

PRATHYUSHA

ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

REGULATION R2021

III YEAR - V SEMESTER

 CB3491 CRYPTOGRAPHY AND CYBER SECURITY

CB3491 CRYPTOGRAPHY AND CYBER SECURITY

UNIT I INTRODUCTION TO SECURITY

Computer Security Concepts – The OSI Security Architecture – Security Attacks – Security

Services and Mechanisms – A Model for Network Security – Classical encryption techniques:

Substitution techniques, Transposition techniques, Steganography – Foundations of modern

cryptography: Perfect security – Information Theory – Product Cryptosystem – Cryptanalysis.

UNIT II SYMMETRIC CIPHERS

Number theory – Algebraic Structures – Modular Arithmetic – Euclid‘s algorithm –

Congruence and matrices – Group, Rings, Fields, Finite Fields SYMMETRIC KEY CIPHERS:

SDES – Block Ciphers – DES, Strength of DES – Differential and

linear cryptanalysis – Block cipher design principles – Block cipher mode of operation –

Evaluation criteria for AES – Pseudorandom Number Generators – RC4 – Key distribution.

UNIT III ASYMMETRIC CRYPTOGRAPHY

MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY: Primes – Primality Testing

– Factorization – Euler’s totient function, Fermat’s and Euler’s Theorem – Chinese Remainder

Theorem – Exponentiation and logarithm ASYMMETRIC KEY CIPHERS: RSA

cryptosystem – Key distribution – Key management – Diffie Hellman key exchange -– Elliptic

curve arithmetic – Elliptic curve cryptography.

UNIT IV INTEGRITY AND AUTHENTICATION ALGORITHMS

Authentication requirement – Authentication function – MAC – Hash function – Security of

hash function: HMAC, CMAC – SHA – Digital signature and authentication protocols – DSS

– Schnorr Digital Signature Scheme – ElGamal cryptosystem – Entity Authentication:

Biometrics, Passwords, Challenge Response protocols – Authentication applications –

Kerberos MUTUAL TRUST: Key management and distribution – Symmetric key distribution

using symmetric and asymmetric encryption – Distribution of public keys – X.509 Certificates.

UNIT V CYBER CRIMES AND CYBER SECURITY

Cyber Crime and Information Security – classifications of Cyber Crimes – Tools and Methods

–Password Cracking, Keyloggers, Spywares, SQL Injection – Network Access Control – Cloud

Security – Web Security – Wireless Security

Text Books:

1. William Stallings, “Cryptography and Network Security – Principles and Practice”,

Seventh Edition, Pearson Education, 2017.

2. Nina Godbole, Sunit Belapure, Cyber Security: Understanding Cyber crimes,

Computer Forensics and Legal Perspectives, First Edition, Wiley India, 2011.

Reference Books:

1. Behrouz A. Ferouzan, Debdeep Mukhopadhyay, “Cryptography and Network

Security”, 3rd Edition, Tata Mc Graw Hill, 2015.

2. Charles Pfleeger, Shari Pfleeger, Jonathan Margulies, “Security in Computing”, Fifth

Edition, Prentice Hall, New Delhi, 2015.

 UNIT I INTRODUCTION TO SECURITY

SECURITY POLICIES:

• A security policy is a written document in an organization outlining how to protect the

organization from threats, including computer security threats, and how to handle situations

when they do occur.

• A security policy must identify all of a company's assets as well as all the potential threats to

those assets

• Three main types of policies exist:

• Organizational (or Master) Policy.

• System-specific Policy.

• Issue-specific Policy.

Information security objectives

• Integrity—data should be intact, accurate and complete, and IT systems must be kept

operational.

• Availability—users should be able to access information or systems when needed.

Structure of a Security Policy:

• Description of the Policy and what is the usage for?

• Where this policy should be applied?

• Functions and responsibilities of the employees that are affected by this policy.

• Procedures that are involved in this policy.

• Consequences if the policy is not compatible with company standards.

1. OSI SECURITY ARCHITECTURE

To assess effectively the security needs of an organization and to evaluate and choose various

security products and policies, the manager responsible for security needs some systematic way of

defining the requirements for security and characterizing the approaches to satisfying those

requirements.

ITU-T Recommendation X.800, Security Architecture for OSI, defines such a systematic approach.

The OSI security architecture is useful to managers as a way of organizing the task of providing

security. The OSI security architecture was developed in the context of the OSI protocol architecture.

The OSI security architecture focuses on security attacks, mechanisms, and services:

Security attack: Any action that compromises the security of information owned by an organization.

Security mechanism: A process (or a device incorporating such a process) that is designed to detect,

prevent, or recover from a security attack.

Security service: A processing or communication service that enhances the security of the data

processing systems and the information transfers of an organization. The services are intended to

counter security attacks, and they make use of one or more security mechanisms to provide the service.

Threat

A potential for violation of security, which exists when there is a circumstance, capability, action,

or event that could breach security and cause harm. That is, a threat is a possible danger that might

exploit a vulnerability. Attack

An assault on system security that derives from an intelligent threat; that is, an intelligent act that is

a deliberate attempt (especially in the sense of a method or technique) to evade security services and

violate the security policy of a system.

S.No Threats Attacks

1. Threat is an attack tends to be an act

which is in process

An attack is a threat that has been executed.

2. Threat can be either intentional or

unintentional

Attack is intentional

3. Threat is a circumstances that has potential

to cause loss or damage

Attack is attempted to cause damage

4. Threat to information system does not

mean information was altered or damaged

Attack might cause alteration of information or

damage or obtain information.

Table 1. Difference between Threats and Attacks

SECURITY ATTACKS:

 Security attacks could be broadly categorized as

I. Passive attacks: Passive attacks are in the nature of eavesdropping on, or monitoring of,

transmissions. Passive attacks are very difficult to detect because they do not involve any alteration of

data. However, it is feasible to prevent the success of these attacks. The goal of the opponent is to

obtain information that is being transmitted. Passive attacks are of two types:

Release of message contents: A telephone conversation, an e-mail message and a transferred file

may contain sensitive or confidential information. We would like to prevent the opponent from learning

the contents of these transmissions.

Traffic analysis: If we had encryption protection in place, an opponent might still be able to observe

the pattern of the message. The opponent could determine the location and identity of communication

hosts and could observe the frequency and length of messages being exchanged. This information might

be useful in guessing the nature of communication that was taking place.

II. Active attacks: These attacks involve some modification of the data stream or the creation of

a false stream. It is quite difficult to prevent active attacks absolutely, because to do so would require

physical protection of all communication facilities and paths at all times. Instead, the goal is to detect

them and to recover from any disruption or delays caused by them. These attacks can be classified in

to four categories:

Masquerade (Fabrication)– One entity pretends to be a different entity.

Replay – involves passive capture of a data unit and its subsequent transmission to produce an

unauthorized effect.

Modification of messages– Some portion of message is altered or the messages are delayed or

recorded, to produce an unauthorized effect.

Denial of service – Prevents or inhibits the normal use or management of communication facilities.

Another form of service denial is the disruption of an entire network, either by disabling the network

or overloading it with messages so as to degrade performance.

SECURITY SERVICES

(i) Authentication: The authentication service is concerned with assuring that a communication is

authentic.

Two specific authentication services are defined in X.800:

• Peer entity authentication: Provide confidence in the identity of entities connected.

• Data origin authentication: Provide assurance that the source of received data is as claimed.

(ii) Access control: Access control is the ability to limit and control the access to host systems and

applications.

(iii) Data Confidentiality: Confidentiality is the protection of transmitted data from passive attacks.

• Connection Confidentiality - The protection of all user data on a connection

• Connectionless Confidentiality - The protection of all user data in a single data block

• Selective-Field Confidentiality - The confidentiality of selected fields within the user data on

a connection or in a single data block

• Traffic-Flow Confidentiality - The protection of the information that might be derived from

observation of traffic flows

(iv) Data Integrity: The assurance that data received are exactly as sent by an authorized entity.

• Connection Integrity with Recovery

Provides for the integrity of all user data on a connection and detects any modification,

insertion, deletion, or replay of any data within an entire data sequence, with recovery

attempted.

• Connection Integrity without Recovery

As above, but provides only detection without recovery.

• Selective-Field Connection Integrity

Provides for the integrity of selected fields within the user data of a data block transferred over

a connection and takes the form of determination of whether the selected fields have been

modified, inserted, deleted, or replayed.

• Connectionless Integrity

Provides for the integrity of a single connectionless data block and may take the form of

detection of data modification. Additionally, a limited form of replay detection may be

provided.

• Selective-Field Connectionless Integrity

Provides for the integrity of selected fields within a single connectionless data block; takes the

form of determination of whether the selected fields have been modified.

(v) Non repudiation: Provides protection against denial by one of the entities involved in a

communication of having participated in all or part of the communication.

• Nonrepudiation, Origin - Proof that the message was sent by the specified party

• Nonrepudiation, Destination - Proof that the message was received by the specified party

SECURITY MECHANISM

• Encipherment:

It uses mathematical algorithm to transform data into a form that is not readily intelligible. It

depends upon encryption algorithm and key

• Digital signature:

Data appended to or a cryptographic transformation of a data unit that is to prove integrity of

data unit and prevents from forgery

• Access control

A variety of mechanisms that enforce access rights to resources.

• Data integrity

A variety of mechanism are used to ensure integrity of data unit

• Traffic padding

The insertion of bits into gaps in a data stream to frustrate traffic analysis attempts.

• Notarization

The use of a trusted third party to assure certain properties of a data exchange

SECURITY MECHANISM (X.800 Standard)

2. A MODEL FOR NETWORK SECURITY

Encryption/Decryption methods fall into two categories.

 Symmetric key

 Public key

In symmetric key algorithms, the encryption and decryption keys are known both to sender and

receiver. The encryption key is shared and the decryption key is easily calculated from it. In many

cases, the encryption and decryption keys are the same. In public key cryptography, encryption key is

made public, but it is computationally infeasible to find the decryption key without the information

known to the receiver.

A message is to be transferred from one party to another across some sort of internet. The two

parties, who are the principals in this transaction, must cooperate for the exchange to take place. A

logical information channel is established by defining a route through the internet from source to

destination and by the cooperative use of communication protocols (e.g., TCP/IP) by the two principals.

 All the techniques for providing security have two components: o A security-related transformation

on the information to be sent. Examples include the encryption of the message, which

scrambles the message so that it is unreadable by the opponent.

o Some secret information shared by the two principals and, it is hoped, unknown to the

opponent. An example is an encryption key used in conjunction with the transformation

to scramble the message before transmission

A trusted third party may be needed to achieve secure transmission. For example, a third party may

be responsible for distributing the secret information to the two principals while keeping it from any

opponent. This general model shows that there are four basic tasks in designing a particular security

service:

1. Design an algorithm for performing the security-related transformation. The algorithm

should be such that an opponent cannot defeat its purpose.

2. Generate the secret information to be used with the algorithm.

3. Develop methods for the distribution and sharing of the secret information.

4. Specify a protocol to be used by the two principals that makes use of the security algorithm

and the secret information to achieve a particular security service.

Using this model requires us to:

– select appropriate gatekeeper functions to identify users

– implement security controls to ensure only authorized users access designated information or

resources

- Trusted computer systems can be used to implement this model

3. CLASSICAL ENCRYPTION TECHNIQUES

Symmetric encryption also referred to as conventional encryption or single-key encryption.

Here, the sender and recipient share a common key.

A symmetric encryption scheme has five ingredients

Plaintext: This is the original intelligible message or data that is fed into the algorithm as input.

Encryption algorithm: The encryption algorithm performs various substitutions and transformations

on the plaintext.

Secret key: The secret key is also input to the encryption algorithm. The key is a value independent of

the plaintext and of the algorithm. The algorithm will produce a different output depending on the

specific key being used at the time. The exact substitutions and transformations performed by the

algorithm depend on the key.

Cipher text: This is the scrambled message produced as output. It depends on the plaintext and the

secret key. For a given message, two different keys will produce two different cipher texts. The cipher

text is an apparently random stream of data and, as it stands, is unintelligible.

Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes the cipher

text and the secret key and produces the original plaintext.

 There are two requirements for secure use of conventional encryption:

1. We need a strong encryption algorithm.

2. Sender and receiver must have obtained copies of the secret key in a secure fashion and must

keep the key secure.

 It is impractical to decrypt a message on the basis of the cipher text plus knowledge of the

encryption/decryption algorithm. In other words, we do not need to keep the algorithm secret; we need

to keep only the key secret.

Model of symmetric cryptosystem

A source produces a message in plaintext X

= [X1, X2,..., XM].

M- elements of X are letters.

For encryption, a key of the form

K = [K1, K2, …, KJ] is generated.

 If the key is generated at the message source, then it must also be provided to the destination by

means of some secure channel. Alternatively, a third party could generate the key and securely deliver

it to both source and destination.

With the message X and the encryption key K as input, the encryption algorithm forms the

cipher text

Y = [Y1, Y2,…, YN].

Y = E(K, X)

Y- cipher text

E- Encryption algorithm

K- Key

X-Plain text

At the receiver side the transformation:

X = D(K, Y)

Y- cipher text

D-Decryption algorithm

K- Key

X-Plain text

If the opponent is interested in only this particular message only, tries to find the message estimate

. But when the opponent is interested in the current and future messages, tries to find key estimate

.

Cryptographic systems are generally classified along 3 independent dimensions:

 Type of operations used for transforming plain text to cipher text

All the encryption algorithms are based on two general principles:

 Substitution, in which each element in the plaintext is mapped into another element

Transposition, in which elements in the plaintext are rearranged.

 The number of keys used

 If the sender and receiver uses same key then it is said to be symmetric key (or) single

key (or) conventional encryption.

 If the sender and receiver use different keys then it is said to be public key encryption.

 The way in which the plain text is processed

 A block cipher processes the input and block of elements at a time, producing output

block for each input block.

 A stream cipher processes the input elements continuously, producing output element

one at a time, as it goes along.

CRYPTANALYSIS AND BRUTE-FORCE ATTACK

 There are two general approaches to attacking a conventional encryption scheme:

 Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm and some

knowledge of the general characteristics of the plaintext or even some sample plaintext–

cipher text pairs.

 Brute-force attack: The attacker tries every possible key on a piece of cipher text until

an intelligible translation into plaintext is obtained.

 There are various types of cryptanalytic attacks based on the amount of information known to the

cryptanalyst.

Type of

Attack
Known to Cryptanalyst

Cipher text

Only

• Encryption algorithm

• Cipher text

Known

Plaintext

• Encryption algorithm

• Cipher text

• One or more plaintext–cipher text pairs formed with the secret key

Chosen

Plaintext

• Encryption algorithm

• Cipher text • Plaintext message chosen by cryptanalyst,

together with its corresponding

Cipher text generated with the secret key

Chosen Cipher

text

• Encryption algorithm

• Cipher text

• Cipher text chosen by cryptanalyst, together with its

corresponding decrypted plaintext generated with the secret key

Chosen Text
• Encryption algorithm

• Cipher text

 • Plaintext message chosen by cryptanalyst, together with its

corresponding

Cipher text generated with the secret key

• Cipher text chosen by cryptanalyst, together with its

corresponding decrypted plaintext generated with the secret key

Encryption algorithms are to be

 Unconditionally secure

 Computationally secure

An encryption scheme is unconditionally secure if the cipher text generated by the scheme does

not contain enough information to determine uniquely the corresponding plaintext.

An encryption scheme is said to be computationally secure

 If the cost of breaking the cipher exceeds the value of the encrypted information

 If the time required to break the cipher exceeds the useful lifetime of the information.

4. SUBSTITUTION TECHNIQUES

• A substitution technique is one in which the letters of plaintext are replaced by other letters or by

numbers or symbols.

• Substitution ciphers can be categorized as either

 i) Monoalphabetic ciphers or ii) polyalphabetic ciphers.

• In monoalphabetic substitution, the relationship between a symbol in the plaintext to a symbol in

the ciphertext is always one-to-one.

• In polyalphabetic substitution, each occurrence of a character may have a different substitute.

The relationship between a character in the plaintext to a character in the cipher text is one-

tomany.

VARIOUS SUBSTITUTION CIPHERS ARE

(i) Caesar Cipher or Shift Cipher Or Additive Cipher (Monoalphabetic Cipher)

(ii) Playfair cipher

(iii) Hill cipher

(iv) Vignere cipher (Poly alphabetic cipher)

(v) Vernam Cipher or One time pad (Poly alphabetic cipher)

(i)CAESAR CIPHER (OR) SHIFT CIPHER

 Caeser cipher was proposed by Julius Caesar. The Caesar cipher involves replacing each letter

of the alphabet with the letter standing 3 places further down the alphabet.

Let us assign a numerical equivalent to each letter:

Note that the alphabet is wrapped around, so that letter following ‘z’ is ‘a’.

 For each plaintext letter p, substitute the cipher text letter c such that

 C = E(3, P = (P+3) mod 26

Decryption is

P=D(3,c)=(C-3) mod 26

The general Caesar algorithm is

 C = E(K, P) = (P + K) mod 26 where

k takes on a value in the range 1 to 25.

The decryption algorithm is simply

 P = D(K, C) = (C - K) mod 26

 If it is known that a given cipher text is a Caesar cipher, then a brute-force cryptanalysis is easily

performed: simply try all the 26 possible keys.

Cryptanalysis of Caesar Cipher

1. The encryption and decryption algorithms are known

2. There are only 26 possible keys. Hence brute force attack takes place

3. The language of the plaintext is known and easily recognizable

Brute-Force Cryptanalysis of Caesar Cipher

(ii) MONOALPHABETIC CIPHER

• Each plaintext letter maps to a different random cipher text letter

• Here, 26! Possible keys are used to eliminate brute force attack

 There is, however, another line of attack. If the cryptanalyst knows the nature of the plaintext (e.g.,

non-compressed English text), then the analyst can exploit the regularities of the language.

MONOALPHABETIC CIPHER:

• A Single Cipher alphabets for each plain text alphabet is used throughout the process.

• Rather than just shifting the alphabet could shuffle (jumble) the letters arbitrarily

• Relationship between a character in the plain text to a symbol in cipher text is always one to

one

• Assume the below table(without the repetition of letter, any letters can be mapped)

Plain: a b c de f g h I j k l m n o p q r s t u v w x y z

Cipher: DKVQF IB JWPESCXHTMYAUOLRGZN

• Example 1(By referring the above table)

Plain text : MY NAME

Cipher Text: CZ XDCF

• From the above example, we say that wherever we use M. The M letter can replaced by C.

(i.e) A Single Cipher alphabets for each plain text alphabet is used throughout the process.

 As a first step, the relative frequency of the letters can be determined and compared to a standard

frequency distribution for English

Relative frequency of letters in English text

 Only four letters have been identified, but already we have quite a bit of the message. Continued

analysis of frequencies plus trial and error should easily yield a solution from this point. The complete

plaintext, with spaces added between words, follows:

(iii) PLAYFAIR CIPHER

The best known multiple letter encryption cipher is the playfair, which treats diagrams in the

plaintext as single units and translates these units into cipher text diagrams. The playfair algorithm is

based on the use of 5x5 matrix of letters constructed using a keyword.

Let the keyword be “monarchy‟.

The matrix is constructed by

• Filling in the letters of the keyword from left to right and from top to bottom

• Duplicates are removed

• Remaining unfilled cells of the matrix is filled with remaining alphabets in alphabetical order.

 The matrix is 5x5. It can accommodate 25 alphabets. To accommodate the 26th alphabet I and J are

counted as one character.

Rules for encryption

• Repeating plaintext letters that would fall in the same pair are separated with a filler letter such

as ‘x’.

• Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to

the right, with the first element of the row circularly following the last. For example, ar is

encrypted as RM.

• Two plaintext letters that fall in the same column are each replaced by the letter beneath, with

the top element of the column circularly following the last. For example, mu is encrypted as

CM.

• Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and the

column occupied by the other plaintext letter. Thus, hs becomes BP and ea becomes IM (or JM,

as the encipherer wishes).

Example

Plain text: Balloon

Ba ll oo n

Ba lx lo on

BaI/JB

lxSU loPM

onNA

Strength of playfair cipher

 Playfair cipher is a great advance over simple mono alphabetic ciphers.

 Since there are 26 letters, 26x26 = 676 diagrams are possible, so identification of individual

digram is more difficult.

 Frequency analysis is much more difficult.

Disadvantage

 Easy to break because it has the structure and the resemblance of the plain text language

(iv) HILL CIPHER

 It is a multi-letter cipher. It is developed by Lester Hill. The encryption algorithm takes m

successive plaintext letters and substitutes for them m cipher text letters. The substitution is determined

by m linear equations in which each character is assigned numerical value (a=0,b=1…z=25). For m =3

the system can be described as follows:

 C=KP mod 26

C and P are column vectors of length 3 representing the cipher and plain text respectively. Consider

the message 'ACT', and

The key below (or GYBNQKURP in letters)

Thus the enciphered vector is given by:

 which

corresponds to a ciphertext of 'POH’

Decryption

 Decryption algorithm is done as P=K-1C mod 26

 In order to decrypt, we turn the ciphertext back into a vector, then simply multiply by the inverse

matrix of the key matrix (IFKVIVVMI in letters).

Cipher text of 'POH'

Now gets us back the plain text 'ACT'

Merits and Demerits

• Completely hides single letter and 2 letter frequency information.

• Easily attacked with known plain text attack

(v)POLYALPHABETIC CIPHERS

Poly alphabetic cipher is a simple technique to improve mono-alphabetic technique.

• There is no fixed substitution

• Each Occurrence of a character may have a different substitute (i.e) we can use more than one

substitution for the same letter

 Plain Text : MY NAME

 Cipher Text: NP OBXZ (here, M Letter can be replaced with N and X. No fixed substitute)

The features are

 A set of related mono-alphabetic substitution rules are used

https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Ciphertext

 A key determines which particular rule is chosen for a given transformation.

Example: Vigenere Cipher

 Each of the 26 ciphers is laid out horizontally, with the key letter for each cipher to its left. A normal

alphabet for the plaintext runs across the top. The process of encryption is simple: Given a key letter x

and a plaintext letter y, the cipher text is at the intersection of the row labelled x and the column labelled

y; in this case, the cipher text is V. To encrypt a message, a key is needed that is as long as the message.

Usually, the key is a repeating keyword.

Key=deceptive

Plain text= we are discovered save yourself

e.g., key = d e c e p t i v e d e c e p t i v e d e c e p t i v e

PT = w e a r e d i s c o v e r e d s a v e y o u r s e l f

 CT = ZICVTWQNGRZGVTWAVZHCQYGLMGJ

 Decryption is equally simple. The key letter again identifies the row. The position of the cipher

text letter in that row determines the column, and the plaintext letter is at the top of that column.

EXAMPLE 2 :

Strength of Vigenere cipher o There are multiple ciphertext letters

for each plaintext letter. o Letter frequency information is

obscured

(vi) VERNAM CIPHER or ONE-TIME PAD

It is an unbreakable cryptosystem. It represents the message as a sequence of 0s and 1s. This

can be accomplished by writing all numbers in binary, for example, or by using ASCII. The key is a

random sequence of 0‟s and 1‟s of same length as the message. Once a key is used, it is discarded and

never used again.

The system can be expressed as follows:

 Ci = Pi Ki

Ci - ith binary digit of cipher text Pi - i
th binary digit of plaintext Ki - ith binary digit of key

 – exclusive OR operation

Thus the cipher text is generated by performing the bitwise XOR of the plaintext and the key.

Decryption uses the same key. Because of the properties of XOR, decryption simply involves the same

bitwise operation:

Pi = Ci Ki

e.g., plaintext = 0 0 1 0 1 0 0 1

 Key = 1 0 1 0 1 1 0 0

ciphertext = 1 0 0 0 0 1 0 1

Advantages

• It is unbreakable since cipher text bears no statistical relationship to the plaintext

• Not easy to break Drawbacks

• Practically impossible to generate a random key as to the length of the message

• The second problem is that of key distribution and key protection.

Due to the above two drawbacks, one time pad is of limited use and is used for low band width channel

which needs high security.

5. TRANSPOSITION TECHNIQUES

A very different kind of mapping is achieved by performing some sort of permutation on the

plaintext letters. This technique is referred to as a transposition cipher. i) Rail Fence Cipher

 It is simplest of such cipher, in which the plaintext is written down as a sequence of diagonals and then

read off as a sequence of rows.

 Plaintext = meet at the school house

To encipher this message with a rail fence of depth 2, We

write the message as follows:

m e a t e c o l o s

 e t t h s h o h u e

 The encrypted message Cipher text MEATECOLOSETTHSHOHUE ii)

Row Transposition Ciphers-

A more complex scheme is to write the message in a rectangle, row by row, and read the message off,

column by column, but permute the order of the columns. The order of columns then becomes the key

of the algorithm.

e.g., plaintext = meet at the school house

Key = 4 3 1 2 5 6 7

PT = m e e t a t t

h e s c h o o

 l h o u s e x

CT = ESOTCUEEHMHLAHSTOETOX

Demerits

• Easily recognized because the frequency is same in both plain text and cipher text.

• Can be made secure by performing more number of transpositions.

6. STEGANOGRAPHY

 In Steganography, the plaintext is hidden. The existence of the message is concealed. For

example, the sequence of first letters of each word of the overall message spells out the hidden message.

Various other techniques have been used historically; some examples are the following:

• Character marking: Selected letters of printed or typewritten text are overwritten in pencil.

The marks are ordinarily not visible unless the paper is held at an angle to bright light.

• Invisible ink: A number of substances can be used for writing but leave no visible trace until

heat or some chemical is applied to the paper.

• Pin punctures: Small pin punctures on selected letters are ordinarily not visible unless the

paper is held up in front of a light.

• Typewriter correction ribbon: Used between lines typed with a black ribbon, the results of

typing with the correction tape are visible only under a strong light.

Drawback

• It requires a lot of overhead to hide a relatively few bits of information.

• Once the system is discovered, it becomes virtually worthless

MODERN CRYPTOGRAPHY:

Modern cryptography is the cornerstone of computer and communications security. Its foundation is

based on various concepts of mathematics such as number theory, computational-complexity theory,

and probability theory.

Difference between Classical Cryptography and Modern Cryptography:

Cryptology:

 Cryptography is the art and science of making a cryptosystem that is capable of

providing information security.

 The art and science of breaking the cipher text is known as Cryptanalysis

Cryptology is the study of codes, both creating and solving them.

Perfect Security:

Perfect Secrecy (or Information-theoretic secure) means that the ciphertext conveys no information

about the content of the plaintext. In effect this means that, no matter how much ciphertext you have,

it does not convey anything about what the plaintext and key were.

Information theory:

• Concepts, methods and results from coding theory and information theory are widely used in

cryptography and cryptanalysis. See the article ban (unit) for a historical application.

• Information theory is also used in information retrieval, intelligence gathering, gambling,

statistics, and even in musical composition.

• A key measure in information theory is Entropy. Entropy quantifies the amount of uncertainty

involved in the value of a random variable or the outcome of a random process.

• In terms of Cryptography, entropy must be supplied by the cipher for injection into the plaintext

of a message so as to neutralise the amount of structure that is present in the unsecure plaintext

message.

Product Cryptosystem:

Basic elements of product ciphers.

 (a) P-box. (b) S-box. (c) Product.

Cryptanalysis:

Cryptanalysis is the study of ciphertext, ciphers and cryptosystems with the aim of understanding how

they work and finding and improving techniques for defeating or weakening them.

UNIT II SYMMETRIC KEY CRYPTOGRAPHY

SYMMETRIC KEY CRYPTOGRAPHY: Algebraic structures - Modular arithmetic-Euclid‟s algorithm-

Congruence and matrices - Groups, Rings, Fields- Finite fields SYMMETRIC KEY CIPHERS: SDES –

Block cipher Principles of DES – Strength of DES – Differential and linear cryptanalysis - Block cipher

design principles – Block cipher mode of operation – Evaluation criteria for AES – Advanced Encryption

Standard - RC4 – Key distribution.

ALGEBRAIC STRUCTURES

 Cryptography requires sets of integers and specific operations that are defined for those sets.

 The combination of the set and the operations that are applied to the elements of the set is called

an Algebraic Structure.

 MODULAR ARITHMETIC

 If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by

n. The integer n is called the modulus.

 The division relationship (a = q × n + r) discussed in the previous

section has two inputs (a and n) and two outputs (q and r). In modular arithmetic, we are interested in only

one of the outputs, the remainder r.

The modulo operator is shown as mod. The second input (n) is called the modulus. The output r is called the

residue.

Examples

Find the result of the following operations:

a. 27 mod 5 b. 36 mod 12

Solution

a. Dividing 27 by 5 results in r = 2

b. Dividing 36 by 12 results in r = 0.

CONGRUENCE

 Two integers a and b are said to be congruent modulo n if

a (mod n)≡ b (mod n) a ≡ b (mod n) 73 ≡ 4 mod

23

Properties of Congruences

 Congruences have the following properties:

1. a≡ b (mod n) if n|(a-b)

2. a≡ b (mod n) implies b≡ a(mod n)

3. a ≡ b (mod n) and b ≡ c (mod n) imply a ≡ c (mod n).

 To show that two integers are congruent, we use the congruence operator (≡). For example, we write:

Example:

Perform the following operations (the inputs come from Zn): a.

Add 7 to 14 in Z15.

b. Subtract 11 from 7 in Z13.

c. Multiply 11 by 7 in Z20.

Solution

MODULAR ARITHMETIC OPERATIONS

Modular arithmetic exhibits the following properties:

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n

2. [(a mod n) - (b mod n)] mod n = (a - b) mod n

3. [(a mod n) * (b mod n)] mod n = (a * b) mod n

Example: 11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4

(11 - 15) mod 8 = -4 mod 8 = 4

[(11 mod 8) * (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 * 15) mod 8 = 165 mod 8 = 5

RELATIVELY PRIME

 Two integers are relatively prime, if their only common positive integer factor is 1.

8 and 15 are relatively prime because

Positive divisors of 8 are 1,2,4,8

Positive divisors of 15 are 1, 3, 5, 15 Therefore,

common positive factor=1.

EUCLIDEAN ALGORITHM

 Euclidean algorithm is a simple procedure for determining the greatest common divisor of two positive

integers.

 The positive integer c is said to be the greatest common divisor of a and b if

1. c is a divisor of a and of b.

2. Any divisor of a and b is a divisor of c.

Fact 1: gcd (a, 0) = a

Fact 2: gcd (a, b) = gcd (b, r), where r is the remainder of dividing a by b

EUCLID(a, b)

1. A a; Bb

2. if B = 0 return A = gcd(a, b)

3. R = A mod B

4. AB

5. BR

6. goto 2

Euclidean Algorithm Revisited

For any integers a, b, with a ≥ b ≥ 0, gcd(a,

b) = gcd(b, a mod b)

Example 1 gcd(55, 22) = gcd(22, 55 mod 22) = gcd(22, 11)

= 11 gcd(18, 12) = gcd(12, 6) = gcd(6, 0) = 6 gcd(11,

10) = gcd(10, 1) = gcd(1, 0) = 1

Example 2 Find the greatest common divisor of 2740 and 1760. Solution:

We have gcd (2740, 1760) = 20.

Example 3 Find the greatest common divisor of 25 and 60. Solution

: We have gcd (25, 65) = 5.

Recursive function: If (b=0)

then return a; else return

Euclid(b, a mod b);

EXTENDED EUCLIDEAN ALGORITHM

Given two integers a and b, we often need to find other two integers, s and t, such that

The extended Euclidean algorithm can calculate the gcd (a, b) and at the same time calculate the value of s

and t.

Example1: Given a = 161 and b = 28, find gcd (a, b) and the values of s and t.

Solution

 We get gcd (161, 28) = 7, s = −1 and t = 6.

 POLYNOMIAL ARITHMETIC

A polynomial of degree n (integer n ≥ 0) is an expression of the form

where the ai – coefficients

Addition is defined as

Multiplication is defined as

where

Eg.: Let f(x) = x3 + x2 + 2 and g(x) = x2 - x + 1, where S is the set of integers. Then

f(x) + g(x) = x3 + 2x2 - x + 3 f(x) - g(x) = x3 + x + 1 f(x) * g(x) = x5 + 3x2 - 2x + 2

Example 1 Find gcd[a(x), b(x)] for a(x) = x6 + x5 + x4 + x3 + x2 + x + 1 and b(x) = x4 + x2 + x + 1.

Euclidean algorithm to compute the greatest common divisor of two polynomials gcd[a(x),

b(x)] = gcd[b(x), a(x) mod b(x)]

 =gcd(b(x),r1(x))

 =gcd[r1(x),b(x) mod r1(x)]

MULTIPLICATIVE INVERSE

 It is easy to find the multiplicative inverse of an element in GF(p) for small values of p by constructing a

multiplication table, such as shown in Table and the desired result can be read directly. However, for large

values of p, this approach is not practical.

If a and b are relatively prime, then b has a multiplicative inverse modulo a. That is, if gcd(a, b) = 1, then b

has a multiplicative inverse modulo a. That is, for positive integer b < a, there exists a b-1 < a such that bb-1

= 1 mod a.

If a is a prime number and b < a, then clearly a and b are relatively prime and have a greatest common

divisor of 1. We now show that we can easily compute b-1 using the extended Euclidean algorithm.

Finding the

Multiplicative Inverse of a polynomial

CONGRUENCE AND MATRICES

For a positive integer n, two integers a and b are said to be congruent modulo n (or a is congruent to b modulo

n), if a and b have the same remainder when divided by n (or equivalently if a − b is divisible by n). It can be

expressed as a ≡ b mod n.

Matrices: A matrix of size l X m

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 11

Examples of matrices

Operations and Relations: Addition and subtraction of matrices

Multiplication of a row matrix by a column matrix:

Multiplication of a 2 × 3 matrix by a 3 × 4 matrix

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 12

Scalar multiplication

The determinant of a square matrix A of size m × m denoted as det (A) is a scalar calculated

recursively as shown below:

 Calculating the determinant of a 2 × 2 matrix based on the determinant of a 1 × 1 matrix

Calculating the determinant of a 3 × 3 matrix

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 13

Cryptography uses residue matrices: matrices where all elements are in Zn. A residue matrix has a

multiplicative inverse if gcd (det(A), n) = 1.

GROUPS, RINGS, AND FIELDS

 Groups, rings, and fields are the fundamental elements of a branch of mathematics known as abstract

algebra, or modern algebra.

GROUPS

 A group G, sometimes denoted by {G, •}, is a set of elements with a binary operation denoted by • that

associates to each ordered pair (a, b) of elements in G an element (a • b) in G, such that the following axioms

are obeyed:

(A1) Closure: If a and b belong to G, then a • b is also in G.

(A2) Associative: a•(b•c) = (a•b)•c for all a, b, c in G.

(A3) Identity element: There is an element e in G such that a • e = e • a = a for all a in G.

(A4) Inverse element: For each a in G, there is an element a -1 in G such that a • a -1 = a -1• a = e.

If a group has a finite number of elements, it is referred to as a finite group, and the order of the group is

equal to the number of elements in the group. Otherwise, the group is an infinite group. A group is said to

be abelian if it satisfies the following additional condition:

(A5) Commutative: a • b = b • a for all a, b in G.

A group G is cyclic if every element of G is a power ak (k is an integer) of a fixed element a ε G. The element

a is said to generate the group G or to be a generator of G. A cyclic group is always abelian and may be

finite or infinite.

RINGS

 A ring R, sometimes denoted by {R, +, *}, is a set of elements with two binary operations, called

addition and multiplication,6 such that for all a, b, c in R the following axioms are obeyed.

(A1–A5) R is an abelian group with respect to addition; that is, R satisfies axioms A1 through A5.

(M1) Closure under multiplication: If a and b belong to R, then ab is also in R.

(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R.

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 14

(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in R.

 (a + b)c = ac + bc for all a, b, c in R.

A ring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab = ba for all a, b in R.

An integral domain, which is a commutative ring that obeys the

following axioms.

(M5) Multiplicative identity: There is an element 1 in R such that a1 = 1a = a for all a in R.

(M6) No zero divisors: If a, b in R and ab = 0, then either a = 0 or b = 0.

FIELDS

 A field F, sometimes denoted by {F, +, *}, is a set of elements with two binary operations, called addition

and multiplication, such that for all a, b, c in F the following axioms are obeyed. (A1–M6) F is an integral

domain; that is, F satisfies axioms A1 through A5 and M1 through M6. (M7) Multiplicative inverse: For

each a in F, except 0, there is an element a-1 in F such that aa-1 = (a-1)a = 1

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 15

FINITE (GALOIS) FIELDS

 Finite fields play a key role in cryptography.

 Finite field is a field that contains a finite number of elements

 It Can show number of elements in a finite field must be a power of a prime pn

 known as Galois fields, denoted GF(pn)

 In particular often use the fields:

n=1 then we say as GF(p), or p=2 then we say as GF(2^n).

 GF(p) is the set of integers {0,1, … , p-1} with addition & multiplication modulo p.

 This forms a “well-behaved” finite field.

DATA ENCRYPTION STANDARD

Introduction:

The most widely used private key block cipher, is the Data Encryption Standard (DES).

DES encrypts data in 64-bit blocks using a 56-bit key.

IBM developed Lucifer cipher

 by team led by Feistel in late 60’s

 used 64-bit data blocks with 128-bit key

 then redeveloped as a commercial cipher with input from National Security Agency (NSA)

and others.

 IBM submitted their revised Lucifer which was eventually accepted as the DES. Over View

of DES:

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 16

The overall scheme for DES encryption is illustrated:

Plain text must be 64 bits in length and key length is 56 bits in length.

In the figure given below, the left side shows the basic process for enciphering a 64-bit data block

which consists of:

• an initial permutation (IP) which shuffles the 64-bit input block

• 16 rounds of a complex key dependent round function involving substitutions &

permutations

• a final permutation, being the inverse of IP

The right side shows the handling of the 56-bit key and consists of:

• an initial permutation of the key (PC1) which selects 56-bits out of the 64-bits input, in

two 28-bit halves

• 16 stages to generate the 48-bit subkeys using a left circular shift and a permutation of

the two 28-bit halves

Fig 1.1 Overview of DES

The main phases in the left hand side of the above figure i.e. processing of the plain text are

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 17

Table 1: Actual 64 bit order

Initial Permutation (IP): The plaintext block undergoes an initial permutation. 64 bits of the block

are permuted. For example the actual input message order can be as follows according to their bit

positions:

An example initial Permutation obtained by just writing the even numbered columns first

in the row wise and odd numbered columns later in the row wise.

Table 2: Initial Permutation

A Single Round Transformation:

• On the right hand side part of the figure, the usage of the 56 bit key is shown.

Initially the key is passed through a permutation function.

• Now for each of the 16 iterations, a new subkey (Ki) is produced by combination

of a left circular shift and a permutation function which is same for each iteration.

• A different subkey is produced because of repeated shifting of the key bits.

• The left and right halves of each 64 bit intermediate value are treated as separated

32-bit quantities labeled L (left) and R (Right).

• The overall processing at each iteration is given by following steps, which form one

round in an S-P network.

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 18

Li = Ri-1.

 Ri = L i-1 F(R i-1, Ki)

Where Function F can be described as P (S(E(R(i-1)) K(i)))

The following figure shows a closer view of algorithms for a single iteration. The 64bit

permuted input passes through 16 iterations, producing an intermediate 64-bit value at the

conclusion of each iteration.

Fig 1.2 Single Round Function A

Complex Transformation (F):

This again contains two sub transformations i) Expansion transformation (E)

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 19

ii) Substitution transformation (S)

i) Expansion transformation

 64 bit permuted block undergoes 16 rounds of complex transformation.

 Subkeys are used in each of the 16 iterations.

 The round Key Ki is 48 bits.

 The R input is 32 bits. The R input is first expanded to 48 bit by using a table

that defines a permutation plus an expansion that involves duplication of 16 of R

bits.

 The Expansion is as follows: The middle elements belong to the 32 bit R input and

Left and right 8 elements are the duplications of the R input, to make as 48 bit.

Table 3: Expansion Permutation

ii) Substitution transformation

The Role of the S-Box in the transformation (F) is as follows,

The substitution consists of a set of 8 S-Boxes, each accepts 6 input and produce 4 output bits.

 These transformations are defined as follows:

 The first and last bits of 6bits used to specify the row, and the rest of the 4 bits are

used to specify the column of the specific box. The data in the specified position is

used to replace.

 The first and last bits of the input to box Si form a 2-bit binary number to select

one of four substitutions defined by the four rows in the table for Si.

 The middle four bits select one of the sixteen columns. The decimal value in the

cell selected by the row and column is then converted to its 4-bit representation to

produce the output.

Table 4: Substitution Table (S-Box)

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 20

 Col

0

Col

1

Col

2

Col

3

Col

4

Col

5

Col

6

Col

7

Col

8

Col

9

Col

10

Col

11

Col

12

Col

13

Col

14

Col

15

Row0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

Row1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

Row2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

Row3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

For example:

In S1, for input 011100, the row is 01 (row 1) and the column is 1100 (column 12). The

value in row 1, column 12 is 9, so the output is 1001.

The outer two bits of each group select one of four possible substitutions (one row of an S-

box). Then a 4-bit output value is substituted for the particular 4-bit input (the middle four input

bits). The 32-bit output from the eight S-boxes is then permuted, so that on the next round, the

output from each S-box immediately affects as many others as possible.

Inverse Initial Permutation (IP
-1

): The 64 bit output undergoes a permutation that is inverse of

the initial permutation.

Table 5: Final Permutation

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 21

Sub Key Generation Algorithm: A 64-bit key is used as input to the algorithm. The bits of the key are

numbered from 1 through 64; every eighth bit is ignored, as indicated by lack of shading in Table 6.

The key is first subjected to a permutation governed by a table labelled Permuted Choice One, indicated

in Table 7.

The resulting 56-bit key is then treated as two 28-bit quantities, labelled C0 and D0. At

each round, Ci-1 and Di-1 are separately subjected to a circular left shift or (rotation) of 1 or

2 bits, as governed by Table 9. These shifted values serve as input to the next round. They also

serve as input to the part labelled Permuted Choice Two, represented in Table 8, which produces

a 48-bit output that serves as input to the function .

Table 6: Input Key

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

 17 18 19 20 21 22 23 24

 25 26 27 28 29 30 31 32

 33 34 35 36 37 38 39 40

 41 42 43 44 45 46 47 48

 49 50 51 52 53 54 55 56

 57 58 59 60 61 62 63 64

Table 7: Permuted Choice-1

57 49 41 33 25 17 9

1

58

50

42

34

26

18

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 22

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

Table 8: Permuted Choice-2

14 17 11 24 1 5 3 28

15 6 21 10 23 18 12 4

26 8 16 7 27 20 13 2

41 52 31 37 47 55 30 40

51 45 33 48 44 49 39 56

34 53 46 42 50 36 29 32

Table 9: Schedule of Left Shifts

Round

Numbers

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Bits Rotated 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

.

DES Decryption:

The DES decryption uses the same algorithm as encryption, except the application of sub

key in the reverse order.

 The Avalanche Affect of DES:

A desirable property of any encryption algorithm is that a small change in either the plaintext or the

key should produce a significant change in the ciphertext. In particular, a change in one bit of the

plaintext or one bit of the key should produce a change in many bits of the ciphertext. This is referred

to as the avalanche effect.

Strength of DES – Key Size

1. The Key

 The level of security provided by DES in two areas: key size and the nature of the algorithm.

 With a key length of 56 bits, there are 2^56 possible keys, which is approximately

7.2*10^16 keys. Thus a brute-force attack appeared impractical. However DES was

finally and definitively proved insecure in July 1998. W

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 23

 It is important to note that there is more to a key-search attack than simply running through

all possible keys. Unless known plaintext is provided, the analyst must be able to recognize

plaintext as plaintext. Clearly must now consider alternatives to DES, the most important

of which are AES and triple DES.

2. The Nature of the Encryption algorithm

The focus of concern has been on the eight substitution tables, or S-boxes, that are

used in each iteration.

These techniques utilize some deep structure of the cipher by gathering information

about encryptions so that eventually you can recover some/all of the sub-key bits, and then

exhaustively search for the rest if necessary.

Generally these are statistical attacks which depend on the amount of information

gathered for their likelihood of success. Attacks of this form include differential

cryptanalysis. Linear cryptanalysis, and related key attacks.

3. The Timing Attack

A timing attack exploits the fact that an encryption or decryption algorithm often

takes slightly different amounts of time on different inputs. The AES analysis process has

highlighted this attack approach, and showed that it is a concern particularly with smartcard

implementations, though DES appears to be fairly resistant to a successful timing attack.

TRIPLE DES Double

DES:

The simplest form of multiple encryption has two encryption stages and two keys, Fig 2.1

Given a plaintext P and two encryption keys K1 andK2, ciphertext is generated as

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 24

Decryption requires that the keys be applied in reverse order:

For DES, this scheme apparently involves a key length of 56 X 2=112 bits, resulting

in a dramatic increase in cryptographic strength. But we need to examine the algorithm

more closely.

Fig 2.1 Double DES

The first answer to problems of DES is an algorithm called Double DES which includes

double encryption with two keys. It increases the key size to 112 bits, which seems to be

secure. But, there are some problems associated with this approach. Issue of reduction

to single stage:

Suppose it were true for DES, for all 56-bit key values, that given any two keys K1 and

K2, it would be possible to find a key K3 such that

If this were the case, then double encryption, and indeed any number of stages of

multiple encryption with DES, would be useless because the result would be equivalent to

a single encryption with a single 56-bit key.

Meet-in-the-middle” attack:

Given a known pair (P, C), the attack proceeds as follows.

First, encrypt P for all 256 possible values of K1. Store these results in a table and

then sort the table by the values of X. Next, decrypt C, using all 2
56

possible values of

K2.

As each decryption is produced, check the result against the table for a match. If a

match occurs, then test the two resulting keys against a new known plaintext–cipher text

pair.

If the two keys produce the correct cipher text, accept them as the correct keys. Test

the two keys for the second pair of plaintext-cipher text and if they match, correct keys

are found.

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 25

Triple DES

Triple DES was the answer to many of the shortcomings of DES. Since it is based

on the DES algorithm, it is very easy to modify existing software to use Triple DES. 3 DES

was developed in 1999 by IBM – by a team led by Walter Tuchman.

3 DES prevents a meet-in-the-middle attack. 3 DES has a 168-bit key and enciphers

blocks of 64 bits. It also has the advantage of proven reliability and a longer key length that

eliminates many of the shortcut attacks that can be used to reduce the amount of time it

takes to break DES.

3DES uses three keys and three executions of the DES algorithm. The function

follows an encrypt-decrypt-encrypt (EDE) sequence.

Fig 2.2 Triple DES Encryption and Decryption

C=Ek3[Dk2[Ek1[p]]] Where C= ciphertext, P=plaintext and EK[X] = encryption of X using key

K DK[Y] = decryption of Y using key K. Decryption is simply the same operation with the keys

reversed.P=Dk1[Ek2[Dk3[c]]]

Triple DES runs three times slower than standard DES, but is much more secure if

used properly. With three distinct keys, TDEA has an effective key length of 168 bits

making it a formidable algorithm. As the underlying algorithm is DEA, it offers the same

resistance to cryptanalysis as is DEA. Triple DES can be done using 2 keys or 3 keys. There

is no cryptographic significance to the use of decryption for the second stage of 3DES

encryption. Its only advantage is that it allows users of 3DES to decrypt data encrypted by

users of the older single DES: c = Ek1 [D2l [EK3 [P]]] = EK1 [P]

Strength of Triple DES:

If we assume that the cracker would perform 1 million decryptions per 1micro second, then

DES would take 10 hours to break. With 128 bit Key It would take 1018 years to break. With

168 bit key Brute force attack is impossible.

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 26

Fig 2.3 Time to break Code

BLOCK CIPHER PRINCIPLES

Any plain text can be transformed into cipher text with following Ciphers

 Stream Cipher is the one that encrypts the digital data one bit or one byte at a

time to produce the cipher text. Ex:-Autokeyed Vigenere Cipher and Verman

Cipher

 Block Cipher is the one in which a block of plain text is treated as whole and used

to produce a cipher text of equal length. Ex:- DES

Motivations for Feistel Cipher Structure:

 A block cipher operates on a plain text of n-bits to produce the cipher text of nbits.

There are 2
n

different possible plain text blocks for encryptions to be reversible

(Eg: for decryption to be possible), and each must produce unique cipher text

block. Such transformation is called “reversible” or

“nonsingular”

 If same cipher block has different plain text block such scheme is called

“irreversible Transformation”

Table 1: Reversible and Irreversible Transformations

Reversible Mapping Irreversible Mapping

Plain

Text
Cipher

Text

Plain Text
Cipher

Text

00 11 00 11

10 01 10 01

01 00 01 01

In the above example the same cipher block "01" is producing different plain

text blocks; this is called "irreversible transformation".

Block Cipher Principles:

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 27

Most symmetric block encryption algorithms in current use are based on a structure

referred to as a Feistel block cipher.

A block cipher operates on a plaintext block of n bits to produce a cipher text block

of n bits. An arbitrary reversible substitution cipher for a large block size is not practical,

however, from an implementation and performance point of view.

Feistel points out that what is needed is an approximation to the ideal block cipher

system for large n, built up out of components that are easily realizable.

Ideal Block Cipher:

The most general form of the block cipher is Ideal Block Cipher in which a

reversible mapping between plain text and cipher text is possible. This allows the maximum

number of possible encryption mappings from plain text to cipher text.

Fig 3.1 General n-bit by n-bit Ideal Block Cipher

Feistel Cipher:

 Horst Feistel, working at IBM Thomas J Watson Research Labs devised a suitable

invertible cipher structure in early 70's.

 He proposed that we can actually approximate the concept of a product cipher,

which is the execution of two or more simple ciphers in sequence in such a way

that to produce the final result or product that is cryptographically stronger than

any of the component ciphers.

 The structure uses the alternate use of substitutions and permutations, which is

proposed by the Claude Shannon to develop the product cipher that alternates

confusion and diffusion.

Confusion and Diffusion:

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 28

 The terms diffusion and confusion were introduced by Claude Shannon to capture

the two basic building blocks for any cryptographic system.

 Every block cipher involves a transformation of a block of plaintext into a block

of cipher text, where the transformation depends on the key.

 The mechanism of diffusion seeks to make the statistical relationship between the

plaintext and ciphertext as complex as possible in order to prevent attempts to

deduce the key.

 Confusion seeks to make the relationship between the statistics of the ciphertext

and the value of the encryption key as complex as possible, again to thwart

attempts to discover the key.

 So successful are diffusion and confusion in capturing the essence of the desired

attributes of a block cipher that they have become the cornerstone of modern block

cipher design.

Feistel Cipher Structure

 Horst Feistel devised the feistel cipher based on concept of invertible product

cipher

 partitions input block into two halves process through multiple rounds which

perform a substitution on left data half based on round function of right half &

 sub key then have permutation swapping halves

 implements Shannon’s S-P net concept

The Design Elements of the Feistel Cipher are as follows:

• Block size - increasing size improves security, but slows cipher

• Key size - increasing size improves security, makes exhaustive key searching

harder, but may slow cipher

• Number of rounds –single round offers inadequate security, but multiple rounds

increase security, increasing number improves security, but slows cipher

• Sub key generation algorithm - greater complexity can make analysis harder, but

slows cipher

• Round function - greater complexity can make analysis harder, but slows cipher

• Fast software encryption/decryption – in many cases encryption is embedded in

hardware to increase speed of cipher, more recent concern for practical use

• Ease of analysis - for easier validation & there is a great advantage in designing

easier algorithm to find all the vulnerabilities, testing of strength

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 29

Fig 3.2 Encryption Process

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 30

Working

procedure of Feistel Cipher:

The plaintext block is divided into two halves, Lo and Ro.

 The two halves of the data pass through n rounds of processing and then combine

to produce the ciphertext block.

Each round i has as inputs Li-l and R;-l' derived from the previous round, as welI as

a subkey Ki, derived from the overall K.

In general, the subkeys Ki are different from K and from each other and are

generated from the key by a subkey generation algorithm.

All rounds have the same structure. A substitution is performed on the left half of

the data. This is done by applying a round function F to the right half of the data and then

taking the exclusive-OR (X OR) of the output of that function and the left half of the data.

The round function has the same general structure for each round but is

parameterized by the round subkey Ki. Following this substitution, a permutation is

performed that consists of the interchange of the two halves of the data.

The general process of the encryption will be as

Fig 3.3 Encryption and Decryption Processes

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 31

follows: LEi= REi-1 REi=LEI

X F(REi-1,Ki)

The Decryption is as

follows: LE16=RE15

RE16=LE15 X F(RE15,K16)

Differential Cryptanalysis

One of the most significant advances in cryptanalysis in recent years is differential

cryptanalysis. In this section, we discuss the technique and its applicability to DES. The

differential cryptanalysis attack is complex.

The rationale behind differential cryptanalysis is to observe the behavior of pairs of

text blocks evolving along each round of the cipher, instead of observing the evolution of

a single text block.

Consider the original plaintext block m to consist of two halves [m0, m1. Each round

of DES maps the right-hand input into the left-hand output and sets the right-hand output

to be a function of the left-hand input and the sub key for this round. So, at each round, only

one new 32-bit block is created. If we label each new block m1 (2 ≤ i ≤ 17), then the

intermediate message halves are related as follows:

This attack is known as Differential Cryptanalysis because the analysis compares differences

between two related encryptions, and looks for a known difference in leading to a known

difference out with some (pretty small but still significant) probability. If a number of such

differences are determined, it is feasible to determine the subkey used in the function f.

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 32

The overall strategy of differential cryptanalysis is based on these considerations for a single round.

The procedure is to begin with two plaintext messages m and m’ with a given difference and trace

through a probable pattern of differences after each round to yield a probable difference for the cipher

text. You submit m and m’ for encryption to determine the actual difference under the unknown key

and compare the result to the probable difference. If there is a match, then suspect that all the probable

patterns at all the intermediate rounds are correct. With that assumption, can make some deductions

about the key bits. This procedure must be repeated many times to determine all the key bits.

Linear Cryptanalysis

A more recent development is linear cryptanalysis. This attack is based on finding

linear approximations to describe the transformations performed in DES. This method can

find a DES key given 243 known plaintexts, as compared to 247 chosen plaintexts for

differential cryptanalysis. Although this is a minor improvement, because it may be easier

to acquire known plaintext rather than chosen plaintext, it still leaves linear cryptanalysis

infeasible as an attack on DES.

Distinguish between differential and linear cryptanalysis. (May 2012)

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 33

 L inear cryptanalysis is a general form of cryptanalysis based on finding affine

approximations to the action of a cipher. Linear cryptanalysis is one of the most

widely used attacks on block ciphers;

 Differential cryptanalysis is a general form of cryptanalysis applicable primarily to

block ciphers, but also to stream ciphers and cryptographic hash functions. In the

broadest sense, it is the study of how differences in information input can affect the

resultant dif ference at the output.

 Linear cryptanalysis focuses on statistical analysis against one round of decrypted

cipher text. Differential analysis focuses on statistical analysis of two inputs and two

outputs of a cryptographic algorithm.

BLOCK CIPHER DESIGN PRINCIPLES

1) Number of Rounds

2) Design of Function F

3) Key Schedule Algorithm

1) Number of Rounds

2) Design of Function F

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 34

 (i)

3) Key Schedule Algorithm

 With any feistel block cipher, the key is used to generate one subkey for each round.

 In general, we would like to select subkeys to maximize the difficulty of deducing

individual subkeys and the diff iculty of deducing individual subkeys and the

difficulty of working back to the main key.

 It is suggested that, at a minimum,the key schedule should guarantee key / cipher

text strict Avalanche criterion and Bit independence Criterion.

BLOCK CIPHER MODE S OF OPERATION

A symmetric block cipher processes one block of data at a time. In the case of

DES and 3DES, the block length is 64 bits. For longer amounts of plaintext, it is

necessary to break the plaintext into 64 - bit blocks (padding the last block if n ecessary).

There are five modes of operations:

• Electronic Codebook Mode

• Cipher Block Chaining Mode

• Cipher Feedback Mode.

• Output Feedback Mode

• Counter Mode

Electronic Codebook Mode:

• The simplest way to proceed is what is known as electronic codebook

(ECB) mode, in which plaintext is handled 64 bits at a time and each

block of plaintext is encrypted using the same key .

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 35

• The term codebook is used because, for a given key, there is a unique

ciphertext for every 64-bit block of plaintext.

• Therefore, one can imagine a gigantic codebook in which there is an entry

for every possible 64-bit plaintext pattern showing its corresponding

ciphertext.

Advantages and Limitations of ECB:

 Main use is sending a few blocks of data .(i.e) If we want to securely send key of DES or

AES we can use this mode to send the key securely

 When two messages which have two blocks of plaintexts in common are encrypted with

ECB mode the corresponding cipher text blocks will be the same. Message repetitions may

show in ciphertext.

 Weakness is due to the encrypted message blocks being independent

 (ii) Cipher Block Chaining Mode (CBC):

• To overcome the problems of repetitions and order independence in ECB, want some

way of making the ciphertext dependent on all blocks before it. This is what CBC gives

us, by combining the previous ciphertext block with the current message block before

encrypting.

• To start the process, use an Initial Value (IV), which is usually well known (often all

0's).

• CBC mode is applicable whenever large amounts of data need to be sent securely,

provided that all data is available in advance (eg email, FTP, web etc).

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 36

• In effect, we have chained together the processing of the sequence of plaintext blocks,

to avoid the similarities. The input to the encryption function for each plaintext block

bears no fixed relationship to the plaintext block. Therefore, repeating patterns of 64

bits are not exposed.

• The Encryption process is as follows:

Ci=Ek[Ci-1 XOR Pi], where Ek[x] is the encryption of plain text x, using the key

K, and XOR is the Exclusive OR operation.

• The Decryption process is as follows: Pi=Dk [Ci] XOR Ci-1

For decryption, each cipher block is passed through the decryption algorithm. The

result is XORed with the preceding ciphertext block to produce the plaintext block.

Fig 4.2 Cipher Block Chaining Mode

Advantages and Limitations of CBC:

 A ciphertext block depends on all blocks before it

 Any change to a block affects all following ciphertext blocks

 Need Initialization Vector (IV)

 Padding is done (Last block padded with b bits if it is partial block) (iii)

Cipher Feedback Mode (CFB):

It is possible to convert any block cipher into a stream cipher by using the cipher

feedback (CFB) mode.

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 37

A stream cipher eliminates the need to pad a message to be an integral number of

blocks. It also can operate in real time. Thus, if a character stream is being transmitted, each

character can be encrypted and transmitted immediately using a character- oriented stream

cipher.

First, consider encryption. o The input to the encryption function is a 64-bit shift

register that is initially set to some initialization vector (IV).

o The leftmost (most significant) s bits of the output of the encryption function

are XORed with the first unit of plaintext to produce the first unit of ciphertext

, which is then transmitted.

o In addition, the contents of the shift register are shifted left by s bits and Cipher

text is placed in the rightmost (least significant) s bits of the shift register. This

process continues until all plaintext units have been encrypted.

Mode Advantages and Limitations of CFB:

Appropriate when data arrives in bits/bytes

 Most common stream mode

 Limitation is need to stall while do block encryption after every n-bits

 Errors propagate for several blocks after the error that if its used over a "noisy"

link, then any corrupted bit will destroy values in the current and next blocks

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 38

Fig 4.3 Cipher Feedback

 (iv) Output Feedback Mode (OFB):

The output feedback (OFB) mode is similar in structure to that of CFB.

1) From the below fig, it is the output of the encryption function

that is fed back to the shift register in OFB, whereas in CFB, the ciphertext unit

is fed back to the become an input for encrypting the next block.

2) OFB mode operates on full blocks of plaintext and ciphertext,

whereas CFB operates on an s-bit subset.

3)Like CBC & CFB, OFB uses IV (Must be Nonce- Number used once)

(i.e the IV must be unique to each execution of the encryption algorithm.)

 Encryption can be expressed as By rearranging

terms, Cj = Pj_ XOR E(K, [Cj-1 XOR Pj-1]) we can

demonstrate that decryption works.

 Pj = Cj XOR E(K, [Cj-1 XOR Pj-1])

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 39

Fig 4.4 Output Feedback Mode

Advantage of OFB Mode: The bit errors in transmission do not propagate

(any bit error only affects a single bit)

Disadvantage of OFB Mode: The disadvantage of OFB is that it is more vulnerable to a

message stream modification attack than is CFB.

 (v) Counter Mode (CTR):

 Similar to OFB but encrypts counter value (hence name) rather than any

feedback value

 Must have a different key & counter value for every plaintext block (never

reused).

 It is being used with applications in ATM (asynchronous transfer mode) network

security and IPSec (IP security).

 A counter, equal to the plaintext block size is used.

 Typically the counter is initialized to some value and then incremented by 1 for

each subsequent block.

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 40

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 41

Fig 4,5 Counter

Mode Advantages and Limitations of CTR:

 Efficiency

 can do parallel encryptions in h/w or s/w

 can pre - process in advance of need

 good for bursty high speed links

 Random a ccess to encrypted data blocks

 Provable security (good as other modes) But must ensure never reuse key/counte r values,

otherwise could break.

ADVANCED ENCRYPTION STANDARD

AES Evaluation Criteria :

 I nitial criteria:

 S ecurity – effort for practical cryptanalysis

 C ost – in terms of computational efficiency

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 42

 Algorithm & implementation characteristics Final criteria

 General security

 Ease of software & hardware implementation

 Implementation attacks

 Flexibility (in en/decrypt, keying, other factors) AES Requirements:

• Private key symmetric block cipher

• 128-bit data, 128/192/256-bit keys

• Stronger & faster than Triple-DES

The AES Cipher:

 designed by Rijmen-Daemen in Belgium

 The Advanced Encryption Standard (AES) was published by NIST (National Institute

of Standards and Technology) in 2001.

 has 128/192/256 bit keys, 128 bit data an iterative rather than feistel cipher

 processes data as block of 4 columns of 4 bytes

 operates on entire data block in every round designed to be:

 resistant against known attacks

 speed and code compactness on many CPUs

 design simplicity

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 43

AES ENCRYPTION PROCESS

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 44

AESDATASTRUCTURE

Comments about the Overall Structure:

One noteworthy feature of this structure is that it is not a Feistel structure.

The key that is provided as input is expanded into an array of forty-four 32-bit

words, w[i]. Four distinct words (128 bits) serve as a round key for each round. Four

different stages are used, one of permutation and three of substitution:

 Substitute bytes : Uses an S-box to perform a byte-by-byte substitution of the block

 ShiftRows : A simple permutation

 MixColumns : A substitution that makes use of arithmetic

AddRoundKey : A simple bitwise XOR of the current block with a portion of the

expanded key

The structure is quite simple. Only the AddRoundKey stage makes use of the key.

The other three stages together provide confusion, diffusion, and nonlinearity, but by

themselves would provide no security because they do not use the key. Each stage is easily

reversible. As with most block ciphers, the decryption algorithm makes use of the expanded

key in reverse order. Decryption is not identical to the encryption. This is just because of

the structure of the AES.

Once it is established that all four stages are reversible, it is easy to verify that

decryption does recover the plaintext. The final round of both encryption and decryption

consists of only three stages.

AESSTRUCTURE

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 45

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 46

AES ENCRYPTION ROUND

Byte Substitution:

A simple substitution of each byte uses one table of 16x16 bytes containing a

permutation of all 256 8-bit values each byte of state is replaced by byte indexed by row

(left 4-bits) & column (right 4-bits)

Eg. byte {95} is replaced by byte in row 9 column 5 which has value {2A}. S-box constructed

using defined transformation of values in GF(28) designed to be resistant to all known attacks.

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 47

Shift Rows:

A circular byte shift in each; 1st row is unchanged, 2nd row does 1 byte circular

shift to left, 3rd row does 2 byte circular shift to left, 4th row does 3 byte circular shift to

left decrypt inverts using shifts to right since state is processed by columns, this step

permutes bytes between the columns

Mix Columns:

Each column is processed separately. Each byte is replaced by a value dependent

on all 4 bytes in the column. Effectively a matrix multiplication in GF(28) using prime poly

m(x) =x8+x4+x3+x+1

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 48

PRATHYUSHA ENGINEERING COLLEGE

Mix Columns :

AddRoundKey Transformation

The 128 bits of State are bitwise XORed with the 128 bits of the round key. the

operation is viewed as a columnwise operation between the 4 bytes of a State column and

one word of the round key; it can also be viewed as a byte - level operation. For example:

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 49

AES Key Expansion:

The 128 bit key is copied into the first four words of the expanded key. The

remainder of the expanded key is filled in four words at a time. Each added new word

depends on the w[i] and w[i-4]. In three out of four cases, a simple XOR is used. For a word

whose position in the w array is a multiple of 4, a more complex function is used. The

complex function g consists of the following subfunctions.

Where R is the called Rotate Constant.

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 50

 RotWord (Rotate Word) performs a one-byte circular left shift on a word.

 SubWord(Substitute Word) performs a byte substitution on each byte of its input

word, using the S-box

 The result of steps 1 and 2 is XORed with a round constant, R

RC4

 RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security.

 It is a variable key-size stream cipher with byte-oriented operations.

 The algorithm is based on the use of a random permutation.

 RC4 is probably the most widely used stream cipher.

 It is used in the SSL/TLS secure web protocol, & in the WEP & WPA wireless LAN

security protocols.

 RC4 was kept as a trade secret by RSA Security, but in September 1994 was

anonymously posted on the Internet on the Cypherpunks anonymous remailers list.

 the RC4 key is ued to form a random permutation of all 8-bit values, it then uses that

permutation to scramble input info processed a byte at a time.

RC4 Key Schedule

 The RC4 key schedule initialises the state S to the numbers 0..255 After doing this 256 times,

the result is a well and truly shuffled array.

 The total number of possible states is 256! - a truly enormous number, much larger even than the

2048-bit (256*8) max key allowed can select. S forms internal state of the cipher

for i = 0 to 255 do

S[i] = i

T[i] = K[i mod keylen])

j = 0

for i = 0 to 255 do j = (j +

S[i] + T[i]) (mod 256) swap

(S[i], S[j])

RC4 Encryption:

To form the stream key for en/decryption (which are identical), RC4 continues to shuffle the

permutation array S by continuing to swap each element in turn with some other entry, and

using the sum of these two entry values to select another value from the permutation to use as

the stream key, which is then XOR’d with the current message byte.

i = j = 0

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 51

for each message byte Mi

i = (i + 1) (mod 256) j =

(j + S[i]) (mod 256)

swap(S[i], S[j]) t = (S[i] +

S[j]) (mod 256)

Ci = Mi XOR S[t]

Overview of RC4:

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 52

RC4 Security:

 A number of papers have been published analyzing methods of attacking RC4, but none of these

approaches is practical against RC4 with a reasonable key length, such as 128 bits.

 A more serious problem occurs in its use in the WEP protocol, not with RC4 itself but the way in

which keys are generated for use as input to RC4.

 Currently RC4 it’s regarded as quite secure, if used correctly, with a sufficiently large key.

KEY DISTRIBUTION:

 Symmetric schemes require both parties to share a common secret key

 Issue is how to securely distribute this key

 Often secure system failure due to a break in the key distribution scheme

Given parties A and B have various key distribution alternatives:

1. A can select key and physically deliver to B

2. Third party can select & deliver key to A & B

3. if A & B have communicated previously can use previous key to encrypt a new key

4. if A & B have secure communications with a third party C, C can relay key between

A & B

The strength of any cryptographic system thus depends on the key distribution technique.

For two parties A and B, key distribution can be achieved in a number of ways:

• Physical delivery (1 & 2) is simplest - but only applicable when there is personal contact between

recipient and key issuer. This is fine for link encryption where devices & keys occur in pairs,

but does not scale as number of parties who wish to communicate grows.

• 3 is mostly based on 1 or 2 occurring first.

• A third party, whom all parties trust, can be used as a trusted intermediary to mediate the

establishment of secure communications between them (4).

• Must trust intermediary not to abuse the knowledge of all session keys. As number of parties

grow, some variant of 4 is only practical solution to the huge growth in number of keys

potentially needed.

KEY HIERARCHY:

The use of a key distribution center is based on the use of a hierarchy of keys.

At a minimum, two levels of keys are used:

• A session key, used for the duration of a logical connection;

• A master key shared by the key distribution center and an end system or user and used to encrypt

the session key.

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 53

Key Distribution Scenario:“Key Distribution Center” (KDC) which shares a unique key with each

party (user)

PRATHYUSHA ENGINEERING COLLEGE

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY Page 54

The major issues associated with the use of Key Distribution Centers (KDC’s):

 Hierarchies of KDC’s required for large networks, but must trust each other

 Significant of hierarchical key control. (Nov / Dec 2017)

• There can be local KDC(Key Distribution Center) responsible for small domain in the

large networks.

• When the two principals are in the same domain the local KDC does the key

distribution.

• When the two principals are in different domain, the local KDC communicates to the

global KDC.

• The key selection can be done by anyone KDC. The number of layers depend upon the

network size.

 session key lifetimes should be limited for greater security

 use of automatic key distribution on behalf of users, but must trust system

 use of decentralized key distribution

 Controlling key usage

UNIT III PUBLIC KEY CRYPTOGRAPHY

MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY: Primes – Primality Testing –

Factorization – Euler‘s totient function, Fermat‘s and Euler‘s Theorem – Chinese Remainder Theorem –

Exponentiation and logarithm

ASYMMETRIC KEY CIPHERS: RSA cryptosystem – Key distribution – Key management – Diffie

Hellman key exchange -ElGamal cryptosystem – Elliptic curve arithmetic-Elliptic curve cryptography.

 MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY

PRIME NUMBER

An integer p > 1 is a prime number if and only if its only divisors are ±1 and ±p. Any integer a> 1 can be

factored in a unique way as

where p1 <p2 <…< pt are prime numbers and where each ai is a positive integer.

Eg, 91 = 7 * 13

3600 = 24 * 32 * 52

11011 = 7 * 112 * 13

If P is the set of all prime numbers, then any positive integer a can be written uniquely in the following

form:

It is easy to determine the greatest common divisor of two positive integers if we express each integer as the

product of primes

 Eg 300 = 22 * 31 * 52

18 = 21 * 32

gcd(18, 300) = 21 * 31 * 50 = 6

The following relationship always holds: If k = gcd(a, b), then kp = min(ap, bp) for all p.

 TESTING FOR PRIMALITY

 For many cryptographic algorithms, it is necessary to select one or more very large prime numbers at

random. Thus, we are faced with the task of determining whether a given large number is prime. There is no

simple yet efficient means of accomplishing this task.

Miller-Rabin Algorithm

 The algorithm due to Miller and Rabin [MILL75, RABI80] is typically used to test a large number for

primality.

TEST (n)

1. Find integers k, q, with k > 0, q odd, so that (n - 1 = 2kq);

2. Select a random integer a, 1 < a < n - 1;

3. if aqmod n = 1 then return("inconclusive");

4. for j = 0 to k - 1 do

5. if a2jqmod n = n - 1 then return("inconclusive");

6. return("composite");

Example 1: Let us apply the test to the prime number n = 29.

(n - 1) = 28 =22(7) = 2kq.

First, let us try a = 10.

Compute 107 mod 29 = 17,

(107)2 mod 29 = 28, and the test returns inconclusive.

So n is prime number.

FERMAT AND EULER'S THEOREM

Two theorems that play important roles in public-key cryptography are Fermat’s theorem and Euler’s

theorem

Fermat's Theorem (also called as Fermat’s little Theorem)

Definition:

If P is prime and a is a positive integer not divisible by p, then ap-1 ≡ 1 (mod p)

 Fermat's little theorem is the basis for the Fermat primality test and is one of the fundamental results

of elementary number theory.

 This theorem is useful in generating public key in RSA and Primality testing

Proof:

1) Consider the set of positive integers less than p:{1,2,3..p-1}

2) Multiply each element by a, modulo p to get the set

X ={ a mod p,2a mod p….(p-1) a mod p}.

➢ None of the elements of X is equal to zero because p does not divide a.

➢ No two of the integers in X are equal.

➢ We know that (p-1) elements of X are all positive integers with no two elements are equal.

So, we can conclude X consists of the set of integers {1,2,………..,p-1} in some order

3) Multiplying the numbers in both sets (p and X) and taking the result mod p yields.

a * 2a *…*(p-1)a ≡ [(1*2*…*(p-1)](mod p)

{1 * 2 *…*(p-1)} ap-1 ≡ [(1*2*…*(p-1)](mod p)
 (p-1)! ap-1≡ (p-1)!(mod p)

ap-1 ≡ 1(mod p)

Example

a = 7, p = 19

• 72 = 49≡ 11 (mod 19)

• 74 = 72 x 72 = 121 ≡ 7 (mod 19)

• 78 = 74 x 74 = 7 x 7 = 49 ≡ 11 (mod 19)

• 716 ≡ 78 x 78 = 11 x 11 = 121 ≡ 7 (mod 19)

• ap-1 = 718 = 716 * 72 ≡ 7 * 11 ≡ 1 (mod 19)

An alternative form of Fermat’s theorem:

If p is prime and a is a positive integer, ap ≡ a (mod p)

Eg: a=3, p=5

ap = 35 = 243≡ 3 (mod 5)= a(mod p)

ap ≡ a (mod p)

Euler’s Totient function

 Euler's totient function written as ∅(𝑛), (called as phi) is defined as the number of positive integers less than

n and relatively prime (Co-Prime) to n.

The Properties are as follows

1) ø(1) = 1

2) ø(p)=p-1 for p (p prime)

3) ø(p.q)=(p-1)x(q-1) for p.q (p,q prime)

Suppose that we have two prime numbers p and q, with p not equal to q. Then we can show that

n=pq.

ø(n)= ø(pq)= ø(p)* ø(q)=(p-1)*(q-1)

Examples:

1) ø(37) = 36 {ø(p)=p-1 for p (p prime)]

2) ø(21) = ø(3)* ø(7)= (3–1)x(7–1) = 2x6 = 12 where the 12 integers are {1,2,4,5,8,10,11,13,16,17, 19,

20}

[ø(p.q)=(p-1)x(q-1) for p.q (p,q prime)]

Sample Examples

1. What is the value of Φ(13)?

 Because 13 is a prime, Φ (13) = (13 −1) = 12.

2. What is the value of Φ (10)?

 We can use the third rule: Φ (10) = Φ (2) × Φ (5) = 1 × 4 = 4, because 2 and 5 are primes.

3. What is the number of elements in Z14*?

 The answer is Φ (14) = Φ (7) × Φ (2) = 6 × 1 = 6. The members are 1, 3, 5, 9, 11, and 13.

Euler’s theorem

Euler’s theorem states that for every a and n that are relatively prime:

a ø(n) ≡ 1(mod n)

Proof:

The above equation is true, if n is prime, because in that case ø(n)=(n-1) and Fermat’s theorem holds.

However it holds for any integer n.

1)Recall that ø(n)is the number of positive integers less than n that are relatively prime to n. consider the set

of such integers, labeled as follows:

 R={x1,x2….x ø(n)}

That is, each element xi of R is a unique positive integer less than n with gcd(xi,n)=1.

 2)Now multiply each element by a modulo n:

 S={(ax1 mod n), (ax2 mod n),…. (ax ø(n) mod n)}

3) The set S is a permutation of R, by the following reasons:

1.Because a is relatively prime to n and xi is relatively prime to n,axi must also be relatively prime to n. thus

all the members of S are integers that are less than n and that are relatively prime to n.

2. There are no duplicates in S. if axi mod n=axi mod n, then xi=xj

An alternative form of the theorem is also useful:

THE CHINESE REMAINDER THEOREM

 The Chinese remainder theorem (CRT) is used to solve a set of congruent equations with one variable

but different moduli, which are relatively prime, as shown below:

 Let m1, m2 …….mk be integers with gcd(mi, mj) = 1, whenever i≠ j. Let a1, a2 …… ak be integers, there

exists exactly one solution x (mod m1, m2 …..mk) to the simultaneous congruences

x≡a1 (mod m1)

 x≡a2 (mod m2)

x≡ak (mod mk)

If n1,n2,..,nk are positive integers that are pairwise co-prime and a1,a2,…,ak are any integers, then CRT is

used to find the values of x that solves the following congruence simultaneously.

Value of x=(a1m1y1+a2m2y2+…+akmkyk)mod M

Where M=n1n2n3..nk

mi=M/ni

miyi=1 mod ni

Example 1:

Find the solution to the simultaneous equations: x ≡ 1 (mod 5), x≡ 2 (mod 6), x≡ 3 (mod 7).

Solution

M=n1n2n3

M=5*6*7=210

mi=M/ni

m1=210/5=42

m2=210/6=35

m3=210/7=30

miyi=1 mod ni

42y1=1 mod 5

y1= 2

35y2= 1 mod 6

y2=5

30y3=1 mod 7

y3=2

x=(a1m1y1+a2m2y2+ a3m3y3)mod M

 =((1*42*2)+(2*35*5)+(3*30*3)) mod 210

 =193

Example 2:

Find an integer that has a remainder of 3 when divided by 7 and 13, but is divisible by 12.

Solution: This is a CRT problem. We can form three equations and solve them to find the value of x.

 Example 3:

 A bag has contained number of pens if you take out 3 pens at a time 2 pens are left. If you take out 4

pens at a time 1 pen is left and if you take out 5 pens at a time 3 pens are left in the bag. What is the number

of pens in the bag.

x ≡ 2 mod 3

x ≡ 1 mod 4

x ≡ 3 mod 5

a1=2

a2=1

a3=3

n1=3

n2=4

n3=5

M=n1n2n3

M=3*4*5=60

mi=M/ni

m1=60/3=20

m2=60/4=15

m3=60/5=12

miyi=1 mod ni

20y1=1 mod 3

Y1=2 mod 3

15y2= 1 mod 4

y2=3 mod 4

12y3=1 mod 5

y3=3 mod 5

x=(a1m1y1+a2m2y2+ a3m3y3)mod M

 =((2*20*2)+(1*15*3)+(3*12*3)) mod 60

 =233 mod 60

 =53

DISCRETE LOGARITHMS.

 Discrete logarithms are fundamental to a number of public-key algorithms. Discrete logarithms are

analogous to ordinary logarithms but are defined using modular arithmetic.

 Discrete logarithms are fundamental to a number of public-key algorithms, including Diffie-Hellman key

exchange and the digital signature algorithm (DSA)

The Powers of an Integer, Modulo n

Recall from Euler’s theorem that, for every and that are relatively prime,

Where , Euler’s totient function, is the number of positive integers less than

and relatively prime to . Now consider the more general expression:

If a and n are relatively prime, then there is at least one integer m that satisfies

Equation, namely M= , . The least positive exponent m for which

Equation holds is referred to in several ways:

• The order of a(mod n)

• The exponent to which a belongs (mod n)

• The length of the period generated by a

The highest possible exponent to which a number can belong (mod n) is . If a number is of this order,

it is referred to as a primitive root of n .The importance of this notion is that if is a primitive root of , then

its powers

Logarithms for Modular Arithmetic

A primitive root of a prime number p is one whose powers modulo p generate all the integers from 1

to p - 1. That is, if ‘a’ is a primitive root of the prime number p, then the numbers

a mod p, a2 mod p,…, ap-1 mod p

are distinct and consist of the integers from 1 through p - 1 in some permutation.

For any integer b and a primitive root a of prime number p, we can find a unique exponent i such that

b≡ ai (mod p) where 0 … i … (p - 1)

The exponent i is referred to as the discrete logarithm of b for the base a, mod p.

We denote this value as dloga,p(b)

Note the following:

 dloga,p(a) = 1 because a1 mod p = a

 dloga,p(1) = 0 because a0 mod p = 1 mod p = 1

Calculation of Discrete Logarithms

Consider the equation

 y = gx mod p

Given g, x , and p , it is a straightforward matter to calculate y. At the worst, we must

perform repeated multiplications, and algorithms exist for achieving greater efficiency.

PUBLIC KEY CRYPTOGRAPHY

Introduction to Public key Cryptography:

➢ Public key cryptography also called as asymmetric cryptography.

➢ It was invented by whitfield Diffie and Martin Hellman in 1976. Sometimes this

cryptography also called as Diffie-Helman Encryption.

➢ Public key algorithms are based on mathematical problems which admit no efficient

solution that are inherent in certain integer factorization, discrete logarithm and Elliptic

curve relations.

Public key Cryptosystem Principles:

➢ The concept of public key cryptography in invented for two most difficult problems of

Symmetric key encryption.

▪ The Key Exchange Problem

▪ The Trust Problem

The Key Exchange Problem: The key exchange problem arises from the fact that

communicating parties must somehow share a secret key before any secure

communication can be initiated, and both parties must then ensure that the key

remains secret. Of course, direct key exchange is not always feasible due to risk,

inconvenience, and cost factors.

The Trust Problem: Ensuring the integrity of received data and verifying the

identity of the source of that data can be very important. Means in the symmetric

key cryptography system, receiver doesn’t know whether the message is coming

for particular sender.

➢ This public key cryptosystem uses two keys as pair for encryption of plain text and

Decryption of cipher text.

➢ These two keys are names as “Public key” and “Private key”. The private key is kept

secret whereas public key is distributed widely.

➢ A message or text data which is encrypted with the public key can be decrypted only with

the corresponding private-key

➢ This two key system very useful in the areas of confidentiality (secure) and

authentication

A public-key encryption scheme has six ingredients

1

Plaintext

This is the readable message or data that is fed into the algorithm as input.

2

Encryption

algorithm

The encryption algorithm performs various transformations on the plaintext.

3

Public key

This is a pair of keys that have been selected so that if one is used for

encryption, the other is used for decryption. The exact transformations

performed by the algorithm depend on the public or private key that is provided

as input 4
Private

Key

5

Ciphertext

This is the scrambled message produced as output. It depends on the plaintext

and the key. For a given message, two different keys will produce two different

ciphertexts.

6

Decryption

algorithm

This algorithm accepts the ciphertext and the matching key and produces the

original plaintext.

Public key cryptography for providing confidentiality (secrecy)

The essential steps are the following.

1. Each user generates a pair of keys to be used for the encryption and decryption of

messages.

2. Each user places one of the two keys in a public register or other accessible file. This is

the public key. The companion key is kept private. So above fig states that each user

maintains a collection of public keys obtained from others.

3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using

Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. No other

recipient can decrypt the message because only Alice knows Alice’s private key.

There is some source A that produces a message in plaintext X = [X1, X2, . . . ,XM].

The M elements of X are letters in some finite alphabet. The message is intended for

destination B. B generates a related pair of keys: a public key, PUb, and a private key, PRb.

PRb is known only to B, whereas PUb is publicly available and therefore accessible by A.

With the message X and the encryption key PUb as input, A forms the ciphertext Y = [Y1, Y2, . . .

, YN]:

The intended receiver, in possession of the matching private key, is able to invert the

transformation:

Public key cryptography for proving Authentication:

The above diagrams show the use of public-key encryption to provide authentication:

➢ In this case,A prepares a message to B and encrypts it using A’s private key before

transmitting it. B can decrypt the message using A’s public key. Because the message

was encrypted using A’s private key, only A could have prepared the message. Therefore,

the entire encrypted message serves as a digital signature.

➢ It is impossible to alter the message without access to A’s private key, so the message is

authenticated both in terms of source and in terms of data integrity.

Public key cryptography for both authentication and confidentiality (Secrecy)

It is, however, possible to provide both the authentication function and confidentiality by

a double use of the public-key scheme (above figure):

In this case, we begin as before by encrypting a message, using the sender’s private key.

This provides the digital signature. Next, we encrypt again, using the receiver’s public key. The

final ciphertext can be decrypted only by the intended receiver, who alone has the matching

private key. Thus, confidentiality is provided.

Applications for Public-Key Cryptosystems

The use of public-key cryptosystems into three categories

• Encryption /decryption: The sender encrypts a message with the recipient’s public key.

• Digital signature: The sender “signs” a message with its private key. Signing is achieved by a

cryptographic algorithm applied to the message or to a small block of data that is a function of

the message.

• Key exchange: Two sides cooperate to exchange a session key. Several different approaches

are possible, involving the private key(s) of one or both parties.

M=Cd mod = (Me mod n) d mon n =(Me)d mod n= Med mod n

Algorithm Encryption/Decryption Digital Signature Key Exchange

RSA Yes Yes Yes

Elliptic Curve Yes Yes Yes

Diffie-Hellman No No Yes

DSS No Yes No

RSA

➢ It is the most common public key algorithm.

➢ This RSA name is get from its inventors first letter (Rivest (R), Shamir (S) and Adleman

(A)) in the year 1977.

➢ The RSA scheme is a block cipher in which the plaintext & ciphertext are integers

between 0 and n-1 for some ‘n’.

➢ A typical size for ‘n’ is 1024 bits or 309 decimal digits. That is, n is less than 21024

Description of the Algorithm:

➢ RSA algorithm uses an expression with exponentials.

➢ In RSA plaintext is encrypted in blocks, with each block having a binary value less than

some number n. that is, the block size must be less than or equal to log2(n)

➢ RSA uses two exponents ‘e’ and ‘d’ where e is public and d is private.

➢ Encryption and decryption are of following form, for some PlainText ‘M’ and

CipherText block ‘C’

➢ Both sender and receiver must know the value of n.

➢ The sender knows the value of ‘e’ & only the reviver knows the value of ‘d’ thus this is a

public key encryption algorithm with a

Public key PU={e, n}

Private key PR={d, n}

Requirements:

The RSA algorithm to be satisfactory for public key encryption, the following requirements must

be met:

1. It is possible to find values of e, d n such that “ Med mod n =M ” for all M<n

2. It is relatively easy to calculate “ Me mod n “ and “ Cd mod n “for M<n

3. It is infeasible to determine “d” given ‘e’ & ‘n’. The “ Med mod n =M ” relationship

holds if ‘e’ & ‘d’ are multiplicative inverses modulo Ø(n).

Ø(n) is Euler Totient function

For p,q primes where p*q and p≠q.

Ø(n)= Ø(pq)=(p-1)(q-1)

Then the relation between ‘e’ & ‘d’ can be expressed as “ “

this is equivalent to saying

That is ‘e’ and ‘d’ are multiplicative inverses mod Ø(n).

Note: according to the rules of modular arithmetic, this is true only if ‘d’ (and ‘e’) is

relatively prime to Ø(n).

Equivalently gcd(Ø(n), d)=1.

Steps of RSA algorithm:

 Step 1 Select 2 prime numbers p & q

 Step 2 Calculate n=pq

 Step 3Calculate Ø(n)=(p-1)(q-1)

 Step 4 Select or find integer e (public key) which is relatively prime to Ø(n). ie., e with

gcd (Ø(n), e)=1 where 1<e< Ø(n).

 Step 5 Calculate “d” (private key) by using following condition.

d< Ø(n).

 Step 6 Perform encryption by using

 Step 7 perform Decryption by using

Example:

1. Select two prime numbers, p = 17 and q = 11.

2. Calculate n = pq = 17 × 11 = 187.

3. Calculate Ø(n) = (p - 1)(q - 1) = 16 × 10 = 160.

4. Select e such that e is relatively prime to Ø(n) = 160 and less than Ø (n); we choose e = 7.

5. Determine d such that de ≡1 (mod 160) and d < 160.The correct value is d = 23, because 23 *

7 = 161 = (1 × 160) + 1; d can be calculated using the extended Euclid’s algorithm

The resulting keys are public key PU = {7, 187} and private key PR = {23, 187}.

The example shows the use of these keys for a plaintext input of M= 88. For encryption,

we need to calculate C = 887 mod 187. Exploiting the properties of modular arithmetic, we can

do this as follows.

RSA Attacks

There are four possible approaches to attack the RSA:

• Brute force: This involves trying all possible private keys. The defence against this

attack is the use of large key space.

• Mathematical attacks: There are several approaches, all equivalent in effort to factoring

the product of two primes. Three approaches that could be identified of this type are:

o Factor n into its two prime factors which enables calculation of (n) = (p - 1) × (q

- 1), which in turn enables determination of d e-1 (mod (n)).

o Determine (n) directly, without first determining p and q. Again, this enables

determination of d e-1 (mod (n)).

o Determine d directly, without first determining (n).

• Timing attacks: These depend on the running time of the decryption algorithm. This

attack is alarming for two reasons namely it comes from a completely unexpected

direction, and it is a cipher text-only attack. Modular exponentiation algorithm that is

accomplished bit by bit, with one modular multiplication performed every iteration and

an additional modular multiplication performed for each 1 bit can be used to perform this

attack. Simple counter measures could be used to overcome the timing attack. They are

o Constant exponentiation time: Ensure that all exponentiations take the same

amount of time before returning a result. This is a simple fix but does degrade

performance.

o Random delay: Better performance could be achieved by adding a random delay

to the exponentiation algorithm to confuse the timing attack. Kocher points out

that if defenders don’t add enough noise, attackers could still succeed by

collecting additional measurements to compensate for the random delays.

o Blinding: Multiply the cipher text by a random number before performing

exponentiation. This process prevents the attacker from knowing what cipher text

bits are being processed inside the computer and therefore prevents the bit-by-bit

analysis essential to the timing attack.

• Chosen cipher text attacks (CCAs): This type of attack exploits properties of the RSA

algorithm. It is defined as an attack in which the adversary chooses a number of

ciphertexts and is then given the corresponding plaintexts, decrypted with the target’s

private key. Thus, the adversary could select a plaintext, encrypt it with the target’s

public key, and then be able to get the plaintext back by having it decrypted with the

private key. Clearly, this provides the adversary with no new information. Instead, the

adversary exploits properties of RSA and selects blocks of data that, when processed

using the target’s private key, yield information needed for cryptanalysis.

To overcome this simple attack, practical RSA-based cryptosystems randomly pad

the plaintext prior to encryption. More sophisticated CCAs are possible and simple padding

with a random value is insufficient to provide the desired security. To counter such attacks

modifying the plaintext using a procedure known as optimal asymmetric encryption padding

will help.

Diffie-Hellman key exchange is the first published public key algorithm, also known as

exponential key agreement. And it is based on mathematical principles. The purpose of the algorithm

is to enable two users to exchange a key securely that can then be used for subsequent encryption of

messages.This algorithm itself is limited to exchange of the keys. Security of algorithm depends on

computing discrete logarithms values.

KEY MANAGEMENT

There are actually two distinct aspects to the use of public-key cryptography:

● The distribution of public keys

● The use of public-key encryption to distribute secret keys

1. Distribution of Public Keys

There are four different schemes

➢ Public announcement

➢ Publicly available directory

➢ Public-key authority

➢ Public-key certificates

A.Public announcement

Any participant can send his or her public key to any other participant or broadcast the

key to the community. Uncontrolled Public-Key Distribution

Limitation : Anyone can forge such a public announcement. That is, some user could pretend to be

user A and send a public key to another participant or broadcast such a public key. Authentication

is needed to avoid this problem.

B. Publicly Available Directory

A greater degree of security can be achieved by maintaining a publicly available dynamic

directory of public keys. Maintenance and distribution of the public directory would have to be the

responsibility of some trusted entity or organization.

i)The authority maintains a directory with a {name, public key} entry for each participant.

ii)Each participant registers a public key with the directory authority.

iii) Participants could also access the directory electronically.

Limitation :

An Adversary may impersonate by stealing the private key of public key directory and falsely send

the public key details.

An attacker may attack the records stored in the directory.

C. Public-key authority

Stronger security for public-key distribution can be achieved by providing tighter control

over the distribution of public keys from the directory.

Each participant reliably knows a public key for the authority, with only the authority

knowing the corresponding private key.

i) A sends a time stamped message to the public-key authority containing a request for the current

public key of B.

ii) The authority responds with a message that is encrypted using the authority's private key,

PRauth. Thus, A is able to decrypt the message using the authority's public key. Therefore, A is

assured

that the message originated with the authority. The message includes the following:

● B's public key, PUb which A can use to encrypt messages destined for B

● The original request, to enable A to match this response with the corresponding earlier request

and to verify that the original request was not altered before reception by the authority

● The original timestamp, so A can determine that this is not an old message from the authority

containing a key other than B's current public key

iii) A stores B's public key and also uses it to encrypt a message to B containing an identifier of

A (IDA) and a nonce (N1), which is used to identify this transaction uniquely.

iv) B retrieves A's public key from the authority in the same manner as A retrieved B's public

key.

v) At this point, public keys have been securely delivered to A and B, and they may begin their protected

exchange.

v) B sends a message to A encrypted with PUa and containing A's nonce (N1) as well as a new

nonce generated by B (N2) Because only B could have decrypted message (3), the presence of

N1 in message (6) assures A that the correspondent is B.

vi) A returns N2, encrypted using B's public key, to assure B that its correspondent is A.

Limitations : Bottleneck may occur in public authority. Tampering of records stored by the

authority may take place.

D. Public key certificate

A certificate consists of a public key plus an identifier of the key owner, with the whole

block signed by a trusted third party.

Typically, the third party is a certificate authority, such as a government agency or a financial

institution, that is trusted by the user community.

A user can present his or her public key to the authority in a secure manner, and obtain a

certificate. The user can then publish the certificate.

2. Secret Key Distribution with Confidentiality and Authentication

i) A uses B's public key to encrypt a message to B containing an identifier of A (IDA) and a

nonce (N1), which is used to identify this transaction uniquely.

ii) B sends a message to A encrypted with PUa and containing A's nonce (N1) as well as a new

nonce generated by B (N2)

iv) A returns N2 encrypted using B's public key, to assure B that its correspondent is A.

A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B. Encryption of this message

with B's public key ensures that only B can read it; encryption with A's private key ensures that

only A could have sent it.

v) B computes D(PUa, D(PRb, M)) to recover the secret key.

Elagamal Cryptographic system

➢ Public-key cryptosystem related to D-H

➢ uses exponentiation in a finite field

➢ with security based difficulty of computing discrete logarithms, as in D-H

➢ Used in number of standards including DSS (Digital Signature Standard) and S/MIME e-mail

standard

How K is recovered by the decryption process:

Example:

DIFFIE- HELLMAN KEY EXCHANGE

Algorithm for Diffie-Hellman Key Exchange:

Step 1 two public known numbers q, α

q Prime number

α primitive root of q and α< q.

Step 2 if A & B users wish to exchange a key

a) User A select a random integer XA<q and computes

b) User B independently select a random integer XB <q and computes

c) Each side keeps the X value private and Makes the Y value available publicly to the

outer side.

Step 3 User A Computes the key as

User B Computes the key as

Step 4 two calculation produce identical results

(We know that)

(We know that)

The result is that the two sides have exchanged a secret key.

Example: 1

Example2:

Example 3:

MAN-IN-MIDDLE-ATTACK:

Definition: A man in the middle attack is a form of eavesdropping where communication

between two users is monitored and modified by an unauthorized party.

Generally the attacker actively eavesdrops by intercepting (stoping) a public key message

exchange.

The Diffie- Hellman key exchange is insecure against a “Man in the middle attack”.

Suppose user ‘A’ & ‘B’ wish to exchange keys, and D is the adversary (opponent). The attack

proceeds as follows.

1. ‘D’ prepares for the attack by generating two random private keys XD1 & XD2 and then

computing the corresponding public keys YD1 and YD2.
2. ‘A’ transmits ‘YA’ to ‘B’

3. ‘D’ intercepts YA and transmits YD1 to ‘B’. and D also calculates

46

4. ‘B’ receives YD1 & calculate
5. ‘B’ transmits ‘YB’ to ‘A”

6. ‘D’ intercepts ‘YB’ and transmits YD2 to ‘A’ and ‘D’ calculate K1

7. A receives YD2 and calculates

At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth share

secret key K1 and Alice and Darth share secret key K2. All future communication between Bob

and Alice is compromised in the following way.

The key exchange protocol is vulnerable to such an attack because it does not authenticate the

participants. This vulnerability can be overcome with the use of digital signatures and public-key

certificates.

ELLIPTIC CURVE CRYPTOGRAPHY

Elliptic Curve Arithmetic:

A major issue with the use of Public-Key Cryptography, is the size of numbers used, and hence

keys being stored. Recently, an alternate approach has emerged, elliptic curve cryptography (ECC),

which performs the computations using elliptic curve arithmetic instead of integer or polynomial

arithmetic.

Majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very

large numbers/polynomials. It imposes a significant load in storing and processing keys and

messages. An alternatives to use elliptic curves; it offers same security with smaller bit sizes.
Real Elliptic Curves

Comparision of RSA/DSA (Diffie Hellman Algorithm

Elgamal Cryptography: Asymmetruc Key (Encrp-pub key ,Decrypt-Private key)

`Let P=11;D=3;E1=2

E2=E1
D
 mod p

E2= 2
3
 mod 11

E2= 8 mod 11

E2=8

Now public key={E1,E2,P}={2,8,11}

Private Key=3

Encryption:

R=4

C1=E1
R
 mod p

C1=2
4
 mod 11

C1=16 mod 11=5

Now Pt=7

C2={Pt E2
R
 mod p}

C2= 7x8
4
 mod 11

C2=28672 mod 11 =6

C2=6

C.T ={5,6}

Decryption

Pt={C2 (C1
D
)
-1

 mod p}

Pt={6x(5
3
)
-1

)mod 11

First: (5
3
)
-1

)mod 11

(125)
-1

)mod 11

125 *X mod 11=1

125*1 mod 11= 121 +4 mod 11=4

125*2 mod 11= 250 mod 11= 242+8 mod11=8

125*3 mod 11=375 mod 11= 374+1 mod 11=1

Pt={6*3 mod 11}

Pt=18 mod 11=7

Pt=7

So the Decrypt and encrypt Ptvalue is same .

UNIT IV MESSAGE AUTHENTICATION AND INTEGRITY

Authentication requirement – Authentication function – MAC – Hash function – Security of

hash function and MAC – SHA –Digital signature and authentication protocols – DSS

Entity Authentication: Biometrics, Passwords, Challenge Response protocols- Authentication

applications – Kerberos, X.509

MESSAGE AUTHENTICATION

 is a mechanism or service used to verify the integrity of a message.

 Message authentication is concerned with:

 protecting the integrity of a message

 validating identity of originator

 non-repudiation of origin (dispute resolution)

AUTHENTICATION REQUIREMENT

1. Disclosure: Release of message contents to any person or process not possessing the

appropriate cryptographic key.

2. Traffic analysis: Discovery of the pattern of traffic between parties. In a connection-

oriented application, the frequency and duration of connections could be determined. In

either a connection- oriented or connectionless environment, the number and length of

messages between parties could be determined.

3. Masquerade: Insertion of messages into the network from a fraudulent source. This

includes the creation of messages by an opponent that are purported to come from an

authorized entity.
4. Content modification: Changes to the contents of a message, including insertion, deletion,

transposition, and modification.

5. Sequence modification: Any modification to a sequence of messages between parties,

including insertion, deletion, and reordering.

6. Timing modification: Delay or replay of messages. In a connection-oriented application, an

entire session or sequence of messages could be a replay of some previous valid session, or

individual messages in the sequence could be delayed or replayed. In a connectionless

application, an individual message (e.g., datagram) could be delayed or replayed.

7. Source repudiation: Denial of transmission of message by source.

8. Destination repudiation: Denial of receipt of message by destination.

Summary:

Message authentication

 A procedure to verify that messages come from the alleged (suspected) source and have
not been altered

 Message authentication may also verify sequencing and timeliness

Digital signature

 An authentication technique that also includes measures to counter repudiation by

either source or destination

I. AUTHENTICATION FUNCTION

Three classes of functions that may be used to produce an authenticator

1)Message encryption – The Cipher text of the entire message serves as its authenticator.

2)Message authentication code(MAC) - A public function of the message and a secret key

that produces a fixed-length value that serves as the authenticator.

3) Hashfunction -A public function that maps a message of any length into a fixed-length

hash value, which serves as the authenticator.

1. MessageEncryption

Message encryption by itself can provide a measure of authentication. The analysis

differs for symmetric and public-key encryption schemes.

Symmetric Encryption

 Conventional encryption can serve as authenticator

 Conventional encryption provides authentication as well as confidentiality

 Message M transmitted from source A to destination B is encrypted using a secret key K

shared by A and B. If no other party knows the key, then confidentiality is provided:

 No other party can recover the plaintext of the message.

Figure: Basic Uses of Message Encryption

 Given a decryption function D and a secret key K, the destination will accept any input X

and produce output Y = D(K,X).

 If X is the cipher text of a legitimate message M produced by the corresponding encryption

function, then Y is some plaintext message M. Otherwise, Y will likely be a meaningless

sequence of bits.

 There may need to be some automated means of determining at B whether Y is legitimate
plaintext and therefore must have come from A.

Public-Key Encryption

 The straightforward use of public-key encryption provides confidentiality but not

authentication. The source (A) uses the public key PUb of the destination (B) to encrypt M.

Because only B has the corresponding private key PRb, only B can decrypt the message.

 To provide authentication, A uses its private key to encrypt the message, and B uses A's

public key to decrypt.

 To provide both confidentiality and authentication, A can encrypt M first using its private

key, which provides the digital signature, and then using B's public key, which provides

confidentiality.

 The disadvantage of this approach is that the public-key algorithm, which is complex, must

be exercised four times rather than two in each communication.

Table: Confidentiality and Authentication Implications of Message Encryption

2. Message Authentication Code

 Uses a shared secret key to generate a fixed-size block of data (known as a

cryptographic checksum or MAC) that is appended to the message.
MAC = CK(M)

Where M is a variable-length Input message, K is a Shared secret key, C is
MAC function and CK(M) is the fixed-length authenticator.

 The MAC is appended to the message at the source at a time when the message is
assumed or known to be correct. The receiver authenticates that message by
recomputing the MAC.

 A MAC function is similar to encryption. One difference is that the MAC

algorithm need not be reversible, as it must for decryption. In general, the MAC

function is a many-to-one function.

Assurances

 Message has not been altered

 Message is from alleged sender

 Message sequence is unaltered (requires internal sequencing)

Figure: Basic Uses of MAC

The process depicted in (Figure a) provides authentication but not confidentiality, because the
message as a whole is transmitted in the clear.

Confidentiality can be provided by performing message encryption either after (Figure b) or
before Figure c) the MAC algorithm.

In both these cases, two separate keys are needed, each of which is shared by the sender

and the receiver.

In the first case, the MAC is calculated with the message as input and is then concatenated to the
message. The entire block is then encrypted.

In the second case, the message is encrypted first.Then the MAC is calculated using the

resulting Cipher text and is concatenated to the cipher text to form the transmitted block.

Note that the MAC does not provide a digital signature because both sender and receiver

share the same key.

Table: Basic Uses of Message Authentication Code

Advantage

 It is cheaper and more reliable to have only one destination responsible for monitoring authenticity.

 Authentication is carried out on a selective basis, messages being chosen at random for checking

 Authentication of a computer program in plaintext is an attractive service.

 Separation of authentication and confidentiality functions affords architectural flexibility

 Separation of authentication check from message use.

3. Hash Function

 A variation on the message authentication code is the one-way hashfunction

 Converts a variable size message M into fixed size hash code H(M) (Sometimes called a message

digest)

 Hash code does not use a key but is a function only of the input message.

 The hash code (h) is also referred to as a message digest or hash value.

 The hash code is a function of all the bits of the message and provides an error-detection capability. A

change to any bit or bits in the message results in a change to the hash code.

Hash code can be used to provide message authentication, as follows

1. The message plus concatenated hash code is encrypted using symmetric encryption. E(M ||H)

2. Only the hash code is encrypted, using symmetric encryption. M ||E(H)

3. Only the hash code is encrypted, using public-key encryption and using the sender's private key.
M || signed H

4. If confidentiality as well as a digital signature is desired, then the message plus the private-key-

encrypted hash code can be encrypted using a symmetric secret key. E(M || signed H) gives

confidentiality

5. It is possible to use a hash function but no encryption for message authentication. The technique

assumes that the two communicating parties share a common secret value S. M || H(M || S)

6. Confidentiality can be added to the approach of (e) by encrypting the entire message plus the hash code.
E(M || H(M || S))

When confidentiality is not required, methods (b) and (c) have an advantage over those that encrypt the

entire message in that less computation is required.

Table: Basic Uses of Hash Function H

Reasons for using Hash

• Encryption software is relatively slow.

• Encryption hardware costs are not negligible.

• Encryption hardware is optimized toward large datasizes.

• Encryption algorithms may be covered by patents

MESSAGE AUTHENTICATION CODES

 A MAC, also known as a cryptographic checksum, is generated by a function C of the form

T= MAC(K,M)

Where M is a variable-length message, K is a secret key shared only by sender and receiver, and
MAC(K,M) is the fixed-length authenticator, sometimes called a tag.

 The tag is appended to the message at the source at a time when the message is assumed or known to

be correct. The receiver authenticates that message by recomputing the MAC.

Requirements for MACs:

 Security depends on the bit length of the key

 The opponent must resort to a brute-force attack using all possible keys.

 On average, such an attack will require 2(k-1) attempts for a k-bit key.

 MAC function is a many-to-one function, due to the many-to-one nature of the function.

 Using brute- force methods, how would an opponent attempt to discover a key?

A number of keys will produce the correct MAC and the opponent has no way of knowing which the

correct key is. On average, a total of 2k/2n = 2(k-n) keys will produce a match. Thus, the opponent must

iterate the attack:

o Round 1
 Given: M1, T1 = MAC(K, M1)

 Compute Ti = MAC(Ki, M1) for all 2k
keys Number of matches ≈2(k-n)

o Round 2
 Given: M2, T2 = MAC(K, M2)

 Compute Ti = MAC(Ki, M2) for the 2(k-n) keys resulting from Round1
Number of matches ≈2(k-2xn)

 If an 80-bit key is used and the MAC is 32 bits long, then the first round will produce about 248
possible keys.

 The second round will narrow the possible keys to about 216possibilities.
 The third round should produce only a single key, which must be the one used by the sender.

 Brute-force attempt to discover the authentication key is no less effort and may be more effort than

that required to discover a decryption key of the same length.

 Other attacks that do not require the discovery of the key are possible.

The MAC function should satisfy the following requirements:

1. If an opponent observes M and MAC(K, M), it should be computationally infeasible for the opponent to

construct a message M' such that MAC(K, M') = MAC(K,M).

2. MAC(K, M) should be uniformly distributed in the sense that for randomly chosen messages, M and M', the

probability that MAC(K, M) = MAC(K, M') is 2-n, where n is the number of bits in the tag.

3. Let M' be equal to some known transformation on M. That is, M' = f(M). For example, f may involve inverting
one or more specific bits. In that case,

Pr[MAC(K, M) = MAC(K, M')] =2-n.

 The first requirement speaks about, an opponent is able to construct a new message to match a given tag, even

though the opponent does not know and does not learn the key.

The second requirement deals with the need to prevent a brute-force attack based on chosen plaintext. That is,

if we assume that the opponent does not know K but does have access to the MAC function and can present

messages for MAC generation, then the opponent could try various messages until finding one that matches a

given tag.

HASH FUNCTIONS

A hash value h is generated by a function H of the form

h = H(M)

 M is a variable-length message, h is a fixed-length hash value, H is a hash function

 The hash value is appended at the source

 The receiver authenticates the message by recomputing the hash value

 Because the hash function itself is not considered to be secret, some means is required to protect

the hash value

Requirements for a Hash Function

1. H can be applied to any size datablock

2. H produces fixed-length output

3. H(x) is relatively easy to compute for any given x

4. H is one-way, i.e., given h, it is computationally infeasible to find an y s.t. H(y) = h

5. H is weakly collision resistant: given x, it is computationally infeasible to find any y! x s.t. H(y) = H(x)

6. H is strongly collision resistant: it is computationally infeasible to find any pair (x,y) s.t. H(x) =H(y)

 One-way property is essential for authentication

 Weak collision resistance is necessary to prevent forgery

 Strong collision resistance is important for resistance to birthday attack

Simple Hash Functions

 Operation of hash functions:

 The input is viewed as a sequence of n-bit blocks

 The input is processed one block at a time in an iterative fashion to produce an n-

bit hash function

 Simplest hash function:

1) Bitwise XOR of every block

 Ci = bi1 bi2 … bim

Where Ci = i-th bit of the hash code, 1 i n

m = number of n-bit blocks in the input

bij = i-th bit in j-th block
Known as longitudinal redundancy check

Improvement over the simple bitwise XOR

 Initially set the n-bit hash value to zero

 Process each successive n-bit block of data as follows

o Rotate the current hash value to the left by one bit

o XOR the block into the hash value
This has the effect of "randomizing" the input more completely and overcoming any regularities that appear in

the input. The above Figure illustrates these two types of hash functions for 16-bit hash values.

We can define the scheme as follows:

Given a message consisting of a sequence of 64-bit blocks X1, X2,..., XN, define the hash code C as the block-
by-block XOR of all blocks and append the hash code as the final block:

C = XN+1 = X1 X2 ... XN

Next, encrypt the entire message plus hash code, using CBC mode to produce the encrypted message Y1,
Y2,..., YN+1.
Cipher text of this message can be manipulated in such a way that it is not detectable by the hash code.
For example,

X1 = IV D(K, Y1)

Xi = Yi1 D(K, Yi)

XN+1 = YN D(K, YN+1)

But XN+1 is the hash code:

XN+1 = X1 X2 ... XN

 = [IV D(K, Y1)] [Y1 D(K, Y2)] ... [YN1 ... D (K, YN)]

Because the terms in the preceding equation can be XORed in any order, it follows that the hash code

would not change if the cipher text blocks were permuted.

Birthday Attacks

1. The source, A, is prepared to "sign" a message by appending the appropriate m-bit hash code and encrypting

that hash code with A's private key.

2. The opponent generates 2m/2 variations on the message, all of which convey essentially the same meaning. The

opponent prepares an equal number of messages, all of which are variations on the fraudulent message to be

substituted for the real one.

3. The two sets of messages are compared to find a pair of messages that produces the same hash code. The

probability of success, by the birthday paradox, is greater than 0.5. If no match is found, additional valid and

fraudulent messages are generated until a match is made.

4. The opponent offers the valid variation to A for signature. This signature can then be attached to the

fraudulent variation for transmission to the intended recipient. Because the two variations have the same

hash code, they will produce the same signature; the opponent is assured of success even though the

encryption key is not known.

Thus, if a 64-bit hash code is used, the level of effort required is only on the order of 23. The generation of

many variations that convey the same meaning is not difficult. For example, the opponent could insert a

number of "space-space-backspace" character pairs between words throughout the document. Variations could

then be generated by substituting "space-backspace-space" in selected instances. Alternatively, the opponent

could simply reword the message but retain the meaning.

SECURITY OF HASH FUNCTIONS AND MACS

We can group attacks on hash functions and MACs into two categories: brute-force attacks and

cryptanalysis.

Brute-Force Attacks

The nature of brute-force attacks differs somewhat for hash functions and MACs.

1) Hash Functions

 H is one-way, i.e., given h, it is computationally infeasible to find an y s.t. H(y) = h

 H is weakly collision resistant: given x, it is computationally infeasible to find any y! x s.t. H(y) = H(x)

 H is strongly collision resistant: it is computationally infeasible to find any pair (x,y) s.t. H(x) =H(y)

H(x) For a hash code of length n, the level of effort required, as we have seen is proportional to the

following:

One way 2n

Weak collision resistance 2n

Strong collision resistance 2n/2

 One-way and weak collision require 2neffort

 Strong collision requires 2n/2effort

 If strong collision resistance is required (and this is desirable for a general-purpose secure hash

code), 2n/2 determines the strength of hash code against brute-force attack

 Currently, two most popular hash codes, SHA-1 and RIPEMD-160, provide a 160-bit hash code

length

2) Message Authentication Codes

A brute-force attack on a MAC is a more difficult undertaking because it requires known message-

MAC pairs.

Given a fixed message x with n-bit hash code h = H(x), a brute-force method of finding a collision is to
pick a random bit string y and check if H(y) = H(x). The attacker can do this repeatedly off line.

Whether an off-line attack can be used on a MAC algorithm depends on the relative size of the key and

the MAC.

To proceed, we need to state the desired security property of a MAC algorithm, which can be
expressed as follows:

Computation resistance: Given one or more text-MAC pairs [xi, C(K, xi)], it is computationally infeasible to

compute any text-MAC pair [x, C(K, x)] for any new input x xi.
In other words, the attacker would like to come up with the valid MAC code for a given message x. There are

two lines of attack possible: Attack the key space and attack the MAC value.

Cryptanalysis

Cryptanalytic attacks on hash functions and MAC algorithms seek to exploit some property of the

algorithm to perform some attack other than an exhaustive search. That is, an ideal hash or MAC algorithm

will require a cryptanalytic effort greater than or equal to the brute-force effort.

Hash Functions

The hash algorithm involves repeated use of a compression function, f, that takes two inputs and

produces an n-bit output. At the start of hashing, the chaining variable has an initial value that is specified as

part of the algorithm. The final value of the chaining variable is the hash value. Often, b > n; hence the term

compression.

The hash function can be summarized as follows:

CVo = IV = initial n-bit value

CVi = f(CVi1, Yi1) 1 ≤ i ≤ L

H(M) = CVL

where the input to the hash function is a message M consisting of the blocks Yo, Y1,..., YL1.

SECURE HASH ALGORITHM (SHA)

 SHA originally designed by NIST & NSA in 1993

 was revised in 1995 as SHA-1

 based on design of MD4 with key differences

 produces 160-bit hash values

REVISED SECURE HASH FUNCTION:

 adds 3 additional versions of SHA

 SHA-256, SHA-384, SHA-512

 designed for compatibility with increased security provided by the AES cipher

 structure & detail is similar to SHA-1

PARAMETERS FOR VARIOUS VERSION OF SHA:

SHA-512 logic:

 The input is processed 1024 bits block.

 The algorithm takes as input a message with a maximum length of less than 2^128 bits.

 Produce output is 512 bits message digest.

Algorithm processing Steps: The processing consists of the following steps:

Step 1: Append padding bits

Step 2: Append length

Step 3: Initialize hash buffer
Step 4: Process the message in 1024-bit (128-word) blocks, which forms the heart of the
algorithm

Step 5: Output the final state value as the resulting hash

Step-1: Appending Padding Bits. The original message is "padded" (extended) so that its length (in bits)

consists of a single 1-bit followed by the necessary number of 0-bits, so that its length is congruent to 896

modulo 1024 (128 bits short of a multiple of 1024)

Step-2: Append length: a block of 64 bits is appended to the message. This block is treated as unsigned 64 bit

integers (most significant byte first) and contains the length of the original message.

Step-3: Initialize hash buffer: 160 bit buffer is used to hold intermediate and final results of the hash function.

This buffer can be represented as eight 64 bit registers (a, b, c, d, e, f, g, h). The registers are initialized to the

following 64 bit integers
Word a:6A09E66713BCC908 Word e:BB67AE8584CAA73B

Word b:3C6EF372FE94F82B Word f:A54FF53A5F1D36F1

Word c:510E527FADE682D1 Word g:9B05688C2B3E6C1F

Word d:1F83D9ABFB41BD6B Word h:5BE0CD19137E2179

which are the beginnings, in hexadecimal, of the fractional parts of the square roots of 2, 3, 5, 7, 11, 13, 17, and

19.

Step 4: Process Message in 512 bits:

This algorithm consist 4 rounds of 20 steps each. The SHA-512 Compression Function is the heart of

the algorithm. In this Step 4, it processes the message in 1024-bit (128-word) blocks, using a module that

consists of 80 rounds, labeled F in above Figure. Each round takes as input the 512-bit buffer value, and

updates the contents of the buffer. Each round t makes use of a 64-bit value Wt derived using a message

schedule from the current 1024-bit block being processed. Each round also makes use of an additive constant

Kt, based on the fractional parts of the cube roots of the first eighty prime numbers. The output of the eightieth

round is added to the input to the first round to produce the final hash value for this message block, which

forms the input to the next iteration of this compression function,

SHA-512 Elementary SHA operation for single round (or) SHA-1 Compression Function:

The logic in each of the 80 steps of the processing of one 512 bit block and the structure of each of the

80 rounds is shown Figure.

Each 64-bit word shuffled along one place, and in some cases manipulated using a series of simple

logical functions (ANDs, NOTs, ORs, XORs, ROTates), in order to provide the avalanche & completeness

properties of the hash function.

The elements are:

Where the elements are:

t=step number; 0<=t<=79

Ch(e,f,g) = (e AND f) XOR (NOT e AND g)

The conditional function: IF e then f else g

Maj(a,b,c) = (a AND b) XOR (a AND c) XOR (b AND c)

The function is true only of the majority (Two or three) of the arguments are true.

∑(a) = ROTR(a,28) XOR ROTR(a,34) XOR ROTR(a,39)

∑(e) = ROTR(e,14) XOR ROTR(e,18) XOR ROTR(e,41)

ROTR(a,n) = Circular right shift(rotation) of the 64 bit argument x by n bits

+ = addition modulo 2^64

Kt = a 64-bit additive constant

Wt = a 64-bit word derived from the current 512-bit input block.

Step-5: Output: After all N 1024 -bit blocks have been processed, the output from the Nth stage is the 512-bit

message digest.

The behavior of SHA-512 can be summarized as:
H0=IV

Hi=SUM64 (Hi-1 ,a b c d e f g hi)

MD=HN

IV initialize value of the buffers a b c d e f g h, defined in step3.

a b c d e f g hi the output of the last round of processing of the ith message block

N the number of blocks in the message

SUM64 addition modulo 2^64 performed separately on each word of the pair of inputs.

MD final message digest value

Comparison of MD5 and SHA:

 MD5 SHA-1

Message Digest Length 128 bits 160 bits

Basic unit of Processing 512 bits 512 bits

Number of Steps 64 (4 rounds of 16) 80(4 rounds of 20)

Maximum Message Size ∞ 264-1 bits

Primitive logical functions

4

4

Additive constants used 64 4

Endian format Little endian Big endian

DIGITAL SIGNATURE AND AUTHENTICATION PROTOCOLS

Definition:

A digital signature needs a public-key system. The signer signs with her private key; the verifier verifies

with the signer’s public key. A digital signature or digital signature scheme is a mathematical scheme for

demonstration the authenticity of digital message or document.

Means, a digital signature is an authentication mechanism that enables the creator of a message to attach

a code that act as a signature.

This signature is formed by taking the hash of the message and encrypting the message with the
creator’s private key. The signature guarantees the source and integrity of the message.

The digital signature standard (DSS) is an NIST standard that uses the secure hash algorithm (SHA).

Properties of Digital Signature

• It must verify the author and the date and time of the signature.

• It must authenticate the contents at the time of the signature.

• It must be verifiable by third parties, to resolve disputes.

Digital Signature Requirements

1. The signature must be a bit pattern that depends on the message being signed.
2. The signature must use some information unique to the sender to prevent both forgery and denial.

3. It must be relatively easy to produce the digital signature.

4. It must be relatively easy to recognize and verify the digital signature.

5. It must be computationally infeasible to forge a digital signature, either by constructing a new message

for an existing digital signature or by constructing a fraudulent digital signature for a given message.

6. It must be practical to retain a copy of the digital signature in storage.

Approaches for Digital Signature

 Direct Digital Signature
 Arbitrated Digital Signature

Direct Digital Signature

The term direct digital signature refers to a digital signature scheme that involves only the communicating

parties (source, destination) directly.

 involve only sender & receiver

 assumed receiver has sender’s public-key

 digital signature made by sender signing entire message or hash with private-key

 can encrypt using receivers public-key

 important that sign first then encrypt message & signature

 security depends on sender’s private-key

Arbitrated Digital Signature

In this every signed message from a sender X to a receiver Y goes first to an arbiter A, who subjects the

message and its signature to a number of tests to check it origin and content. The message is then dated and sent

to Y.

This process is an indication that has been verified to the satisfaction of the arbiter.

By this process, it solves the direct Digital signature problem.

Sender X,

Arbiter A,

Receiver Y,

 X construct message M and compute hash value H(M) then X transmitted “M+ Digital Signature” to

A.

Signature consists identity “IDx of X +hash value” of all encrypted using KXA (it is common shared

key between Sender X and Arbiter A).

 A A decrypts the signature & checks the hash value to validate the message. Then transmit it to Y by

encryption it with KAY (it is common shared key between Arbiter A and Receiver Y). the message

include IDx and M & time Stam.

 Y Decrypt it by using KAY

Notations:

X=sender M=message

Y=recipient T=time stamp

A=Arbiter PRX=X’s private key

IDX=ID of X PUY=Y’s public key PRA=A’s private key

Digital Signature Standard(DSS)

• US Govt approved signature scheme

• Designed by NIST (National Institute of Standards and Technology) & NSA in early 90's

• Published as Federal Information Processing Standard(FIPS 186) in 1991

• revised in 1993, 1996 & then 2000

• Uses the SHA hash algorithm

• The DSS makes use of the Secure Hash Algorithm (SHA) presents a new digital signature technique,

the Digital Signature Algorithm (DSA).

• creates a 320 bit signature

• with 512-1024 bit security

• smaller and faster than RSA

• a digital signature scheme only

• security depends on difficulty of computing discrete logarithms

• variant of ElGamal & Schnorr schemes

The DSS uses an algorithm that is designed to provide only the digital signature function. Unlike RSA,

it cannot be used for encryption or key exchange. Nevertheless, it is a public-key technique.

The DSS approach also makes use of a hash function. The hash code is provided as input to a signature

function along with a random number generated for this particular signature. The signature function also

depends on the sender’s private key (PRa) and a set of parameters known to a group of communicating

principals. We can consider this set to constitute a global public key (PUG).

AUTHENTICATION APPLICATIONS

 It will consider authentication functions

 Its developed to support application-level authentication & digital signatures

1. Kerberos – a private-key authentication service

2. X.509 - a public-key directory authentication service

KERBEROS

 Kerberos is an authentication service developed by MIT and is one of the best known and most widely
implemented trusted third party key distribution systems.

 Provides a centralized authentication server whose function is to authenticate users to servers and servers to
users.

 Kerberos relies exclusively on symmetric encryption, making no use of public-key encryption.

 Two versions of Kerberos are in common use.

o Version 4

o Version 5

Kerberos Requirements

 Secure: A network eavesdropper should not be able to obtain the necessary information to impersonate a
user.

 Reliable: Kerberos should be highly reliable and should employ a distributed server architecture, with one
system able to back up another.

 Transparent: The user should not be aware that authentication is taking place, beyond the requirement to
enter a password.

 Scalable: The system should be capable of supporting large numbers of clients and servers. This suggests a
modular, distributed architecture.

Kerberos Version 4

 A basic third-party authentication scheme

 Have an Authentication Server (AS)
o Knows the passwords of all users and stores these in a centralized database.
o AS shares a unique secret key with each server.
o These keys have been distributed physically or in some other secure manner
o users initially negotiate with AS to identify self
o AS provides a non-corruptible authentication credential (ticket granting ticket TGT)

 Have a Ticket Granting server (TGS)

o issues tickets to users who have been authenticated to AS

o users subsequently request access to other services from TGS on basis of users TGT

Simple Authentication Dialogue

(1) C →AS: IDC||PC||IDV

(2) AS →C: Ticket

(3) C →V : IDC||Ticket

Ticket = E(Kv, [IDC||ADC||IDV])
Where

C = client IDV = identifier of V

AS = authentication server PC = password of user on C

V =server ADC = network address of C

IDC = identifier of user on C Kv = secret encryption key shared by AS and V

 The ticket is encrypted to prevent alteration or forgery.

 The server's ID (IDV) is included in the ticket so that the server can verify that it has decrypted the ticket
properly.

 IDC is included in the ticket to indicate that this ticket has been issued on behalf of C.

The Version 4 Authentication Dialogue

 Obtain ticket granting ticket from AS

o Once per session

 Obtain service granting ticket from TGT

o For each distinct service required

 Client/server exchange to obtain service
o On every service request

Figure provides a simplified overview of the action.

Figure: Overview of Kerberos

 Client sends a message to the AS requesting access to the TGS.

 AS responds with a message, encrypted with a key derived from the user's password (Kc) that contains
the ticket.

 Encrypted message also contains a copy of the session key, Kc,tgs, where the subscripts indicate that this
is a session key for C and TGS.

 Session key is inside the message encrypted with Kc, only the user's client can read it.

 Same session key is included in the ticket, which can be read only by the TGS.

 Thus, the session key has been securely delivered to both C and the TGS.

 Message (1) includes a timestamp, so that the AS knows that the message is timely.

 Message (2) includes several elements of the ticket in a form accessible to C. This enables C to confirm
that this ticket is for the TGS and to learn its expiration time.

Table: Kerberos Version 4 Message Exchanges

(1) C →AS IDc||IDtgs||TS1

(2) AS →C E(Kc,[Kc,tgs||IDtgs||TS2||Lifetime2||Tickettgs])

 Tickettgs = E(Ktgs, [Kc,tgs||IDc||ADc||IDtgs||TS2||Lifetime2])

Authentication Service Exchange to obtain ticket-granting ticket

(3) C→TGS IDv||Tickettgs||Authenticatorc

(4) TGS →C E(Kc,tgs, [Kc,v||IDv||TS4||Ticketv])

 Tickettgs = E(Ktgs, [Kc,tgs||IDC||ADC||IDtgs||TS2||Lifetime2])

Ticketv = E(Kv, [Kc,v||IDC||ADC||IDv||TS4||Lifetime4])

Authenticatorc = E(Kc,tgs, [IDC||ADC||TS3])

Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C →V Ticketv||Authenticatorc

(6) V→C E(Kc,v, [TS5 + 1]) (for mutual authentication)

 Ticketv = E(Kv, [Kc,v||IDc||ADc||IDv||TS4||Lifetime4])

Authenticatorc = E(Kc,v,[IDc||ADC||TS5])

Client/Server Authentication Exchange to obtain service

 The TGS can decrypt the ticket with the key that it shares with the AS. This ticket indicates that user C
has been provided with the session key Kc,tgs. The ticket says, "Anyone who uses Kc,tgs must be C."

 The TGS can then check the name and address from the authenticator with that of the ticket and with the
network address of the incoming message. If all match, then the TGS is assured that the sender of the
ticket is indeed the ticket's real owner.

 The reply from the TGS, in message (4), follows the form of message (2). The message is encrypted
with the session key shared by the TGS and C and includes a session key to be shared between C and the
server V, the ID of V, and the timestamp of the ticket. The ticket itself includes the same session key.

 C now has a reusable service-granting ticket for V. When C presents this ticket, as shown in message
(5), it also sends an authenticator. The server can decrypt the ticket, recover the session key, and decrypt
the authenticator.

 If mutual authentication is required, the server can reply as shown in message (6)

 The server returns the value of the timestamp from the authenticator, incremented by 1, and encrypted in
the session key. C can decrypt this message to recover the incremented timestamp.

Finally, the client and server share a secret key. This key can be used to encrypt future messages between
the two or to exchange a new random session key for that purpose.

Kerberos Realms

Kerberos environment consisting of a Kerberos server, a number of clients, and a number of
application servers requires the following:

1. The Kerberos server must have the user ID and hashed passwords of all participating users in its
database. All users are registered with the Kerberos server.

2. The Kerberos server must share a secret key with each server. All servers are registered with the
Kerberos server.

3. The Kerberos server in each interoperating realm shares a secret key with the server in the other

realm. The two Kerberos servers are registered with each other.

Figure: Request for Service in Another Realm

Such an environment is referred to as a Kerberos realm. The concept of realm can be explained as follows.

A Kerberos realm is a set of managed nodes that share the same Kerberos database.

Kerberos principal, which is a service or user that is known to the Kerberos system. Each Kerberos

principal is identified by its principal name. Principal names consist of three parts: a service or user name,
an instance name, and a realm name

A user wishing service on a server in another realm needs a ticket for that server. The user's client
follows the usual procedures to gain access to the local TGS and then requests a ticket-granting ticket for a
remote TGS (TGS in another realm). The client can then apply to the remote TGS for a service-granting
ticket for the desired server in the realm of the remote TGS.

The ticket presented to the remote server (Vrem) indicates the realm in which the user was originally
authenticated. The server chooses whether to honor the remote request.

1) C →AS: IDc||IDtgs||TS1

(2) AS →C: E(Kc, [Kc,tgs||IDtgs||TS2||Lifetime2||Tickettgs])

(3) C →TGS: IDtgsrem||Tickettgs||Authenticatorc

(4) TGS →C: E(Kc,tgs, [Kc,tgsrem||IDtgsrem||TS4||Tickettgsrem])

(5) C →TGSrem: IDvrem||Tickettgsrem||Authenticatorc

(6) TGSrem →C: E(Kc,tgsrem, [Kc,vrem||IDvrem||TS6||Ticketvrem])

(7) C →Vrem: Ticketvrem||Authenticatorc

Kerberos Version 5

 Developed in mid 1990’s

 Specified as internet standard rfc 1510

 Provides improvements over V4

Differences between Versions 4 and 5

1. Kerberos Version 4 Environmental shortcomings

1. Encryption system dependence: Version 4 requires the use of DES. In version 5, ciphertext is
tagged with an encryption type identifier so that any encryption technique may be used.

2. Internet protocol dependence: Version 4 requires the use of Internet Protocol (IP) addresses.
Version 5 network addresses are tagged with type and length, allowing any network address
type to be used.

3. Message byte ordering: In version 4, the sender of a message employs a byte ordering of its
own choosing. In version 5, all message structures are defined using Abstract Syntax Notation
One (ASN.1)

4. Ticket lifetime: Lifetime values in version 4 are encoded in an 8-bit quantity in units of five

minutes. Thus, the maximum lifetime that can be expressed is 2
8

x 5 = 1280 minutes, or a little
over 21 hours. In version 5, tickets include an explicit start time and end time, allowing tickets
with arbitrary lifetimes.

5. Authentication forwarding: Version 4 does not allow credentials issued to one client to be
forwarded to some other host and used by some other client. Version 5 provides this capability.

6. Interrealm authentication: In version 4, interoperability among N realms requires on the

order of N
2

Kerberos-to-Kerberos relationships, as described earlier. Version 5 supports a
method that requires fewer relationships, as described shortly.

2. Technical Deficiencies

1. Double encryption: [messages (2) and (4)] that tickets provided to clients are encrypted twice,
once with the secret key of the target server and then again with a secret key known to the client.
The second encryption is not necessary and is computationally wasteful.

2. PCBC encryption: Encryption in version 4 makes use of a nonstandard mode of DES known as
propagating cipher block chaining (PCBC). Version 5 provides explicit integrity
mechanisms, allowing the standard CBC mode to be used for encryption.

3. Session keys: Each ticket includes a session key that is used by the client to encrypt the
authenticator sent to the service associated with that ticket. In version 5, it is possible for a client
and server to negotiate a subsession key, which is to be used only for that one connection.

4. Password attacks: Both versions are vulnerable to a password attack. Version 5 does provide
a mechanism known as preauthentication, which should make password attacks more
difficult, but it does not prevent them.

SECURITY

The Version 5 Authentication Dialogue

Consider the authentication service exchange. Message (1) is a client request for a ticket-granting
ticket. As before, it includes the ID of the user and the TGS. The following new elements are added:

o Realm: Indicates realm of user

o Options: Used to request that certain flags be set in the returned ticket
o Times: Used by the client to request the following time settings in the ticket:

 from: the desired start time for the requested ticket
 till: the requested expiration time for the requested ticket
 rtime: requested renew-till time

o Error! Hyperlink reference not valid.e: A random value to be repeated in message (2) to
assure that the response is fresh and has not been replayed by an opponent

Now compare the ticket-granting service exchange for versions 4 and 5. We see that message (3)
for both versions includes an authenticator, a ticket, and the name of the requested service. In
addition, version 5 includes requested times and options for the ticket and a nonce, all with functions
similar to those of message (1).

Summary of Kerberos Version 5 Message Exchanges

(1) C →AS Options||IDc||Realmc||IDtgs||Times||Nonce1

(2) AS →C Realmc||IDC||Tickettgs||E(Kc, [Kc,tgs||Times||Nonce1||Realmtgs||IDtgs])

 Tickettgs = E(Ktgs, [Flags||Kc,tgs||Realmc||IDc||ADc||Times])

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C →TGS Options||IDv||Times||||Nonce2||Tickettgs||Authenticatorc

(4) TGS →C Realmc||IDc||Ticketv||E(Kc,tgs, [Kc,v||Times||Nonce2||Realmv||IDv])

Tickettgs = E(Ktgs, [Flags||KC,tgs||Realmc||IDC||ADC||Times])

 Ticketv = E(Kv, [Flags||Kc,v||Realmc||IDC||ADc||Times])

Authenticatorc = E(Kc,tgs, [IDC||Realmc||TS1])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C →V Options||Ticketv||Authenticatorc

(6) V →C EKc,v[TS2||Subkey||Seq#]

 Ticketv = E(Kv, [Flags||Kc,v||Realmc||IDC||ADC||Times])

Authenticatorc = E(Kc,v,[IDC||Realmc||TS2||Subkey||Seq#])

(c) Client/Server Authentication Exchange to obtain service

Client/server authentication exchange, several new features appear in version 5. In message (5), the

client may request as an option that mutual authentication is required. The authenticator includes several
new fields as follows:

o Subkey: The client's choice for an encryption key to be used to protect this specific
application session. If this field is omitted, the session key from the ticket (Kc,v) is used.

o Sequence number: An optional field that specifies the starting sequence number to be used
by the server for messages sent to the client during this session.

Ticket Flags

INITIAL This ticket was issued using the AS protocol

PRE-AUTHENT Client was authenticated by the KDC before a ticket was issued.

HW-AUTHENT Use of hardware expected to be possessed solely by the named client.

RENEWABLE This ticket can be used to obtain a replacement ticket that expires at a later date.

MAY-POSTDATE Tells TGS that a postdated ticket may be issued based on this ticket-granting ticket.

POSTDATED Indicates that this ticket has been postdated.

INVALID This ticket is invalid and must be validated by the KDC before use.

PROXIABLE Tells TGS that a new service-granting ticket with a different network address may be

issued based on the presented ticket.

PROXY Indicates that this ticket is a proxy.

FORWARDABLE Tells TGS that a new ticket-granting ticket with a different network address may be

issued based on this ticket-granting ticket.

FORWARDED Indicates that this ticket has either been forwarded or was issued based on

authentication involving a forwarded ticket-granting ticket.

X.509 AUTHENTICATION SERVICE

 ITU-T recommendation X.509 is part of the X.500 series of recommendations that define a directory
service

 X.509 defines a framework for the provision of authentication services by the X.500 directory to its
users.

 X.509 certificates are widely used and has 3 versions.

 The directory may serve as a repository of public-key certificates of the type.

Figure: X.509 Certificate Use

 Each certificate contains the public key of a user and is signed with the private key of a trusted
certification authority.

 In addition, X.509 defines alternative authentication protocols based on the use of public-key
certificates.

 X.509 certificate format is used in S/MIME, IP Security, and SSL/TLS and SET.

 X.509 is based on the use of public-key cryptography and digital signatures. Algorithms not standardised,

but RSA recommended.

Certificates

The heart of the X.509 scheme is the public-key certificate associated with each user. These user
certificates are assumed to be created by some trusted certification authority (CA) and placed in the
directory by the CA or by the user.
Certificate includes the following elements:

 Version: Differentiates among successive versions of the certificate format; the default is version 1.

 Serial number: An integer value, unique within the issuing CA, that is unambiguously associated
with this certificate.

 Signature algorithm identifier: The algorithm used to sign the certificate, together with any
associated parameters.

 Issuer name: X.500 name of the CA that created and signed this certificate.

 Period of validity: Consists of two dates: the first and last on which the certificate is valid.

 Subject name: The name of the user to whom this certificate refers.

 Subject's public-key information: The public key of the subject, plus an identifier of the algorithm
for which this key is to be used, together with any associated parameters.

 Issuer unique identifier: An optional bit string field used to identify uniquely the issuing CA in the
event the X.500 name has been reused for different entities.

 Subject unique identifier: An optional bit string field used to identify uniquely the subject in the event
the X.500 name has been reused for different entities.

 Extensions: A set of one or more extension fields. Extensions were added in version 3.

 Signature: Covers all of the other fields of the certificate; it contains the hash code of the other fields,
encrypted with the CA's private key. This field includes the signature algorithm identifier.

Figure shows the general format of a certificate

Figure: X.509 Formats

\

Obtaining a Certificate

User certificates generated by a CA have the following characteristics:

 Any user with access to the public key of the CA can verify the user public key that was certified.

 No party other than the certification authority can modify the certificate without this being detected.
Because certificates are unforgettable, they can be placed in a directory without the need for the directory to
make special efforts to protect them.

CA Hierarchy

 If both users share a common CA then they are assumed to know its public key

 Otherwise CA's must form a hierarchy

 All these certificates of CAs by CAs need to appear in
the directory, and the user needs to know how they
are linked to follow a path to another user's public-
key certificate.

 X.509 suggests that CAs be arranged in a hierarchy
so that navigation is straightforward.

 Use certificates linking members of hierarchy to
validate other CA's

 Each CA has certificates for clients (forward) and
parent (backward)

 Each client trusts parents certificates

 Enable verification of any certificate from
one CA by users of all other cas in hierarchy

 The directory entry for each CA includes two types of
certificates:

o Forward certificates: Certificates of X
generated by other CAs

o Reverse certificates: Certificates
generated by X that are the certificates of
other CAs

Figure: X.509 Hierarchy: A Example

Track chains of certificates:

A acquires B certificate using chain: X<<W>>W<<V>>V<<Y>>Y<<Z>>Z<>
B acquires A certificate using chain: Z<<Y>>Y<<V>>V<<W>>W<<X>>X<<A>>

Certificate Revocation

 Certificates have a period of validity

 May need to revoke before expiry, eg:

o User's private key is compromised

o User is no longer certified by this CA

o CA's certificate is compromised

 CA maintain a list consisting of all revoked but not expired certificates issued by that CA, including both

those issued to users and to other CAs.

 Each certificate revocation list (CRL) posted to the directory is signed by the issuer

 When a user receives a certificate in a message, the user must determine whether the certificate has been
revoked.

 The user could check the directory each time a certificate is received.

 To avoid the delays associated with directory searches, it is likely that the user would maintain a
local cache of certificates and lists of revoked certificates.

Authentication Procedures

 X.509 also includes three alternative authentication procedures

 All these procedures make use of public-key signatures.

 It is assumed that the two parties know each other's public key, either by obtaining each other's
certificates from the directory or because the certificate is included in the initial message from each side.

1. One-Way Authentication

One way authentication involves a single transfer of information from one user (A) to another (B),
and establishes the following:

1. The identity of A and that the message was generated by A

2. That the message was intended for B

3. The integrity and originality (it has not been sent multiple times) of the message

 Only the identity of the initiating entity is verified in this process, not that of the responding entity.

 Message must include timestamp, nonce, B's identity and is signed by A

 May also be used to convey a session key to B, encrypted with B's public key.

2. Two-Way Authentication

In addition to the three elements just listed, two-way authentication establishes the following elements:

4. The identity of B and that the reply message was generated by B

5. That the message was intended for A

6. The integrity and originality of the reply

 Two-way authentication thus permits both parties in a communication to verify the identity of the other.

 reply includes original nonce from A, also timestamp and nonce from B

 may include additional info for A

3. Three-Way Authentication

 3 messages (A->B, B->A, A->B) which enables above authentication without synchronized clocks

 has reply from A back to B containing signed copy of nonce from B

 means that timestamps need not be checked or relied upon

Figure: X.509 Strong Authentication Procedures

X.509 Version 3

The X.509 version 2 format does not convey all of the information that recent design
and implementation experience has shown to be needed. The following requirements not
satisfied by version 2:

1. The Subject field is inadequate to convey the identity of a key owner to a public-key user.
X.509 names may be relatively short and lacking in obvious identification details that
may be needed by the user.

2. The Subject field is also inadequate for many applications, which typically recognize
entities by an Internet e-mail address, a URL, or some other Internet-related
identification.

3. There is a need to indicate security policy information. This enables a security application
or function, such as IPSec, to relate an X.509 certificate to a given policy.

4. There is a need to limit the damage that can result from a faulty or malicious CA by
setting constraints on the applicability of a particular certificate.

5. It is important to be able to identify different keys used by the same owner at different
times. This feature supports key life cycle management, in particular the ability to update
key pairs for users and CAs on a regular basis or under exceptional circumstances.

The certificate extensions fall into three main categories: key and policy information,

subject and issuer attributes, and certification path constraints.

(1) Key and Policy Information

These extensions convey additional information about the subject and issuer keys,

plus indicators of certificate policy.. For example, a policy might be applicable to the

authentication of electronic data interchange (EDI) transactions for the trading of goods

within a given price range.

This area includes the following:

Authority key identifier: Identifies the public key to be used to verify the signature

on this certificate or CRL.

Subject key identifier: Identifies the public key being certified.
Key usage: Indicates a restriction imposed as to the purposes for which, and the
policies under which, the certified public key may be used.

Private-key usage period: Indicates the period of use of the private key

corresponding to the public key. For example, with digital signature keys, the usage

period for the signing private key is typically shorter than that for the verifying public

key.

Certificate policies: Certificates may be used in environments where multiple

policies apply.

Policy mappings: Used only in certificates for CAs issued by other CAs.

(2) Certificate Subject and Issuer Attributes

These extensions support alternative names, in alternative formats, for a certificate

subject or certificate issuer and can convey additional information about the certificate

subject, to increase a certificate user's confidence that the certificate subject is a particular

person or entity. For example, information such as postal address, position within a

corporation, or picture image may be required.

The extension fields in this area include the following:

 Subject alternative name: Contains one or more alternative names, using any of
a variety of forms

 Subject directory attributes: Conveys any desired X.500 directory attribute

values for the subject of this certificate.

(3) Certification Path Constraints

These extensions allow constraint specifications to be included in certificates issued

for CAs by other CAs. The extension fields in this area include the following:

 Basic constraints: Indicates if the subject may act as a CA. If so, a certification

path length constraint may be specified.

 Name constraints: Indicates a name space within which all subject names in

subsequent certificates in a certification path must be located.

 Policy constraints: Specifies constraints that may require explicit certificate

policy identification or inhibit policy mapping for the remainder of the

certification path.

UNIT V

INTRODUCTION TO CYBER SECURITY

	1. OSI SECURITY ARCHITECTURE
	Table 1. Difference between Threats and Attacks
	SECURITY SERVICES
	SECURITY MECHANISM
	SECURITY MECHANISM (X.800 Standard)

	2. A MODEL FOR NETWORK SECURITY
	3. CLASSICAL ENCRYPTION TECHNIQUES
	Model of symmetric cryptosystem

	4. SUBSTITUTION TECHNIQUES
	Brute-Force Cryptanalysis of Caesar Cipher
	Relative frequency of letters in English text

	5. TRANSPOSITION TECHNIQUES
	6. STEGANOGRAPHY
	Drawback

	UNIT II SYMMETRIC KEY CRYPTOGRAPHY
	ALGEBRAIC STRUCTURES
	MODULAR ARITHMETIC
	CONGRUENCE
	MODULAR ARITHMETIC OPERATIONS
	RELATIVELY PRIME
	EUCLIDEAN ALGORITHM
	Euclidean Algorithm Revisited
	EXTENDED EUCLIDEAN ALGORITHM
	POLYNOMIAL ARITHMETIC
	MULTIPLICATIVE INVERSE
	CONGRUENCE AND MATRICES
	Calculating the determinant of a 2 × 2 matrix based on the determinant of a 1 × 1 matrix
	GROUPS, RINGS, AND FIELDS
	GROUPS
	RINGS
	FIELDS
	FINITE (GALOIS) FIELDS
	DATA ENCRYPTION STANDARD
	Strength of DES – Key Size
	Triple DES
	BLOCK CIPHER PRINCIPLES
	Differential Cryptanalysis
	AESDATASTRUCTURE
	AES ENCRYPTION ROUND
	RC4
	RC4 Key Schedule
	unit3.pdf
	Ecc-Elgamal.pdf
	UNIT IV MESSAGE AUTHENTICATION AND INTEGRITY
	MESSAGE AUTHENTICATION
	AUTHENTICATION REQUIREMENT
	Summary:
	Message authentication
	Digital signature

	I. AUTHENTICATION FUNCTION
	1. MessageEncryption
	Symmetric Encryption
	Figure: Basic Uses of Message Encryption
	Public-Key Encryption
	Table: Confidentiality and Authentication Implications of Message Encryption
	MAC = CK(M)
	Assurances
	Figure: Basic Uses of MAC
	Table: Basic Uses of Message Authentication Code
	3. Hash Function
	 Converts a variable size message M into fixed size hash code H(M) (Sometimes called a message digest)
	 The hash code (h) is also referred to as a message digest or hash value.
	Hash code can be used to provide message authentication, as follows
	Table: Basic Uses of Hash Function H
	MESSAGE AUTHENTICATION CODES
	T= MAC(K,M)
	Requirements for MACs:
	o Round 1
	o Round 2
	The MAC function should satisfy the following requirements:
	HASH FUNCTIONS
	h = H(M)
	Requirements for a Hash Function
	Simple Hash Functions
	 Simplest hash function:
	Improvement over the simple bitwise XOR
	Birthday Attacks
	SECURITY OF HASH FUNCTIONS AND MACS
	Brute-Force Attacks
	1) Hash Functions
	2) Message Authentication Codes
	Cryptanalysis
	Hash Functions
	SECURE HASH ALGORITHM (SHA)
	Algorithm processing Steps: The processing consists of the following steps:
	Step 4: Process Message in 512 bits:

	SHA-512 Elementary SHA operation for single round (or) SHA-1 Compression Function:
	The behavior of SHA-512 can be summarized as:
	Comparison of MD5 and SHA:
	Definition:
	Properties of Digital Signature
	Digital Signature Requirements
	Approaches for Digital Signature
	Direct Digital Signature
	Arbitrated Digital Signature
	Digital Signature Standard(DSS)
	AUTHENTICATION APPLICATIONS
	KERBEROS
	Kerberos Requirements
	Kerberos Version 4
	Simple Authentication Dialogue
	The Version 4 Authentication Dialogue
	Figure: Overview of Kerberos
	Kerberos Realms
	Figure: Request for Service in Another Realm
	Kerberos Version 5
	Differences between Versions 4 and 5
	2. Technical Deficiencies
	The Version 5 Authentication Dialogue
	 from: the desired start time for the requested ticket
	Summary of Kerberos Version 5 Message Exchanges
	Ticket Flags
	Figure: X.509 Certificate Use
	Certificates
	Figure: X.509 Formats
	Obtaining a Certificate
	CA Hierarchy
	Figure: X.509 Hierarchy: A Example
	Certificate Revocation
	Authentication Procedures
	1. One-Way Authentication
	2. Two-Way Authentication
	3. Three-Way Authentication
	Figure: X.509 Strong Authentication Procedures
	(1) Key and Policy Information
	(2) Certificate Subject and Issuer Attributes
	(3) Certification Path Constraints

