capture the same static scene 

under the same conditions n times. From each captured image a particular pixel 

value gi, i = 1, . . . , n is selected. An estimate of the correct value can be obtained 

as an average of these values, with corresponding noise values ν1, . . . , νn  

  

  
The second term here describes the noise, which is again a random value with zero 

mean and standard deviation  Thus, if n images of the same scene are available, 

smoothing can be accomplished without blurring the image by  

  

This reasoning is a well-known statistical result: a random sample is taken 

from a population and the corresponding sample mean value is calculated. If 

random samples are repeatedly selected and their sample mean values calculated, 

we would obtain a distribution of sample mean values. This distribution of 

sample means has some useful properties:  

• The mean value of the distribution of sample mean values is equal to the 

population mean.  

• The distribution of sample mean values has variance , which is clearly 

smaller than that of than the original population.  

• If the original distribution is normal (Gaussian) then the distribution of 

sample mean values is also normal. Better, the distribution of sample means 



 

converges to normal whatever the original distribution. This is the central 

limit theorem.  

• From the practical point of view, it is important that not too many random 

se- lections have to be made. The central limit theorem tell us the 

distribution of sample mean values without the need to create them. In 

statistics, usually about  

30 samples are considered the lowest limit of the necessary number of 

observations. Usually, only one noise corrupted is available, and averaging is then 

performed in a local neighborhood. Results are acceptable if the noise is smaller in 

size than the smallest objects of interest in the image, but blurring of edges is a 

serious disadvantage. Averaging is a special case of discrete convolution [equation 

(5.23)]. × For a 3x 3 neighborhood, the convolution mask h is  

  

  
The significance of the pixel in the center of the convolution mask h or its 

4neighbors is sometimes increased, as it better approximates the properties of 

noise with a Gaussian probability distribution.  

  

There are two commonly used smoothing filters whose coefficients gradually 

decrease to have near-zero values at the window edges. This is the best way to 

minimize spurious oscillations in the frequency spectrum. These are the Gaussian 

and the Butterworth filters. Larger convolution masks for averaging by Gaussian 

filter are created according to the Gaussian distribution formula (equation 5.47) 

and the mask coefficients are normalized to have a unit sum.  

  

 
  

 (a)  (b)  



 

 
  

 (c)  (d)  

Figure 5.9: Noise with Gaussian distribution and averaging filters. (a) 

Original image. (b) Superimposed noise (random Gaussian noise characterized 

by zero mean and standard deviation equal to one-half of the gray-level standard 

deviation of the original image). (c) 3 × 3 averaging. (d) 7 × 7 averaging.  

  

An example will illustrate the effect of this noise suppression (low resolution 

images, 256 256, were chosen deliberately to show the discrete nature  of the 

process). Figure 5.9a shows an original image of Prague castle; Figure 5.9b 

shows the same image with superimposed additive noise with Gaussian 

distribution; Figure 5.9c shows the result of averaging with a 3x 3 convolution 

mask (equation 5.27)— noise is significantly reduced and the image is slightly 

blurred. Averaging with a larger mask (7 x 7) is demonstrated in Figure 5.9d, 

where the blurring is much more serious.  

Such filters can be very computationally costly, but this is considerably 

reduced in the important special case of separable filters. Separability in 2D 

means that the convolution kernel can be factorized as a product of two one-

dimensional vectors, and theory provides a clue as to which convolution masks 

are separable.  

As an example, consider a binomic filter. Its elements are binomic numbers  

which are created as a sum of the corresponding two numbers in Pascal’s 

triangle. Consider such a filter of size 5x 5—it can be decomposed into a product 

of two  

1D vectors, h1, h2.  
   

  

  

  

  



 

Suppose a convolution kernel is of size 2N + 1. Equation (5.23) allows 

the convolution to be  Rewritten   taking account of the special properties 

of separability  

  

 
The direct calculation of the convolution according to equation (5.23) would 

need, in our case of 5 5 convolution kernel, 25 multiplications and 24 additions 

for each pixel. If the separable filter is used then only 10 multiplications and 8 

additions suffice.  

  

Averaging with limited data validity  

Methods that average with limited data validity try to avoid blurring by 

averaging only those pixels which satisfy some criterion, the aim being to prevent 

involving pixels that are part of a separate feature.  

A very simple criterion is to define a brightness interval of invalid data [min, 

max] (typically corresponding to noise of known image faults), and apply image 

averaging only to pixels in that interval. For a point (m, n), the convolution mask 

is calculated in the neighborhood O by the non-linear formula  

  

  

  

where (i, j) specify the mask element. Therefore, only values of pixels with 

invalid gray-levels are replaced with an average of their neighborhoods, and only 

valid data contribute to the averages.   

A second method performs averaging only if the computed brightness change 

of a pixel is in some pre-defined interval; this permits repair to large-area errors 

resulting from slowly changing brightness of the background without affecting 

the rest of the image. A third method uses edge strength (i.e., gradient magnitude) 

as a criterion. The magnitude of some gradient operator is first computed for the 

entire image, and only pixels with a small gradient are used in averaging. This 

method effectively rejects averaging at edges and therefore suppresses blurring, 

but setting of the threshold is laborious.  

  

×   



 

 
  

 (a)  (b)  

Figure 5.10: Averaging with limited data validity. (a) Original corrupted 

image. (b) Result of corruption removal.   

  

Averaging according to inverse gradient  

Within a convolution mask of odd size, the inverse gradient δ of a point (i, j) 

with respect to the central pixel (m, n) is defined as   

  
   



 

If g(m, n) = g(i, j), then we define δ(i, j) = 2, so δ is in the interval (0, 2], and 

is smaller at the edge than in the interior of a homogeneous region. Weight 

coefficients in the convolution mask h are normalized by the inverse gradient, 

and the whole term is multiplied by 0.5 to keep brightness values in the original 

range: the mask coefficient corresponding to the central pixel is defined as h(i, j) 

= 0.5. The constant 0.5 has the effect of assigning half the weight to the central 

pixel (m, n), and the other half to its neighborhood  

  
   

  

This method assumes sharp edges. When the convolution mask is close to an edge, 

pixels from the region have larger coefficients than pixels near the edge, and it is not 

blurred. Isolated noise points within homogeneous regions have small values of the 

inverse gradient; points from the neighborhood take part in averaging and the noise is 

removed.  

Averaging using a rotating mask  

The smoothing discussed thus far was linear, which has the disadvantage that 

edges in the image are inevitably blurred. Alternative non-linear methods exist 

which reduce this. The neighborhood of the current pixel is inspected and divided 

into two subsets by a homogeneity criterion of the user’s choice. One set consists 

of all pixels neighboring the current pixel or any pixel already included in this 

set, which satisfy the homogeneity criterion. The second set is the complement. 

This selection operation is non-linear and causes the whole filter to be non-linear. 

Having selected the homogeneous subset containing the current pixel, the most 

probable value is sought in it by a linear or non- linear technique.  

  

Averaging using a rotating mask is such a non-linear method that avoids edge 

blur- ring, and the resulting image is in fact sharpened. The brightness average is 

calculated only within this region; a brightness dispersion σ2 is used as the region 

homogeneity measure. Let n be the number of pixels in a region R and g be the 

input image. Dispersion σ2 is calculated as  

  
  

Having computed region homogeneity, we consider its shape and size. The eight 

possible 3x3 masks that cover a 5 x 5 neighborhood of a current pixel (marked by 

the small cross) are shown in Figure 5.11. The ninth mask is the 3 x 3 neighborhood 

of the current pixel itself. Other mask shapes—larger or smaller—can also be used.  

  



 

  
  

Figure 5.11: Eight possible rotated 3×3 masks.  

  

Algorithm 5.2: Smoothing using a rotating mask  

1. Consider each image pixel (i, j).  

2. Calculate dispersion for all possible mask rotations about pixel (i, j) according 

to equation (5.31).  

3. Choose the mask with minimum dispersion.  

4. Assign to the pixel f (i, j) in the output image f the average brightness in the 

chosen mask.  

  

Algorithm 5.2 can be used iteratively and the process converges quite quickly 

to a stable state. The size and shape of masks influence the convergence—the 

smaller the mask, the smaller are the changes and more iterations are needed. A 

larger mask suppresses noise faster and the sharpening effect is stronger. On the 

other hand, information about details smaller than the mask may be lost. The 

number of iterations is also influenced by the shape of regions in the image and 

noise properties.  

  

Median filtering  

In probability theory, the median divides the higher half of a probability 

distribution from the lower half. For a random variable x, the median M is the 

value for which the probability of the outcome x < M is 0.5. The median of a 

finite list of real numbers is simply found by ordering the list and selecting the 

middle member. Lists are often constructed to be odd in length to secure 

uniqueness.  

  

Median filtering is a non-linear smoothing method that reduces the blurring 

of edges, in which the idea is to replace the current point in the image by the 

median of the brightnesses in its neighborhood. The median in the neighborhood 

is not affected by individual noise spikes and so median smoothing eliminates 

impulse noise quite well. Further, as median filtering does not blur edges much, 

it can be applied iteratively. Clearly, performing a sort on pixels within a 

(possibly large) rectangular window at every pixel position may become very 

expensive. A more efficient approach [Huang et al., 1979; Pitas and 

Venetsanopoulos, 1990] is to notice that as the window moves across a row by 

one column, the only change to its  



 

− contents is to lose the leftmost column and replace it with a new 

right column—for a median window of m rows and n columns, mn 2m pixels are 

unchanged and do not need re-sorting. The algorithm is as follows:  

 

7. (We have nm > t, if here). Repeat  

nm = nm − H[m] , m 

= m − 1 ,  

until nm ≤ t.  

8. If the right-hand column of the window is not at the right-hand edge of the 
image, go to (3).  

9. If the bottom row of the window is not at the bottom of the image, go to (2).  

  

Median filtering is illustrated in Figure 5.12. The main disadvantage of 

median filtering in a rectangular neighborhood is its damaging of thin lines and 

sharp corners—this can be avoided if another shape of neighborhood is used. For 

instance, if horizontal/vertical lines need preserving, a neighborhood such as that 

in Figure 5.13 can be used.  



 

Median smoothing is a special instance of more general rank filtering 

techniques, the idea of which is to order pixels in some neighborhood into a 

sequence. The results of pre-processing are some statistics over this sequence, of 

which the median is one possibility. Another variant is the maximum or the 

minimum values of the sequence. This defines generalizations of dilation and 

erosion operators in images with more brightness values.  

  

 
 (a)  (b)  

Figure 5.12: Median filtering. (a) Image corrupted with impulse noise (14% 

of image area covered with bright and dark dots). (b) Result of 3x 3 median 

filtering.   

  

  

  

  

  
  

  

Non-linear mean filter  

Figure 5.13: Horizontal/vertical line preserving neighbor- hood for median 

filtering  

  

The non-linear mean filter is another generalization of averaging techniques; 

it is defined by  

  



 

  

  

where f (m, n) is the result of the filtering, g(i, j) is the pixel in the input image,O  

and is a local neighborhood of the current pixel (m, n). The function u of one 

variable has an inverse function u−1; the a(i, j) are weight coefficients.  

If the weights a(i, j) are constant, the filter is called homomorphic. Some  

homomorphic filters used in image processing are:  

• Arithmetic mean, u(g) = g .  

• Harmonic mean, u(g) = 1/g .  

• Geometric mean, u(g) = log g .  

2.3. Edge detectors:  

Edge detectors are a collection of very important local image pre-processing 

methods used to locate changes in the intensity function; edges are pixels where 

brightness changes abruptly.  

  

  

 Edges are those places in an image that correspond to object boundaries.  

 Edges are pixels where image brightness changes abruptly.   

  

Neurological and psychophysical research suggests that locations in the 

image in which the function value changes abruptly are important for image 

perception. Edges are to a certain degree invariant to changes of illumination and 

viewpoint. If only edge elements with strong magnitude (edges) are considered, 

such information often suffices for image understanding. The positive effect of 

such a process is that it leads to significant reduction of image data. Nevertheless 

such data reduction does not undermine understanding the content of the image 

(interpretation) in many cases. Edge detection provides appropriate 

generalization of the image data; for instance, line drawings perform such a 

generalization.  

We shall consider which physical phenomena in the image formation process 

lead to abrupt changes in image values—see Figure 5.15. Calculus describes 

changes of continuous functions using derivatives; an image function depends on 

two variables—co-ordinates in the image plane—and so operators describing 

edges are expressed using partial derivatives. A change of the image function can 

be described by a gradient that points in the direction of the largest growth of the 

image function.  



 

 
  

  

Figure 5.15: Origin of edges, i.e., physical phenomena in image formation 

process which lead to edges in images. At right, a Canny edge detection.  

  

An edge is a property attached to an individual pixel and is calculated from 

the image function behavior in a neighborhood of that pixel. It is a vector 

variable with two components, magnitude and direction. The edge magnitude 

is the magnitude of the gradient, and the edge direction φ is rotated with respect 

to −  

the gradient direction ψ by 90◦. The gradient direction gives the direction of 

maximum growth of the function, e.g., from black f (i, j) = 0 to white f (i, j) = 

255. This is illustrated in Figure 5.16, in which closed lines are lines of equal 

brightness.  

The orientation 0◦ points east.  

Edges are often used in image analysis for finding region boundaries. 

Provided that the region has homogeneous brightness, its boundary is at the 

pixels where the image function varies and so in the ideal case without noise 

consists of pixels with high edge  

  

  
  

Figure 5.16: Gradient direction and edge direction.   

  

  

magnitude. It can be seen that the boundary and its parts (edges) are 

perpendicular to the direction of the gradient.   

Figure 5.17 shows examples of several standard edge profiles. Edge detectors 

are usually tuned for some type of edge profile.  



 

 g  g  g  g  

 
 x  x  x  x  

Figure 5.17: Typical edge profiles.   

The gradient magnitude | grad g(x, y)|  and gradient direction ψ are 

continuous image functions calculated as  

 

where arg(x, y) is the angle (in radians) from the x axis to (x, y). Sometimes 

we are interested only in edge magnitudes without regard to their orientations—

a linear differential operator called the Laplacian may then be used. The 

Laplacian has the same properties in all directions and is therefore invariant to 

rotation. It is defined as  

  
Image sharpening [Rosenfeld and Kak, 1982] has the objective of making 

edges steeper— the sharpened image is intended to be observed by a human. The 

sharpened output image f is obtained from the input image g as  

 f (i, j) = g(i, j) − C S(i, j) ,  (5.36)  

where C is a positive coefficient which gives the strength of sharpening and 

S(i, j) is a measure of the image function sheerness, calculated using a gradient 

operator. The Laplacian is very often used for this purpose. Figure 5.18 gives an 

example of image sharpening using a Laplacian.  

Image sharpening can be interpreted in the frequency domain as well. We 

know that the result of the Fourier transform is a combination of harmonic 

functions.  

The derivative of the harmonic function sin(nx) is n cos(nx); thus the higher 

the frequency, the higher the magnitude of its derivative.  

A similar image sharpening technique to that of equation (5.36), called 

unsharp masking, is often used in printing industry applications. A signal 

proportional to an unsharp (e.g., heavily blurred by a smoothing operator) image 

is subtracted from the original image. A digital image is discrete in nature and so 

equations (5.33) and (5.34), containing derivatives, must be approximated by 

differences. The first differences of the image g in the vertical direction (for fixed 

i) and in the horizontal direction (for fixed j) are given by  

  
  

  

  
  

  

  
  

  

  
  

  

  
  

  



 

∆i g(i, j) = g(i, j) − g(i − n, j) ,  

∆j g(i, j) = g(i, j) − g(i, j − n) ,  

  

(5.37)  

  

where n is a small integer, usually 1. The value n should be chosen small 

enough to provide a good approximation to the derivative, but large enough to 

neglect unimportant changes in the image function. Symmetric expressions for 

the differences,  

∆i g(i, j) = g(i + n, j) − g(i − n, j) ,  

∆j g(i, j) = g(i, j + n) − g(i, j − n) ,  

are not usually used because they neglect the impact of the pixel (i, j) itself.  

  

 
  

(a) (b)  

Figure 5.18: Laplace gradient operator. (a) Laplace edge image using the 8-connectivity 

mask.  

(b) Sharpening using the Laplace operator equation 5.36, C = 0.7 . Compare the 

sharpening effect with the original image in Figure 5.9a.   

  

Gradient operators as a measure of edge sheerness can be divided into three 

categories:  

1. Operators approximating derivatives of the image function using 

differences. Some are rotationally invariant (e.g., Laplacian) and thus are 

computed from one convolution mask only. Others, which approximate first 

derivatives, use several masks. The orientation is estimated on the basis of 

the best matching of several simple patterns.  

2. Operators based on zero-crossings of the image function second derivative 

(e.g., Marr-Hildreth or Canny edge detectors).  

3. Operators which attempt to match an image function to a parametric model 

of edges.  

  

Edge detection is an extremely important step facilitating higher-level image 

analysis and remains an area of active research. Examples of the variety of 



 

approaches found in current literature are fuzzy logic, neural networks, or 

wavelets. It may be difficult to select the most appropriate edge detection 

strategy.  

Individual gradient operators that examine small local neighborhoods are in 

fact convolutions (cf. equation 5.23), and can be expressed by convolution 

masks. Operators which are able to detect edge direction are represented by a 

collection of masks, each corresponding to a certain direction.  

Roberts operator  

  

The Roberts operator is one of the oldest [Roberts, 1965], and is very easy to 

compute as it uses only a 2 × 2 neighborhood of the current pixel. Its masks are  

  

  

  

so the magnitude of the edge is computed as g(i,
- 

 j) − g(i + 1, j + 1)
- 

 +
-
 
 
g(i, j 

+ 1) − g(i + 1
- 

, j) . (5.40)  

The primary disadvantage of the Roberts operator is its high sensitivity to 

noise, because very few pixels are used to approximate the gradient.  

Laplace operator  

The Laplace operator∇ 2 is a very popular operator approximating the second 

derivative which gives the edge magnitude only. The Laplacian, equation (5.35), 

is  

× approximated in digital images by a 
convolution sum. A 3x3 mask h is often used; for 4-neighborhoods and 8-
neighborhoods it is defined as  

  

  

A Laplacian operator with stressed significance of the central pixel or 

its neighborhood is sometimes used. In this approximation it loses 

invariance to rotation  

  

The Laplacian operator has a disadvantage—it responds doubly to some 

edges in the image.  



 

Prewitt operator  

The Prewitt operator, similarly to the Sobel, Kirsch, and some other 

operators, approximates the first derivative. The gradient is estimated in eight 

(for a 3x 3 convolution mask) possible directions, and the convolution result of 

greatest magnitude indicates the gradient direction. Larger masks are possible. 

We present only the first three 3 x 3 masks for each operator; the others can be 

created by simple rotation.  

  

The direction of the gradient is given by the mask giving maximal response. 

This is also the case for all the following operators approximating the first 

derivative.  

  

  

  

 
  

 (a)  (b)  

 
  

(c) (d)  

Figure 5.19: First-derivative edge detection using Prewitt operators. (a) North 

direction (the brighter the pixel value, the stronger the edge). (b) East direction. (c) 

Strong edges from (a).  

(d) Strong edges from (b).  



 

  

Sobel operator  

The Sobel operator is often used as a simple detector of horizontality and 

verticality of edges, in which case only masks h1 and h3 are used. If the h1 

response is y and the h3 response x, we might then derive edge strength 

(magnitude) as  

 
And direction as arctan(y/x).  

Kirsch operator  

  

To illustrate the application of gradient operators on real images, consider 

again the image given in Figure 5.9a. The Laplace edge image calculated is 

shown in Figure 5.18a; the value of the operator has been histogram equalized to 

enhance its visibility.  

The properties of an operator approximating the first derivative are 

demonstrated using the Prewitt operator—results of others are similar. The original 

image is again given in Figure 5.9a; Prewitt approximations to the directional 

gradients are in Figures 5.19a,b, in which north and east directions are shown. 

Significant edges (those with above-threshold magnitude) in the two directions are 

given in Figures 5.19c,d.   

2.4. Zero-crossings of the second derivative:  

In the 1970s, Marr’s theory  concluded from neurophysiological experiments 

that  

object boundaries are the most important cues that link an intensity image 

with its interpretation. Edge detection techniques existing at that time (e.g., the 

Kirsch, Sobel, and Pratt operators) were based on convolution in very small 

neighborhoods and worked well only for specific images. The main disadvantage 

of these edge detectors is their dependence on the size of the object and 

sensitivity to noise.  

An edge detection technique based on the zero-crossings of the second 

derivative (Marr-Hildreth edge detector)  explores the fact that a step edge 

corresponds to an abrupt change in the image function. The first derivative of the 

image function should have an extremum at the position corresponding to the 

edge in the image, and so the second derivative should be zero at the same 

position; however, it is much easier and more precise to find a zero-crossing 

position than an extremum. In Figure 5.20 this principle is illustrated in 1D for 

the sake of simplicity. Figure 5.20a shows step edge profiles of the original image 

function with two different slopes, Figure 5.20b depicts the first derivative of the 

image function, and Figure 5.20c illustrates the second derivative; notice that this 

crosses the zero level at the same position as the edge.  



 

Considering a step-like edge in 2D, the 1D profile of Figure 5.20a 

corresponds to a cross section through the 2D step. The steepness of the profile 

will change if the  

  
  

Figure 5.20: 1D edge profile of the zero-crossing.   

orientation of the cutting plane changes—the maximum steepness is observed 

when the plane is perpendicular to the edge direction.  

The crucial question is how to compute the second derivative robustly. One 

possibility is to smooth an image first (to reduce noise) and then compute second 

derivatives. When choosing a smoothing filter, there are two criteria that should 

be fulfilled. First, the filter should be smooth and roughly band limited in the 

frequency domain to reduce the possible number of frequencies at which function 

changes can take place. Second, the constraint of spatial localization requires the 

response of a filter to be from nearby points in the image. These two criteria are 

conflicting, but they can be optimized simultaneously using a Gaussian 

distribution. In practice, one has to be more precise about what is meant by the 

localization performance of an operator, and the Gaussian may turn out to be 

suboptimal. We shall consider this in the next section.  

The 2D Gaussian smoothing operator G(x, y) (also called a Gaussian filter, 

or simply a Gaussian) is given by  

  

where x, y are the image co-ordinates and σ is a standard deviation of the 

associated probability distribution. Sometimes this is presented with a 

normalizing factor  

  

  

The standard deviation σ is the only parameter of the Gaussian filter—it is 

proportional to the size of the neighborhood on which the filter operates. Pixels more 



 

distant from the center of the operator have smaller influence, and pixels farther than 

3σ from the center have negligible influence.  

Our goal is to obtain a second derivative of a smoothed 2D function f (x, y). 

We have already seen that the Laplace operator gives the second derivative, and 

is non- directional (isotropic). Consider then the Laplacian of an image f (x, y) 

smoothed by a Gaussian (expressed using a convolution ). The operation is often 

abbreviated as LoG, from Laplacian of Gaussian  

  

  
The order of performing differentiation and convolution can be interchanged 

because of the linearity of the operators involved  

 can be pre-computed analytically, 

since  

it is independent of the image under consideration, and so the complexity of 

the composite operation is reduced. From equation (5.47), we see  

  

  

  

and similarly for y. Hence  

  

  

        After introducing a normalizing multiplicative coefficient c, we get a 

convolution mask of a LoG operator:  

  
where c normalizes the sum of mask elements to zero. Because of its shape, the 
inverted LoG operator is commonly called a Mexican hat. An example of a 5 × 
5 discrete approximation (wherein a 17 × 17 mask is also given) is  

  

The derivative of the Gaussian filter 

  



 

  
  

Of course, these masks represent truncated and discrete representations of 

infinite continuous functions, and care should be taken in avoiding errors in 

moving to this representation.  

Finding second derivatives in this way is very robust. Gaussian smoothing 

effectively suppresses the influence of the pixels that are more than a distance 3σ 

from the current pixel; then the Laplace operator is an efficient and stable 

measure of changes in the image.  

  

  

After image convolution   with the locations in the convolved image where 

the zero level is crossed correspond to the positions of edges. The advantage of this 

approach compared to classical edge operators of small size is that a larger area 

surrounding the current pixel is taken into account; the influence of more distant points 

decreases according to the σ of the Gaussian. In the ideal case of an isolated step edge, 

the σ variation does not affect the location of the zero-crossing. Convolution masks 

become large for larger σ; for  

  

  

 example, σ = 4 needs a mask about 40 pixels wide. Fortunately, there is a 

separable decomposition of the  operator that can speed up computation 

considerably.  

The practical implication of Gaussian smoothing is that edges are found 

reliably. If only globally significant edges are required, the standard deviation σ 

of the Gaussian smoothing filter may be increased, having the effect of 

suppressing less significant evidence.  

  

  The    operator can be very effectively approximated by convolution with a 
mask  that is the difference of two Gaussian averaging masks with substantially different σ— 

this method is called the difference of Gaussians, abbreviated as DoG.   

When implementing a zero-crossing edge detector, trying to detect zeros in 

the LoG or DoG image will inevitably fail, while naive approaches of 

thresholding the  
×  

LoG/DoG image and defining the zero-crossings in some interval of values 

close to zero give piece- wise disconnected edges at best. To create a well-

functioning second-derivative edge detector, it is necessary to implement a true 

zero-crossing detector. A simple detector may identify a zero-crossing in a 

moving 2 × 2 window, assigning an edge label to any one corner pixel, say the 

upper left, if LoG/DoG image values of both polarities occur in the 2 x 2 window; 



 

no edge label would be given if values within the window are either all positive 

or all negative. Another post-processing step to avoid detection of zero- crossings 

corresponding to non-significant edges in regions of almost constant gray-level 

would admit only those zero-crossings for which there is sufficient edge evidence 

from a first-derivative edge detector. Figure 5.21 provides several examples of 

edge detection using zero crossings of the second derivative.  

Many other approaches improving zero-crossing performance can be found 

in the literature; some of them are used in pre-processing  or post-processing 

steps. The traditional second-derivative zero-crossing technique has 

disadvantages as  

  

 

 (a)  (b)  

 
  

 (c)  (d)  

Figure 5.21: Zero-crossings of the second derivative, see Figure 5.9a for the original 

image.  

(a) DoG image (σ1 = 0.10, σ2 = 0.09), dark pixels correspond to negative values, 

bright pixels to positive. (b) Zero-crossings of the DoG image. (c) DoG 

zerocrossing edges after removing edges lacking first-derivative support. (d) 

LoG zero-crossing edges (σ = 0.20) after removing edges lacking first-

derivative support—note different scale of edges due to different Gaussian 

smoothing parameters.   

  

  

  



 

well. First, it smooths the shape too much; for example, sharp corners are 

lost. Second, it tends to create closed loops of edges (nicknamed the ‘plate of 

spaghetti’ effect).  

Neurophysiological experiments provide evidence that the human eye retina 

in the  form of the ganglion cells performs operations very similar to the    

operations. Each such cell responds to light stimuli in a local neighborhood called 

the receptive field, which has a center-surround organization of two 

complementary types, off-center and on-center. When a light stimulus occurs, 

activity of on-center cells increases and that of off-center cells is inhibited. The 

retinal operation on the image can be described analytically as the convolution 

of the image with the 2G operator.  

2.5. Scale in image processing:  

• Many image processing techniques work locally, theoretically at the level of 

individual pixels—edge detection methods are an example. The essential 

problem in such computation is scale.   

• Edges correspond to the gradient of the image function, which is computed 

as a difference between pixels in some neighborhood.   

• There is seldom a sound reason for choosing a particular size of 

neighborhood, since the ‘right’ size depends on the size of the objects under 

investigation.  

• To know what the objects are assumes that it is clear how to interpret an 

image, and this is not in general known at the pre-processing stage.  

• The solution to the problem formulated above is a special case of a general 

paradigm called the system approach. This methodology is common in 

cybernetics or general system theory to study complex phenomena.  

• The phenomenon under investigation is expressed at different resolutions of 

the de- scription, and a formal model is created at each resolution. Then the 

qualitative behavior of the model is studied under changing resolution of the 

description. Such a methodology enables the deduction of meta-knowledge 

about the phenomenon that is not seen at the individual description levels.  

• Different description levels are easily interpreted as different scales in the 

domain of digital images. The idea of scale is fundamental to Marr’s edge 

detection technique, where different scales are provided by different sizes of 

Gaussian filter masks. The aim was not only to eliminate fine scale noise but 

also to separate events at different scales arising from distinct physical 

processes.  

• Assume that a signal has been smoothed with several masks of variable sizes. 

Every setting of the scale parameters implies a different description, but it is 

not known which one is correct; for many tasks, no one scale is categorically 

correct. If the ambiguity introduced by the scale is inescapable, the goal of 

scale-independent description is to reduce this ambiguity as much as possible.   

• Here we shall consider just three examples of the application of multiple scale 

description to image analysis.  

  

1. The first approach aims to process planar noisy curves at a range of 

scales— the segment of curve that represents the underlying structure of 



 

the scene needs to be found. The problem is illustrated by an example of 

two noisy curves.  

• One of these may be interpreted as a closed curve, while the other could be 

described as two intersecting straight lines.  

• Local tangent direction and curvature of the curve are significant only with 

some idea of scale after the curve is smoothed by a Gaussian filter with 

varying standard deviations.   

  

  

  

  

Figure 5.22: Curves that may be analyzed at multiple 

scales.  

  

  

  

2. A second approach, called scale-space filtering, tries to describe signals 

qualitatively with respect to scale. The problem was formulated for 1D 

signals f (x), but it can easily be generalized for 2D functions as images.  

The original 1D signal f (x) is smoothed by convolution with a 1D 

Gaussian  

  

If the standard deviation σ is slowly changed, the function  

 

represents a surface on the (x, σ) plane that is called the scale-space image.  

Inflection points of the curve F (x, σ0) for a distinct value σ0  

  
  

describe the curve f (x) qualitatively. The positions of inflexion points can be 

drawn as a set of curves in (x, σ) co-ordinates. Coarse to fine analysis of the 

curves corresponding to inflexion points, i.e., in the direction of decreasing value 

of the σ, localizes large-scale events.  

The qualitative information contained in the scale-space image can be 

transformed into a simple interval tree that expresses the structure of the signal 

f (x) over all observed scales. The interval tree is built from the root that 

corresponds to the largest scale (σmax), and then the scale-space image is searched 

in the direction of decreasing σ. The interval tree branches at those points where 

new curves corresponding to inflexion points appear   



 

3. The third example of the application of scale is that used by the popular 

Canny edge detector. Since the Canny detector is a significant and widely used 

contribution to edge detection techniques, its principles will be explained in detail.   

2.6. Canny edge detection:  

Canny proposed an approach to edge detection  that is optimal for step edges 

corrupted by white noise. The optimality of the detector is related to three criteria.  

1) The detection criterion expresses the fact that important edges should 

not be missed and that there should be no spurious responses.  

2) The localization criterion says that the distance between the actual and 

located position of the edge should be minimal.  

3) The one response criterion minimizes multiple responses to a single 

edge. This is partly covered by the first criterion, since when there are 

two responses to a single edge, one of them should be considered as 

false. This third criterion solves the problem of an edge corrupted by 

noise and works against non-smooth edge operators.  

  

Canny’s derivation is based on several ideas.  

1. The edge detector was expressed for a 1D signal and the first two optimality 

criteria. A closed-form solution was found using the calculus of variations.  

2. If the third criterion (multiple responses) is added, the best solution may be 

found by numerical optimization. The resulting filter can be approximated 

effectively with error less than 20% by the first derivative of a Gaussian 

smoothing filter with standard deviation σ [Canny, 1986]; the reason for 

doing this is the existence of an effective implementation. There is a strong 

similarity here to the LoG based Marr-Hildreth edge detector.  

3. The detector is then generalized to two dimensions. A step edge is given by 

its position, orientation, and possibly magnitude (strength). It can be shown 

that convolving an image with a symmetric 2D Gaussian and then 

differentiating in the direction of the gradient (perpendicular to the edge 

direction) forms a simple and effective directional operator (recall that the 

Marr-Hildreth zerocrossing operator does not give information about edge 

direction, as it uses a Laplacian filter).  

Suppose G is a 2D Gaussian [equation (5.47)] and assume we wish to 

convolve the image with an operator Gn which is a first derivative of G in 

some direction n  

  
We would like n to be perpendicular to the edge: this direction is not 

known in advance, but a robust estimate of it based on the smoothed 

gradient direction is available. If f is the image, the normal to the edge n is 

estimated as  

  



 

The edge location is then at the local maximum of the image f convolved 

with the operator Gn in the direction n  

  
Substituting in equation (5.56) for Gn from equation (5.54), we get  

  

This equation (5.57) illustrates how to find local maxima in the direction 

perpendicular to the edge; this operation is often referred to as non-

maximal suppression (see also Algorithm 6.4).  

As the convolution and derivative are associative operations in equation 

(5.57), we can first convolve an image f with a symmetric Gaussian G and 

then compute the directional second-derivative using an estimate of the 

direction n computed according to equation (5.55). The strength of the edge 

(magnitude of the gradient of the image intensity function f ) is measured 

as  

                                   
  

4. Spurious responses to a single edge caused by noise usually create a 

‘streaking’ problem that is very common in edge detection in general. The 

output of an edge detector is usually thresholded to decide which edges are 

significant, and streaking may break up edge contours as the operator 

fluctuates above and below the threshold. Streaking can be eliminated by 

thresholding with  



 

 
hysteresis, employing a hard (high) threshold and a soft (lower) 

threshold— see Algorithm 6.5. The low and high thresholds are set 

according to an estimated signal-to-noise ratio.  

5. The correct scale for the operator depends on the objects contained in the 

image. The solution to this unknown is to use multiple scales and aggregate 

information from them. Different scales for the Canny detector are 

represented by different standard deviations σ of the Gaussians. There may 

be several scales of operators that give significant responses to edges (i.e., 

signal-to-noise ratio above the thresh- old); in this case the operator with 

the smallest scale is chosen, as it gives the best localization of the edge.  

Canny proposed a feature synthesis approach. All significant edges 

from the operator with the smallest scale are marked first, and the edges of 

a hypothetical operator with larger σ are synthesized from them (i.e., a 

prediction is made of how the large σ should perform on the evidence 

gleaned from the smaller σ. Then the synthesized edge response is 

compared with the actual edge response for larger σ. Additional edges are 

marked only if they have a significantly stronger response than that 

predicted from synthetic output.  

This procedure may be repeated for a sequence of scales, a cumulative 

edge map being built by adding those edges that were not identified at 

smaller scales.  

  

Figure 5.23a shows the edges of Figure 5.9a detected by a Canny operator 

with σ = 1.0. Figure 5.23b shows the edge detector response for σ = 2.8 (feature 

synthesis has not been applied here).  

Algorithm   5.4:   Canny   edge   detector   

1.   Convolve an   image   f   with a   Gaussian of   scale   σ .   

2.   Estimate   local   edge   normal   directions   n  using   equation   (5.55)   for   each   pixel   in the  
image.   

  

3.   Find   the   location   of   the   edges   using   equation   (5.57)   ( non - maximal   suppression).   

  

4.   Compute   the   magnitude   of   the   edge   using   equation   (5.58).   

  

5.   Threshold   edges   in   the   image   with   hysteresis   to   eliminate   spurious responses.   

6.   Repeat   steps   (1)   through   (5)   for   ascending   values   of   the   standard   deviation   σ .   

7.   Aggregate the final information about edges at multiple scale using the ‘feature  
synthesis’ approach.   



 

  

 
  

 (a)  (b)  

Figure 5.23: Canny edge detection at two different scales. © Cengage Learning 

2015.  

  

Canny’s detector represents a complicated but major contribution to edge 

detection. Its full implementation is unusual, it being common to find 

implementations that omit feature synthesis—that is, just steps 1–5 of Algorithm 

5.4.  

  

2.7. Parametric edge models:  

Parametric models are based on the idea that the discrete image intensity 

function can be considered a sampled and noisy approximation of an underlying 

continuous or piecewise continuous image intensity function.   

While this function is not known, it can be estimated from the available 

discrete image intensity function and image properties can be determined from 

this continuous estimate, possibly with subpixel precision.   

It is usually impossible to represent image intensities using a single 

continuous function since a single function leads to high-order intensity 

functions in x and y. Instead, piecewise continuous function estimates called 

facets are used to represent (a neighborhood of) each image pixel. Such an image 

representation is called a facet model.  

The intensity function in a neighborhood can be estimated using models of 

different complexity.  

 The simplest one is the flat facet model that uses piecewise constants and 

each pixel neighborhood is represented by a flat function of constant intensity. 

The sloped model uses piecewise linear functions forming a sloped plane fitted 

to local image intensities.   

Quadratic and bi-cubic facet models employ more complex functions.  

Once the facet model parameters are available for each image pixel, edges 

can be detected as extrema of the first directional derivative and/or zero-crossings 

of the second directional derivative of the local continuous facet model functions.  



 

An example will illustrate: consider a bi-cubic facet model g(i, j) = c1 + c2 x + 

c3 y + c4 x
2 + c5 x y + c6 y

2 + c7 x
3 + c8 x

2 y + c9 x y2 + c10 y
3 ,                

                                                                      (5.59) whose parameters are estimated 

from a pixel neighborhood (the co-ordinates of the central pixel are (0,0)). This 

may be performed by, e.g., a least-squares method with SVD; alternatively, 

coefficients ci can be computed directly using a set of ten 5x5 kernels. Once 

parameters are available at each pixel, edges may be located as extrema of the first 

directional derivative, or zero crossings of the second derivative, of the local facet 

model functions.  

Benefits:  

1) Edge detectors based on parametric models describe edges more 

precisely than convolution-based edge detectors.  

2) They carry the potential for subpixel edge localization.   

 Limitations:  

• Their computational requirements are much higher.   

• Promising extensions combine facet models with Canny’s edge 

detection criteria and relaxation labeling.  

2.8. Edges in multi-spectral images:  

One pixel in a multi-spectral image is described by an n-dimensional vector, 

and brightness values in n spectral bands are the vector components. There are 

several possibilities for the detection of edges in multi-spectral images.  

Trivially, we might detect edges separately in individual image spectral 

components using the ordinary local gradient operators. Individual images of 

edges can be combined to get the resulting image, with the value corresponding 

to edge magnitude and direction being a selection or combination of the 

individual edge spectral components.  

Alternatively, we may create a multi-spectral edge detector which uses 

brightness information from all n spectral bands; this approach is also applicable 

to multi-dimensional images forming three- or higher-dimensional data volumes.  

The neighborhood used has size 2x n pixels, where the 2x 2 neighborhood is 

similar to that of the Roberts gradient, equation (5.39). The coefficients 

weighting the influence of the component pixels are similar to the correlation 

coefficients. Let       f(i, j) denote the arithmetic mean of the brightnesses 

corresponding to the pixels with the same co-ordinates (i, j) in all n spectral 

component images, and fr be the brightness of the rth spectral component. The 

edge detector result in pixel (i, j) is given as the minimum of the following 

expression:  

  



 

  

2.9. Local pre-processing in the frequency 

domain:  

The Fourier transform makes convolution of two images in the frequency 

domain very easy, and it is natural to consider applying many of the filters in the 

frequency domain. Such operations are usually called spatial frequency 

filtering.  

  

Assume that f is an input image and F is its Fourier transform. A convolution 

filter h can be represented by its Fourier transform H; h may be called the unit 

pulse response of the filter and H the frequency transfer function, and either of 

the representations h or H can be used to describe the filter. The Fourier transform 

of the filter output after an image f has been convolved with the filter h can be 

computed in the frequency domain  

 G = F.  ,  (5.61)  

where . represents an element∗ -by-element multiplication of matrices F and 

H (not matrix multiplication). The filtered image g can be obtained by applying 

the inverse  

Fourier transform to G—equation (3.28).  

Some basic examples of spatial filtering are linear low-pass, high-pass, and 

band- pass frequency filters.  

1) A low-pass filter is defined by a frequency transfer function H(u, v) with 

small values at points located far from the co-ordinate origin in the 

frequency domain (that is, small transfer values for high spatial frequencies) 

and large values at points close to the origin (large transfer values for low 

spatial frequencies)—see Figure 5.24a. It preserves low spatial frequencies 

and suppresses high spatial frequencies, and has behavior similar to 

smoothing by standard averaging—it blurs sharp edges.  

 
  

 (a)  (b)  (c)  

Figure 5.24: Frequency filters displayed in 3D. (a) Low-pass filter. (b) High-

pass filter. (c) Band- pass filter.   



 

  

2) A high-pass filter is defined by small transfer function values located around 

the frequency co-ordinate system origin, and larger values outside this 

area— larger transfer coefficients for higher frequencies (Figure 5.24b).  

• Band-pass filters, which select frequencies in a certain range for 

enhancement, are constructed in a similar way, and also filters 

with directional response, etc. (Fig- ure 5.24c).  

The most common image enhancement problems include noise suppression, 

edge enhancement, and removal of noise which is structured in the frequency 

spectrum. Noise represents a high-frequency image component, and it may be 

suppressed applying a low-pass filter as shown in Figure 5.25, which 

demonstrates the principles of frequency filtering on Fourier image spectra; the 

original image spectrum is multiplied by the filter spectrum and a low-frequency 

image spectrum results. Unfortunately, all high-frequency phenomena are 

suppressed, including high frequencies that are not related to noise (sharp edges, 

lines, etc.). Low-pass filtering results in a blurred image.  

  

  

 
  

 (a)  (b)  

 
  

 (c)  (d)  



 

Figure 5.25: Low-pass frequency-domain filtering—for the original image 

and its spectrum see Figure 3.7. (a) Spectrum of a low-pass filtered image, all 

higher frequencies filtered out.  

(b) Image resulting from the inverse Fourier 

transform applied to spectrum (a). (c) 

Spectrum of a low-pass filtered image, only 

very high frequencies filtered out. (d) Inverse 

Fourier transform applied to spectrum (c).   

  

Again, edges represent a high-frequency image phenomenon. Therefore, to 

enhance them, low-frequency components of the image spectrum must be 

suppressed—to achieve this, a high-frequency filter must be applied.  

To remove noise which is structured in the frequency domain, the filter design 

must include a priori knowledge about the noise properties. This knowledge may 

be acquired either from the image data or from the corrupted image Fourier 

spectrum, where the structured noise usually causes notable peaks.  

Some examples of frequency domain image filtering are shown in Figures 5.25–

5.28. The original image was shown in Figure 3.8 and its frequency spectrum in Figure 

3.7. Figure 5.26 shows results after application of a high-pass filter followed by an 

inverse Fourier transform. It can be seen that edges represent high-frequency 

phenomena in the image. Results of band-pass filtering can be seen in Figure 5.27. 

Figure 5.28 gives an even more powerful example of frequency filtering—removal of 

periodic noise. The vertical noise lines in the original image are transformed into 

frequency spectrum peaks after the transform. To remove these frequencies, a filter was 

designed which suppresses the periodic noise in the image, which is visible as white 

circular areas.  

 
  

 (a)  (b)  



 

 
  

(c) (d)  

Figure 5.26: High-pass frequency domain filtering. (a) Spectrum of a high-

pass filtered image, only very low frequencies filtered out. (b) Image resulting 

from the inverse Fourier transform applied to spectrum (a). (c) Spectrum of a 

high-pass filtered image, all lower frequencies filtered out. (d) Inverse Fourier 

transform applied to spectrum (c).   

  

  

There are several filters which prove useful for filtering in the frequency 

domain: two important representatives of them are the Gaussian and Butterworth 

filters. Choose an isotropic filter for simplicity,  

  

  

, and let D0 be a parameter of the filter called the cut-

off  

frequency. For the Gaussian, D0 coincides with the dispersion σ. The Fourier 

spectrum of a low-pass Gaussian filter Glow is  

  

  

  
  

 
  



 

 (a)  (b)  

Figure 5.27: Band-pass frequency domain filtering. (a) Spectrum of a band-

passfiltered image, low and high frequencies filtered out. (b) Image resulting 

from the inverse Fourier transform applied to spectrum (a).   

  

The Butterworth filter is specified to have maximally flat frequency response 

over a spectrum band, and is also called a ‘maximally flat magnitude filter’. The 

frequency response of the 2D low-pass Butterworth filter Blow of degree n is  

  

  

  

  

The usual Butterworth filter degree is n = 2, which will be used here. Figure 

5.29 illustrates the shape of the Gaussian and Butterworth filters for D0 = 3 in 1D 

plots.  

The high-pass filter is created easily from the low-pass filter. If the Fourier 

frequency spectrum of a low-pass filter is Hlow, the high-pass filter can be created 

by just flipping it vertically, H− 
high = 1-Hlow.  

Another useful pre-processing technique operating in the frequency domain is  

an instance of homomorphic filtering. Homomorphic filtering is used to 

remove multiplicative noise. The aim of the particular homomorphic filtering is 

to simultaneously increase contrast and normalize image intensity across the 

image.  

The assumption is that the image function f (x, y) can be factorized as a product 

of two independent multiplicative components in each pixel: illumination i(x, y) 

and the reflectance r(x, y) at the point in the observed scene, f (x, y) = i(x, y) r(x, 

y). These two components can be separated in some images because the 

illumination component tends to vary slowly and the reflectance component varies 

more quickly. The idea of the separation is to apply a logarithmic transform to the 

input image  

 z(x, y) = log f (x, y) = log i(x, y) + log r(x, y) .  (5.64)  

If the image z(x, y) is converted to Fourier space (denoted by capital letters) 

then its additive components remain additive due to the linearity of the Fourier 

transform  

 Z(u, v) = I(u, v) + R(u, v) .  (5.65)  

  

  

  

  

  



 

 
  

 (a)  (b)  

 
  

(c)  

Figure 5.28: Periodic noise removal. (a) Noisy image. (b) Image spectrum 

used for image reconstruction—note that the areas of frequencies corresponding 

with periodic vertical lines are filtered out. (c) Filtered image. © Cengage 

Learning 2015.  

  

  

  

  

  
  



 

  

 Assume that the Fourier spectrum Z(u, v) is filtered by the filter H(u, v) and 

the spectrum S(u, v) is the result  

 S = H .  Z = H .  I + H .  R .  (5.66)  

Usually a high-pass filter is used for this purpose; assuming a high-pass 

Butterworth filter, it has to be damped in order not to suppress low frequencies 

entirely as they bear needed information too. The Butterworth filter modified by 

damping coefficient 0.5 is shown in Figure 5.30  

 
Having the filtered spectrum S(u, v), we can return to spatial coordinates 

using the inverse Fourier transform, s(x, y) =  −1S(u, v). Recall that the logarithm 

was first applied to the input image f (x, y) in equation (5.64). Now the image 

has to be transformed by the logarithm inverse function; this inverse function is 

the exponential. The result—the image g(x, y) filtered by the homomorphic 

filter—is given by g(x, y) = exp s(x, y) .  

An illustration of the effect of homomorphic filtering is in Figure 5.31, an 

image of a person in a dark tunnel with strong illumination at the entrance. Detail 

of the tunnel surface on the top and right side are not visible because the surface 

is too dark. The result of homomorphic filtering is in Figure 5.31b. More details 

can be seen in this image.  

 
  

 (a)  (b)  

Figure 5.31: Illustration of homomorphic filtering. (a) Original image. (b) 

Homomorphic filtering.   

  



 

2.10. Line detection by local pre-processing 

operators:  

Several other local operations exist which do not belong to the taxonomy 

given in Section 5.3, as they are used for different purposes such as line finding, 

line thinning, and line filling operators. Another group of operators finds 

‘interest points’ or ‘locations of interest’ in the image.  

It is interesting to seek features richer than edges which can be reliably 

detected in the image and which can outperform simple edge detectors in some 

classes of applications. Line detectors and corner detectors are some such. Line 

detectors are used to detect linear objects such as dimension lines in engineering 

drawings or railways or roads in satellite images. Corner detectors and other 

interest point-like detectors are used mainly to register two or more images one 

to the other (e.g, in stereo vision, motion analysis, panorama stitching, object 

recognition from images) or to index the image or dominant objects in it to an 

image database.  

Line finding operators aim to find very thin curves in the image; it is 

assumed that curves do not bend sharply. Such curves and straight lines are called 

lines for the purpose of describing this technique. If a cross section perpendicular 

in direction to the tangent of a line is examined, we get a roof profile (see Figure 

5.17) when examining edges. We assume that the width of the lines is 

approximately one or two pixels.  

The presence of a line may be detected by local convolution of the image with 

con- volution kernels which serve as line patterns. The simplest collection of four 

such patterns of size 3 x 3 is able to detect lines rotated modulo the angle 45o. 

Three of four such convolution kernels are  

  

A similar principle can be applied to bigger masks. The case of 5x5 masks is 

common. Such line detectors sometimes produce more lines than needed, and 

other non-linear constraints may be added to reduce this number. More 

sophisticated approaches deter- mine lines in images as ridges and ravines using 

the facet model. Line detection is frequently used in remote sensing and in 

document processing;  

Local information about edges is the basis of a class of image segmentation 

techniques. Edges which are likely to belong to object boundaries are usually 

found by simple thresholding of the edge magnitude—such edge thresholding 

does not provide ideal contiguous boundaries that are one pixel wide. 

Sophisticated segmentation techniques that are dealt with in the next chapter 

serve this purpose. Here, much simpler edge thinning and filling methods are 

described. These techniques are based on knowledge of small local 

neighborhoods and are very similar to other local pre-processing techniques.  

Thresholded edges are usually wider than one pixel, and line thinning 

techniques may give a better result. One line thinning method uses knowledge about 

edge orientation and in this case edges are thinned before thresholding. Edge 

magnitudes and directions provided by some gradient operator are used as input, and 



 

the edge magnitudes of two neighboring pixels perpendicular to the edge direction 

are examined for each pixel in the image. If at least one of these pixels has edge 

magnitude higher than the edge magnitude of the examined pixel, then the edge 

magnitude of the examined pixel is assigned a zero value.  

There are many other line thinning methods. In most cases the best results are 

achieved using mathematical morphology methods.  

  

2.11. Image restoration:  

Pre-processing methods that aim to suppress degradation using knowledge 

about its nature are called image restoration. Most image restoration methods 

are based on convolution applied globally to the whole image. There is a wide 

literature on restoration and only the basic principles and some simple 

degradations are considered here.  

Image degradation can have many causes: defects of optical lenses, 

nonlinearity of the electro-optical sensor, graininess of the film material, relative 

motion between an object and camera, wrong focus, atmospheric turbulence in 

remote sensing or astronomy, scanning of photographs, etc. The objective of 

image restoration is to reconstruct the original image from its degraded version.  

Image restoration techniques can be classified as deterministic or stochastic. 

Deterministic methods are applicable to images with little noise and a known 

degradation function. The original image is obtained by applying the function 

inverse to the degraded one. Stochastic techniques try to find the best restoration 

according to a particular statistical criterion, e.g., a least-squares method. There are 

three typical degradations with a simple function: relative constant speed movement 

of the object with respect to the camera, wrong lens focus, and atmospheric 

turbulence.  

In most practical cases, there is insufficient knowledge about the degradation, 

and it must be estimated and modeled. This may be done on an a priori or a 

posteriori basis:  

2.11.1. A priori knowledge about degradation is either known in advance or 

can be obtained before restoration. For example, if it is known that the 

image was degraded  

by relative motion of an object with respect to the sensor, then the 

modeling determines only the speed and direction of the motion. 

Alternatively, we may seek to to estimate parameters of a device such as a 

TV camera or digitizer, whose degradation remains unchanged over a 

period of time and can be modeled by studying a known sample image and 

its degraded version.  

2.11.2. A posteriori knowledge is that obtained by analyzing the degraded 

image. A typical example is to find some interest points in the image  

(e.g., corners, straight lines) and guess how they looked before 

degradation. Another possibility is to use spectral characteristics of the 

regions in the image that are relatively homogeneous.  

A degraded image g can arise from the original image f by a process which can be 

expressed as  



 

  
where s is some non-linear function and ν describes the noise. This is often 

simplified by neglecting the non-linearity and assuming that the function h is 

invariant with respect to position in the image, giving  

 g(i, j) = (f  h)(i, j) + ν(i, j) .  (5.75)  

If the noise is not significant in this equation, then restoration equates to 

inverse convolution (also called deconvolution). If noise is not negligible, then 

the inverse convolution is solved as an overdetermined system of linear 

equations. Methods based on minimization of least square error such as Wiener 

filtering (off-line) or Kalman filtering (recursive, on-line; see Section 16.6.1) are 

examples [Bates and McDonnell, 1986].  

  

  

2.11.1. Degradations that are easy to restore  

In the Fourier domain, we can express equation (5.75) as  

 G = H F .  (5.76)  

Therefore, overlooking image noise ν, knowledge of the degradation function 

fully facilitates image restoration by inverse convolution (Section 5.4.2).  

Relative motion of camera and object  

Relative motion of a camera with a mechanical shutter and the photographed 

object during the shutter open time T causes smoothing of the object in the image. 

Suppose V is the constant speed in the direction of the x axis; the Fourier 

transform H(u, v) of the degradation caused in time T.  

  

Wrong lens focus  

  

Image smoothing caused by imperfect focus of a thin lens can be described 

by the function  

   
where J1 is the Bessel function of the first order, r2 = u2 + v2, and a is the 

displacement— the model is not space invariant.  

Atmospheric turbulence  

Atmospheric turbulence is degradation that needs to be restored in remote 

sensing and astronomy. It is caused by temperature non-homogeneity in the 



 

atmosphere that deviates passing light rays. One mathematical model [Hufnagel 

and Stanley, 1964]  

is  

 H(u, v) = e−c(u2 +v2 )5/6 ,  (5.79)  

where c is a constant that depends on the type of turbulence which is usually 

found experimentally. The exponent 5/6 is sometimes replaced by 1.  

2.11.2. Inverse filtering  

Inverse filtering assumes that degradation was caused by a linear function 

h(i, j) (cf. equation 5.75) and considers the additive noise ν as another source of 

degradation. It is further assumed that ν is independent of the signal. After 

applying the Fourier transform to equation (5.75), we get  

 G(u, v) = F (u, v) H(u, v) + N (u, v) .  (5.80)  

The degradation can be eliminated using the restoration filter with a transfer 

function that is inverse to the degradation h. We derive the original image F (its 

Fourier transform to be exact) from its degraded version G (equation 5.80), as  

 F (u, v) = G(u, v) H−1(u, v) − N (u, v) H−1(u, v) .  (5.81)  

  

  

This shows that inverse filtering works well for images that are not corrupted 

by noise [not considering possible computational problems if H(u, v) gets close 

to zero at some location of the u, v space—fortunately, such locations can be 

neglected without perceivable effect on the restoration result]. However, if noise 

is present, two problems arise. First, the noise influence may become significant 

for frequencies where H(u, v) has small magnitude. This situation usually 

corresponds to high frequencies u, v. In reality, H(u, v) usually decreases in 

magnitude much more rapidly than N (u, v) and thus the noise effect may 

dominate the entire restoration result. Limiting the restoration to a small 

neighborhood of the u, v origin in which H(u, v) is sufficiently large overcomes 

this problem, and the results are usually quite acceptable. Secondly, we usually 

do not have enough information about the noise to determine N (u, v) sufficiently.  

  

  

2.11.3. Wiener filtering  

Wiener (least mean square) filtering [Wiener, 1942; Gonzalez and Woods, 

1992; Castle- man, 1996] attempts to take account of noise properties by 

incorporating a priori know- ledge in the image restoration formula. Restoration 

by the Wiener filter gives an estimate fˆ of the original uncorrupted image f with 

minimal mean square error  

 
   (5.82)  

!   "   



 

where denotes the mean operator.𝖲  If no constraints are applied to the solution 

of equation (5.82), then an optimal estimate fˆ is the conditional mean value of 

the ideal image f under the condition g. This approach is complicated from the 

computational point of view. Moreover, the conditional probability density 

between the optimal image f and the corrupted image g is not usually known. 

The optimal estimate is in general a non-linear function of the image g.   

Minimization of equation (5.82) is easy if the estimate f is
ˆ
 a linear 

combination of the values in image g; the estimate  fˆ is then close (but not 

necessarily equal) to the theoretical optimum. The estimate is equal to the 

theoretical optimum only if the stochastic processes describing images f , g, and 

the noise ν are homogeneous, and their probability density is Gaussian. These 

conditions are not usually fulfilled for typical images.  

Denote the Fourier transform of the Wiener filter by HW . Then, the estimate 

Fˆ of the Fourier transform F of the original image f can be obtained as  

 
HW is not derived here, but may be found elsewhere [Gonzalez and Woods, 1992] as  

  

 
where H is the transform function of the degradation,  denotes complex conjugate, Sνν 

is the spectral density of the noise, and Sff is the spectral density of the undegraded 

image.  

If Wiener filtering is used, the nature of degradation H and statistical 

parameters of the noise need to be known. Wiener filtering theory solves the 

problem of optimal a posteriori linear mean square estimates—all statistics (for 

example, power spectrum)  

should be available in advance. Note the term Sff (u, v) in equation (5.84), 

which rep- resents the spectrum of the undegraded image, which may be difficult 

to obtain with no foreknowledge of the undegraded image.  

Restoration is illustrated in Figure 5.36 where an image that was degraded by 

5 pixels motion in the direction of the x axis: Figure 5.36b shows the result of 

restoration by Wiener filtering.  

 



 

  

 (a)  (b)  

Figure 5.36: Restoration of motion blur using Wiener filtering. Courtesy of P. 

Kohout, Criminalistic Institute, Prague.  

  

Despite its unquestionable power, Wiener filtering suffers several substantial 

limitations. First, the criterion of optimality is based on minimum mean square 

error and weights all errors equally, a mathematically fully acceptable criterion 

that unfortunately does not perform well if an image is restored for human 

viewing. The reason is that humans perceive the restoration errors more seriously 

in constant-graylevel areas and in bright regions, while they are much less 

sensitive to errors located in dark regions and in high-gradient areas. Second, 

spatially variant degradations cannot be restored using the standard Wiener 

filtering approach, and these degradations are common. Third, most images are 

highly non-stationary, containing large homogeneous areas separated by high- 

contrast edges. Wiener filtering cannot handle non-stationary signals and noise. 

To deal with real-life image degradations, more sophisticated approaches may be 

needed. Examples include power spectrum equalization and geometric mean 

filtering. These and other specialized restoration techniques can be found in 

higher-level texts devoted to this topic;  is well suited for such a purpose.  
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3.1 Object Detection  

Object Detection is a computer vision technique to locate objects in an image or in a 

video. Organizations and researchers are spending huge time and resources to uncover this 

capability. When we humans look at a picture, we can quickly identify the objects and their 

respective position in an image. We can quickly categorize if it is an apple or a car or a 

human being. We can also determine from any angle. The reason is that our minds have been 

trained in such a way that it can identify various objects. Even if the size of an object gets 

smaller or bigger, we are able to locate them and detect them. The goal is to replicate this 

decision-making intelligence using Machine Learning and Deep Learning.   

3.1.1 Object classification vs. object localization vs. object detection  

Look at the images in Figure 5-1 of a vacuum cleaner. The image classification solutions 

to classify such images into “a Vacuum Cleaner” or “not.” So we could have easily labeled 

the first image as a vacuum cleaner.  

On the other hand, localization refers to finding the position of the object in an image. 

So when we do Image Localization, it means that the algorithm is having a dual 

responsibility of classifying an image as well as drawing a bounding box around it, which 

is depicted in the second image. In the first image of Figure 5-1, we have a vacuum 

cleaner, and in the second image, we have localized it.  

 
  

Figure 5-1 Object detection means identifying and localization of the object. In the first image, we can classify 

if it is a vacuum cleaner, while in the second image, we are drawing a box around it, which is the localization of 

the image  

  



 

To scale the solution, we can have multiple objects in the same image and even multiple 

objects of different categories in the same image, and we have to identify all of them. And 

draw the bounding boxes around them. An example can be of a solution trained to detect 

cars. On a busy road, there will be many cars, and hence the solution should be able to 

detect each of them and draw bounding boxes around them.  

Object detection is surely a fantastic solution. We will now discuss the major object 

detection use cases in the next section.  

3.1.2 Use cases of Object Detection  

Deep Learning has expanded many capabilities across domains and organizations. 

Object detection is a key one and is a very powerful solution which is making huge ripples 

in our business and personal world. The major use cases of object detection are  

1. Object Detection is the key intelligence behind autonomous driving technology. It 

allows the users to detect the cars, pedestrians, the background, motorbikes, and so 

on to improve road safety.  

2. We can detect objects in the hands of people, and the solution can be used for 

security and monitoring purposes. Surveillance systems can be made much more 

intelligent and accurate. Crowd control systems can be made more sophisticated, 

and the reaction time will be reduced.  

3. A solution might be used for detecting objects in a shopping basket, and it can be 

used by the retailers for the automated transactions. This will speed up the overall 

process with less manual intervention.  

4. Object Detection is also used in testing of mechanical systems and on manufacturing 

lines. We can detect objects present on the products which might be 

contaminating the product quality.  

5. In the medical world, the identification of diseases by analyzing the images of a 

body part will help in faster treatment of the diseases.  

There are very less areas where the usage is not envisioned. It is one of the areas 

which are highly researched, and every day new progress is being made in this domain. 

Organizations and researchers across the globe are making huge ripples in this area and 

creating path-breaking solutions.  

  

 

3.2 Object Detection methods  

We can perform object detection using both Machine Learning and Deep Learning.  

Here are a few Machine Learning solutions:  

1. Image segmentation using simple attributes like shape, size, and color of an object.  

2. We can use an aggregated channel feature (ACF), which is a variation of channel 

features. ACF does not calculate the rectangular sums at various locations or scales. 

Instead, it extracts features directly as pixel values.  

3.Viola-Jones algorithm can be used for face detection.   

There are other solutions like RANSAC (random sample consensus), Haar feature–based 

cascade classifier, SVM classification using HOG features, and so on  which can be used for 

object detection.  

  

Deep Learning methods :  



 

  

The following Deep Learning architectures are commonly being used for Object 

Detection:  

1. R-CNN: Regions with CNN features. It combines Regional Proposals with CNN.  

2. Fast R-CNN: A Fast Region–based Convolutional Neural Network.  

3. Faster R-CNN: Object detection networks on Region Proposal algorithms to 

hypothesize object locations.  

4. Mask R-CNN: This network extends Faster R-CNN by adding the prediction of 

segmentation masks on each region of interest.  

5. YOLO: You Only Look Once architecture. It proposes a single Neural Network to 

predict bounding boxes and class probabilities from an image in a single evaluation.  

6. SSD: Single Shot MultiBox Detector. It presents a model to predict objects in images 

using a single deep Neural Network.  

3.3 Deep Learning frameworks for Object Detection  

Few important components of Object Detection are  

• Sliding window approach for Object Detection Bounding box 

approach  

• Intersection over Union  

(IoU)  Non-max 

suppression  Anchor 

boxes concept  

3.3.1 Sliding window approach for Object Detection  

  

  

When we want to detect objects, a very simple approach can be: why not divide the 

image into regions or specific areas and then classify each one of them. This approach for 

object detection is sliding window. As the name suggests, it is a rectangular box which 

slides through the entire image. The box is of fixed length and width with a stride to move 

over the entire image.  

Look at the image of the vacuum cleaner in Figure 5-2. We are using a sliding window 

at each part of the image. The red box is sliding over the entire image of the vacuum 

cleaner. From left to right and then vertically, we can observe that different parts of the 

image are becoming the point of observation. Since the window is sliding, it is referred to 

as the sliding window approach.  

  

   



 

  
  

Figure 5-2 The sliding window approach to detect an object and identify it. Notice how the sliding box 

is moving across the entire image; the process is able to detect but is really a time-consuming process and 

computationally expensive too  

Then for each of these regions cropped, we can classify whether this region contains 

an object that interests us or not. And then we increase the size of the sliding window 

and continue the process.  

Sliding window has proven to work, but it is a computationally very expensive 

technique and will be slow to implement as we are classifying all the regions in an image. 



 

Also, to localize the objects, we need a small window size and small stride. But still it is a 

simple approach to understand.  

  

 

3.4 Bounding box approach  

The sliding window approach outputs less accurate bounding boxes as it is dependent 

on the size of the window. And hence we have another approach wherein we divide the 

entire image into grids (x by x), and then for each grid, we define our target label. We can 

show a bounding box in Figure 5-3.  

  

 

Figure 5-3 Bounding box can generate the x coordinate, y coordinate, height, and width of the bounding box 

and the class probability score  

  

A bounding box can give us the following details:  

Pc: Probability of having an object in the grid cell (0: no object, 1: an object). 

Bx:  

If Pc is 1, it is the x coordinate of the bounding box.  

By: If Pc is 1, it is the y coordinate of the bounding box. Bh:  

If Pc is 1, it is the height of the bounding box.  

Bw: If Pc is 1, it is the width of the bounding box.  

C1: It is the class probability that the object belongs to Class 1. C2:  

It is the class probability that the object belongs to Class 2.  

  

  

  

If an object lies over multiple grids, then the grid that contains the midpoint of that 

object is responsible for detecting that object.  

  

  

  



 

  

3.5  Intersection over Union ( IoU):  

  

Intersection over Union is a test to ascertain how close is our prediction to the actual 

truth.  

It is represented by Equation 5-1 and is shown in Figure 5-4.  

  

 

Figure 5-4 Intersection over Union is used to measure the performance of detection. The numerator is the 

common area, while the denominator is the complete union of the two areas. The higher the value of IoU, the better 

it is  

  

 IoU = Overlapping region/Combined entire region  (Equation 5-1)  

So, if we get a higher value of Intersection over Union, it means the overlap is better. 

Hence, the prediction is more accurate and better. It is depicted in the example in Figure 55 

to visualize.  

  
Figure 5-5 IoU values for different positions of the overlapping blocks. If the value is closer to 1.0, it means that 

the detection is more accurate as compared to the value of 0.15  

  

As we can see in Figure 5-5, for IoU of 0.15, there is very less overlap between the two 

boxes as compared to 0.85 or 0.90. It means that the one with 0.85 IoU is a better solution 

to the one with 0.15 IoU. The detection solution can hence be compared directly.  



 

Intersection over Union allows us to measure and compare the performance of various 

solutions. It also makes it easier for us to distinguish between useful bounding boxes and 

not-so-important ones. Intersection over Union is an important concept with wide usages. 

Using it, we can compare and contrast the acceptability of all the possible solutions and 

choose the best one from them.  

3.6 Deep Learning architectures  

Deep Learning helps in object detection. We can detect objects of interest in an image 

or in a video or even in the live video stream. We are going to create a live video stream 

solution later in the chapter.  

We have seen earlier that there are some problems with the sliding window approach. 

Objects can have different locations in an image and can be of different aspect ratio or size. 

An object might be covering the entire region; on the other hand, somewhere it will be 

covering a small percentage only. There might be more than one object present in the 

image. The objects can be at various angles or dimensions. Or one object can lie in multiple 

grids. And moreover, some use cases require real-time predictions. It results in having a 

very large number of regions and hence huge computation power. It will take a considerable 

amount of time too. The traditional approaches of image analysis and detection will not be 

of much help in such situations. Hence, we require Deep Learning– based solutions to 

resolve and develop robust solutions for object detection.  

Deep Learning–based solutions allow us to train better and hence get better results.  

3.6.1 Region-based CNN (R-CNN)  

We understand that having a very large number of regions is a challenge. Ross Girshick  

et al. proposed R-CNN to address the problem of selecting a large number of regions. 

RCNN is Region-based CNN architecture. Instead of classifying a huge number of regions, 

the solution suggests to use selective search and extract only 2000 regions from the image. 

They are called “Region Proposals.”  

The architecture for R-CNN is shown in Figure 5-8.  

  

 

Figure 5-8 The process in R-CNN. Here, we extract region proposals from the input image, compute the CNN 

features, and then classify the regions. Image source: https://arxiv.org/pdf/1311.2524.pdf and published here with the 

permission of the researchers  
  

With reference to Figure 5-8 where we have shown the process, let us understand the 

entire process in detail now:  

1.  

https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf


 

The first step is to input an image, represented by step 1 in Figure 5-8.  

2.  

Then get the regions we are interested in, which is shown in step 2 in Figure 5-8.  

These are the 2000 proposed regions. They are detected using the following steps: 

a)  

We create the initial segmentation for the image. b)  

Then we generate the various candidate regions for the image. c)  

We combine similar regions into larger ones iteratively. A greedy search approach 

is used for it.  

d)  

Finally, we use the generated regions to output the final region proposals.  

3.  

Then in the next step, we reshape all the 2000 regions as per the implementation 

in the CNN.  

4.  

We then pass through each region through CNN to get features for each 

region.  

5.  

The extracted features are now passed through a support vector machine to  

classify the presence of objects in the region proposed.  

6.  

And then, we predict the bounding boxes for the objects using bounding box 

regression. This means that we are making the final prediction about the image. As 

shown in the last step, we are making a prediction if the image is an airplane or a 

person or a TV monitor.  

The preceding process is used by R-CNN to detect the objects in an image. It is 

surely an innovative architecture, and it proposes a region of interest as an impactful 

concept to detect objects.  

But there are a few challenges with R-CNN, which are  

1. R-CNN implements three algorithms (CNN for extracting the features, SVM for 

the classification of objects, and bounding box regression for getting the bounding 

boxes). It makes R-CNN solutions quite slow to be trained.  

2. It extracts features using CNN for each image region. And the number of regions 

is 2000. It means if we have 1000 images, the number of features to be extracted 

is 1000 times 2000 which again makes it slower.  

  

3. Because of these reasons, it takes 40–50 seconds to make a prediction for an image, 

and hence it becomes a problem for huge datasets.  

4. Also, the selective search algorithm is fixed, and not much improvements can be 

made.  

As R-CNN is not very fast and quite difficult to implement for huge datasets, the 

same authors proposed Fast R-CNN to overcome the issues. w  

  

 



 

3.7  Faster R-CNN  

To overcome the slowness in R-CNN and Fast R-CNN, Shaoqing Ran et al. proposed 

Faster R-CNN. The intuition behind the Faster R-CNN is to replace the selective search 

which is slow and time-consuming. Faster R-CNN uses the Regional Proposal Network or 

RPN.   

The architecture of Faster R-CNN is shown in Figure 5-10.  

  

  
Figure 5-10 Faster R-CNN is an improvement over the previous versions. It consists of two modules – one is 

a deep convolutional network, and the other is the Fast R-CNN detector  

  

Faster R-CNN, is composed of two modules. The first module is a deep fully 
convolutional network that proposes regions, and the second module is the Fast R-
CNN detector that uses the proposed regions. The entire system is a single, unified 
network for object detection.  

  

The way a Faster R-CNN works is as follows:  

1. We take an input image and make it pass through CNN as shown in Figure 5- 10.  

2. From the feature maps received, we apply Region Proposal Networks (RPNs). The way 

an RPN works can be understood by referring to Figure 5-11.  

  



 

 
    

Figure 5-11 Region proposal networks are used in Faster R-CNN. The image has been taken from the 

original paper  

  

The sub steps followed are  

a) RPN takes the feature maps generated from the last step.  

b) RPN applies a sliding window and generates k anchor boxes. We have discussed 

anchor boxes in the last section.  

c)The anchor boxes generated are of different shapes and sizes.  

d) RPN will also predict that an anchor is an object or not.  

e) It will also give the bounding box regressor to adjust the anchors.  

f) To be noted is RPN has not suggested the class of the object.  

g) We will get object proposals and the respective objectness scores.  

3. Apply ROI pooling to make the size of all the proposals the same.  

4. And then, finally, we feed them to the fully connected layers with softmax and linear 

regression.  

5. We will receive the predicted Object Classification and respective bounding boxes.  

Faster R-CNN is able to combine the intelligence and use deep convolution fully 

connected layers and Fast R-CNN using proposed regions. The entire solution is a 

single and unified solution for object detection.  

Though Faster R-CNN is surely an improvement in terms of performance over RCNN 

and Fast R-CNN, still the algorithm does not analyze all the parts of the image 

simultaneously. Instead, each and every part of the image is analyzed in a sequence. Hence, 

it requires a large number of passes over a single image to recognize all the objects. 

Moreover, since a lot of systems are working in a sequence, the performance of one 

depends on the performance of the preceding steps.  

  



 

  

 

3.8  You Only Look Once (YOLO)  

You Only Look Once or YOLO is targeted for real-time object detection. The previous 

algorithms we discussed use regions to localize the objects in the image. Those algorithms 

look at a part of the image and not the complete image, whereas in YOLO a single CNN 

predicts both the bounding boxes and the respective class probabilities. YOLO was 

proposed in 2016 by Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 

The actual paper can be accessed at https://arxiv.org/pdf/1506.02640v5.pdf.  

To quote from the actual paper, “We reframe object detection as a single regression 

problem, straight from image pixels to bounding box coordinates and class probabilities.”  

As shown in Figure 5-12, YOLO divides an image into a grid of cells (represented by 

S). Each of the cells predicts bounding boxes (represented by B). Then YOLO works on 

each bounding box and generates a confidence score about the goodness of the shape of 

the box. The class probability for the object is also predicted. Finally, the bounding box 

having class probability scores above are selected, and they are used to locate the object 

within that image.  

  

 
  

  

Figure 5-12 The YOLO process is simple; the image has been taken from the original paper 

https://arxiv.org/pdf/1506.02640v5.pdf  

  

3.8.1  Salient features of YOLO  

  
1. YOLO divides the input image into an SxS grid. To be noted is that each grid is 

responsible for predicting only one object. If the center of an object falls in a grid 

cell, that grid cell is responsible for detecting that object.  

2. For each of the grid cells, it predicts boundary boxes (B). Each of the boundary boxes 

has five attributes – the x coordinate, y coordinate, width, height, and a confidence 

score. In other words, it has (x, y, w, h) and a score. This confidence score is the 

confidence of having an object inside the box. It also reflects the accuracy of the 

boundary box.  

3. The width w and height h are normalized to the images’ width and height. The x and 

y coordinates represent the center relative to the bound of the grid cells.  

  

4. The confidence is defined as Probability(Object) times IoU. If there is no object, the 

confidence is zero. Else, the confidence is equal to the IoU between the predicted 

box and ground truth.  

https://arxiv.org/pdf/1506.02640v5.pdf
https://arxiv.org/pdf/1506.02640v5.pdf
https://arxiv.org/pdf/1506.02640v5.pdf
https://arxiv.org/pdf/1506.02640v5.pdf


 

5. Each grid cell predicts C conditional class probabilities – Pr(Classi | Object). These 

probabilities are conditioned on the grid cell containing an object. We only predict 

one set of class probabilities per grid cell, regardless of the number of boxes B.  

6. At the test time, we multiply the conditional class probabilities and the individual 

class predictions. It gives us the class-specific confidence scores for each box. It can 

be represented in Equation 5-2:  

  

   
We will now examine how we calculate the loss function in YOLO. It is important to 

get the loss function calculation function before we can study the entire architecture in 

detail.  

3.8.2  Loss function in YOLO  

We have seen in the last section that YOLO predicts multiple bounding boxes for each 

cell. And we choose the bounding box which has the maximum IoU with the ground truth. 

To calculate the loss, YOLO optimizes for sum-squared error in the output in the model 

as sum-squared error is easy to optimize.  

The loss function is shown in Equation 5-3 and comprises localization loss, confidence 

loss, and classification loss. We are first representing the complete  

  

loss function and then describing the terms in detail.  

  

  
(Equation 5-3)  

  

In Equation 5-3, we have localization loss, confidence loss, and classification loss, 

where 1 obj 
i denotes if the object appears in cell i and 1 obj 

ij denotes that the jth bounding 

box predictor in cell i is “responsible” for that prediction.  

Let’s describe the terms in the preceding equation. Here, we have  

A. Localization loss is to measure the errors for the predicted boundary boxes. It 

measures their location and size errors. In the preceding equation, the first two terms 

represent the localization loss. 1 obj 
i is 1 if the jth boundary box in cell i is  

responsible for detecting the object, else the value is 0. λcoord is responsible for the 

increase in the weight for the loss in the coordinates of the boundary boxes. The 

default value of λcoord is 5.  

B. Confidence loss is the loss if an object is detected in the box. It is the second loss 

term in the equation shown. In the term earlier, we have  

  



 

 
  

C. The next term is a confidence loss if the object is not detected. In the term earlier, 

we have  

  

 
  

D. The final term is the classification loss. If an object is indeed detected, then for each 

cell it is the squared error of the class probabilities for each class.  

  

  

  
  

The final loss is the sum total of all these components. As the objective of any Deep 

Learning solution, the objective will be to minimize this loss value.  

3.8.3  YOLO architecture  

The network design is shown in Figure 5-13 and is taken from the actual paper at 

https://arxiv.org/pdf/1506.02640v5.pdf.  

  

 

https://arxiv.org/pdf/1506.02640v5.pdf
https://arxiv.org/pdf/1506.02640v5.pdf


 

Figure 5-13 The complete YOLO architecture; the image has been taken from the original paper at 

https://arxiv.org/pdf/1506.02640v5.pdf  

  

In the paper, the authors have mentioned that the network has been an inspiration from 

GoogLeNet. The network has 24 convolutional layers followed by 2 fully connected layers. 

Instead of Inception modules used by GoogLeNet, YOLO uses 1x1 reduction layers 

followed by 3x3 convolutional layers. YOLO might detect the duplicates of the same 

object. For this, non-maximal suppression has been implemented.  

This removes the duplicate lower confidence score.  

In Figure 5-14, we have a figure having 13x13 grids. In total, 169 grids are there 

wherein each grid predicts 5 bounding boxes. Hence, there are a total of 169*5 = 845 

bounding boxes. When we apply a threshold of 30% or more, we get 3 bounding boxes as 

shown in Figure 5-14.  

  

  
  

  

  

Figure 5-14 The YOLO process divides the region into SxS grids. Each grid predicts five bounding boxes, 

and based on the threshold setting which is 30% here, we get the final three bounding boxes; the image has been 

taken from the original paper  

  

So, YOLO looks at the image only once but in a clever manner. It is a very fast algorithm for 

real-time processing. To quote from the original paper:  

1. YOLO is refreshingly simple.  

2. YOLO is extremely fast. Since we frame detection as a regression problem we don’t 

need a complex pipeline. We simply run our Neural Network on a new image at test 

time to predict detections. Our base network runs at 45 frames per second with no 

batch processing on a Titan X GPU and a fast version runs at more than 150 fps. This 

means we can process streaming video in real-time with less than 25 milliseconds of 

latency. Furthermore, YOLO achieves more than twice the mean average precision of 

other real-time systems.  

3. YOLO reasons globally about the image when making predictions. Unlike sliding 

window and region proposal-based techniques, YOLO sees the entire image during 

training and test time so it implicitly encodes contextual information about classes as 

well as their appearance.  

https://arxiv.org/pdf/1506.02640v5.pdf
https://arxiv.org/pdf/1506.02640v5.pdf


 

4. YOLO learns generalizable representations of objects. When trained on natural 

images and tested on artwork, YOLO outperforms top detection methods like DPM 

and R-CNN by a wide margin. Since YOLO is highly generalizable it is less likely to 

break down when applied to new domains or unexpected inputs.  

There are a few challenges with YOLO too. It suffers from high localization error. 

Moreover, since each of the grid cells predicts only two boxes and can have only one class 

as the output, YOLO can predict only a limited number of nearby objects. It suffers from 

a problem of low recall too. And hence in the next version of YOLOv2 and YOLOv3, 

these issues were addressed.   

YOLO is one of the most widely used object detection solutions. Its uniqueness lies in 

its simplicity and speed.   

  

  

  

Questions:  

  

Part-A  

1. What is the concept of anchor boxes and non-max suppression?  

To generate the final object detections, tiled anchor boxes that belong to the background 

class are removed, and the remaining ones are filtered by their confidence score. Anchor 
boxes with the greatest confidence score are selected using nonmaximum suppression 

(NMS).  

  

2. How are bounding boxes important for object detection?  

  

In the context of digital image processing, the bounding box denotes the border's 

coordinates on the X and Y axes that enclose an image. They are used to identify a target and 
serve as a reference for object detection and generate a collision box for the object.  

  

3. How are R-CNN , Fast R-CNN and Faster R-CNN different and what are the 

improvements?  

  

  

 
R-CNN  Fast R-CNN  Faster R-CNN  

region proposals 

method  

Selective 

search  

Selective search  Region proposal network  

Prediction timing  40-50 sec  2 seconds  0.2 seconds  

computation  High 

computation 

time  

High computation time  Low computation time  



 

The mAP on Pascal 

VOC 2007 test 

dataset(%)  

58.5  66.9 (when trained with  

VOC 2007 only)  

70.0 (when trained with 

VOC 2007 and 2012  

both)  

69.9(when trained with  

VOC 2007 only)  

The mAP on Pascal  

VOC 2012 test dataset  

(%)  

53.3    65.7 (when trained 

with VOC 2012 only) 
68.4 (when trained with 

VOC 2007 and 2012  

both)  

67.0(when trained with  

VOC 2012 only)  

70.4 (when trained with  

VOC 2007 and 2012 both)  

75.9(when trained with  

VOC 2007 and 2012 and  

COCO)  

  

4. What is IoU?  

IoU calculates intersection over the union of the two bounding boxes, the bounding box 

of the ground truth and the predicted bounding box.  

  

  

5. What are the metrics used for object detection?  

  

mAP (mean Average precision) is a popular metric in measuring the accuracy of object 

detectors. Average precision calculates the average precision value for recall value over 0 to 

1.  

  

6. What is NMS?  

  

Non-Max Suppression (NMS) is a technique used in many computer vision 

object detection algorithms. It is a class of algorithms to select one bounding box out 

of many overlapping bounding boxes for a single class. NMS implementation:  

a) Sort the prediction confidence scores in decreasing order.  

b) Start from the top scores, ignore any current prediction if we find any previous 

predictions that have the same class and IoU > Threshold(generally we use 0.5) with 

the current prediction.  

c) Repeat the above step until all predictions are checked.  

  

7. What is the loss function in YOLO?   

YOLO uses a sum of squared error between the predictions and the ground truth to calculate 

the loss. The loss function composes of:  

https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa


 

• The Classification loss.  

• The Localization loss (errors between the predicted boundary box and the ground 

truth).  

• The Confidence loss (the objectness of the box).  

  

  

8. What is the advantage of two-stage methods?   

 In two-stage methods like R-CNN, they first predict a few candidate object locations and 

then use a convolutional neural network to classify each of these candidate object locations as 

one of the classes or as background.  

  

9. What is FPN?   

 Feature Pyramid Network (FPN) is a feature extractor designed with a feature pyramid 

concept to improve accuracy and speed. Images are first to pass through the CNN pathway, 

yielding semantically rich final layers. Then to regain better resolution, it creates a top-down 

pathway by upsampling this feature map. While the top-down pathway helps detect objects of 

varying sizes, spatial positions may be skewed. Lateral connections are added between the 

original feature maps and the corresponding reconstructed layers to improve object 

localization. It currently provides one of the leading ways to detect objects at multiple scales, 

and YOLOv3, Faster R-CNN were build up with this technique.  

10. Why do we use data augmentation?   

Data augmentation is a technique for synthesizing new data by modifying existing data in 

such a way that the target is not changed, or it is changed in a known way. Data augmentation 

is important in improving accuracy. Augment data techniques like flipping, cropping, add 

noise, and color distortion.  

11. What is the advantage of SDD over Faster R-CNN?   

SSD speeds up the process by removing the need for the region proposal 

network(RPN) used in Faster R-CNN.  

  

  

Part – B  

  

  

1. Explain about Object detection and various  Object detection methods.  

https://towardsai.net/p/computer-vision/training-faster-r-cnn-using-tensorflow-object-detection-api-with-a-custom-dataset-88dd525666fd
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2. Elaborate about  Deep Learning framework for Object detection.  

3. Explain about bounding box approach.  

4. Discuss about Intersection over Union (IoU).   

5. Elaborate about Deep Learning Architectures of R-CNN.  

6. Discuss about Faster R-CNN.  

7. Discuss about You Only Look Once (YOLO), Salient features, Loss Functions.  

8. Illustrate and explain about YOLO architectures.  

  

  

 

  



 

 

CCS349/IMAGE AND VIDEO ANALYTICS  

  
UNIT IV   FACE RECOGNITION AND GESTURE RECOGNITION            

  

Face Recognition-Introduction-Applications of Face Recognition-Process of Face 

Recognition- DeepFace solution by Facebook-FaceNet for Face Recognition- 

Implementation using FaceNet, Gesture Recognition.   

  
  

4.1. Face Recognition and Gesture Recognition  

 We humans are absorbed by our faces and faces of others, our smiles, our 

emotions, the different poses we make, and different expressions we have. Our 

mobile phones and cameras capture all of this. When we recognize a friend, we 

recognize the face – its shape, eyes, facial characteristics. And quite interestingly, 

even if we look at the same face from a side pose, we will be able to recognize it.  

Surprisingly, we humans are able to detect the face even if we look at it after a 

long duration. We create that mental position of the attributes of a face, and we are 

able to recall it easily. At the same time, the gestures which we make using our hands 

are easily recognizable. Deep Learning is able to help recreate this capability. The 

usage of face recognition is quite innovative – it can be used across domains of 

security, surveillance, automation, and customer experience – the use cases are many. 

There is a lot of research going on in this field.  

Face recognition  

Face recognition is nothing new. We are born with a natural capability to 

differentiate and recognize faces. It is a trivial task for us. We can recognize the 

people we know in any kind of background, different lights, hair color, with cap or 

sunglasses, and so on. Even if a person has aged or has a beard, we can recognize 

them. Amazing!  

Now we attempt to train the Deep Learning algorithms to achieve the same feat. 

A task so trivial and effortless for us is not an easy one for the machine. In Figure 6-

1, we are having a face, then we are detecting a face, and then recognizing a face.  

 
  

Figure 6-1 We have a face initially. In the second picture, a face is detected, and 

finally we are able to recognize a face with a specific name  

  



 

 We can consider face recognition as a special case of object detection. Instead of 

discovering cars and cats, we are identifying people. But the problem is simpler; we 

have only the class of object to be detected  

– “face.” But face detection is not the end state. We have to put a name to that face 

too, which is not trivial. Moreover, the face can be at any angle; a face can have different 

backgrounds. So, it is not an easy task.  

Also, we might be discovering faces in photographs or in videos. Deep Learning 
algorithms can help us in developing such capabilities. Deep Learning–based 

algorithms can  handle the computation power, advanced mathematical foundation, and 

the millions of data points or faces to train better models for face recognition.  

4.2.  Applications of face recognition  

Face recognition is a pretty exciting technology having applications across domains 

and processes. Some of the key uses are  

1. Security management: The face recognition solutions are applicable for both 

online and offline security systems. Security services, police departments, and 

secret services utilize the power of machine learning– based face recognition 

techniques to trace the antisocial elements. Passport verification can happen 

quicker and in a much more robust fashion. Many countries do maintain a 

database of criminals’ photographs which acts as a starting point to trace the 

culprits. The technology saves really a great deal of time and energy and allows 

the investigators to focus their energies on other areas.  

2. Identity verification is another big area employing face recognition techniques.  

One of the most famous examples of ID verification is smartphones. Face ID 

is used in iPhones and the phone unlocks. Face recognition is being used by 

online channels and social media to check the identity of the person trying to 

access the account.  

3. It is used by retailers to know when individuals with not-so-good history have 

entered the premises. When shoplifters, criminals, or fraudsters enter the stores, 

they act as a threat. Retailers can identify them and take immediate actions to 

prevent any crime.  

4. Marketing becomes much sharper if the business knows the age, gender, and 

facial expressions of the customer. Giant screens can be installed (in fact have 

been done) to identify the target audience.  

5. Consumer experience is improved when the consumer-product interaction is 

analyzed. Expressions of people when they touch the products or try them capture 

the real-world interactions. The data acts as a gold mine for the product teams to 

make necessary amendments to the product features. At the same time, the 

operations and in-store team can make the overall shopping experience more 

enjoyable and interesting.  

6. Access to offices, airports, buildings, warehouses, and parking lots can be 

automated with no human intervention. A security camera takes a picture and 

compares it with the database to ensure authenticity.  

  

The use cases discussed earlier are only a few of the many applications of face 

recognition capabilities. The solutions are hence broadly for face authentication or 



 

face verification or face identification. Many organizations and countries are creating 

huge databases of employees/individuals and investing to sharpen the skills further.  

4.3.  Process of face recognition  

We click pictures from our phones and cameras. The photos are taken of various 

occasions – marriage, graduation, trips, holidays, conferences, and so on. When we 

upload the pictures on social media, it automatically detects the face and recognizes 

who the person is. An algorithm works in the background and does the magic. The 

algorithm is not only able to detect the face but will put a name to it from all the 

other faces in the background. We are studying the similar process in this section.  

Broadly, we can have these four steps around face recognition as shown in 

Figure 6-2.  

  

 
Figure 6-2 Process followed in face detection – right from detection to recognition. 

We detect a face, perform alignment, extract the features, and finally recognize the face  

  

1. Face detection simply means to locate if there is a face or multiple faces in 

a photograph. And we will create a bounding box around it.  OpenCV can 

be used to detect the presence of a face in the photograph.  

2. Once we have detected the face, we normalize the attributes of the face like 

the size and geometry. It is done so that it matches the facial database we 

have. We also reduce the effect of illumination, head movement, and so on.  

3. Next, we extract the features from the face. Some of the distinguishing 

features are eyes, eyebrows, the nostrils, corners of the mouth, and so on.  

4. And then we perform the face recognition. It means we match the face with 

the existing ones in the database. We might perform one of the two: a.  

Verify the given face with a known identity. In simple terms, we want to 

know “Is this Mr. X?”. It is a case of one-to-one relationship.  

b.  

Or we might want to know “Who is this guy?,” and 

in such a case we will have a one-to-many relationship.  

  

The problem hence looks like a supervised learning classification problem. we  

can create a face detection solution using OpenCV. There, we simply identified if 

there is a face present or not. Face recognition is giving a name to that face. It is 

imperative to note that without a concrete face detection, face recognition attempts 

will be futile. After all, first we should know if a face exists, then only we can give a 

name to that face. In other words, detection is to be done first followed by assigning 

a name. If there are more than one person in the photograph, we will be assigning 

names to all the faces detected in the photograph.  

This is the entire process of face recognition.  



 

4.4.  Deep Learning modes for face recognition  

Deep Learning is making its presence felt for face recognition too. Face 

recognition is similar to any other image classification solution. But faces and 

attributes of features make face recognition and detection quite a special one.  

We can use the standard Convolutional Neural Network for face recognition too.  

The layers of the network will behave and process the data similar to any other image 

analysis problem.  

There are a overabundance of solutions available, but the most famous are 

DeepFace, VGGFace, DeepID, and FaceNet as Deep Learning algorithms.  

4.5.  DeepFace solution by Facebook  

  

DeepFace was proposed by researchers of Facebook AI Research (FAIR) in 2014. 

The actual paper can be accessed at 

www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf.  

Figure 6-3 shows the actual architecture of DeepFace, which is taken from the same 

paper mentioned previously.  

  

 

Figure 6-3 DeepFace architecture is shown here. The figure has been taken from the 

original paper at https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf  

In the architecture shown earlier, we can analyze the various layers and the 

processes of the network. DeepFace expects an input image as a 3D-aligned 

RGB image of 152x152. We will now explore this concept of 3D alignment in 

detail.  

The objective of alignment is to generate a front face from the input image. The 

complete process is shown in Figure 6-4 which is taken from the same paper.  

In the first step, we detect a face using six fiducial points. These six fiducial 

points are two eyes, tip of the nose, and three points on the lips. In Figure 6-4, it 

is depicted in step (a). This step detects the face in the image.  

   

http://www.cs.toronto.edu/%257Eranzato/publications/taigman_cvpr14.pdf
http://www.cs.toronto.edu/%257Eranzato/publications/taigman_cvpr14.pdf
https://www.cs.toronto.edu/%257Eranzato/publications/taigman_cvpr14.pdf
https://www.cs.toronto.edu/%257Eranzato/publications/taigman_cvpr14.pdf


 

 
  

Figure 6-4 Face alignment process used in DeepFace. The image has been taken 

from the original paper. We should note how a face is progressively analyzed in steps  

  

In the second step, as shown in step (b), we crop and generate the 2D face from the 

original image. We should note how the face has been cropped from the original image 

in this step.  

In the next steps, triangles are added on the contours to avoid discontinuities.  

We apply 67 fiducial points on the 2D-aligned crop with their corresponding 

Delaunay Triangulation. A 3D model is generated using a 2D to 3D generator, and 

the 67 points are plotted. It also allows us to align the out-of-plane rotation. Step (e) 

shows the visibility with respect to the fitted 2D-3D camera, and in step (f) we can 

observe the 67 fiducial points induced by the 3D model which are used to direct the 

piecewise affine wrapping. We will discuss the Delaunay Triangulation briefly now. 

For a given set “P” of discrete points in a plane, in triangulation DT no point is inside 

the circumcircle of any triangle in Delaunay Triangulation. Hence, it maximizes the 



 

minimum angles of all the triangles in the triangulation. We are showing the 

phenomenon in Figure 6-5.  

 
  

Figure  6-5  Delaunay  Triangulation.  Image  source: 

https://commons.wikimedia.org/w/index.php?curid=18929097  

  

Finally, we do a final frontalized crop. It is the final step which achieves the 

objective of 3D frontalization.  

Once the step of 3D frontalization is done, then the image is ready to be fed to the 

next steps in the network. An image of 152x152 size is the input image which is fed to 

the next layer.  

The next layer is the convolutional layer (C1) with 32 filters of size 11x11x3 

followed by a 3x3 max pooling layer with a stride of 2. Then the next layer is another 

convolution with 16 filters and size 9x9x16.  

  

  

  
  

Figure 6-6 Complete DeepFace architecture is shown here. The image is from the 

original paper. We can observe that after frontalization has been done, the convolutional 

process is the next one  

  

https://commons.wikimedia.org/w/index.php%253Fcurid%253D18929097
https://commons.wikimedia.org/w/index.php%253Fcurid%253D18929097


 

And then we have three locally connected layers. We will discuss locally 

connected layers briefly as they are a bit different from fully connected layers.  

Locally connected behave differently from fully connected layers. For a fully 

connected layer, each neuron of the first layer is connected to the next layer. For 

locally connected layers, we have different types of filter in a different feature map. 

For example, when we are classifying if the image is of a face, we can search for the 

mouth only at the bottom of the image. So locally connected layers are handy if we 

know that a feature should be restricted within a small space and there is no need to 

search for that feature across the entire image.  

In DeepFace, we have locally connected layers, and hence we can improve the 

model as we can differentiate between facial regions based on different types of feature 

maps.  

The next to last layer is a fully connected layer which is used for face 

representation. The final layer is a softmax fully connected layer to do the 

classification.  

The total number of parameters is 120 million. Dropout is being used as a 

regularization technique but is done only for the final fully connected layers. We also 

normalize the features between 0 and 1 and do an L2 normalization. The network 

generates quite sparse feature maps during the training, primarily since ReLU has 

been used as the activation function.  

The validation was done on the LFW (Labeled Faces in the Wild) dataset and 

SFC dataset. LFW contains more than 13,000 web images of more than 5700 

celebrities. SFC is the dataset by Facebook itself having ~4.4 million images of 4030 

people each having 800 to 1200 facial images. The ROC curves for both the datasets 

are shown in Figure 6-7.  

  

  

  
  

Figure 6-7 ROC curve of LFW dataset and YTF dataset taken from the original paper 

at https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf  

  

DeepFace is one of the novel face recognition modes. It has more than 99.5% 

accuracy on the LFW dataset. It is able to resolve issues with pose, expression, or 

light intensity in the background. 3D alignment is quite a unique methodology which 

further enhances accuracy. The architecture has performed really well on LFW and 

YouTube Faces dataset (YTF).  

https://www.cs.toronto.edu/%257Eranzato/publications/taigman_cvpr14.pdf
https://www.cs.toronto.edu/%257Eranzato/publications/taigman_cvpr14.pdf


 

  

4.6.  FaceNet for face recognition  

  

FaceNet was proposed by Google researchers Florian Schroff, Dmitry 

Kalenichenko, and James Philbin in 2015. The original paper is “FaceNet: A Unified 

Embedding for Face Recognition and Clustering” and can be accessed at 

https://arxiv.org/abs/1503.03832.  

FaceNet does not recommend a completely new set of algorithms or complex 

mathematical calculations to perform the face recognition tasks. The concept is rather 

simple.  

All the images of faces are first represented in a Euclidean space. And then we 

calculate the similarity between faces by calculating the respective distances.  

Consider this, if we have an image, Image1 of Mr. X, then all the images or faces of 

Mr. X will be closer to Image1 rather than Image2 of Mr. Y. The concept is shown in 

Figure 6-8.  

  
  

Figure 6-8 The images of Einstein will be similar to each other, and hence the 

distance between them will be less, while the image of Gandhi will be at a distance  

  

The preceding concept is simpler to understand. We will understand the 

architecture in detail now. As shown in Figure 6-9, we can examine the complete 

architecture. The image has been taken from the original paper itself.  

 

https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832


 

  

Figure 6-9 FaceNet architecture. The image has been taken from the original paper 

at https://arxiv.org/abs/1503.03832  

  

The network starts with a batch input layer of the images. And then it is followed 

by a deep CNN architecture. The network utilizes an architecture like ZFNet or 

Inception network.   

  

FaceNet implements 1x1 convolutions to decrease the number of parameters.  

The output of these Deep Learning models is an embedding of images. L2 

normalization is performed on the output. These embeddings are quite a useful 

addition. FaceNet understands the respective mappings from the facial images and 

then creates embeddings.  

Once the embeddings are successfully done, we can simply go ahead, and with 

the help of newly created embeddings as the feature vector, we can use any standard 

machine learning technique. The usage of embeddings is the prime difference 

between FaceNet and other methodologies as other solutions generally implement 

customized layers for facial verifications.  

The created embeddings are then fed to calculate the loss. The images are 

represented in a Euclidean space. The loss function aims to make the squared 

distance between two image embeddings of similar images small, whereas the 

squared distance between different images is large. In other words, the squared 

distance between the respective embeddings will decide the similarity between the 

faces.  

There is one vital concept implemented in FaceNet – triplet loss function.  

Triplet loss is shown in Figure 6-10; the image has been taken from the original 

paper itself.  

 
  

Figure 6-10 Triplet loss used in FaceNet. The image has been taken from the 

original paper at https://arxiv.org/abs/1503.03832  

  

Triplet loss works on the concept we discussed in Figure 6-8 at the start of the 

FaceNet discussion. The intuition is that we want the images of the same person Mr. 

X closer to each other. Let us call that Image1 as the anchor image. All the other 

https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832


 

images of Mr. X are called the positive images. The images of Mr. Y are referred to 

as negative images.  

Hence, as per triplet loss, we want the distance between the embeddings of the 

anchor image and positive image to be less as compared to the distance between 

embeddings of the anchor image and negative image. We would want to achieve 

Equation 6-1:  

  
  

 Negative image is xi 
n
, so basicallyi xi is an image.  

⍺ is a margin that is enforced between positive and negative pairs. It is the threshold 

we set, and it signifies the difference between the respective pairs of images.  

T is the set of all the possible triplets in the training set and has cardinality N.  

Mathematically, triplet loss can be represented as in Equation 6-2. It is the loss 

which we wish to 

minimize.  

  

  

(Equation 6-2)  

 In the preceding equations, the embedding of an image is 

represented by f(x) such that x ∈ℝ. It embeds an image x into 

a d-dimensional Euclidean space. f(xi) is the embedding of 

an image which is in the form of a vector of size 128.  

The solution is dependent on the selection of the image pairs. There can be 

image pairs which the network will be able to pass. In other words, they will satisfy 

the condition of the loss. These image pairs might not add much to the learning and 

might also result in slow convergence.  

For better results and faster convergence, we should select the triplets which do 

violate the condition in Equation 6-1.  



 

  



 

  
  

  

  

  

  

  



 

  
The model performed very well with 95.12% accuracy with standard error of  

0.39 using the first 100 frames.  

On the LFW dataset, quote from the paper:  

Our model is evaluated in two modes: 1. Fixed center crop of the LFW provided 
thumbnail. 2. A proprietary face detector (similar to Picasa [3]) is run on the 

provided LFW thumbnails. If it fails to align the face (this happens for two images), 

the LFW alignment is used.  

We achieve a classification accuracy of 98.87%±0.15 when using the fixed 

center crop described in (1) and the record breaking 99.63%±0.09 standard error 

of the mean when using the extra face alignment (2). FaceNet is a novel solution as 

it directly learns an embedding into the Euclidean space for face verification. The 

model is robust enough to be not affected by the pose, lighting, occlusion, or age of 

the faces.  

4.7.  Python implementation using FaceNet  

The code in this section is quite self-explanatory. We are using a pre-trained 

FaceNet model with its weights and calculating the Euclidean distance to measure 

the similarity between two faces. We are using the publicly available facenet_weights 

from https://drive.google.com/file/d/1971Xk5RwedbudGgTIrGAL4F7Aif 

u7id1/view by Sefik Ilkin Serengil. The  

model was converted from Tensorflow to Keras. The base model can be found at   

https://github.com/davidsandberg/facenet. Step 1: Load the libraries.  

from keras.models import model_from_json  

from inception_resnet_v1 import * import numpy as np  

  

from keras.models import Sequential from 

keras.models import load_model  

from keras.models import model_from_json from 

keras.layers.core import Dense, Activation from 

keras.utils import np_utils  

  

https://drive.google.com/file/d/1971Xk5RwedbudGgTIrGAL4F7Aif%20u7id1/view%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20Sefik%20Ilkin%20Serengil.%20The%20model%20was%20converted%20from%20Tensorflow%20to
https://drive.google.com/file/d/1971Xk5RwedbudGgTIrGAL4F7Aif%20u7id1/view%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20Sefik%20Ilkin%20Serengil.%20The%20model%20was%20converted%20from%20Tensorflow%20to
https://drive.google.com/file/d/1971Xk5RwedbudGgTIrGAL4F7Aif%20u7id1/view%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20Sefik%20Ilkin%20Serengil.%20The%20model%20was%20converted%20from%20Tensorflow%20to
https://drive.google.com/file/d/1971Xk5RwedbudGgTIrGAL4F7Aif%20u7id1/view%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20Sefik%20Ilkin%20Serengil.%20The%20model%20was%20converted%20from%20Tensorflow%20to
https://drive.google.com/file/d/1971Xk5RwedbudGgTIrGAL4F7Aif%20u7id1/view%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20Sefik%20Ilkin%20Serengil.%20The%20model%20was%20converted%20from%20Tensorflow%20to
https://drive.google.com/file/d/1971Xk5RwedbudGgTIrGAL4F7Aif%20u7id1/view%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20Sefik%20Ilkin%20Serengil.%20The%20model%20was%20converted%20from%20Tensorflow%20to
https://drive.google.com/file/d/1971Xk5RwedbudGgTIrGAL4F7Aif%20u7id1/view%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20Sefik%20Ilkin%20Serengil.%20The%20model%20was%20converted%20from%20Tensorflow%20to
https://github.com/davidsandberg/facenet
https://github.com/davidsandberg/facenet


 

from keras.preprocessing.image import load_img, 

save_img, img_to_array from 

keras.applications.imagenet_utils import 

preprocess_input  

import 

matplotlib.pyp

lot as plt from 

keras.preproce

ssing import 

image  

Step 2: Load the model now.  

face_model = InceptionResNetV1() 

face_model.load_weights('facenet_weights.h5')  

Step 3: We will now define three functions – to normalize the dataset, to calculate 

the Euclidean distance, and to preprocess the dataset.  

def normalize(x):  

return x / np.sqrt(np.sum(np.multiply(x, x)))  

  

def getEuclideanDistance(source, validate): euclidean_dist = 
source - validate euclidean_dist = 

np.sum(np.multiply(euclidean_dist, euclidean_dist)) 
euclidean_dist = np.sqrt(euclidean_dist) return 
euclidean_dist  

def preprocess_data(image_path):  

image = load_img(image_path, target_size=(160, 160)) image = 

img_to_array(image)  

 image  =  np.expand_dims(image,  axis=0)  image  =  

preprocess_input(image) return image  

Step 4: Now we will calculate the similarity between the two images.  

Here, we have taken these two images of a famous cricket celebrity – Sachin 

Tendulkar. These two images have been taken from the Internet.  

img1_representation =  

normalize(face_model.predict(preprocess_data('image_1.jpeg')

) [0,:]) img2_representation = 

normalize(face_model.predict(preprocess_data('image_2.jpeg')) 

[0,:])  

  

euclidean_distance = getEuclideanDistance(img1_representation, 

img2_representation)  



 

 
  

  

The Euclidean distance similarity is 0.70. We can also implement a cosine similarity 

to test the similarity between two images.  

4.8.  Python solution for gesture recognition  

  

  

  

Gesture recognition is one of the most innovative solutions which is helping 

humans talk to the system. Gesture recognition means that hand or face gestures can 

be captured by the system and a corresponding action can be taken by the system. It 

consists of detection, tracking, and recognition as the key components.  

1. In detection, the visual part like the hand or a finger or a body part is extracted. 

The visual part should be within the view of the camera.  

2. Then we track the visual part. It ensures that data is captured and analyzed 

frame by frame.  

3. And finally, we recognize the gesture or a group of gestures. Based on the 
algorithm settings we have done, the training data used, the system will be 

able to identify the type of gesture that has been made.  

Gesture recognition is quite a path-breaking solution and can be used in 

automation, medical devices, augmented reality, virtual reality, gaming, and so on. 

The use cases are many, and a lot of research is currently being done in this field.  

  

  

  

MediaPipe is a customizable machine learning solutions framework developed by 

Google. It is an open-source and cross-platform framework, and it is very lightweight. 

MediaPipe comes with some pre-trained ML solutions such as face detection, pose 

estimation, hand recognition, object detection, etc.  

  

MediaPipe is used  to recognize the hand and the hand key points. MediaPipe returns 

a total of 21 key points for each detected hand.  



 

  
Steps to solve the project:  

• Import necessary packages.  

• Initialize models.  

• Read frames from a webcam.  

• Detect hand keypoints.  

• Recognize hand gestures.  

   



 

Implementation of a Finger Counting solution using OpenCV.   

  

  

  

import cv2  

import mediapipe as mp  

  

cap = 
cv2.VideoCap

ture(0) 
mpHands = 

mp.solutions.
hands hands 

= 

mpHands.Ha
nds() 

mpDraw = 
mp.solutions.

drawing_utils  

fingerCoordinates = [(8, 6), (12, 10), (16, 14), (20, 18)]  

thumbCoordinate = (4,2)  

  

  

while True:  

    success, img = cap.read()  

    imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  

      

      

    results = hands.process(imgRGB)  

    multiLandMarks = results.multi_hand_landmarks  

  

    if 
multiLandMa

rks:         
handPoints = 

[]         for 
handLms in 

multiLandMa

rks:  

            mpDraw.draw_landmarks(img, handLms, 

mpHands.HAND_CONNECTIONS)  

  

            for idx, lm in enumerate(handLms.landmark):  

                

# 

print

(idx,

lm)                 



 

h, w, 

c = 

img.

shap

e  

                cx, cy = int(lm.x * w), int(lm.y 

* h)                 handPoints.append((cx, cy))  

  

        for point in handPoints:             

cv2.circle(img, point, 10, (0, 0, 

255), cv2.FILLED)  

  

        upCount = 0         for coordinate in 
fingerCoordinates:             if 

handPoints[coordinate[0]][1] < 
handPoints[coordinate[1]][1]:  

                upCount += 1         if 

handPoints[thumbCoordinate[0]][0] > 

handPoints[thumbCoordinate[1]][0]:  

            upCount += 1  

  

        cv2.putText(img, str(upCount), (150,150), cv2.FONT_HERSHEY_PLAIN, 12, 

(255,0,0), 12)  

  

    cv2.imshow("Finger 

Counter", img)     

cv2.waitKey(1)  

  

  

output:  

  



 

  
  

  

  

  

Part-A  

  

Questions:  

  

1. What is face detection?  

Face detection, also called facial detection, is an artificial intelligence ( AI )-based computer 

technology used to find and identify human faces in digital images and video.   

2. What is face recognition?  

Facial recognition is  a way of  identifying  or  confirming  an 

 individual’s  identity using their  face. Facial recognition systems can be used to identify 

people in photos, videos, or in real-time.   

  

3. List the deep learning algorithms for face recognision. DeepFace,        

VGGFace  
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4. What are the various processes in face recognition systems?  

 
                          

5. What is the concept of facial alignment?  

Face alignment is a computer vision technology for identifying the geometric structure of human faces in digital  

images. Given the location and size of a face, it automatically determines the shape of the face components such  

as eyes and nose. A face alignment program typically operates by iteratively adjusting a deformable models,   

which encodes the prior knowledge of face shape or appearance, to take into account the low-level image   

evidences and find the face that is present in the image.   

  

6. What is the concept of triplet loss?  

  

      The triplet loss is a distance-based loss function that aims to 

learn embeddings that are closer for similar input data and farther for dissimilar 

ones. First, we have to compute triplets of data that consist of the following:  

• an anchor input sample   

• a positive example  that has the same label with   

• and a negative example  that has different label with  (and  of course)  

Then, the goal of the loss function is to learn embeddings such that the 

distance between the anchor and the positive example is smaller than the 

distance between the anchor and the negative example. More formally, this is 

defined as follows:  

  

where   is a distance metric (usually euclidean distance) and  is a hyperparameter that 

controls the  

minimum distance. When  , then  since the 

restriction of the margin is not violated.  

7. What are the various use cases of gesture recognition?  

  

https://doi.org/10.1007/978-0-387-73003-5_88
https://doi.org/10.1007/978-0-387-73003-5_88
https://doi.org/10.1007/978-0-387-73003-5_88


 

Gesture recognition can be used to control devices or interfaces, such as a computer 

or a smartphone, through movements or actions, such as hand or body movements, facial 

expressions or even voice commands.  

Gesture recognition has a variety of uses, including:  

• Human-computer interaction: Gesture recognition can be used to control 

computers, smartphones, and other devices through gestures, such as swiping, 

tapping, and pinching.  

• Gaming: Gesture recognition can be used to control characters and objects in 

video games, making the gaming experience more immersive and interactive.  

• Virtual and augmented reality: Gesture recognition can be used to interact with 

virtual and augmented reality environments, allowing users to control and 

manipulate objects in those environments.  

• Robotics: Gesture recognition can be used to control robots, allowing them to 

perform tasks based on the user’s gestures.  

• Sign language recognition: Gesture recognition can be used to recognize and 

translate sign language into spoken or written language, helping people who are 

deaf or hard of hearing communicate with others.  

• Automotive: Gesture recognition can be used in cars to control various functions 

such as radio, AC, and navigation systems.  

• Healthcare: Gesture recognition can be used in rehabilitation of patients with 

physical disabilities.  

  

8. What is fiducial points?  

Fiducial marker or fiducial is an object placed in the field of view of an imaging system that 

appears in the image produced, for use as a point of reference or a measure.   

  

Part – B  

  

1. Explain about Face Recognition.  

2. Elaborate the applications of Face Recognition  

3. Illustrate various Process of Face Recognition.  

4. Explain about DeepFace solution by Facebook  

5. Elaborate about -FaceNet for Face Recognition 6. Explain the implementation of  

FaceNet Algorithm.  

7. Explain about  Gesture Recognition.   
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     UNIT V    VIDEO ANALYTICS                

Video Processing – use cases of video analytics-Vanishing Gradient and 

exploding gradient problem - ResNet architecture-ResNet and skip 

connections-Inception NetworkGoogleNet architecture Improvement in 

Inception v2-Video analytics-ResNet and Inception v3.   

 
  

Video Analytics Using Deep Learning  

  

Videos are a really powerful medium. Roughly 500 hours of videos are 

uploaded to YouTube every minute. And the number of videos created is 

increasing daily. With the advent of smartphones and improved hardware, the 

video quality is enhanced. More videos are being created and stored across 

domains and geographies. We have movies, advertisements, short clips, and 

personal videos. Most of the videos contain human faces, objects, and some 

movements of objects. A video might be shot during the daytime or in the night, 

under different lighting conditions. We have cameras capturing the movement of 

pedestrians on the road, manufacturing cameras for monitoring goods and 

products on manufacturing lines, security cameras for surveillance on airports, 

and number plate detection and reading systems in the parking lots, to name a 

few of the video analytics solutions.  

Video is a sequence of images. ResNet and Inception network architectures 

are advanced networks and most sought after for a lot of cutting-edge Deep 

Learning solutions.   

 
  

5.1.Video processing  

  

Videos are not new to us. We record videos using our phone, laptops, hand 

cameras, and so on. YouTube is one of the biggest sources of videos. 

Advertisements, movies, sports, social media uploads, TikTok videos, and so on 

are getting created every second. And by analyzing them, we can uncover a lot 

of insights about the behavior, interactions, timings, and sequence of things. A 

very powerful medium indeed!  

There can be multiple approaches to design a video analytics solution. We can 

consider video as a collection of frames and then perform analytics by treating 

the frames as individual images. Or we can also add an additional dimension of 

sound to it.   

 
  

5.2.Use cases of video analytics  

  



 

Videos are a rich source of knowledge and information. We can utilize Deep 

Learning– based capabilities across domains and business functions. Some of 

them are listed as follows:  

1. Real-time face detection can be done using video analytics, allowing us to 

detect and recognize the faces. It has huge benefits and applications across multiple 

domains. We have discussed the application in detail in the last chapter.  

2. In disaster management, video analytics can play a significant role. Consider 

this. In a flood-like  situation, by analyzing videos of the actual area, the rescue team 

can identify the zones they should concentrate on. It will help reduce the time to 

action which directly leads to more lives saved.  

3.For crowd management, video analytics plays an important role. We can 

identify the concentration of the population and the eminent dangers in that 

situation. The respective team can analyze the videos or a real-time streaming 

of video using cameras. And a suitable action can be taken to prevent any 

mishappening.  

4. By analyzing the social media videos, the marketing teams can improve the 

contents. The marketing teams can even analyze the contents of the competitors and 

tweak their business plan accordingly as per the business needs.  

  

5. For object detection and object tracking, video analytics can quickly come up 

with a decision if an object is present in the video or not. This can save manual 

efforts. For example, if we have a collection of videos of different cars and we wish 

to classify them in different brands, the manual process will be to open each and 

every video and then take a  

decision – which is both time-consuming and error-prone. Using Deep 

Learning–based video classification, this entire process can be automated.  

  

6. Video analytics can help in the inspection and quality assurance. Instead of 

manual inspection of each part present in a machine, a video can be taken for the 

entire process. And then using Deep Learning, the quality inspection can be 

conducted. These are not the only use cases. There are a number of applications 

across domains and sectors. With Deep Learning–based solutions, video analytics 

is really making an impact into the business world.  

  

5.3. Vanishing gradient and exploding gradient problem  

  

The Neural Networks are trained using backpropagation and gradient-based 

learning methods. During training, we want to reach the most optimum value of 

weights resulting in minimum loss. Now, each of the weights constantly gets 

updated during the training of the algorithm. The update is proportional to the 

partial derivative of the error function with respect to the current weight in each 

training iteration.   

In Figure 7-1, we are showing that in the sigmoid function(activation 

function), we can face the problem of vanishing gradient, while in the case of a 

ReLU (Rectified Linear Unit) or Leaky ReLU, we will not have vanishing 

gradient as an issue.  

  



 

  

Figure 7-1 Vanishing gradient is a challenge we face with deep Neural 

Networks. The figure on the left shows that for the sigmoid activation function, 

we do face a big problem which gets sorted for Leaky ReLU  

  

The challenge can be sometimes this update becomes too small, and hence the 

weight does not get updated. It results in very less or practically no training of 

the network. This is referred to as the vanishing gradient problem.  

Let’s understand the problem in depth now. We are again looking at the basic 

network architecture in Figure 7-2.  

 
  

Figure 7-2 Basic neural architecture having an input layer, hidden layers, and 

an output layer  

  

We know that each of the neurons in the network has an activation function 

and a bias term. It accepts a finite number of input weight products, adds a bias 

term to it, and then the activation function is applied on it. The output is then 

passed to the next neuron.  

We also know that in a network, the difference between the expected output 

and the predicted value is calculated which is nothing but the error term. We 

would want the error term to be minimized. The error will be minimized when we 

have achieved the best combination of weights and biases across the layers and 

neurons which minimizes the error.  



 

When the error is calculated, a gradient descent is applied on the graph of the 

error function. This gradient descent is the differentiation of the error function 

with respect to each of the independent variables (weights and biases) present in 

it. This is the job of the backpropagation algorithm – which takes care of 

manipulating these weights and biases by a constant term called the learning rate. 

This is done from the last layer to the first layer in the backward direction or from 

the right to the left. In each successive iteration, gradient descent is calculated and 

the direction of change is determined. And hence, the weights and biases are 

updated till the network minimizes the error – or, in other words, till the error 

reaches a global minima as shown in Figure 7-3. The error gradient hence is the 

direction and magnitude calculated during the training of the network. It is used 

to update the weights in the right direction and right magnitude.  

 
  

  

Figure 7-3 To minimize the loss, we would want to reach the global minima of 

a function. Sometimes, we might not be able to minimize the loss and can be stuck 

at the local minima  

  

Now a situation arises wherein if we have a very deep network, the initial 

layers have a very less impact on the final output as compared to the final layers 

of the network. Or in other words, the initial layers undergo very less training, 

and their values undergo very less amount of change. This is due to the fact that 

the backpropagation computes the gradients using a chain rule from the final 

layers to the initial layers.  

Hence, in an n-layered network, the gradient decreases exponentially with the 

value of n, and hence the initial layers will train very slowly. Or, in the worst-

case scenario, they will stop to train.  

There can be multiple signs to check for the vanishing gradient problem:  

1. The easiest way to detect vanishing gradient is through kernel weight 

distribution. If the weights are dying to zero or very very close to zero, we might 

be encountering a vanishing gradient problem.  

2. The model’s weight close to the final layers will have more change as compared 

to the initial layers.  



 

3. The model will not improve or will improve very slowly during the training 

phase.  

4. Sometimes, the training stops early. It means that any further training does not 

improve the model.  

(https://www.youtube.com/watch?v=FbxTVRfQFuI , 

https://www.youtube.com/watch?v=qowp6SQ9_Oo )  

There are a few suggested solutions for the vanishing gradient problem:  

1. Generally, reducing the number of layers in the network might help in resolving 

gradient problems. But at the same time, if the number of layers is reduced, the 

network’s complexity goes down, and it can also impact the performance of the 

network.  

2. The ReLU activation function resolves the vanishing gradient problem. ReLU 

suffers less from vanishing gradients as compared to tanh or sigmoid activation 

functions.  

3. Residual networks or ResNets are also one of the solutions for this problem. 

They do not resolve the  problem by saving the gradient flow; instead, they use 

a combination  

or ensemble of multiple smaller networks. And hence, ResNets despite being 

deep networks are able to achieve lesser loss as compared to shallow networks.  

   

On one hand, we have a vanishing gradient problem, while on the other hand, we 

have an exploding gradient problem.  

In deep networks, error gradients sometimes become very large as they get 

accumulated. Hence, the updates in the networks will be very large which make the 

network unstable. There are a few signs of exploding gradients which can help us in 

detecting exploding gradient:  

1. The model is suffering from poor loss during the training phase.  

2. During the training of the algorithm, we might encounter NaN for the loss or for 

the weights.  

3. The model is generally unstable, or in other words the updates to loss in 

subsequent iterations are huge indicating an unstable state.  

4. The error gradients are constantly above 1 for each of the layers and neurons in 

the network.  

Exploding gradient can be resolved using  

1. We can reduce the number of layers in the network or can try reducing the 

batch size during training.  

2. L1 and L2 weight regularization can be added which will act as a penalty to 

the network loss functions.  

3. Gradient clipping is one of the methods which can be used. We can limit the 

size of the gradients during the process of training. We set a threshold for the error 

gradients, and the error gradients are set to that limit or clipped if the error gradient 

exceeds the threshold.  

4. We can use LSTM (long short-term memory) if we are working with 

Recurrent Neural Networks. This concept is beyond the scope of this book.  

https://www.youtube.com/watch?v=FbxTVRfQFuI
https://www.youtube.com/watch?v=FbxTVRfQFuI
https://www.youtube.com/watch?v=FbxTVRfQFuI
https://www.youtube.com/watch?v=qowp6SQ9_Oo
https://www.youtube.com/watch?v=qowp6SQ9_Oo


 

Both vanishing and exploding gradients are a nuisance which will impact the 

performance of the network. They can make the network unstable and require 

correction using a few of the options mentioned earlier.   

 
  

5.4. ResNet architecture  

Lot of architectures  are used them for image classification, object detection, 

face recognition, and so on. They are deep Neural Networks and generating good 

results for us. But in very deep networks, we encounter a problem of vanishing 

gradients. Residual networks or ResNets solve this problem by using skip 

connections. ResNets were invented by Kaiming He, Xiangyu Zhang, Shaoqing 

Ren, and Jian Sun, and the paper was presented in Dec 2015. More details can 

be found at https://arxiv.org/pdf/1512.03385.pdf.  

Skip connections take the activation from one layer to a much deeper layer in 

the network which allows us to train even more deep networks, which may be 

beyond 100 layers. Now, we will discuss ResNet and skip connection in detail in 

the next section.  

5.4.1. ResNet and skip connection  

When we talk about Neural Networks and the fantastic performance 

shown by them, immediately it is attributed to the depth of the network. It is 

assumed that the deeper the network is, the better is the accuracy. The initial 

layers will learn the basic features, and deeper layers will learn more 

advanced features.  

But it was found, by adding a greater number of layers, we are increasing the 

complexity of the network. In fact for a deeper network (like 56 layers deep), the 

loss was greater than a network with less (20) layers.  

Note Generally, models using convolutional and fully connected layers between 16 and 30 give the 
best results for CNN.  

  

This loss can be attributed to the problem of vanishing gradients.  To 

resolve the problem of vanishing gradient, residual blocks are introduced as 

shown in Figure 7-4. Residual blocks implement skip connection or identity 

mapping.  

 
  

Figure 7-4 Skip connection is the heart of residual networks or ResNets. Note 

how the output from the previous layer is passed to the next layer, thereby skipping 

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf


 

a layer in between. It allows training deeper networks without the problem of 

vanishing gradients  

  

The intuition behind a network with residual blocks is that 
each layer is fed to the next layer of the network and also 
directly to the next layers skipping between a few layers in 
between. Residual blocks allow you to train much deeper 
neural networks. The connection(gray arrow) is called skip 
connection or shortcut connection as it is bypassing 
one or more layers in between. It is also called identity 
connection as we can learn an identity function from it.  

  

This identity mapping has no input parameters of itself; rather, it takes the 

output from the previous layer and adds to the next layer. In other words, it acts 

as a shortcut  connection before the second activation. Because of this shortcut, 

it is possible to train even deeper networks without diluting the performance of 

the network. This is the heart of the solution and the reason for its resounding 

success.  

We are now examining the ResNet-34 architecture in detail in Figure 7-5. The 

original architecture is taken from the link of the paper: 

https://arxiv.org/pdf/1512.03385.pdf.  

  

  
  

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf


 

  

  

  

 
  



 

  



 

  

  

  

  

Figure 7-5 ResNet-34 complete architecture – in the middle is a plain 

network without skip connections, while on the right a network with residual 

connections is shown. The architecture has been taken from the original 

paper at https://arxiv.org/pdf/1512.03385.pdf  

  

Let’s go a bit deeper into the network. Observe the four residual blocks in the 

architecture as shown in Figure 7-6.  

  

  
  

Figure 7-6 Four residual blocks are shown in the figure. Note how for each of 

the plain networks on the left, we have a corresponding block using skip 

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf


 

connection. Skip connections are allowed to train deeper networks without an 

adverse impact on the accuracy of the network. For example, for the very first 

block, we have a plain network having a 7x7 conv layer followed by a 3x3 conv 

layer. Note the corresponding block using the skip connection  

  

We can analyze that in each residual architecture, skip connection takes the 

output from the previous layer and shares it two blocks away. This is the core 

difference with the plain architecture on the left, which boosts the performance 

for ResNet.  

Skip connections extend the capabilities of deep networks in a very interesting 

manner. The inventors tested the network with 100 and 1000 layers on the CIFAR 

dataset. The inventors found that using an ensemble of residual networks was able 

to achieve a 3.57% error rate on ImageNet and hence secured first place in the 

ILSVRC2015 competition.  

There are other variants of ResNet gaining popularity like ResNetXt, 

DenseNet, and so on. These variants explore the changes which can be made to 

the original ResNet architecture. For example, ResNetXt introduced cardinality 

as one of hyperparameters for the model. We have listed research papers at the 

end of the chapter for interested audiences.  

5.4.2. Inception network  

Deep Learning is fantastic when it comes to complex tasks. And we have 

observed that using stacked convolutional layers, we are able to train deep networks. 

But there are a few challenges with it:  

1. Networks become overcomplicated and demand huge computation power.  

2. Vanishing and exploding gradient problems are encountered while training the 

network.  

3. Many times, while observing the training and test accuracy, networks overfit and 

hence are not useful for unseen datasets.  

4. Moreover, choosing the best kernel size is a tough decision. A poorly chosen 

kernel size will lead to ill- fitting results.  

To resolve the challenges faced, the researchers thought that why can’t we go 

wide rather than going deep. More technically, have filters with multiple sizes 

operate at the same level. And hence Szegedy et al. proposed the Inception 

module. The complete paper can be accessed here: 

https://arxiv.org/pdf/1409.4842v1.pdf.  

Figure 7-7 represents two versions of the Inception module presented in the 

same paper.  

  

https://arxiv.org/pdf/1409.4842v1.pdf
https://arxiv.org/pdf/1409.4842v1.pdf


 

  

Figure 7-7 On the left, we have the naı̈ve version of the Inception module. In 

the naı̈ve version, we have 1x1, 3x3, and 5x5 convolutions. To reduce the 

computation, the researchers added a 1x1 conv layer for dimensionality 

reduction. The image has been taken from https://arxiv.org/pdf/1409. 4842v1.pdf  

  

In the first version, a naı̈ve version of Inception, three different sizes of 

convolution were done – 1x1, 3x3, and 5x5. Additionally, a max pooling of 3x3 

was also proposed. All the respective outputs are then stacked and fed to the next 

Inception module.  

But as the computation cost increases, the researchers added an additional 1x1 

convolutional layer for dimensionality reduction. This limits the number of input 

channels, and 1x1 is less computationally expensive than 3x3 or 5x5. A salient 

feature is the 1x1 convolution is after the max pooling layer.  

Using this second version of dimensionality reduction, a full network was 

created which is known as GoogLeNet. The researchers chose the name as an 

homage to Yann LeCuns pioneering the LeNet-5 architecture.  

Before we go deep into studying the GoogLeNet architecture, it is imperative to 

discuss the uniqueness of 1x1 convolutions.  

5.4.2.1. 1x1 convolutions  
In deep networks, the number of feature maps increases with the depth of the 

network. So, if an input image has three channels and a 5x5 filter has to be applied, 

then a 5x5 filter will be applied in blocks of 5x5x3.  

Moreover, if the input is a block of feature maps from another convolution 

layer having a depth of 64, then a 5x5 filter will be applied in 5x5x64 blocks. It 

becomes a computationally challenging task. 1x1 filters help in resolving this 

challenge.  

1x1 convolutions are also called network-in-network. It is very simple to 

understand and implement. It has a single feature or weight of each channel in the 

input. Similar to any other filter, the output is also a single number. It can be used 

anywhere in the network, does not require any padding, and generates feature 

maps with exactly the same width and height as the input.  

If the number of channels in the 1x1 convolution is the same as the number of 

channels in the input image, then invariably the output will also contain the same 

number of 1x1 filters. And there, 1x1 acts as a nonlinearity function. It is shown 

in Figure 7-8.  
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Figure 7-8 1x1 convolutional layer is used to shrink the number of channels. 

Here, the number of channels in the input and the number of channels in the 1x1 

block are the same. Hence, the output has the same number of channels as the 

number of 1x1 filters  

  

Hence, 1x1 convolution is useful when we want to shrink the number of channels 

or perform any feature transformation. This results in reducing the computational 

cost. 1x1 is used in a number of Deep Learning architectures like ResNet and 

Inception. We will now continue our discussion with the Inception network.  

5.4.3. GoogLeNet architecture  

We discussed the motivation behind creating the GoogLeNet in the last section. 

The complete GoogLeNet architecture is shown in Figure 7-9. The blocks in blue 

represent convolution, red are pooling, yellow are softmax, and green are others.  

  

  



 

 

  

  

Figure 7-9 The complete GoogLeNet architecture. Here, blue represents 

convolution, red blocks are the pooling blocks, while yellow are the softmax 

ones. We are zooming in on one of the sections later. The image has been taken 

from https://arxiv.org/pdf/1409.4842v1.pdf  

  

There are a few important properties about the network:  

1. The inception network consists of concatenated blocks of the Inception 

module.  

https://arxiv.org/pdf/1409.4842v1.pdf
https://arxiv.org/pdf/1409.4842v1.pdf


 

2. There are nine Inception modules which have been stacked linearly.  

3. There are three softmax branches (in yellow in Figure 7-9) at different 

positions. Out of these three, two are in the middle part of the network acting 

as auxiliary classifiers. They ensure that the intermediate features are good 

for the network to learn and give regularization effects.  

4. The two softmax compute the auxiliary loss. The net loss is the weighted loss 

of the auxiliary loss and the real loss. The auxiliary loss is useful during the 

training and not considered for the final classification.  

5. It has 27 layers (22 layers + 5 pooling layers).  

6.    

There are close to 5 million parameters in the network. 

We are now zooming in on one of the cropped versions from the network to 

examine the network better (Figure 7-10). Note how the softmax classifier (shown 

in the yellow block) has been added – to address the problem of vanishing 

gradients and overfitting. The final loss is the weighted loss of the auxiliary loss 

and the real loss of the network.  

  

  
  

Figure 7-10 A zoomed-in version of a section from the inception network. Note 

how the softmax classifier has been added (shown in yellow)  

  

Inception v1 proved to be a great solution by getting the first place in 

ILSVRC2014 and having a 6.67% top-5 error rate.  

But the researchers did not stop here. They further improved the solution by 

proposing Inception v2 and Inception v3 which we are discussing next.  



 

5.4.4. Improvements in Inception v2  

Inception versions 2 and 3 were discussed in the following paper: 

https://arxiv.org/pdf/1512.00567v3.pdf. The motivation was to improve the 

accuracy and reduce the complexity of the model and hence the computation cost. 

In Inception v2, there were the following improvements:  

1. 5x5 convolutions were factored to two 3x3 convolutions. It was done to improve 

the computation speed and led to enhanced performance too. It is shown in 

Figure 7-11. In the figure on the left, we have the original Inception module, 

and the one on the right is the revised Inception module.  

 
  

Figure 7-11 Factorization of 5x5 convolutions to two blocks of 3x3 led to the 

improvement in the computation speed and the overall accuracy of the solution. 

The image has been taken from https://arxiv.org/pdf/1512.00567v3.pdf  

 

2

.  

The second improvement was the convolutions were factorized such that 

a filter of nxn size is changed to a combination of 1xn and nx1 as shown in 

Figure 7-12. For example, 5x5 is changed to performing 1x5 first and then 

5x1. This further improved the computation efficiency.  
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Figure 7-12 Note how nxn conv can be represented as 1xn and nx1. For 

example, if we put n=5, then 5x1 is changed as 1x5 and 5x1. The image has been 

taken from https://arxiv.org/pdf/1512.00567v3.pdf  

 

3

.  

With an increase in the depth, the dimensions reduce and hence there can 

be a loss of information. Hence, an improvement was suggested that the filter 

banks were made wider instead of going deeper as shown in Figure 7-13.  

 
  

Figure 7-13 The models are made wider instead of deeper. With an 

increase in depth, the dimensions are reduced drastically, which is an 

information loss. The image has been taken from 

https://arxiv.org/pdf/1512.00567v3.pdf  

  

The researchers quoted:  

  

Although our network is 42 layers deep, our computation cost is only about 2.5 

higher than that of GoogLeNet and it is still much more efficient than VGGNet.  

Moving ahead, in Inception v3, in addition to the preceding improvements, 

the significant addition was the use of label smoothing which is a regularizing 

technique to tackle overfitting. The mathematical proof is beyond the scope of 

the book. In addition, RMSProp was used as an optimizer, and the auxiliary 

classifier’s fully connected layer is batch normalized. It achieved 3.58% top-5 

error on an ensemble of four models which is nearly half of the original 

GoogLeNet model.  

  

There were further improvements in the form of Inception v4 and Inception-

ResNet. It outperformed the previous versions, and an ensemble of 

3xInception-ResNet(v2) and 1xInceptionv4 resulted in 3.08% top-5 error.  

With this, we have completed the discussion on Inception networks.  

 
1 .5. Video analytics  

Video analytics start with processing the videos. As we can see through our eyes 

and process the contents of a video using our memory and brain, computers can 

also see – through a camera. And to understand the contents of that video, Deep 

Learning is  
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Both Inception and ResNet are one of the most widely used networks when it 

comes to really deep Neural Networks. Using Transfer Learning, they can be used 

for generating fantastic results and are proving to be a real boon to the computer 

vision problems.  

We will now continue studying the video analytics problems we started at the 

start of the chapter.  

  

providing the necessary support.  

Videos are a rich source of information but at the same time are equally 

complex. In image classification, we take an input image, process it to extract 

features using CNN, and then classify the image based on the features. In the case 

of video classification, we first extract the frames from the video and then classify 

the frames. So, video processing is not one task; rather, it is a collection of 

subtasks. OpenCV is one of the most popular libraries for video analytics. We are 

going to use Deep Learning–based solutions for video analytics.  

The steps in video classification using Deep Learning are  

1. We first get the frames from the video and divide them into training and validation 

sets.  

2. We then train the network on the training data and optimize the accuracy.  

3. We will validate on the validation dataset to get the final model.  

4. For the unseen new video, we will first grab the frame from the video and then 

classify the same.  

As we can see, the steps are pretty much the same like any image classification 

solution. The additional step is for the new video – where we first grab a frame 

and then classify it.  

  

 
  

5.6. Python solution using ResNet and Inception v3  

Now we will create a Python solution for video analytics. For this, we are 

going to train a network on a Sports dataset and use it to make predictions for a 

video file.  

You can download the dataset from 

https://github.com/jurjsorinliviu/Sports-Type- Classifier. The dataset has 

images of multiple types of sports. We are going to build a classifier for cricket, 

hockey, and chess. The dataset and the code is uploaded to the GitHub repo at 

https://github.com/Apress/computer-vision-using-

deeplearning/tree/main/Chapter7.  

Some examples of images of cricket, hockey, and chess are shown as follows.  

 
  

  

https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/jurjsorinliviu/Sports-Type-Classifier
https://github.com/Apress/computer-vision-using-deep-learning/tree/main/Chapter7
https://github.com/Apress/computer-vision-using-deep-learning/tree/main/Chapter7
https://github.com/Apress/computer-vision-using-deep-learning/tree/main/Chapter7
https://github.com/Apress/computer-vision-using-deep-learning/tree/main/Chapter7
https://github.com/Apress/computer-vision-using-deep-learning/tree/main/Chapter7
https://github.com/Apress/computer-vision-using-deep-learning/tree/main/Chapter7
https://github.com/Apress/computer-vision-using-deep-learning/tree/main/Chapter7
https://github.com/Apress/computer-vision-using-deep-learning/tree/main/Chapter7
https://github.com/Apress/computer-vision-using-deep-learning/tree/main/Chapter7
https://github.com/Apress/computer-vision-using-deep-learning/tree/main/Chapter7


 

Step 1: Load all the required libraries.  

  

import matplotlib  

from tensorflow.keras.preprocessing.image import ImageDataGenerator  

  

from tensorflow.keras.optimizers 

import SGD from sklearn.preprocessing 

import LabelBinarizer from 

tensorflow.keras import optimizers from 

sklearn.model_selection import 

train_test_split from sklearn.metrics 

import classification_report  from 

tensorflow.keras.layers import 

AveragePooling2D from 

tensorflow.keras.applications import 

InceptionV3  from tensorflow.keras.layers 

import Dropout from 

tensorflow.keras.layers import Flatten  

from tensorflow.keras.layers import 

Dense  from tensorflow.keras.layers 

import Input  from 

tensorflow.keras.models import Model  

from imutils import paths import 

matplotlib.pyplot as plt import  

numpy 

as np 

import cv2 

import os  

Step 2: Set the labels for the sports we are interested in.  

  

game_labels = set(["cricket", "hockey", "chess"])  

Step 3: Set the value for other variables like location, path, and so on. We will 

also initiate two lists – complete_data and complete_label – which will be used for 

holding the values at a later stage.  

  

location =  

"/Users/vaibhavverdhan/BackupOfOfficeMac/Book/Restart/Apress/Chapter7/S

ports- TypeClassifier-master/data"  

data_path = list(paths.list_images(location)) complete_data = [] 

complete_labels = []  

Step 4: Load the Sports dataset now and read their corresponding labels. The 

input size is 299x299 because we are training an Inception v3 first. For ResNet, the 

size is 224x224.  

  

for data in data_path:  



 

# extract the class label 

from the filename  class_label 

= data.split("/")[-2] if 

class_label not in game_labels:  

#print("Not used class 

lable",class_label)  continue  

#print("Used class lable",class_label)  

image = cv2.imread(data)  

image = cv2.cvtColor(image,  

cv2.COLOR_BGR2RGB) image = 

cv2.resize(image, (299, 299))  

  

complete_data.append(image)  

complete_labels.append(class_label)  

Step 5: Convert the labels to numpy arrays.  

  

complete_data = np.array(complete_data) 

complete_labels = np.array(complete_labels)  

Step 6: One-hot encoding is done for the labels now.  

  

label_binarizer = LabelBinarizer() complete_labels 

= label_binarizer.fit_transform(complete_labels)  

  

Step 7: Divide the data into 80% training data and 20% testing data.  

  

(x_train, x_test, y_train, y_test) = train_test_split(complete_data, complete_labels, 

test_size=0.20, stratify=complete_labels, random_state=5)  

Step 8: We will now initialize the data augmentation object for the training 

data.  

  

training_augumentation = 

ImageDataGenerator( 

rotation_range=25, 

zoom_range=0.12, 

width_shift_range=0.4, 

height_shift_range=0.4, 

shear_range=0.10, 

horizontal_flip=True, 

fill_mode="nearest")  

Step 9: We are now initializing the testing data augmentation object. Next, we 

are defining the ImageNet mean subtraction value for each of the objects.  

  

validation_augumentation = ImageDataGenerator()  

  

mean = np.array([122.6, 115.5, 105.9], dtype="float32")  



 

training_augumentation.mean = mean validation_augumentation.mean = 

mean  

Step 10: Load the Inception network now. This model will serve as the 

base model.  

  

inceptionModel = InceptionV3(weights="imagenet", include_top=False, 

input_tensor=Input(shape=(299, 299, 3)))  

Step 11: We will now make the head of the model which will be placed 

on the top of the base model.  

  

outModel = inceptionModel.output outModel = 

AveragePooling2D(pool_size=(5, 5))(outModel)  outModel = 

Flatten(name="flatten")(outModel) outModel = Dense(512, 

activation="relu")(outModel)  outModel = Dropout(0.6)(outModel)  

outModel = Dense(len(label_binarizer.classes_), activation="softmax") 

(outModel)  

Step 12: We get the final model and make the base model layers as 

nontrainable.  

  

final_model = Model(inputs=inceptionModel.input, outputs=outModel) 

for layer in inceptionModel.layers:  

layer.trainable = False  

Step 13: We have studied the remaining steps in detail in the last chapters, 

which are about setting the hyperparameters and fitting the model.  

  

num_epochs = 5 

 learning_rate = 0.1 

 learning_decay = 1e-6  

learning_drop = 20  

batch_size = 32  

sgd = optimizers.SGD(lr=learning_rate, decay=learning_decay, 

momentum=0.9, nesterov=True) 

final_model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics= 

['accuracy'])  

  

  

model_fit = final_model.fit( x=training_augumentation.flow(x_train, y_train, 

batch_size=batch_size), steps_per_epoch=len(x_train) // batch_size,  

validation_data=validation_augumentation.flow(x

_test, y_test), validation_steps=len(x_test) // 

batch_size, epochs=num_epochs)  



 

 
  

  

Step 14: We get the training/testing accuracy and loss.  

  

import matplotlib.pyplot as plt f, ax  

= plt.subplots() ax.plot([None] + 

model_fit.history['acc'], 'o-') ax.plot([None] + 

model_fit.history['val_acc'], 'x-') ax.legend(['Train acc', 

'Validation acc'], loc = 0) 

ax.set_title('Training/Validation acc per Epoch') 

ax.set_xlabel('Epoch') ax.set_ylabel('acc')  

  

import matplotlib.pyplot as plt f, ax  

= plt.subplots() ax.plot([None] + 

model_fit.history['loss'], 'o-') ax.plot([None] + 

model_fit.history['val_loss'], 'x-') ax.legend(['Train loss', 

'Validation loss'], loc = 0) ax.set_title('Training/Validation 

loss per Epoch') ax.set_xlabel('Epoch') 

ax.set_ylabel('Loss')  

  

predictions = 

model_fit.model.predict(testX) from 

sklearn.metrics import 

confusion_matrix import numpy as np 

rounded_labels=np.argmax(testY,  

axis=1) rounded_labels[1]  

cm = confusion_matrix(rounded_labels, np.argmax(predictions,axis=1)) def 

plot_confusion_matrix(cm):  

 cm = [row/sum(row)  for row in  

cm] fig = plt.figure(figsize=(10, 10))  

ax = fig.add_subplot(111)  

cax = ax.matshow(cm, cmap=plt.cm.Oranges)  

fig.colorbar(cax) 

plt.title('Confusion Matrix') 

plt.xlabel('Predicted Class IDs') 

plt.ylabel('True Class IDs') 

plt.show() 

plot_confusion_matrix(cm)  



 

  
  

We can analyze that the network is not good enough for predictions.  

Step 15: We will now implement ResNet. The input size changes to 224x224, 

and everything remains the same. We are also changing the sports classes.  

  

game_labels = set(["cricket", "swimming", "wrestling"])  

Step 16: The complete code is at the GitHub link. We are providing the output 

here.  

 
  

  

The algorithm is generating a good validation accuracy of 85.81%.  

 
  

  

The model is saved, and then we use it for making predictions for a sample 

image to check if it is able to predict.  

  

model_fit.model.save("sport_classification_model.h5")  

Step 17: We have covered these steps already in the previous chapters.  

  



 

file = open("sport_classification", 

"wb") 

file.write(pickle.dumps(label_binarizer))  

file.close()  

modelToBeUsed = 

load_model("sport_classification_model.h5")  labels = 

pickle.loads(open("sport_classification", "rb").read())  

import numpy as np  

from keras.preprocessing import image   

an_image 

=image.load_img('/Users/vaibhavverdhan/BackupOfOfficeMac/Book/Restart/Apress/  

Type-Classifier-master/data/cricket/00000000.jpg',target_size 

=(224,224)) # Lo # The image is now getting converted to array of 

numbers  

  

an_image =image.img_to_array(an_image)  

#Let us now expand it's dimensions. It will improve the prediction power   

an_image =np.expand_dims(an_image, axis =0)  

# call the predict method here  

verdict = modelToBeUsed.predict(an_image)  

i = 

np.argmax(verdic

t) label = 

labels.classes_[i]  

Step 18: We will now use this model to predict the class from a video of a 

sport. We took a video of cricket recording. The same video is available at 

GitHub too.  

  

Step 19: Capture the video in an object.  

  

video = cv2.VideoCapture(path_video)  

Step 20: We are going to iterate over all the frames of the video. For this, we 

are going to set an indicator isVideoGrabbed as 1 initially. When the end of the 

video is reached, isVideoGrabbed will become zero, and then we can break from 

the loop.  

  

We are looping in a while loop. When a frame is grabbed, it is an image and 

hence is converted to the necessary size and fed to the model for prediction.  

  

isVideoGrabbed = 1 while isVideoGrabbed:  

(isVideoGrabbed, video_frame) = video.read()  

  

if not isVideoGrabbed:  

print("done") break video_frame = 

cv2.cvtColor(video_frame, 

cv2.COLOR_BGR2RGB) video_frame = 

cv2.resize(video_frame, (224, 



 

224)).astype("float32") video_frame -= 

mean  

prediction_game = 

modelToBeUsed.predict(np.expand_dims(video_frame, axis=0))[0] i = 

np.argmax(verdict) game = labels.classes_[i]  

#print(game)  

Step 21: We can hence generate the predictions for the entire video frame by 

frame. This way, we can use Neural Networks to have a look at a video and predict 

the sports being played in it.  

  

This concludes our Python solution using ResNet and Inception v3 network. 

As we can observe, using transfer learning, it is not a big challenge to harness the 

powers of these very deep Neural Networks. But creating a tuned solution is still 

a tough job. In the preceding example, we can analyze the difference between the 

respective accuracies of ResNet and Inception v3 network. It depends on the 

dataset and the number of images available.  

  

  

Part-A  

  

  
1. What is the purpose of skip connections and how are they useful?  
2. What is the problem of vanishing gradients and how can we rectify it?  

3. What is the improvement between Inception v1 and Inception v3 networks?  

4. What are the use cases of video analytics?  

5. Discuss about video analytics.  

6. List the uses of skip connection.  

7. Discuss about inception v1.  

8. What is  inception v2.  

9. Discuss about inception v3.  

10. What is the use of  GoogleNet.  

11. What is the use of  ResNet.  

  

  

  

Part-B  

  

1. Explain about Video Processing.  

2. Discuss about various use cases of video analytics  

3. Elaborate about Vanishing Gradient and exploding gradient problem  

4. Explain about  ResNet architecture.  

5. Illustrate ResNet and skip connections.  



 

6. Discuss about Inception Network.  

7. Elaborate about GoogleNet architecture  

8. Explain about Improvement in Inception v2  

9. Develop a python code for Implementation of ResNet  

10. Develop a python code for Inception v3.   

  

 

  

 


