

PRATHYUSHA

ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

REGULATION R2021

II YEAR - IV SEMESTER

CS3491 – ARTIFICIAL INTELLIGENCE AND

MACHINE LEARNING

CS3491 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

COURSE OBJECTIVES:

The main objectives of this course are to:

 • Study about uninformed and Heuristic search techniques.

 • Learn techniques for reasoning under uncertainty

 • Introduce Machine Learning and supervised learning algorithms

 • Study about ensembling and unsupervised learning algorithms

 • Learn the basics of deep learning using neural networks

UNIT I PROBLEM SOLVING

Introduction to AI - AI Applications - Problem solving agents – search algorithms – uninformed search strategies

– Heuristic search strategies – Local search and optimization problems – adversarial search – constraint

satisfaction problems (CSP)

UNIT II PROBABILISTIC REASONING

Acting under uncertainty – Bayesian inference – naïve bayes models. Probabilistic reasoning – Bayesian networks

– exact inference in BN – approximate inference in BN – causal networks.

UNIT III SUPERVISED LEARNING

Introduction to machine learning – Linear Regression Models: Least squares, single & multiple variables,

Bayesian linear regression, gradient descent, Linear Classification Models: Discriminant function – Probabilistic

discriminative model - Logistic regression, Probabilistic generative model – Naive Bayes, Maximum margin

classifier – Support vector machine, Decision Tree, Random forests

UNIT IV ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING

Combining multiple learners: Model combination schemes, Voting, Ensemble Learning - bagging, boosting,

stacking, Unsupervised learning: K-means, Instance Based Learning: KNN, Gaussian mixture models and

Expectation maximization

UNIT V NEURAL NETWORKS

Perceptron - Multilayer perceptron, activation functions, network training – gradient descent optimization –

stochastic gradient descent, error backpropagation, from shallow networks to deep networks –Unit saturation (aka

the vanishing gradient problem) – ReLU, hyperparameter tuning, batch normalization, regularization, dropout.

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

UNIT I

PROBLEM SOLVING

INTRODUCTION

What is artificial intelligence?

• Artificial Intelligence is the branch of computer science concerned with making computers
behave like humans.

• Major AI textbooks define artificial intelligence as "the study and design of intelligent

agents," where an intelligent agent is a system that perceives its environment and takes
actions which maximize its chances of success.

• John McCarthy, who coined the term in 1956, defines it as "the science and engineering of
making intelligent machines, especially intelligent computer programs."

• The definitions of AI according to some text books are categorized into four approaches
and are summarized in the table below :

• Systems that think like humans "The exciting new effort to make computers think …

machines with minds, in the full and literal sense."(Haugeland,1985)

• Systems that think rationally "The study of mental faculties through the use of computer

models." (Charniak and McDermont,1985)

• Systems that act like humans The art of creating machines that performs functions that

require intelligence when performed by people."(Kurzweil,1990)

• Systems that act rationally "Computational intelligence is the study of the design of

intelligent agents."(Poole et al.,1998)

History of Artificial Intelligence

APPLICATIONS OF ARTIFICIAL INTELLIGENCE

• Autonomous planning and scheduling:

o A hundred million miles from Earth, NASA's Remote Agent program became the
first on-board autonomous planning program to control the scheduling of
operations for a spacecraft (Jonsson et al., 2000).

o Remote Agent generated plans from high-level goals specified from the ground,
and it monitored the operation of the spacecraft as the plans were executed-
detecting, diagnosing, and recovering from problems as they occurred.

• Game playing:

o IBM's Deep Blue became the first computer program to defeat the world champion
in a chess match when it bested Garry Kasparov by a score of 3.5 to 2.5 in an
exhibition match (Goodman and Keene, 1997).

• Autonomous control:

o The ALVINN computer vision system was trained to steer a car to keep it following
a lane.

o It was placed in CMU's NAVLAB computer-controlled minivan and used to
navigate across the United States-for 2850 miles it was in control of steering the
vehicle 98% of the time

• Diagnosis:

o Medical diagnosis programs based on probabilistic analysis have been able to
perform at the level of an expert physician in several areas of medicine.

• Logistics Planning:

o During the Persian Gulf crisis of 1991, U.S. forces deployed a Dynamic Analysis
and Replanning Tool, DART (Cross and Walker, 1994), to do automated logistics
planning and scheduling for transportation.

o This involved up to 50,000 vehicles, cargo, and people at a time, and had to account
for starting points, destinations, routes, and conflict resolution among all
parameters.

o The AI planning techniques allowed a plan to be generated in hours that would have
taken weeks with older methods.

o The Defense Advanced Research Project Agency (DARPA) stated that this single
application more than paid back DARPA's 30-year investment in AI.

• Robotics:

o Many surgeons now use robot assistants in microsurgery. HipNav (DiGioia et al.,
1996) is a system that uses computer vision techniques to create a three dimensional
model of a patient's internal anatomy and then uses robotic control to guide the
insertion of a hip replacement prosthesis.

• Language understanding and problem solving:

o PROVERB (Littman et al., 1999) is a computer program that solves crossword
puzzles better than most humans, using constraints on possible word fillers, a large
database of past puzzles, and a variety of information sources including dictionaries
and online databases such as a list of movies and the actors that appear in them.

Problem-solving agents

• A Problem solving agent is a goal-based agent.

• It decides what to do by finding sequence of actions that lead to desirable states.

• The agent can adopt a goal and aim at satisfying it.

• For example where our agent is in the city of Arad, which is in Romania.

• The agent has to adopt a goal of getting to Bucharest.

• Goal formulation, based on the current situation and the agent's performance measure, is
the first step in problem solving.

• The agent's task is to find out which sequence of actions will get to a goal state.

• Problem formulation is the process of deciding what actions and states to consider given a
goal.

• Example: Route finding problem

• On holiday in Romania : currently in Arad.

• Flight leaves tomorrow from Bucharest

• Formulate goal: be in Bucharest

Formulate problem:

• states: various cities actions: drive between cities

• Find solution: sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Goal formulation and problem formulation

• A problem is defined by four items:

• initial state e.g., "at Arad"

• Successor function S(x) = set of action-state pairs

• e.g., S(Arad) = {[Arad -> Zerind;Zerind],….}

• goal test, can be

• explicit, e.g., x = at Bucharest"

• path cost (additive)

• e.g., sum of distances, number of actions executed, etc.

• c(x; a; y) is the step cost, assumed to be >= 0

• A solution is a sequence of actions leading from the initial state to a goal state.

SEARCH :

• An agent with several immediate options of unknown value can decide what to do by

examining different possible sequences of actions that leads to the states of known value,

and then choosing the best sequence.

• The process of looking for sequences actions from the current state to reach the goal state

is called search.

• The search algorithm takes a problem as input and returns a solution in the form of action
sequence.

• Once a solution is found, the execution phase consists of carrying out the recommended
action.

• The following shows a simple "formulate, search, execute" design for the agent.

• Once solution has been executed, the agent will formulate a new goal.

• It first formulates a goal and a problem, searches for a sequence of actions that would solve
a problem, and executes the actions one at a time.

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
inputs : percept, a percept

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state  UPDATE-STATE(state, percept)

if seq is empty then do
goal  FORMULATE-GOAL(state)

problem  FORMULATE-PROBLEM(state, goal)

seq  SEARCH(problem)

action  FIRST(seq);

seq  REST(seq)

return action

• The agent design assumes the Environment is

• Static: The entire process carried out without paying attention to changes that might be

occurring in the environment.

• Observable : The initial state is known and the agent's sensor detects all aspects that are

relevant to the choice of action

• Discrete : With respect to the state of the environment and percepts and actions so that
alternate courses of action can be taken

• Deterministic: The next state of the environment is completely determined by the current

state and the actions executed by the agent. Solutions to the problem are single sequence

of actions

• An agent carries out its plan with eye closed. This is called an open loop system because

ignoring the percepts breaks the loop between the agent and the environment.

Well-defined problems and solutions

• A problem can be formally defined by four components:

• The initial state that the agent starts in . The initial state for our agent of example problem

is described by In(Arad)

• A Successor Function returns the possible actions available to the agent.

• Given a state x,SUCCESSOR-FN(x) returns a set of {action,successor} ordered pairs

where each action is one of the legal actions in state x,and each successor is a state that can

be reached from x by applying the action.

• For example, from the state In(Arad),the successor function for the Romania problem

would return

{ [Go(Sibiu),In(Sibiu)],[Go(Timisoara),In(Timisoara)],[Go(Zerind),In(Zerind)] }

• State Space: The set of all states reachable from the initial state. The state space forms a

graph in which the nodes are states and the arcs between nodes are actions.

• A path in the state space is a sequence of states connected by a sequence of actions.

• The goal test determines whether the given state is a goal state.

• A path cost function assigns numeric cost to each action.

• For the Romania problem the cost of path might be its length in kilometers.

• The step cost of taking action a to go from state x to state y is denoted by c(x,a,y). It is
assumed that the step costs are non negative.

• A solution to the problem is a path from the initial state to a goal state.

• An optimal solution has the lowest path cost among all solutions.

UNINFORMED SEARCH STRATGES

• Uninformed Search Strategies have no additional information about states beyond that
provided in the problem definition.

• Strategies that know whether one non goal state is "more promising" than another are called
Informed search or heuristic search strategies.

There are five uninformed search strategies as given below.
o Breadth-first search

o Uniform-cost search

o Depth-first search

o Depth-limited search

o Iterative deepening search

o Bidirectional Search

Breadth-first search

• Breadth-first search is a simple strategy in which the root node is expanded first, then all
successors of the root node are expanded next, then their successors, and so on.

• In general, all the nodes are expanded at a given depth in the search tree before any nodes
at the next level are expanded.

• Breath-first-search is implemented by calling TREE-SEARCH with an empty fringe that

is a first-in-first-out(FIFO) queue, assuring that the nodes that are visited first will be
expanded first.

• In otherwards, calling TREE-SEARCH (problem,FIFO-QVEVE()) results in breadth-first
search.

• The FIFO queue puts all newly generated successors at the end of the queue, which means

that Shallow nodes are expanded before deeper nodes.

UNIFORM-COST SEARCH

• Instead of expanding the shallowest node, uniform-cost search expands the node n with the
lowest path cost.

• Uniform-cost search does not care about the number of steps a path has,but only about their

total cost.

Sibiu to Bucharest.

• The successors of Sibiu are Rimnicu Vilcea and Fagaras, with costs 80 and 99, respectively.

• The least-cost node, Rimnicu Vilcea, is expanded next, adding Pitesti with cost 80 +

97=177. The least-cost node is now Fagaras, so it is expanded, adding Bucharest with cost

99+211=310.

• Now a goal node has been generated, but uniform-cost search keeps going, choosing Pitesti
for expansion and adding a second path to Bucharest with cost 80+97+101= 278.

• Now the algorithm checks to see if this new path is better than the old one; it is, so the old

one is discarded. Bucharest, now with g-cost 278, is selected for expansion and the solution

is returned.

Depth-first search

• Depth-first search always expands DEPTH-FIRST the deepest node in the current frontier
of the search tree.

• Depth-first-search always expands the deepest node in the current fringe of the search tree.

• The search proceeds immediately to the deepest level of the search tree, where the nodes

have no successors.

• As those nodes are expanded, they are dropped from the fringe, so then the search "backs

up" to the next shallowest node that still has unexplored successors.

• This strategy can be implemented by TREE-SEARCH with a last-in-first out (LIFO)

queue, also known as a stack.

• Depth-first-search has very modest memory requirements.

• It needs to store only a single path from the root to a leaf node, along with the remaining
unexpanded sibling nodes for each node on the path.

• Once the node has been expanded, it can be removed from the memory, as soon as its

descendants have been fully explored.

• For a state space with a branching factor b and maximum depth m, depth first-search

requires storage of only bm + 1 nodes.

Drawback of Depth-first-search

• The drawback of depth-first-search is that it can make a wrong choice and get stuck going

down very long(or even infinite) path when a different choice would lead to solution near

the root of the search tree.

• For example, depth-first-search will explore the entire left subtree even if node C is a goal

node

• A variant of depth-first search called backtracking BACKTRACKING search uses still less

memory.

• Backtracking search facilitates yet another memory-saving (and time-saving) trick: the idea

of generating a successor by modifying the current state description directly rather than
copying it first.

DEPTH-LIMITED-SEARCH

• The problem of unbounded trees can be alleviated by supplying depth-first-search with a
pre-determined depth limit l.

• That is,nodes at depth l are treated as if they have no successors.

• This approach is called depth-limited-search.

• The depth limit solves the infinite path problem.

• Depth limited search will be nonoptimal if we choose l > d. Its time complexity is O(b l)
and its space complexity is O(bl).

• Depth-first-search can be viewed as a special case of depth-limited search with l = oo

• Sometimes, depth limits can be based on knowledge of the problem.

• For, example, on the map of Romania there are 20 cities.

• Therefore, we know that if there is a solution, it must be of length 19 at the longest, So l =

10 is a possible choice.

• However,it can be shown that any city can be reached from any other city in at most 9

steps.

• This number known as the diameter of the state space, gives us a better depth limit.

• Depth-limited-search can be implemented as a simple modification to the general tree

search algorithm or to the recursive depth-first-search algorithm.

• The pseudocode for recursive depth-limited-search is shown.

• It can be noted that the above algorithm can terminate with two kinds of failure : the

standard failure value indicates no solution; the cut off value indicates no solution within

the depth limit.

• Depth-limited search = depth-first search with depth limit l, returns cut off if any path is

cut off by depth limit

• The depth-limited search can terminate with two kinds of failure: the standard failure value

indicates no solution; the cutoff value indicates no solution within the depth limit.

Iterative deepening depth-first search

• Iterative deepening search (or iterative deepening depth-first search) is a general strategy,

DEEPENING SEARCH often used in combination with depth-first tree search, that finds

the best depth limit.

• It does this by gradually increasing the limit—first 0, then 1, then 2, and so on—until a

goal is found.

• This will occur when the depth limit reaches d, the depth of the shallowest goal node.

• Iterative deepening combines the benefits of depth-first and breadth-first search.

• Like depth-first search, its memory requirements are modest: O(bd) to be precise.

Bidirectional Search

• The idea behind bidirectional search is to run two simultaneous searches

• one forward from the initial state and

• other backward from the goal,

• It stops when the two searches meet in the middle.

• The motivation is that b d/2 + b d/2 much less than bd

INFORMED (HEURISTIC) SEARCH STRATEGIES

Memory-bounded heuristic search

• The simplest way to reduce memory requirements for A∗ is to adapt the idea of iterative

• deepening to the heuristic search context, resulting in the iterative-deepening A* (IDA∗)

algorithm.

• The main difference between IDA∗ and standard iterative deepening is that the cutoff used

is the f-cost (g+h) rather than the depth; at each iteration, the cutoff value is the smallest f-

cost of any node that exceeded the cutoff on the previous iteration.

• Recursive best-first search (RBFS) is a simple recursive algorithm that attempts to mimic

the operation of standard best-first search, but using only linear space.

• RBFS is somewhat more efficient than IDA∗, but still suffers from excessive node

regeneration.

• Like A∗ tree search, RBFS is an optimal algorithm if the heuristic function h(n) is

admissible.

• IDA∗ and RBFS suffer from using too little memory.

• Between iterations, IDA∗ retains only a single number: the current f-cost limit.

• Two algorithms that do this memory reduce are MA∗ (memory-bounded A∗) and SMA∗
(simplified MA∗). SMA∗

• SMA∗ proceeds just like A∗, expanding the best leaf until memory is full.

• At this point, it cannot add a new node to the search tree without dropping an old one.

• SMA∗ always drops the worst leaf node—the one with the highest f-value.

• Like RBFS, SMA∗ then backs up the value of the forgotten node to its parent.

• To avoid selecting the same node for deletion and expansion, SMA∗ expands the newest

best leaf and deletes the oldest worst leaf.

LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS

• Local search algorithms operate using a single current node and generally move only to
neighbors of that node.

Advantages:

(1) they use very little

memory—usually a constant amount; and

(2) they can often find reasonable solutions in large or infinite state spaces

• In addition to finding goals, local search algorithms are useful for solving pure

optimization problems, in which the aim is to find the best state according to an objective

function.

• State-space landscape: A landscape has both “location” and “elevation”.

• If elevation corresponds to cost, then the aim is to find the lowest valley—a global

minimum;

• if elevation corresponds to an objective function, then the aim is to find the highest

peak—a global maximum.

• A complete local search algorithm always finds a goal if one exists; an optimal algorithm
always finds a global minimum/maximum.

Hill-climbing search:

• The hill-climbing search algorithm (steepest-ascent version) is shown in Figure 4.2.

• It is simply a loop that continually moves in the direction of increasing value that is,

uphill.

• It terminates when it reaches a “peak” where no neighbor has a higher value.

• The algorithm does not maintain a search tree, so the data structure for the current node

need only record the state and the value of the objective function.

• To illustrate hill climbing, we will use the 8-queens problem

• Local search algorithms typically use a complete-state formulation, where each state has

8 queens on the board, one per column.

• The successors of a state are all possible states generated by moving a single queen to
another square in the same column.

• The heuristic cost function h is the number of pairs of queens that are attacking each
other, either directly or indirectly.

• The global minimum of this function is zero, which occurs only at perfect solutions.

• Figure 4.3(a) shows a state with h=17.

• The figure also shows the values of all its successors, with the best successors having

h=12.

• Hill-climbing algorithms typically choose randomly among the set of best successors if
there is more than one.

• Local maxima: a local maximum is a peak that is higher than each of its
neighboring states but lower than the global maximum.

• Ridges: Ridges result in a sequence of local maxima that is very difficult for

greedy algorithms to navigate.

• Plateaux: a plateau is a flat area of the state-space landscape.

• Stochastic hill climbing chooses at random from among the uphill moves; the probability

of selection can vary with the steepness of the uphill move.

• First-choice hill climbing implements stochastic hill climbing by generating successors
randomly until one is generated that is better than the current state.

Simulated annealing

• Simulated annealing - To combine hill climbing with a random walk - is such an

algorithm.

• In metallurgy, annealing is the process used to temper or harden metals and glass by
heating them to a high temperature and then gradually cooling them, thus allowing the

material to reach a low energy crystalline state.

• To explain simulated annealing, we switch our point of view from hill climbing to

gradient descent.

• Figure 2.11 shows simulated annealing algorithm.

• It is quite similar to hill climbing.

• Instead of picking the best move, however,it picks the random move.

• If the move improves the situation,it is always accepted.

• Otherwise,the algorithm accepts the move with some probability less than 1.

• The probability decreases exponentially with the “badness” of the move – the amount E

by which the evaluation is worsened.

• Simulated annealing was first used extensively to solve VLSI layout problems in the

early 1980s. It has been applied widely to factory scheduling and other large-scale

optimization tasks

Local beam search

• The local beam search algorithm3 keeps track of k states rather than just one.

• It begins with k randomly generated states.

• At each step, all the successors of all k states are generated.

• If any one is a goal, the algorithm halts.

• Otherwise, it selects the k best successors from the complete list and repeats.

• In a local beam search, useful information is passed among the parallel search threads.

• In its simplest form, local beam search can suffer from a lack of diversity among the k

states where the search is expensive.

• A variant called stochastic beam search, analogous to stochastic hill climbing, helps

alleviate this problem.

• Instead of choosing the best k from the pool of candidate successors, stochastic beam

search chooses k successors at random, with the probability of choosing a given successor

being an increasing function of its value.

Genetic algorithms

• A genetic algorithm (or GA) is a variant of stochastic beam search in which successor

states

• are generated by combining two parent states rather than by modifying a single state.

• The analogy to natural selection is the same as in stochastic beam search, except that now

we are dealing with sexual rather than asexual reproduction.

• A Genetic algorithm(or GA) is a variant of stochastic beam search in which successor

states are generated by combining two parent states,rather than by modifying a single

state.

• Like beam search, Gas begin with a set of k randomly generated states, called the

population. Each state, or individual,is represented as a string over a finite alphabet –

most commonly, a string of 0s and 1s.

• For example, an 8 8-quuens state must specify the positions of 8 queens,each in acolumn

of 8 squares,and so requires 8 x log2 8 = 24 bits.

• Figure 2.12 shows a population of four 8-digit strings representing 8-queen states.

• The production of the next generation of states is shown in Figure 2.12(b) to (e).

• In (b) each state is rated by the evaluation function or the fitness function.

• In (c),a random choice of two pairs is selected for reproduction, in accordance with the

probabilities in (b).

• Figure 2.13 describes the algorithm that implements all these steps.

CONSTRAINT SATISFACTION PROBLEMS

A Constraint Satisfaction Problem is characterized by:

□ _a set of variables {x1, x2, .., xn},

□ _for each variable xi a domain Di with the possible values for that variable, and

□ _a set of constraints, i.e. relations, that are assumed to hold between the values of the

variables. [These relations can be given intentionally, i.e. as a formula, or extensionally, i.e. as a

set, or procedurally, i.e. with an appropriate generating or recognising function.

• We will only consider constraints involving one or two variables.

• The constraint satisfaction problem is to find, for each i from 1 to n, a value in Di for xi

so that all constraints are satisfied.

• A CS problem is usually represented as an undirected graph, called Constraint Graph

where the nodes are the variables and the edges are the binary constraints.

• Unary constraints can be disposed of by just redefining the domains to contain only the

values that satisfy all the unary constraints.

• Higher order constraints are represented by hyperarcs.

• In the following we restrict our attention to the case of unary and binary constraints.

• Consistency Based Algorithms use information from the constraints to reduce the search

space as early in the search as it is possible

□ _This problem requires a lot of reasoning.

□ _Time complexity of the problem is more as concerned to the other problems.

□ _This problem can also be solved by the evolutionary approach and mutation operations.

□ _This problem is dependent upon some constraints which are necessary part of the problem.

□ _Various complex problems can also be solved by this technique.

Example

CONSTRAINT PROPAGATION

BACKTRACKING SEARCH:

The term backtracking search is used for depth-first search that chooses values for one variable

at a time and backtracks when a variable has no legal values left to assign.

ADVERSARIAL SEARCH

GAME PLAYING

OPTIMAL DECISION IN GAMES : ALPHA BETA PRUNING:

STOCHASTIC GAMES

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

UNIT II PROBABILISTIC REASONING

Acting Under Uncertainty

 When an agent knows enough facts about its environment, the logical plans and

actions produces a guaranteed work.

 Unfortunately, agents never have access to the whole truth about their environment.

Agents act under uncertainty.

[Without full knowledge about the environment, taking decisions are difficult or it

will go wrong.]

Nature of Uncertain Knowledge

 The Diagnosis: medicine, automobile repair, or whatever is a task that almst always

involves uncertainty.

 Let us try to write rules for dental diagnosis using first-order logic, so that we can see

how the logical approach breaks down. Consider the following rule:

∀𝒑 𝒔𝒚𝒎𝒑𝒕𝒐𝒎(𝒑, 𝑻𝒐𝒐𝒕𝒉𝒂𝒄𝒉𝒆) ⇒ 𝑫𝒊𝒔𝒆𝒂𝒔𝒆(𝒑, 𝑪𝒂𝒗𝒊𝒕𝒚)

 The problem is that this rule is wrong.

 Not all the patients with toothaches have cavities; some of them have gum disease,

swelling, or one of several other problems

∀𝒑 𝑺𝒚𝒎𝒑𝒕𝒐𝒎(𝒑, 𝑻𝒐𝒐𝒕𝒉𝒂𝒄𝒉𝒆)

⇒ 𝑫𝒊𝒔𝒆𝒂𝒆(𝒑, 𝑪𝒂𝒗𝒊𝒕𝒚)˅𝑫𝒊𝒔𝒆𝒂𝒔𝒆(𝒑, 𝑮𝒖𝒎𝑫𝒊𝒔𝒆𝒂𝒔𝒆)˅𝑫𝒊𝒔𝒆𝒂𝒔𝒆(𝒑, 𝑺𝒘𝒆𝒍𝒍𝒊𝒏𝒈) …

 To make the rule true, we have to add almost unlimited list of possible causes.

 We could try a casual rule:

∀𝒑 𝑫𝒊𝒔𝒆𝒂𝒔𝒆(𝒑, 𝑪𝒂𝒗𝒊𝒕𝒚) ⇒ 𝑺𝒚𝒎𝒑𝒕𝒐𝒎(𝒑, 𝑻𝒐𝒐𝒕𝒉𝒂𝒄𝒉𝒆)

 But this rule is also not right either; not all cavities cause pain

 Toothache and a Cavity are unconnected, so the judgement may go wrong.

 This is a type of the medical domain, as well as most other judgmental domains: law,

business, design, automobile repair, gardening, dating, and so on.

 Three main reasons of failures

i. Laziness- we are too much lazy to represent all antecedants/consequents (this

is our inability, we don’t know all the reasons of toothache.)

ii. Theoritical ignorance- there is no complete knowledge(we don’t know the

exact reason/ all the reasons of toothache.

iii. Practical ignorance- not all tests can be run (we cant take all test to determine

the problem)

 The agent take action, only a degree of belief relevant sentences.

 Our main tool for dealing with degrees of belief will be probability theory.

 The Probability assigns to each sentence a numerical degree of belief between 0 and

1.

 Probability theory provides a way of summarizing the uncertainty that come from the

laziness & ignorance.

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

Uncertainty and rational decisions (we have uncertainty but still we want to take rational

decisions)

 Example : Automated taxi

i. Plan 1(𝐴90) – Leave 90 mins early

ii. Plan 2((𝐴180) – Leave 180 mins early

iii. Plan 3(𝐴1440)- Leave 24 hours early

We have to evaluate the plan. Inorder to overcome, I have to evaluate the problem using

utility values (timely arrival, whether my ride was legal, whether the ride was comfortable,

whether it is safe ride)

Based on this we have to make rational decisions. We will leave that decision to decision

theory , it will make the use of probability theory and utility theory. So, preferences will be

given for utility values.

 Preferences, as expressed by utilities, are combined with probabilities in the general

theory of rational decisions called decision theory:

 Decision theory combines the agent’s beliefs and desires, defining the best action as

the one that maximizes expected utility. (i.e, not all the time the utility values are

satisfied, but we have to maximize the expected utilities).

Basic Probability Notation

 Sample space- the set of all possible worlds (one instance is known as possible

world)

For example: two dice are rolled – 36 possible worlds (if I enumerate them I have

(1,1) (1,2…(1,6), (2,1)….(6,6). 6*6 options total 36. These 36 instances are called 36

possible worlds)

 Probability model- associates a numerical probability with each possible world

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

(In this example all events are equally likely, so there is no biasing for any instance,

So we can say that the probability of each event is 1/36. Assigning this probability to a

particular possible world is govern by this probability model)

W is representing one of the possible world, probability of any world will lie between

0 and 1. 0 represent impossible event, 1 represent certain event. So, it is true always for

every w, & the summation of probability of all the possible world will 1. (we have 36 events

each wit probability 1/36 , so summation is 1)

Unconditional Probability/ Prior Probability

 For example, rolling the 2 dices and they add up to 11(which instance will add 11 5

& 6 or 6 & 5. And their probability is 1/36 +1/36 i.e 2/36 1/18)

Conditional Probability/Posterior Probability

 For example, rolling the two dices given that the first die is a 5, (this condition is

imposed here, P(5,6)|𝑑𝑖𝑒1 = 5)

 Mathematically, conditional probability is given by, (find probability of A given B

that is already occurred.

Product rule

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

Random variables – variables in probability theory are called random variables.(we don’t

know the exact occurance of those variables, tat’s why we call them as random variables.)

Domain- Each variable will have domain

(we have our syntax of logical statement inorder to represent our knowledge)

Example: “The probability that the patient has a cavity, given that she is a teenager with no

toothache, is 0.1” as follows:

Probability distribution

 For example, Weather={ sunny, rain, cloudy, snow}

Sometimes we will want to talk about the probabilities of all the possible values of a random

variable. We could write:

but as an abbreviation we will allow,

 Statement P defines a probability distributions for the random variable Weather.

 For a continuous variables, P defines the probability density function(pdf)

Probability axioms

 Relationship between a proposition and its negation

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

Inclusion-exclusion principle

Sum rule

P(A˅B)=P(A) + P(B)

Independent event

P(A|B)= P(A)

So, that we have product rule,

P(A∧B)= P(A|B). P(B)

=P(A). P(B)

So, this is true for independent events.

Full Joint Probability Distribution

 Distributions on multiple variables

 For example,

 Weather= {sunny, rain, cloudy, snow}

 Cavity={ cavity, ¬𝑐𝑎𝑣𝑖𝑡𝑦}

 Joint Probability distribution of Weather & Cavity

Here, Weather & Cavity are the variables. Weather has 4 values & Cavity having 2 values.

What are the possible combination of these variables. Consider (W, C) = 8 combinations.

So, find the probability of distribution on these 2 variables.

One of the instance we have, sunny weather with cavity 7 sunny with no cavity

Similarly, rain with cavity, rain without cavity. So, 4*2=8 combinations possible

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

So, every possible world will have some probability. Some possible world will be more

probable i.e) probability will be more, called joint probability.

When you have multiple variables, probability distribution over multiple variables is known

as joint probability.

And if you enlist all the possible world then it becomes, full joint probability distribution.

 Can be written as a single equation:

Inference Using Full joint Distributions

 To study the method for probabilistic inference. So, how to infer a new fact in case of

uncertainty.

 When you infer a new fact, that fact will have some probability, because uncertainty

is there.

 Given data itself will have a probability

 Consider an instance with three variables

catch (the dentist’s nasty steel probe catches in my tooth).

The table is fully depicting the joint distribution of these three variables.

Toothache has 2 values, Cavity 2 values, Catch 2 values. Total 8 entries

 How to infer the probability of any proposition (new fact).

Here, our new proposition is Cavity or Toothache

Now, what is the probability of Cavity with Toothache we can have OR, we

have only Cavity, only Toothache or both

 direct way to calculate the probability of any proposition, simple or complex:

simply identify those possible worlds in which the proposition is true and add up

their probabilities. For example, there are six possible worlds in which

𝐶𝑎𝑣𝑖𝑡𝑦 ˅ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 holds:

To compute conditional probabilities

 For example, we can compute the probability of a cavity, given evidence of a

toothache, as follows:

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

In order to reduce computation complexity, we can find denominator only once,

because it is repeated.

For that we have a concept of Normalization.

Independence

 Independence between propositions a and b can be written as

 Example, add Weather variable in our previous example

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒, 𝑐𝑎𝑡𝑐ℎ, 𝐶𝑎𝑣𝑖𝑡𝑦, 𝑊𝑒𝑎𝑡ℎ𝑒𝑟)
 To find P(toothache, catch, cavity, cloudy), we use the product rule

 It seems safe to say that the weather does not influence the dental variables.

Therefore, the following assertion seems reasonable

 Thus, the 32-element table for four variables can be constructed from one 8-element

table and one 4-element table.

Bayes’ Rule and its use

 When you have 2 independent events, two forms of product rule

In a task such as medical diagnosis, we often have conditional probabilities on causal

relationships. The doctor knows 𝑃(𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠|𝑑𝑖𝑠𝑒𝑎𝑠𝑒))) and want to derive a diagnosis,

𝑃(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠),

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

Probabilistic Reasoning

Bayesian Network

 Bayesian Network is to represent the dependencies among variables and to give a

brief specification of any full joint probability distribution.

 Bayesian network is a data structure also called as belief network, probabilistic

network, casual network, all knowledge map.

 The extension of Bayesian network is called as a decision network or influence

diagram.

 A Bayesian is a directed graph in which each node is annotated with quantitative

probability information.

 The full specification is a s follows:

 A set of random variables makes up the nodes of the network. Variables may

be discrete or continuous.

 A set of directed links or arrows connects a pairs of nodes. If there is an

arrow from node X to node Y, X is said to be a parent of Y.

 Each node X has a conditional probability distribution P(X,(Parents(X)) that

quantifies the effect of the parents on the node.(X is parent of Y)

 The graph has no directed cycles (and hence is a directed, acyclic graph, or

DAG.)

Example: Simple Bayesian network

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

 Now, consider the example Burglar Alarm

 If a thief or unknown person enter into your compound, then the alarm rings.

 You have installed a new burglar alarm at home.

 It is fairly reliable at detecting a burglary, but also responds on occasion to minor

earthquakes.

 You also have two neighbors, John and Mary, who have promised to call you at work

when they hear the alarm.

 John always calls when he hears the alarm, but sometimes confuses the telephone

ringing with the alarm and calls then, too.

 Mary, on the other hand, likes loud music and sometimes misses the alarm altogether.

 Given the evidence of who has or has not called, we would like to estimate the

probability of a burglary.

 This, is the Bayesian network for our example.

 Each node is having its own conditional probability table CPT,

 And in this diagram, alarm is directly depending on Burglary and Earthquake but John

and Mary are depending on only the Alarm.

 So, in each CPT, they are having letters B Burglary, E Earthquake, S alarm,

J John calls, M Mary calls.

 From the network, the topology shows that

 Burglary and earthquakes directly affect the probability of the alarm,

 But John and Mary call depends on the alarm.

 Our assumptions from the network,

 They do not perceive any burglaries directly,

 They do not notice the minor earthquakes, and

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

 They do not discuss before calling.

 Notice that the burglar alarm network does not have any nodes corresponding to

 Mary is currently listening to loud music or

 The telephone ringing and confusing john

 These factors are summarizing in the uncertainty, associated with the links from

Alarm to JohnCalls and MaryCalls.

 This shows both laziness and ignorance in operation.

Conditional Probability Tables- CPT

 The conditional probability tables in the network give the probabilities for the

values of the random variable depending on the combination of values for the

parent nodes.

 Each row must sum to 1.

 All variables are Boolean, and therefore, the probability of a true value is p, the

probability of false must be 1-p.

 A table for a Boolean variable with k parents contains 2𝑘 independently

specifiable probabilities.

 A variable with no parents has only one row, representing the prior probabilities

of each possible value of the variable.

Semantics of Bayesian Networks

Before that, lets discuss about Joint Probability Distribution

 The full joint probability distribution specifies the probability of values to

random variables.

 It is usually too large to create or use in its explicit form.

 Joint probability distribution of two variables X and Y are

Joint Probabilities X X’

Y 0.20 0.12

Y’ 0.65 1.03

 Joint Probability distribution for n variables require 2𝑛 entries with all possible

combination.(entries also increased & this is the drawback of joint probability)

Drawbacks of joint probability distribution

i. Large number of variables and grows rapidly.

ii. Time and space complexity are huge.

iii. Statistical estimation with probability is difficult.

iv. Human tends signal out few propositions.

v. The alternative to this is Bayesian Networks.

Example:

 We can calculate the probability that the alarm has sounded, but neither a burglary nor

an earthquake has occurred, and both John and Mary call.

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

The Semantics of Bayesian Networks

 An entry in joint distribution is the probability of conjunction of particular assignment

to each variable, such as (here X random variables, x- values to random

variables,𝜋 → 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 & here 𝑥𝑖 is depending on the parent 𝑋𝑖 value)

which is equal to

Method for constructing Bayesian Network

 Rewrite the joint distribution in terms of a conditional probability, using the product

rule

 Then we repeat the process, reducing each conjunctive probability to a conditional

probability and a smaller conjunction. We end up with one big product:

 This identity is called the chain rule. The specification of the joint distribution is

equivalent to the general assertion that, for every variable 𝑋𝑖 in the network,

 We can directly implement this formula into our example

 No need to consider all the other things, because the parent of MaryCalls is Alarm.

So, MaryCalls is the child node of Alarm.

Compactness and node ordering

 The compactness of Bayesian network is an example of general property of locally

constructed systems. (also called as spare systems, inside some components there, and

those are communicated)

 In a locally structured system, each subcomponent interacts directly with only a

bounded number of other components, regardless of the total number of components.

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

 Therefor the correct in which to add node is to add the ‘root causes’ first, then the

variables they influenced and so on until we reach the leaves.

 Suppose, we decide to add the nodes in the order MaryCalls, JohnCalls,Alarm,

Burglary, Earthquake.

 Adding MaryCalls: No parents

 Adding JohnCalls: If Mary calls, the probably means the alarm has gone off, which of

course would make it more likely that John calls. Therfore, johnCalls needs

MaryCalls as a parent.

 Adding Alarm: Clearly, if both call, it is more likely that the alarm has gone off than

if just one or neither call, so we need both MaryCalls and JohnCalls as parents.

 Adding Burglary: If we know the alarm state, then the call from John or Mary might

give us information about our phone ringing or Mary’s music, but not about burglary:

 Hence we need just Alarm as parent.

 Adding Earthquake: If the alarm is on, it is more likely that there has been an

earthquake. But if we know that there has been a burglary, then that explains the

alarm, and the probability of an earthquake would be only slightly above normal.

Hence we need both Alarm and Burglary as parents.

Conditional independence relations in Bayesian networks

i. A node is conditionally independent of its non-descendants, given its parents.

 For example, JohnCalls is independent of Burglary and Earthquake, given the

value of Alarm.

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

MaryCalls

JohnCalls

Alarm

Burglary

Earthquake

ii. A node is conditionally independent of all other nodes in the network, given

its parents, children, and children’s parents- that is, given its Markov blanket.

 For example, Burglary is independent of JohnCalls and MaryCalls, given

Alarm and Earthquake.

Exact Inference in Bayesian Network

 Probabilistic Inference System is to compute Posterior Probability Distribution for a

set of query variables, given some observed events.

 That is, some assignment of values to a set of evidence variables.

Notations

 X denotes the query variable

 E set of evidence variables {𝐸1, … 𝐸𝑚}

 E particular observed event

 Y non-evidence, non-query variables, 𝑌1, … 𝑌𝑛. (called the hidden variables)

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

 The complete set of variables – 𝑿 = {𝑿} 𝙐 𝑬 𝙐 𝒀

 A typical query asks for the Posterior Probability distribution P(X | e)

 In the burglary network, we might observe the event in which

𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠 = 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠 = 𝑡𝑟𝑢𝑒.

 We could then ask for, say, the probability that a burglary has occurred:

Types of Inferences

Inference by Enumeration (inference by listing or recording all variables)

 Any conditional probability can be computed by summing terms from the full joint

distribution.

 More specifically, a query P(X | e) can be answered using equation.

 Where α is normalized constant

 X Query Variable

 e event

 y number of terms

 Burglary query variable (X)

 JohnCalls Evidence variable 1 (E1)

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

 MaryCalls Evidence Variable 2 (E2)

 The hidden variables of this query are earthquake and alarm

 Using initial letter for the variables to shorten the expression we have

 The semantic of Bayesian network give us an expression, in terms of CPT entries, for

simplicity we do this just for Burglary = true

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

Inference by Variable Elimination

 The enumeration algorithm can be improved substantially by elimination repeated

calculations.

 The idea is simple: do the calculation once and solve the result for later use. This is a

form of dynamic programming.

 Variable elimination works by evaluating expressions,

 Previous equation (derived in inference by enumeration)

 From this the repeated variables are separated

 Intermediate results are stored, and summations of each variable are done, for only

those portion of the expression, that depends on the variable.

 Let us illustrate this process for the burglary network.

 We evaluate the expression

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

 We have annotated each part of the expression with the same name of the associated

variable, these parts are called factors

 For example, the factors 𝑓4(𝐴) and 𝑓5(𝐴) corresponding to 𝑃(𝑗 | 𝑎) and 𝑃(𝑚 | 𝑎)
depending just on A because J and M are fixed by the query.

 They are therefore two element vectors.

 Given two factors 𝑓(𝑋, 𝑌) and 𝑔(𝑌, 𝑍) with probability distributions shown below,

the pointwise product 𝑓 × 𝑔 = ℎ(𝑋, 𝑌, 𝑍) has 21+1+1 = 8

Elimination

 Summing out, or eliminating a variable from a factor is done by adding up the sub-

arrays formed by fixing the variable to each of its values in turn.

 For example, to sum out a from ℎ(𝑋, 𝑌, 𝑍), we write:

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

Relevance

𝑃(𝐽|𝑏)

 𝛴𝑚𝑃(𝑚|𝑎) = 1, therefore M is irrelevant for the query.

 In other words, 𝑃(𝐽|𝑏) remains unchanged if we remove M from the network.

Complexity

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

 If we answer whether P(Y=1)>0, then we answer whether 3SAT has a solution.

 By reduction, inference in Bayesian networks is therefore NP-complete.

 There is no known efficient probabilistic inference algorithm in general.

Approximate inference

 Exact inference is intractable for most probabilistic models of practical interest.

e.g) involving many variables, continuous and discrete, undirected cycles, etc.

Sampling Methods

 Basic idea:

 Draw N samples from a sampling distribution S.

 Compute an approximate posterior probability P.

 Show this approximate coverages to the true probability distribution P.

Why sampling

 Generating samples is often much faster than computing the right answer (e.g., with

variable elimination)

Sampling

 How to sample from the distribution of a discrete variable X?

 Assume k discrete outcomes 𝑥1,…𝑥𝑘 with probability P(𝑥𝑖)

 Assume sampling from the uniform 𝑈(0,1) is possible.

e.g) as enabled by a standard r and () function.

 Divide the [0,1] interval into k regions, with region i having size P(𝑥𝑖).

 Sample 𝑢~𝑈(0,1) and return the value associated to the region in which 𝑢 falls.

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

𝑥𝑖
0 P(𝑥𝑖) 1

Prior Sampling

 Sampling from a Bayesian network, without observed evidence.

 Sample each variable in turn, in topological order.

 The probability distribution from which the value is sampled is conditioned on

the values already assigned to the variable’s parents.

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

Analysis

 The probability that prior sampling generates a particular event is

i.e) the Bayesian network’s joint probability

 Let 𝑁𝑃𝑆(𝑥1,..𝑥𝑛) denote the number of samples of an event. We define the probability

estimator

Then,

𝑃 (𝑥1, . . 𝑥𝑛) = 𝑁𝑃𝑆(𝑥1, … 𝑥𝑛)/𝑁

Therefore, prior sampling is consistent:

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

Rejection sampling in Bayesian networks

 Using prior sampling, an estimate 𝑃 (𝑥|𝑒) can be formed from the proportion of

samples 𝑥 agreeing with the evidence 𝑒 among all samples agreeing with the

evidence.

Analysis

 Let consider the posterior probability estimator 𝑃 (𝑋|𝑒) formed by rejection sampling:

 Therefore, rejection sampling is consistent.

 The standard deviation of the error in each probability is 𝑂(1/√𝑛)), where n is the

number of samples used to compute the estimate.

 Problem: many samples are rejected!

 Hopelessly expensive if the evidence is unlikely. i.e if P(e) is small.

 Evidence is not exploited when sampling.

Likelihood weighting

 Idea: clamp the evidence variables, sample the rest.

 Problem: the resulting sampling distribution is not consistent.

 Solution: weight by probability of evidence given parents.

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766 lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

Analysis

 The sampling probability for an event with likelihood weighting is
𝑙

𝑆𝑊𝑆 (𝑥, 𝑒) = ∏ 𝑃(𝑥𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

𝑖=1

 Where the product is over the non-evidence variables. The weight for a given sample

x, e is

𝑚

𝑤(𝑥, 𝑒) = ∏ 𝑃(𝑒𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝐸𝑖))

𝑖=1

 Where the product is over the evidence variables.

 The weighted sampling probability is

𝑙 𝑚

𝑆𝑊𝑆 (𝑥, 𝑒)𝑤(𝑥, 𝑒) = ∏ 𝑃(𝑥𝑖 |𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) ∏ 𝑃(𝑒𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝐸𝑖))
𝑖=1

= 𝑃(𝑥, 𝑒)

𝑖=1

 The estimated posterior probability is computed as follows:

𝑃 (𝑥, 𝑒) = 𝛼𝑁𝑊𝑆(𝑥, 𝑒)𝜔(𝑥, 𝑒)

≈ 𝛼′𝑆𝑊𝑆(𝑥, 𝑒)𝜔(𝑥, 𝑒)

= 𝛼′𝑃(𝑥, 𝑒)

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

= 𝑃(𝑥|𝑒)

 Where 𝛼 and 𝛼′ are normalization constants.

 Hence likelihood weighting returns consistent estimates.

 Likelihood weighting is helpful:

 The evidence is taken into account to generate a sample.

 More samples will reflect the state of the world suggested by the evidence.

 Likelihood weighting does not solve all problems:

 Performance degrades as the number of evidence variable increases.

 The evidence influences the choice of downstream variables, but not upstream

ones.

o Ideally, we would like to consider the evidence when we sample each

and every variable.

Inference by Markov chain simulation

 Markov chain Monte Carlo (MCMC) algorithms are a family of sampling algorithms

that generate samples through a Markov chain.

 They generate a sequence of samples by making random changes to a preceding

sample, instead of generating each sample from scratch.

 Helpful to think of a Bayesian network as being in a particular current state specifying a

value for each variable and generating a next state by making random changes to the

current state.

 Metropolis-Hastings is one of the most famous MCMC methods, of which Gibbs

sampling is a special case.

Gibbs sampling

 Start with an arbitrary instance 𝑥1, … 𝑥𝑛 consistent with the evidence.

 Sample one variable at a time, conditioned on all the rest, but keep the evidence fixed.

 Keep repeating this for a long time.

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766

Downloaded by Viji Jai (nancymeena@gmail.com)

lOMoAR cPSD|20220766

mailto:nancymeena@gmail.com

lOMoAR cPSD|20220766

UNIT IV ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING

Combining multiple learners: Model combination schemes, Voting, Ensemble Learning - bagging, boosting,

stacking, Unsupervised learning: K-means, Instance Based Learning: KNN, Gaussian mixture models and

Expectation maximization

1. Combining multiple learners

• Though different learning algorithms are generally successful, no one single algorithm is always the

most accurate.

• The models composed of multiple learners that complement each other so that by combining them,

we attain higher accuracy.

• Each learning algorithm dictates a certain model that comes with a set of assumptions.

• By suitably combining multiple base learners then, accuracy can be improved.

There are basically two questions here:

1. How do we generate base-learners that complement each other?

2. How do we combine the outputs of base-learners for maximum accuracy?

1.1. Generating Diverse Learners

• Different Algorithms

• We can use different learning algorithms to train different base-learners.

• For example, one base-learner may be parametric and another may be nonparametric.

Different Hyperparameters

• We can use the same learning algorithm but use it with different hyperparameters.

• Examples are the number of hidden units in a multilayer perceptron, k in k-nearest neighbor, error

threshold in decision trees, the kernel function in support vector machines, and so forth.

Different Input Representations

• Separate base-learners may be using different representations of the same input object or event,

making it possible to integrate different types of sensors/measurements/modalities.

• Sensor fusion where the data from different sensors are integrated to extract more information for a

specific application.

• To Combine more sources to find the right set of images; this is also sometimes called

• multi-view learning multi-view learning.

• Even if there is a single input representation, by choosing random subsets

• from it, we can have classifiers using different input features; this is called the random subspace

method.

Different Training Sets

• Another possibility is to train different base-learners by different subsets of the training set.

• This can be done randomly by drawing random training sets from the given sample; this is called

bagging.

• Or, the learners can be trained serially. Examples are boosting and cascading

2. Model Combination Schemes

• There are also different ways the multiple base-learners are combined to generate the final output:

• Multiexpert combination methods have base-learners that work in parallel. These methods can in

turn be divided into two:

lOMoAR cPSD|20220766

• Global Approach : In the global approach, also called learner fusion, given an input, all base-learners

generate an output and all these outputs are used.

• Examples are voting and stacking.

• Local Approach : In the local approach, or learner selection, for example, in mixture of experts, there

is a gating model, which looks at the input and

• chooses one (or very few) of the learners as responsible for generating the output.

• Multistage combination methods use a serial approach where the next combination base-learner is

trained with or tested on only the instances where the previous base-learners are not accurate

enough.

• Let us say that we have L base-learners.

• We denote by dj(x) the prediction of base-learner Mj given the arbitrary dimensional input x.

• In the case of multiple representations, each Mj uses a different input representation

• xj .

• The final prediction is calculated from the predictions of the base-learners:

• where f (·) is the combining function with Φ denoting its parameters.

• When there are K outputs, for each learner there are dji(x), i = 1, . . . , K, j = 1, . . . , L, and, combining

them, we also generate K values, yi, i =1, . . . , K and then for example in classification, we choose the

class with the maximum yi value:

lOMoAR cPSD|20220766

3. Voting

• The simplest way to combine multiple classifiers is by voting, which corresponds

• to taking a linear combination of the learners.

• This is also known as ensembles and linear opinion pools.

• Linear Option Pools : In the simplest case, all learners are given equal weight and we have simple

voting that corresponds to taking an average.

Rules :

• Median rule is more robust to outliers; minimum and maximum rules are pessimistic and optimistic,

respectively.

• With the product rule, each learner has veto power; regardless of the other ones, if one learner has

an output of 0, the overall output goes to 0.

• Note that after the combination rules, yi do not necessarily sum up to 1.

lOMoAR cPSD|20220766

• In weighted sum, dji is the vote of learner j for class Ci and wj is the weight of its vote. Simple voting

is a special case where all voters have equal weight, namely, wj = 1/L.

• Plurality Voting: Plurality voting where the class having the maximum number of votes is the winner.

• When there are two classes, this is majority voting where the winning class gets more than half of the

votes.

• Weighted Voting Scheme : If the voters can also supply the additional information of how much they

vote for each class, then after normalization, these can be used as weights in a weighted voting

scheme.

• In the case of regression, simple or weighted averaging or median can be used to fuse the outputs of

base-regressors.

Bayesian combination model :

• Voting schemes can be seen as approximations under a Bayesian framework with weights

approximating prior model probabilities, and model decisions approximating model-conditional

likelihoods.

• We only choose a subset for which we believe P(Mj) is high, or we can have another Bayesian step

and calculate P(Mj|X), the probability of a model given the sample, and sample high probable

models from this density.

• The independent two class classifiers with success probability higher than 1/2, namely, better than

random guessing, by taking a majority vote, the accuracy increases as the number of voting

classifiers increases.

• Let us assume that dj are iid with expected value E[dj] and variance Var(dj), then when we take a

simple average with wj = 1/L, the expected value and variance of the output are

lOMoAR cPSD|20220766

• We see that the expected value does not change, so the bias does not change.

• But variance, and therefore mean square error, decreases as the number of independent voters, L,

increases.

• The further decrease in variance is possible if the voters are not independent but negatively

correlated.

• The error then decreases if the accompanying increase in bias is not higher.

• Voting has the effect of smoothing in the functional space and can be thought of as a regularizer with

a smoothness assumption on the true function.

• We vote over models with high variance and low bias so that after combination, the bias remains

small and we reduce the variance by averaging.

4. Ensemble Learning

• Ensemble methods are techniques that aim at improving the accuracy of results in models by

combining multiple models instead of using a single model.

• The combined models increase the accuracy of the results significantly.

• This has boosted the popularity of ensemble methods in machine learning.

• Ensemble methods fall into two broad categories, i.e., sequential ensemble techniques and parallel

ensemble techniques.

• Sequential ensemble techniques generate base learners in a sequence, e.g., Adaptive Boosting

(AdaBoost).

• The sequential generation of base learners promotes the dependence between the base learners.

• The performance of the model is then improved by assigning higher weights to previously

misrepresented learners.

• In parallel ensemble techniques, base learners are generated in a parallel format, e.g., random

forest.

• Parallel methods utilize the parallel generation of base learners to encourage independence

between the base learners.

• The independence of base learners significantly reduces the error due to the application of

averages.

lOMoAR cPSD|20220766

5. Bagging:

• Bagging is a voting method whereby base-learners are made different by training them over slightly

different training sets.

• Generating L slightly different samples from a given sample is done by bootstrap, where given a

training set X of size N, we draw N instances randomly from X with replacement.

• It is possible that some instances are drawn more than once and that certain instances

• are not drawn at all.

• The samples are similar because they are all drawn from the same original sample, but they are also

slightly different due to chance.

• The base-learners dj are trained with these L samples Xj .

Unstable algorithm:

• A learning algorithm is an unstable algorithm if small changes in the training set causes a large

difference in the generated learner.

• Bagging - bootstrap aggregating:

o Uses bootstrap to generate L training sets, trains L base-learners using an unstable learning

procedure,

o During testing, takes an average.

• Bagging can be used both for classification and regression.

• Regression - Can take the median instead of the average when combining predictions.

• An algorithm is stable if different runs of the same algorithm on resampled versions of the same

dataset lead to learners with

• high positive correlation.

• Algorithms such as decision trees and multilayer perceptrons are unstable.

• Nearest neighbor is stable, but condensed nearest neighbor is unstable.

• If the original training set is large, then we may want to generate smaller sets of size N’  < N from

them using bootstrap, since otherwise the bootstrap replicates Xj will be

• too similar, and dj will be highly correlated.

lOMoAR cPSD|20220766

6. Boosting:

• In boosting, we try to generate complementary base-learners by training the next learner

• on the mistakes of the previous learners.

• The original boosting algorithm combines three weak learners to generate a strong

• learner.

Weak learner:

o A weak learner has error probability less than 1/2, which makes it better than random

guessing on a two-class problem, and a strong learner has arbitrarily small error probability.

• Given a large training set, we randomly divide it into three.

• We use X1 and train d1. We then take X2 and feed it to d1.

• We take all instances misclassified by d1 and also as many instances on which d1 is correct

• from X2, and these together form the training set of d2.

• We then take X3 and feed it to d1 and d2.

• The instances on which d1 and d2 disagree form the training set of d3.

• During testing, given an instance, we give it to d1 and d2; if they agree, that is the response,

otherwise the response of d3 is taken as the output.

• The overall system has reduced error rate.

• The error rate can arbitrarily be reduced by using systems recursively, that is, a boosting system of

three models used as dj in a higher system.

Disadvantage :

• It requires a very large training sample.

• The sample should be divided into three and furthermore, the second and third classifiers

lOMoAR cPSD|20220766

• are only trained on a subset on which the previous ones.

AdaBoost:

• Adaptive boosting - that uses the same training set over and over and thus need not be large, but

the classifiers should be simple so that they do not overfit.

• AdaBoost can also combine an arbitrary number of base learners, not three.

It works in the following steps:

• Initially, Adaboost selects a training subset randomly.

• It iteratively trains the AdaBoost machine learning model by selecting the training set based on the

accurate prediction of the last training.

• It assigns the higher weight to wrong classified observations so that in the next iteration these

observations will get the high probability for classification.

• Also, It assigns the weight to the trained classifier in each iteration according to the accuracy of the

classifier. The more accurate classifier will get high weight.

• This process iterate until the complete training data fits without any error or until reached to the

specified maximum number of estimators.

• To classify, perform a "vote" across all of the learning algorithms we built.

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

• The success of AdaBoost is due to its property of increasing the margin.

• If the margin increases, the training instances are better separated and an error is less likely.

7. Stacking:

• The steps of Stacking are as follows:

• We use initial training data to train m-number of algorithms.

• Using the output of each algorithm, we create a new training set.

• Using the new training set, we create a meta-model algorithm.

• Using the results of the meta-model, we make the final prediction. The results are combined using

weighted averaging.

lOMoAR cPSD|20220766

• Stacking mainly differ from bagging and boosting on two points. First stacking often considers

heterogeneous weak learners whereas bagging and boosting consider mainly homogeneous weak

learners.

• Second, stacking learns to combine the base models using a meta-model whereas bagging and

boosting combine weak learners following deterministic algorithms.

How stacking works?

• We split the training data into K-folds just like K-fold cross-validation.

• A base model is fitted on the K-1 parts and predictions are made for Kth part.

• We do for each part of the training data.

• The base model is then fitted on the whole train data set to calculate its performance on the test set.

• We repeat the last 3 steps for other base models.

• Predictions from the train set are used as features for the second level model.

• Second level model is used to make a prediction on the test set.

• Data - The Dataset to be used is split into training and testing data into n folds. This is achieved by

repeated n-fold cross-validation, a technique to guarantee the efficient performance of the model.

• Fitting data to base model - Based on the above n-fold data, the first fold is assigned to the base

model, and the output is generated. This is done for all n folds for all the base models.

• Level 1 model - Now that we have the results for the base models, we train the level 1 model.

• Final prediction - Predictions based on the level 1 model are used as the features for the model, and

then they can be tested on the test data for the final results of the stack model

8. Unsupervised Learning:

• Unsupervised Learning Algorithms allow users to perform more complex processing tasks

compared to supervised learning.

• Although, unsupervised learning can be more unpredictable compared with other natural learning

methods.

• Unsupervised learning algorithms include clustering, anomaly detection, neural networks, etc.

Supervised Learning Unsupervised Learning

It uses known and labeled data as input It uses unlabeled data as input

lOMoAR cPSD|20220766

It has a feedback mechanism It has no feedback mechanism

The most commonly used supervised

learning algorithms are:

• Decision tree

• Logistic regression

• Support vector machine

The most commonly used unsupervised

learning algorithms are:

• K-means clustering

• Hierarchical clustering

• Apriori algorithm

9. K-means Clustering:

K-means is a data clustering approach for unsupervised machine learning that can separate unlabeled

data into a predetermined number of disjoint groups of equal variance – clusters – based on their

similarities.

• Step 1: First, we need to provide the number of clusters, K, that need to be generated by this

algorithm.

• Step 2: Next, choose K data points at random and assign each to a cluster. Briefly, categorize the data

based on the number of data points.

• Step 3: The cluster centroids will now be computed.

• Step 4: Iterate the steps below until we find the ideal centroid, which is the assigning of data points

to clusters that do not vary.

• 4.1 The sum of squared distances between data points and centroids would be calculated first.

• 4.2 At this point, we need to allocate each data point to the cluster that is closest to the others

(centroid).

• 4.3 Finally, compute the centroids for the clusters by averaging all of the cluster’s data points.

lOMoAR cPSD|20220766

• K-means implements the Expectation-Maximization strategy to solve the problem.

• Let us say we have an image that is stored with 24 bits/pixel and can have up to 16 million colors.

• Assume we have a color screen with 8 bits/pixel that can display only 256 colors.

• We want to find the best 256 colors among all 16 million colors such that the image using only the

256 colors color quantization in the palette looks as close as possible to the original image. This is

color quantization where we map from high to lower resolution.

• The aim is to map from a continuous space to a discrete space; this process is called vector

quantization.

• If we quantize uniformly, it wastes the colormap by assigning entries to colors not existing in the

image.

• Eg: If the image is a seascape, we expect to see many shades of blue and maybe no red.

• The colormap entries should reflect the original density.

Reference Vectors:

mj – values

xt – pixels

mi - colour map

Codebook vectors:

• Instead of the original data value, we use the closest value we have in the alphabet of reference

vectors. mi are also called codebook vectors or code words, because this is a process of

encoding/decoding.

• Going from xt to i is a process of encoding the data using the codebook of mi, i = 1, . . . , k and, on the

receiving end, generating mi from i is decoding. Quantization also allows compression.

• Eg: 24 bits to 8 bits

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

• We can calculate the principal component, divide its range into k equal intervals, partitioning the

data into k groups, and then take the means of these groups as the initial centers.

• There are also algorithms for adding new centers incrementally or deleting empty leader cluster

ones.

• In leader cluster algorithm, an instance that is far away algorithm from existing centers causes the

creation of a new center at that point

10. Instance Based Learning : KNN

• Instance based learning is a supervised classification learning algorithm that performs operation

after comparing the current instances with the previously trained instances, which have been

stored in memory.

• Its name is derived from the fact that it creates assumption from the training data instances.

• Components of Instance Based Learning Framework

• The framework requires three components: Similarity function, Classification function, and Concept

Description Updater.

lOMoAR cPSD|20220766

• Similarity Function: This computes similarity between a training instance the instances in the CD at a

certain point in time. Similarities are numeric-valued.

• Classification Function: Given a new instance, it gives us the classification for that instance, based on the

values coming from the similarity function, instances in the CD and performance of these instances in

classification so far.

• Concept Description Updater: Maintains record of classification performance and decides which instances

to include in the CD.

Some of the instance-based learning algorithms are :

• K Nearest Neighbor (KNN)

• Self-Organizing Map (SOM)

• Learning Vector Quantization (LVQ)

• Locally Weighted Learning (LWL)

• Case-Based Reasoning

The Nearest Neighbor Classifier

• The most commonly used instance-based classification method is the nearest neighbor method.

• In this method, the nearest k instances to the test instance are determined.

• Then, a simple model is constructed on this set of k nearest neighbors in order to determine the

class label.

o Binary class

o Multi label class

lOMoAR cPSD|20220766

The K-NN working can be explained on the basis of the below algorithm:

Step-1: Select the number K of the neighbors

Step-2: Calculate the Euclidean distance of K number of neighbors

Step-3: Take the K nearest neighbors as per the calculated Euclidean distance.

lOMoAR cPSD|20220766

Step-4: Among these k neighbors, count the number of the data points in each category.

Step-5: Assign the new data points to that category for which the number of the neighbor is maximum.

Step-6: The model is ready.

• Firstly, we will choose the number of neighbors, so we will choose the k=5.

• Next, we will calculate the Euclidean distance between the data points.

• The Euclidean distance is the distance between two points, which we have already studied in

geometry. It can be calculated as:

• By calculating the Euclidean distance we got the nearest neighbors, as three nearest neighbors in

category A and two nearest neighbors in category B.

• Consider the below image:

• As we can see the 3 nearest neighbors are from category A, hence this new data point must belong

to category A.

• Kvalue indicates the count of the nearest neighbors.

• We have to compute distances between test points and trained labels points.

• Updating distance metrics with every iteration is computationally expensive, and so KNN is a lazy

learning algorithm.

• If we proceed with K=3, then we predict that test input belongs to class B, and if we continue with

K=7, then we predict that test input belongs to class A.

Optimal K-Value:

• There are no pre-defined statistical methods to find the most favorable value of K.

lOMoAR cPSD|20220766

• Initialize a random K value and start computing.

• Choosing a small value of K leads to unstable decision boundaries.

• The substantial K value is better for classification as it leads to smoothening the decision

boundaries.

• Derive a plot between error rate and K denoting values in a defined range.

• Then choose the K value as having a minimum error rate.

• Calculating distance: The first step is to calculate the distance between the new point and each

training point. There are various methods for calculating this distance, of which the most commonly

known methods are — Euclidian, Manhattan (for continuous) and Hamming distance (for

categorical).

• Euclidean Distance: Euclidean distance is calculated as the square root of the sum of the squared

differences between a new point (x) and an existing point (y).

• Manhattan Distance: This is the distance between real vectors using the sum of their absolute

difference.

• Hamming Distance: It is used for categorical variables. If the value (x) and the value (y) are the

same, the distance D will be equal to 0 . Otherwise D=1.

11. Gaussian mixture models and Expectation maximization

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

UNIT V NEURAL NETWORKS
Perceptron - Multilayer perceptron, activation functions, network training – gradient descent optimization
– stochastic gradient descent, error backpropagation, from shallow networks to deep networks –Unit
saturation (aka the vanishing gradient problem) – ReLU, hyperparameter tuning, batch normalization,
regularization, dropout.

lOMoAR cPSD|20220766

Perceptron

Whereas a computer generally has one processor, the brain is composed of a very large (1011) number of
processing units, namely, neurons, operating in parallel.
Neurons in the brain have connections, called synapses, to around 104 other neurons, all operating in
parallel.
In a computer, the processor is active and the memory is separate and passive,
but it is believed that in the brain, both the processing and memory are distributed together over the
network;
processing is done by the neurons, and the memory is in the synapses between the neurons.

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

Training a Perceptron

The perceptron defines a hyperplane, and the neural network perceptron is just a way of implementing the
hyperplane.
Given a data sample, the weight values can be calculated offline and then when they are plugged in, the
perceptron can be used to calculate the output values.

Update = LearningFactor ° (DesiredOutput − ActualOutput) ° Input

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

Gradient Descent Optimization:

lOMoAR cPSD|20220766

Error Backpropagation:

lOMoAR cPSD|20220766

The term backpropagation is also used to describe the training of a multilayer perceptron using gradient
descent applied to a sum-of-squares error function.
It is important to recognize that the two stages are distinct. Thus, the first stage, namely the propagation of
errors backwards through the network in order to evaluate derivatives, can be applied to many other kinds
of network and not just the multilayer perceptron.

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

From shallow networks to deep networks :

• A shallow neural network has only one hidden layer between the input and output layers, while a
deep neural network has multiple hidden layers.

• A deep neural network learns to make decisions by processing information through multiple hidden
layers.

• On the other hand, a shallow network is like having just one layer of decision-making, which might
not be enough to capture the complexity of the problem at hand.

• A shallow network might be used for simple tasks like image classification, while a deep network
might be used for more complex tasks like image segmentation or natural language processing.

• For instance, a shallow neural network with a single hidden layer can be used to recognize
handwritten digits from the MNIST dataset.

• The main advantage of a shallow network is that it is computationally less expensive to train, and
can be sufficient for simple tasks.

• However, it may not be powerful enough to capture complex patterns in the data.
• A deep network, on the other hand, can capture more complex patterns in the data and potentially

achieve higher accuracy, but it is more computationally expensive to train and may require more
data to avoid overfitting.

• Additionally, deep networks can be more challenging to design and optimize than shallow networks.

Unit saturation – Vanishing Gradient Problem:

• Neural network models are trained by the optimization algorithm of gradient descent.
• The input training data helps these models learn, and the loss function gauges how accurate the

prediction performance is for each iteration when parameters get updated.
• As training goes, the goal is to reduce the loss function/prediction error by adjusting the parameters

iteratively.

lOMoAR cPSD|20220766

• Specifically, the gradient descent algorithm has a forward step and a backward step, which lets it do
this.

• In forward propagation, input vectors/data move forward through the network using a formula to
compute each neuron in the next layer. The formula consists of input/output, activation function f,
weight W and bias b:

•
• This computation iterates forward until it reaches an output or prediction.
• We then calculate the difference defined by a loss function, e.g., Mean Squared Error MSE, between

the target variable y (in the output layer) and each prediction, y cap:

•
• With this initial evaluation, we go through a backward pass (a.k.a. backpropagation) to adjust the

weights and biases for each neuron in each layer. To update our neural nets, we first calculate the
gradients, which is nothing but the derivatives of the loss function w.r.t. weights and biases. Then
we nudge our algorithm to take a gradient descent step to minimize the loss function (where alpha
is the learning rate):

•
• Two opposite scenarios could happen in this case: the derivative term gets extremely small, i.e.,

approaches zero vs. this term gets extremely large and overflows.
• These issues are referred to as the Vanishing and Exploding Gradients, respectively.
• When you train your model for a while and the performance doesn’t seem to get better, chances are

your model is suffering from either vanishing or exploding gradients.

• Vanishing or exploding gradients – intuition behind the problem Vanishing
• During backpropagation, the calculation of (partial) derivatives/gradients in the weight update

formula follows the Chain Rule, where gradients in earlier layers are the multiplication of gradients
of later layers:

•
• where

•
• As the gradients frequently become SMALLER until they are close to zero, the new model weights

(of the initial layers) will be virtually identical to the old weights without any updates.
• As a result, the gradient descent algorithm never converges to the optimal solution.
• This is known as the problem of vanishing gradients, and it’s one example of unstable behaviors of

neural nets.

• Exploding
• On the contrary, if the gradients get LARGER or even NaN as our backpropagation progresses, we

would end up with exploding gradients having big weight updates, leading to the divergence of the
gradient descent algorithm.

Vanishing

• Simply put, the vanishing gradients issue occurs when we use the Sigmoid or Tanh activation
functions in the hidden layer; these functions squish a large input space into a small space.

• Take the Sigmoid as an example, we have the following p.d.f.:

https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Hyperbolic_functions#Hyperbolic_tangent

lOMoAR cPSD|20220766

• Taking the derivative w.r.t. the parameter x, we get:

and if we visualize the Sigmoid function and its derivative:

Sigmoid
function and its derivative

• We can see that the Sigmoid function squeezes our input space into a range between [0,1], and
when the inputs become fairly small or fairly large, this function saturates at 0 or 1.

• These regions are referred to as ‘saturating regions’, whose derivatives become extremely close to
zero.

• The same applies to the Tanh function that saturates at -1 and 1.
• Suppose that we have inputs that lie in any of the saturating regions, we would essentially have no

gradient values to propagate back, leading to a zero update in earlier layer weights.
• Usually, this is no big of a concern for shallow networks with just a couple of layers, however, when

we add more layers, vanishing gradients in initial layers will result in model training or convergence
failure.

• This is due to the effect of multiplying n of these small numbers to compute gradients of the early
layers in an n-layer network, meaning that the gradient decreases exponentially with n while the
early layers train very slowly and thus the performance of the entire network degrades.

Exploding

• Moving on to the exploding gradients, in a nutshell, this problem is due to the initial
weights assigned to the neural nets creating large losses.

• Big gradient values can accumulate to the point where large parameter updates are observed,
causing gradient descents to oscillate without coming to global minima.

How to identify a vanishing or exploding gradients problem?
Acknowledging that the gradients’ issues are something we need to avoid or fix when they do happen, how
should we know that a model is suffering from vanishing or exploding gradients issues? Following are the
few signs.
Vanishing

• Large changes are observed in parameters of later layers, whereas parameters of earlier layers
change slightly or stay unchanged

• In some cases, weights of earlier layers can become 0 as the training goes

lOMoAR cPSD|20220766

• The model learns slowly and often times, training stops after a few iterations
• Model performance is poor

Exploding
• Contrary to the vanishing scenario, exploding gradients shows itself as unstable, large parameter

changes from batch/iteration to batch/iteration
• Model weights can become NaN very quickly
• Model loss also goes to NaN

Practices to fix a vanishing or exploding gradients problem
With these indicators of the gradients problems in mind, let’s explore the potential remedies to fix them.

• First, we will be focusing on the vanishing scenario: simulating a binary classification network
model that suffers from this issue, and then demonstrating various solutions to fix it

• By the same token, we will be addressing the exploding scenario with a regression network
model later

ReLU:

Activation Functions:

• An activation function is basically just a simple function that transforms its inputs into outputs that
have a certain range.

• There are various types of activation functions that perform this task in a different manner.
• For example, the sigmoid activation function takes input and maps the resulting values in between 0

to 1.
• ReLU stands for rectified linear activation unit and is considered one of the few milestones in the

deep learning revolution.
• It is simple yet really better than its predecessor activation functions such as sigmoid or tanh.

ReLU activation function formula

lOMoAR cPSD|20220766

f(x)=max(0,x)
• ReLU function is its derivative both are monotonic.
• The function returns 0 if it receives any negative input, but for any positive value x, it returns that

value back.
• Thus it gives an output that has a range from 0 to infinity.
• ReLU is used as a default activation function and nowadays and it is the most commonly used

activation function in neural networks, especially in CNNs.
• The model can, therefore, take less time to train or run.
• One more important property that we consider the advantage of using ReLU activation function is

sparsity.
• Since ReLU gives output zero for all negative inputs, it’s likely for any given unit to not activate at all

which causes the network to be sparse.
• ReLU does not face vainishing gradient problem as its slope doesn’t plateau, or “saturate,” when the

input gets large.
• Due to this reason models using ReLU activation function converge faster.
• There are some problems with ReLU activation function such as exploding gradient
• Also, there is a downside for being zero for all negative values and this problem is called “dying

ReLU.”
• A ReLU neuron is “dead” if it’s stuck in the negative side and always outputs 0.
• Because the slope of ReLU in the negative range is also 0, once a neuron gets negative, it’s unlikely

for it to recover.

Hyperparameter tuning:

lOMoAR cPSD|20220766

How to choose a number of hidden layers

• One of the hyperparameters that change the fundamental structure of a neural network is the
number of hidden layers, and we can divide them into 3 situations: 0, 1 or 2, many.

• We don’t need to use the neural network at all if all we need is a linear boundary since the neural
network is for solving complex problems.

• Second, if a data set isn’t linearly separable, then we need a hidden layer.
• And normally, a single hidden layer is sufficient because the amount that a model improves by

adding hidden layers isn’t significant compared to the additional work you need to do.
• So in many simple applications, one or two hidden layers do their job.
• If we are trying to solve a complex problem such as object classification, then we need multiple

hidden layers that apply different modifications to their inputs.

• Finding an appropriate number is critical because too few neurons can lead to underfitting
whereas too many can lead to overfitting plus longer training time.

• Empirically, it’s best to use a number between input and output sizes, and the number changes
based on how complex your problem is.

• If a problem is simple and the input and output relationship is clear, then about ⅔ of the input
size can be a good starting point.

lOMoAR cPSD|20220766

• But if the relationship is complex, the number can vary from the input size to less than twice
the input size.

Batch size, learning rate, epoch

• When batch size increases, each batch naturally becomes similar to the full data set because each
batch starts to contain more observations.

• This means that each batch will not differ too much from others.
• Therefore, its noise will decrease, so it’s logical to use a large learning rate for faster training time.

In contrast, when we use a small batch size, noise increases.
• Thus, we use a small learning rate to offset the noise.
• Empirically, it has been shown that a large batch size could lead to poor generalization. In contrast,

when we use a small batch size, the noise helps a network to escape a local minimum and leads to
higher accuracy.

• It also tends to converge to a reasonable solution faster than a network with large batch size.
• So, in general, a batch size of 32 could be a good starting point, but this number really depends on

your sample size, the complexity of a problem, and your computational environment.
• Therefore, using a grid search could also be appropriate.
• For the learning rate, we usually start with 0.1 or 0.01 or we can use a grid search from 0.1 to 1e-5.
• And when the learning rate is small, you need more iteration to find a minimum point.
• Epochs: Depending on a problem and random initialization, the number of epochs we need for

convergence varies.
• We often set the number of epochs high and use early stopping so that the neural network stops

training when an improvement coming from updating its weights does not pass a threshold.

Batch Normalization:

1. Even after the model has been fully trained such that its training error is small, it exhibits a high
test error rate. This is known as the problem of Overfitting.

2. The training error fails to come down in-spite of several epochs of training. This is known as the
problem of Underfitting.

lOMoAR cPSD|20220766

 Illustration of Underfitting and Overfitting

Types of Normalization:

• Batch normalization is a deep learning approach that has been shown to significantly
improve the efficiency and reliability of neural network models.

• It is particularly useful for training very deep networks, as it can help to reduce the internal
covariate shift that can occur during training.

• Batch normalization is a technique used to improve the performance of a deep learning
network by first removing the batch mean and then splitting it by the batch standard
deviation.

• When applied to a layer, batch normalization multiplies its output by a standard deviation parameter
(gamma) and adds a mean parameter (beta) to it as a secondary trainable parameter.

• The goal of batch normalization is to stabilize the training process and improve the generalization
ability of the model.

• It can also help to reduce the need for careful initialization of the model’s weights and can allow the
use of higher learning rates, which can speed up the training process.

Batch normalization equations
During training, the activations of a layer are normalized for each mini-batch of data using the following
equations:

• Mean: mean = 1/m ∑i=1 to m xi
• Variance: variance = 1/m ∑i=1 to m (xi – mean)^2
• Normalized activations: yi = (xi – mean) / sqrt(variance + ε)
• Scaled and shifted activations: zi = γyi + β, where γ and β have learned parameters

During inference, the activations of a layer are normalized using the mean and variance of the activations
calculated during training, rather than using the mean and variance of the mini-batch:

• Normalized activations: yi = (xi – mean) / sqrt(variance + ε)
• Scaled and shifted activations: zi = γyi + β

lOMoAR cPSD|20220766

lOMoAR cPSD|20220766

Advantages of batch normalization

• Stabilize the training process. Batch normalization can help to reduce the internal covariate
shift that occurs during training, which can improve the stability of the training process and
make it easier to optimize the model.

• Improves generalization. By normalizing the activations of a layer, batch normalization can
help to reduce overfitting and improve the generalization ability of the model.

• Reduces the need for careful initialization. Batch normalization can help reduce the
sensitivity of the model to the initial weights, making it easier to train the model.

• Allows for higher learning rates. Batch normalization can allow the use of higher learning
rates that can speed up the training process.

Dropout Regularization

• When you have training data, if you try to train your model too much, it might overfit, and when you
get the actual test data for making predictions, it will not probably perform well. Dropout
regularization is one technique used to tackle overfitting problems in deep learning.

• DLNs also exhibit a little understood feature called Self Regularization.
• For example for a given amount of Training Set data, if we increase the complexity of the model by

adding additional Hidden Layers for example, then we should start to see overfitting, as per the
arguments that we just presented.

• However, interestingly enough, increased model complexity leads to higher test data classification
accuracy, i.e., the increased complexity somehow self-regularizes the model.

• Hence when using DLN models, it is a good idea to start with a more complex model that the problem
may warrant, and then add Regularization techniques if overfitting is detected.

lOMoAR cPSD|20220766

Some commonly used Regularization techniques include:
• Early Stopping
• L1 Regularization
• L2 Regularization
• Dropout Regularization
• Training Data Augmentation
• Batch Normalization

Training with Drop-Out Layers

• Dropout is a regularization method approximating concurrent training of many neural networks with
various designs.

• During training, some layer outputs are ignored or dropped at random.

• Dropout is an extremely versatile technique that can be applied to most neural network
architectures.

• It is useful especially when your network is very big or when you train for a very long time,
both of which put a network at a higher risk of overfitting.

• To apply dropout, we need to set a retention probability for each layer.
• The retention probability specifies the probability that a unit is not dropped.
• For example, if we set the retention probability to 0.8, the units in that layer have an 80% chance of

remaining active and a 20% chance of being dropped.
• Standard practice is to set the retention probability to 0.5 for hidden layers and to something close

to 1, like 0.8 or 0.9 on the input layer.
• Output layers generally do not apply dropout.
• Dropout is applied by creating a mask for each layer and filling it with values between 0 and 1

generated by a random number generator according to the retention probability.

• We could also fill the mask with random boolean values according to the retention probability.
• Neurons with a corresponding “True” entry are kept while those with a “False” value are discarded.

lOMoAR cPSD|20220766

