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CS3491 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

COURSE OBJECTIVES:
The main objectives of this course are to:
¢ Study about uninformed and Heuristic search techniques.
o Learn techniques for reasoning under uncertainty
e Introduce Machine Learning and supervised learning algorithms
e Study about ensembling and unsupervised learning algorithms
o Learn the basics of deep learning using neural networks

UNIT | PROBLEM SOLVING

Introduction to Al - Al Applications - Problem solving agents — search algorithms — uninformed search strategies
— Heuristic search strategies — Local search and optimization problems — adversarial search — constraint
satisfaction problems (CSP)

UNIT Il PROBABILISTIC REASONING

Acting under uncertainty — Bayesian inference — naive bayes models. Probabilistic reasoning — Bayesian networks
— exact inference in BN — approximate inference in BN — causal networks.

UNIT 11l SUPERVISED LEARNING

Introduction to machine learning — Linear Regression Models: Least squares, single & multiple variables,
Bayesian linear regression, gradient descent, Linear Classification Models: Discriminant function — Probabilistic
discriminative model - Logistic regression, Probabilistic generative model — Naive Bayes, Maximum margin
classifier — Support vector machine, Decision Tree, Random forests

UNIT IV ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING

Combining multiple learners: Model combination schemes, Voting, Ensemble Learning - bagging, boosting,
stacking, Unsupervised learning: K-means, Instance Based Learning: KNN, Gaussian mixture models and
Expectation maximization

UNIT V NEURAL NETWORKS

Perceptron - Multilayer perceptron, activation functions, network training — gradient descent optimization —

stochastic gradient descent, error backpropagation, from shallow networks to deep networks —Unit saturation (aka
the vanishing gradient problem) — ReLU, hyperparameter tuning, batch normalization, regularization, dropout.



ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING
UNIT I
PROBLEM SOLVING

INTRODUCTION

What is artificial intelligence?

Artificial Intelligence is the branch of computer science concerned with making computers
behave like humans.

Major Al textbooks define artificial intelligence as "the study and design of intelligent
agents,” where an intelligent agent is a system that perceives its environment and takes
actions which maximize its chances of success.

John McCarthy, who coined the term in 1956, defines it as "the science and engineering of
making intelligent machines, especially intelligent computer programs.”

The definitions of Al according to some text books are categorized into four approaches
and are summarized in the table below :

Systems that think like humans "The exciting new effort to make computers think ...
machines with minds, in the full and literal sense.”(Haugeland,1985)

Systems that think rationally "The study of mental faculties through the use of computer
models." (Charniak and McDermont,1985)

Systems that act like humans The art of creating machines that performs functions that
require intelligence when performed by people.”(Kurzweil,1990)

Systems that act rationally "Computational intelligence is the study of the design of
intelligent agents."(Poole et al.,1998)

Systems that think like humans Systems that think rationally

“The exciting new effort to make computers think ... | “The study of mental faculties through the use of
machines with minds, in the full and literal | computer models.”

sense.”(Haugeland, 1985) (Charniak and McDermont, 1985)

Systems that act like humans Systems that act rationally

The art of creating machines that perform functions | “Computational intelligence is the study of the
that require intelligence when performed by | design of intelligent agents.”(Poole et al., 1998)
people.”(Kurzweil, 1990)

Four approaches of AI

(@)

Acting humanly : The Turing Test approach
o Test proposed by Alan Turing in 1950
o The computer is asked questions by a human interrogator.

The computer passes the test if a human interrogator, after posing some written questions, cannot tell whether

the written responses come from a person or not. Programming a computer to pass, the computer need to

possess the following capabilities :

o Natural language processing to enable it to communicate successfully in English.

o Knowledge representation to store what it knows or hears

o Automated reasoning to use the stored information to answer questions and to draw new
conclusions.

o Machine learning to adapt to new circumstances and to detect and extrapolate patterns

To pass the complete Turing Test, the computer will need

o Computer vision to perceive the objects, and
o Roboetics to manipulate objects and move about.



(b)Thinking humanly: The cognitive modeling approach
We need to get inside actual working of the human mind:

(a) through introspection — trying to capture our own thoughts as they go by;

(b) through psychological experiments
Allen Newell and Herbert Simon, who developed GPS, the “General Problem Solver” tried to trace the
reasoning steps to trace the thought process of human subjects while solving the same problems.
The interdisciplinary field of cognitive science brings together computer models from AI and experimental
techniques from psychology to try to construct precise and testable theories of the workings of the human mind.

(c) Thinking rationally: The “laws of thought approach”
The Greek philosopher Aristotle was one of the first to attempt to codify “right thinking”, that is irrefutable
reasoning processes. His syllogism provided patterns for argument structures that always yielded correct

conclusions when given correct premises—
for example,
“Ram is student of III year CSE;
All students are good in III year CSE;
Ram is a good student.”

These laws of thought were supposed to govern the operation of the mind; their study initiated a field called

logic.

(d) Acting rationally: The rational agent approach
An agent is something that acts. A rational agent is one that acts so as to achieve the best outcome.

The foundations of Artificial Intelligence
The various disciplines that contributed ideas, viewpoints, and techniques to AT are given below :

Philosophy(428 B.C. — present)
Aristotle (384-322 B.C.) was the first to formulate a precise set of laws governing the rational part of the mind.
He developed an informal system of syllogisms for proper reasoning, which allowed one to generate
conclusions mechanically, given initial premises.

Computer Human Brain
Computational units 1 CPU, 10" gates 10" neurons
Storage units 10" bits RAM 10" neurons
10" bits disk 10" synapses
Cyecle time 10° sec 107 sec
Bandwidth 10" bits/sec 10" bits/sec
Memory updates/sec 10° 10"
Table 1.1 A crude comparison of the raw computational resources available to computers (cirea 2003 ) and
brain. The computer’s numbers have increased by at least by a factor of 10 every few years. The brain’s
numbers have not changed for the last 10, 000 years.

Brains and digital computers perform quite different tasks and have different properties. Table 1.1 shows that
there are 10000 times more neurons in the typical human brain than there are gates in the CPU of a typical high-
end computer. Moore’s Law predicts that the CPU’s gate count will equal the brain’s neuron count around 2020.

Computer agents are not mere programs, but they are expected to have the following attributes also :
(a) operating under autonomous control,

(b) perceiving their environment,

(c) persisting over a prolonged time period,

(d) adapting to change.



Psycology(1879 — present)

The origin of scientific psychology are traced back to the work of German physiologist Hermann von
Helmholtz(1821-1894) and his student Wilhelm Wundt(1832 — 1920)

In 1879, Wundt opened the first laboratory of experimental psychology at the University of Leipzig.

In US, the development of computer modeling led to the creation of the ficld of cognitive science.

The field can be said to have started at the workshop in September 1956 at MIT.

Computer engineering (1940-present)

For artificial intelligence to succeed, we need two things: intelligence and an artifact. The computer has been the
artifact of choice.

AT also owes a debt to the software side of computer science, which has supplied the operating systems,
programming languages, and tools needed to write modern programs

Control theory and Cybernetics (1948-present)
Ktesibios of Alexandria (c. 250 B.C.) built the first self-controlling machine: a water clock with a regulator that
kept the flow of water running through it at a constant, predictable pace.

Modern control theory, especially the branch known as stochastic optimal control, has as its goal the design of
systems that maximize an objective function over time.

Linguistics (1957-present)
Modem linguistics and Al then, were "born" at about the same time, and grew up together, intersecting in a
hybrid field called computational linguistics or natural language processing.

History of Artificial Intelligence

The gestation of artificial intelligence (1943-1955)

There were a number of early examples of work that can be characterized as AL but it was Alan Turing who
first articulated a complete vision of AT in his 1950 article "Computing Machinery and Intelligence.” Therein,
he introduced the Turing test, machine learning, genetic algorithms, and reinforcement learning.

The birth of artificial intelligence (1956)

McCarthy convineed Minsky, Claude Shannon, and Nathaniel Rochester to help him bring together U.S.
researchers interested in automata theory, neural nets, and the study of intelligence. They organized a two-
month workshop at Dartmouth in the summer of 1956. Perhaps the longest-lasting thing to come out of the
workshop was an agreement to adopt McCarthy's new name for the field: artificial intelligence.

Early enthusiasm, great expectations (1952-1969%)

The early years of Al were full of successes-in a limited way.

General Problem Solver (GPS) was a computer program created in 1957 by Herbert Simon and Allen Newell
to build a universal problem solver machine. The order in which the program considered subgoals and possible
actions was similar to that in which humans approached the same problems. Thus, GPS was probably the first
program to embody the "thinking humanly" approach.

At IBM, Nathaniel Rochester and his colleagues produced some of the first Al programs. Herbert Gelernter
(1959) constructed the Geometry Theorem Prover, which was able to prove theorems that many students of
mathematics would find quite tricky.

Lisp was invented by John McCarthy in 1958 while he was at the Massachusetts Institute of Technology (MIT).
In 1963, McCarthy started the AT lab at Stanford.




Tom Evans's ANALOGY program (1968) solved geometric analogy problems that appear in IQ tests, such as
the one in Figure 1.1
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A dose of reality (1966-1973)

From the beginning, Al researchers were not shy about making predictions of their coming successes. The
following statement by Herbert Simon in 1957 1s often quoted:

“It is not my aim fo surprise or shock you-but the simplest way I can summarize is to say that there are now in
the world machines that think, that learn and that create. Moreover, their ability to do these things is going to
increase rapidly until-in a visible future-the range of problems they can handle will be coextensive with the
range to which the human mind has been applied.

Knowledge-based systems: The key to power? (1969-1979)

Dendral was an influential pioneer project in artificial intelligence (AT) of the 1960s, and the computer software
expert system that it produced. Its primary aim was to help organic chemists in identifying unknown organic
molecules, by analyzing their mass spectra and using knowledge of chemistry. It was done at Stanford
University by Edward Feigenbaum, Bruce Buchanan, Joshua Lederberg, and Carl Djerassi.

Al becomes an industry (1980-present)

In 1981, the Japanese announced the "Fifth Generation" project, a 10-year plan to build intelligent computers
running Prolog. Overall, the AI industry boomed from a few million dollars in 1980 to billions of dollars in
1988.

The return of neural networks (1986-present)
Psychologists including David Rumelhart and Geoff Hinton continued the study of neural-net models of
memory.

Al becomes a science (1987-present)

In recent years, approaches based on hidden Markov models (HMMs) have come to dominate the area.
Speech technology and the related field of handwritten character recognition are already making the
transition to widespread industrial and consumer applications.

The Bayesian network formalism was invented to allow efficient representation of, and rigorous reasoning
with, uncertain knowledge.

The emergence of intelligent agents (1995-present)
One of the most important environments for mtelligent agents is the Internet.

APPLICATIONS OF ARTIFICIAL INTELLIGENCE

e Autonomous planning and scheduling:
o A hundred million miles from Earth, NASA's Remote Agent program became the
first on-board autonomous planning program to control the scheduling of
operations for a spacecraft (Jonsson et al., 2000).
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Remote Agent generated plans from high-level goals specified from the ground,
and it monitored the operation of the spacecraft as the plans were executed-
detecting, diagnosing, and recovering from problems as they occurred.

Game playing:

o

IBM's Deep Blue became the first computer program to defeat the world champion
in a chess match when it bested Garry Kasparov by a score of 3.5 to 2.5 in an
exhibition match (Goodman and Keene, 1997).

Autonomous control:

(@]

(@]

The ALVINN computer vision system was trained to steer a car to keep it following
a lane.

It was placed in CMU's NAVLAB computer-controlled minivan and used to
navigate across the United States-for 2850 miles it was in control of steering the
vehicle 98% of the time

Diagnosis:

o

Medical diagnosis programs based on probabilistic analysis have been able to
perform at the level of an expert physician in several areas of medicine.

Logistics Planning:

o

During the Persian Gulf crisis of 1991, U.S. forces deployed a Dynamic Analysis
and Replanning Tool, DART (Cross and Walker, 1994), to do automated logistics
planning and scheduling for transportation.

This involved up to 50,000 vehicles, cargo, and people at a time, and had to account
for starting points, destinations, routes, and conflict resolution among all
parameters.

The Al planning techniques allowed a plan to be generated in hours that would have
taken weeks with older methods.

The Defense Advanced Research Project Agency (DARPA) stated that this single
application more than paid back DARPA's 30-year investment in Al.

Robotics:

o

Many surgeons now use robot assistants in microsurgery. HipNav (DiGioia et al.,
1996) is a system that uses computer vision techniques to create a three dimensional
model of a patient's internal anatomy and then uses robotic control to guide the
insertion of a hip replacement prosthesis.

Language understanding and problem solving:

o

PROVERB (Littman et al., 1999) is a computer program that solves crossword
puzzles better than most humans, using constraints on possible word fillers, a large
database of past puzzles, and a variety of information sources including dictionaries
and online databases such as a list of movies and the actors that appear in them.

Problem-solving agents

A Problem solving agent is a goal-based agent.

It decides what to do by finding sequence of actions that lead to desirable states.

The agent can adopt a goal and aim at satisfying it.

For example where our agent is in the city of Arad, which is in Romania.

The agent has to adopt a goal of getting to Bucharest.

Goal formulation, based on the current situation and the agent's performance measure, is
the first step in problem solving.



The agent's task is to find out which sequence of actions will get to a goal state.

Problem formulation is the process of deciding what actions and states to consider given a
goal.

Example: Route finding problem

On holiday in Romania : currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal: be in Bucharest

Formulate problem:

states: various cities actions: drive between cities
Find solution: sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Goal formulation and problem formulation

A problem is defined by four items:

initial state e.g., "at Arad"

Successor function S(x) = set of action-state pairs

e.g., S(Arad) = {[Arad -> Zerind;Zerind],....}

goal test, can be

explicit, e.g., x = at Bucharest"

path cost (additive)

e.g., sum of distances, number of actions executed, etc.

c(x; a; y) is the step cost, assumed to be >=0

A solution is a sequence of actions leading from the initial state to a goal state.

SEARCH :

An agent with several immediate options of unknown value can decide what to do by
examining different possible sequences of actions that leads to the states of known value,
and then choosing the best sequence.

The process of looking for sequences actions from the current state to reach the goal state
is called search.

The search algorithm takes a problem as input and returns a solution in the form of action
sequence.

Once a solution is found, the execution phase consists of carrying out the recommended
action.

The following shows a simple "formulate, search, execute" design for the agent.

Once solution has been executed, the agent will formulate a new goal.

It first formulates a goal and a problem, searches for a sequence of actions that would solve
a problem, and executes the actions one at a time.

function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action
inputs : percept, a percept
static: seq, an action sequence, initially empty

state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state €< UPDATE-STATE(state, percept)
if seq is empty then do

goal € FORMULATE-GOAL (state)
problem €< FORMULATE-PROBLEM(state, goal)



seq € SEARCHY( problem)
action < FIRST(seq);
seq € REST(seq)

return action

The agent design assumes the Environment is

Static: The entire process carried out without paying attention to changes that might be
occurring in the environment.

Observable : The initial state is known and the agent's sensor detects all aspects that are
relevant to the choice of action

Discrete : With respect to the state of the environment and percepts and actions so that
alternate courses of action can be taken

Deterministic: The next state of the environment is completely determined by the current
state and the actions executed by the agent. Solutions to the problem are single sequence
of actions

An agent carries out its plan with eye closed. This is called an open loop system because
ignoring the percepts breaks the loop between the agent and the environment.

Well-defined problems and solutions

A problem can be formally defined by four components:

The initial state that the agent starts in . The initial state for our agent of example problem
is described by In(Arad)

A Successor Function returns the possible actions available to the agent.

Given a state X, SUCCESSOR-FN(x) returns a set of {action,successor} ordered pairs
where each action is one of the legal actions in state x,and each successor is a state that can
be reached from x by applying the action.

For example, from the state In(Arad),the successor function for the Romania problem
would return

{ [Go(Sibiu),In(Sibiu)],[Go(Timisoara),In(Timisoara)],[Go(Zerind),In(Zerind)] }

State Space: The set of all states reachable from the initial state. The state space forms a
graph in which the nodes are states and the arcs between nodes are actions.

A path in the state space is a sequence of states connected by a sequence of actions.

The goal test determines whether the given state is a goal state.

A path cost function assigns numeric cost to each action.

For the Romania problem the cost of path might be its length in kilometers.

The step cost of taking action a to go from state x to state y is denoted by c(x,a,y). It is
assumed that the step costs are non negative.

A solution to the problem is a path from the initial state to a goal state.

An optimal solution has the lowest path cost among all solutions.
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A simplified Road Map of part of Romania

UNINFORMED SEARCH STRATGES
e Uninformed Search Strategies have no additional information about states beyond that
provided in the problem definition.
e Strategies that know whether one non goal state is "more promising" than another are called
Informed search or heuristic search strategies.
There are five uninformed search strategies as given below.
0 Breadth-first search
0 Uniform-cost search
0 Depth-first search
0 Depth-limited search
0 Iterative deepening search
o Bidirectional Search

Breadth-first search

e Breadth-first search is a simple strategy in which the root node is expanded first, then all
successors of the root node are expanded next, then their successors, and so on.

e In general, all the nodes are expanded at a given depth in the search tree before any nodes
at the next level are expanded.

e Breath-first-search is implemented by calling TREE-SEARCH with an empty fringe that
is a first-in-first-out(FIFO) queue, assuring that the nodes that are visited first will be
expanded first.

e In otherwards, calling TREE-SEARCH (problem,FIFO-QVEVE()) results in breadth-first
search.

e The FIFO queue puts all newly generated successors at the end of the queue, which means
that Shallow nodes are expanded before deeper nodes.



function BREADTH-FIRST-SEARCH( problem) returns a solution, or failure

node +— a node with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «— a FIFO queue with node as the only element
explored < an empty set
loop do
if EMPTY?( frontier) then return failure
node «— POP( frontier) [* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE( problem, node, action)
if child .STATE is not in ezplored or frontier then
if problem.GOAL-TEST(child.STATE) then return SOLUTION( child)
frontier — INSERT(child, frontier)

Figure 3.11  Breadth-first search on a graph.
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Figure 3.12  Breadth-first search on a simple binary tree. At each stage, the node to be
expanded next is indicated by a marker.

Depth Nodes Time Memory
2 110 .11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 10° 1.1 seconds 1 gigabyte
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 104 3.5 years 99 petabytes
16 106 350 years 10 exabytes
Figure 3.13  Time and memory requirements for breadth-first search. The numbers shown
assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node.

UNIFORM-COST SEARCH

e Instead of expanding the shallowest node, uniform-cost search expands the node n with the
lowest path cost.

e Uniform-cost search does not care about the number of steps a path has,but only about their
total cost.

Sibiu to Bucharest.
e The successors of Sibiu are Rimnicu Vilcea and Fagaras, with costs 80 and 99, respectively.



The least-cost node, Rimnicu Vilcea, is expanded next, adding Pitesti with cost 80 +
97=177. The least-cost node is now Fagaras, so it is expanded, adding Bucharest with cost
99+211=310.

Now a goal node has been generated, but uniform-cost search keeps going, choosing Pitesti
for expansion and adding a second path to Bucharest with cost 80+97+101= 278.

Now the algorithm checks to see if this new path is better than the old one; it is, so the old
one is discarded. Bucharest, now with g-cost 278, is selected for expansion and the solution
is returned.

function UNIFORM-COST-SEARCH( problem) returns a solution, or failure

node «+— a node with STATE = problem.INITIAL-STATE, PATH-COST =0
frontier « a priority queue ordered by PATH-COST, with node as the only element
explored «— an empty set
loop do
if EMPTY?( frontier) then return failure
node «— POP( frontier) [* chooses the lowest-cost node in frontier */
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE( problem, node, action)
if child.STATE is not in ezplored or frontier then
frontier «— INSERT(child, frontier)
else if child.STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Figure 3.14  Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition
of an extra check in case a shorter path to a frontier state is discovered. The data structure for
frontier needs to support efficient membership testing, so it should combine the capabilities
of a priority queue and a hash table.

Bucharest

Figure 3.15  Part of the Romania state space, selected to illustrate uniform-cost search.

Depth-first search

Depth-first search always expands DEPTH-FIRST the deepest node in the current frontier
of the search tree.

Depth-first-search always expands the deepest node in the current fringe of the search tree.

The search proceeds immediately to the deepest level of the search tree, where the nodes
have no successors.



As those nodes are expanded, they are dropped from the fringe, so then the search "backs
up" to the next shallowest node that still has unexplored successors.

This strategy can be implemented by TREE-SEARCH with a last-in-first out (LIFO)
queue, also known as a stack.

Depth-first-search has very modest memory requirements.

It needs to store only a single path from the root to a leaf node, along with the remaining
unexpanded sibling nodes for each node on the path.

Once the node has been expanded, it can be removed from the memory, as soon as its
descendants have been fully explored.

For a state space with a branching factor b and maximum depth m, depth first-search
requires storage of only bm + 1 nodes.

Drawback of Depth-first-search

The drawback of depth-first-search is that it can make a wrong choice and get stuck going
down very long(or even infinite) path when a different choice would lead to solution near
the root of the search tree.

For example, depth-first-search will explore the entire left subtree even if node C is a goal
node
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Figure 3.16 Depth-first search on a binary tree. The unexplored region is shown in light
gray. Explored nodes with no descendants in the frontier are removed from memory. Nodes
at depth 3 have no successors and M is the only goal node.

A variant of depth-first search called backtracking BACKTRACKING search uses still less
memory.

Backtracking search facilitates yet another memory-saving (and time-saving) trick: the idea
of generating a successor by modifying the current state description directly rather than
copying it first.

DEPTH-LIMITED-SEARCH

The problem of unbounded trees can be alleviated by supplying depth-first-search with a
pre-determined depth limit I.

That is,nodes at depth | are treated as if they have no successors.
This approach is called depth-limited-search.



The depth limit solves the infinite path problem.

Depth limited search will be nonoptimal if we choose | > d. Its time complexity is O(b ')
and its space complexity is O(bl).

Depth-first-search can be viewed as a special case of depth-limited search with | = 0o
Sometimes, depth limits can be based on knowledge of the problem.

For, example, on the map of Romania there are 20 cities.

Therefore, we know that if there is a solution, it must be of length 19 at the longest, So | =
10 is a possible choice.

However,it can be shown that any city can be reached from any other city in at most 9
steps.

This number known as the diameter of the state space, gives us a better depth limit.
Depth-limited-search can be implemented as a simple modification to the general tree
search algorithm or to the recursive depth-first-search algorithm.

The pseudocode for recursive depth-limited-search is shown.

It can be noted that the above algorithm can terminate with two kinds of failure : the
standard failure value indicates no solution; the cut off value indicates no solution within
the depth limit.

Depth-limited search = depth-first search with depth limit [, returns cut off if any path is
cut off by depth limit

function DEPTH-LIMITED-SEARCH( problem, limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem.INITIAL-STATE), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns a solution, or failure/cutoff
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
else if limit = 0 then return cutoff
else

cutoff_occurred? +— false

for each action in problem.ACTIONS(node.STATE) do
child — CHILD-NODE( problem, node, action)
result «+— RECURSIVE-DLS(child, problem, limit — 1)
if result = cutoff then cutoff_occurred? «— true
else if result # failure then return result

if cutoff_occurred? then return cutoff else return failure

Figure 3.17 A recursive implementation of depth-limited tree search.

The depth-limited search can terminate with two kinds of failure: the standard failure value
indicates no solution; the cutoff value indicates no solution within the depth limit.

Iterative deepening depth-first search

Iterative deepening search (or iterative deepening depth-first search) is a general strategy,
DEEPENING SEARCH often used in combination with depth-first tree search, that finds
the best depth limit.

It does this by gradually increasing the limit—first 0, then 1, then 2, and so on—until a
goal is found.

This will occur when the depth limit reaches d, the depth of the shallowest goal node.
Iterative deepening combines the benefits of depth-first and breadth-first search.



e Like depth-first search, its memory requirements are modest: O(bd) to be precise.

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution, or failure
for depth =0 to oc do
result «— DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result

Figure 3.18  The iterative deepening search algorithm, which repeatedly applies depth-
limited search with increasing limits. It terminates when a solution is found or if the depth-
limited search returns failure, meaning that no solution exists.
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Figure 3.19 Four iterations of iterative deepening search on a binary tree.

Bidirectional Search
e The idea behind bidirectional search is to run two simultaneous searches
e one forward from the initial state and
e other backward from the goal,
e |t stops when the two searches meet in the middle.
« The motivation is that b %2 + b %2 much less than b¢
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Figure 3.20 A schematic view of a bidirectional search that is about to succeed when a
branch from the start node meets a branch from the goal node.

Figure 3.21 compares search strategies in terms of the four evaluation critenia set forth in
Section 3.3.2. This comparison is for tree-search versions. For graph searches, the main
differences are that depth-first search i1s complete for finite state spaces and that the space and
time complexities are bounded by the size of the state space.

Criterion Bre:adth- Uniform- Depth- [?ep_th- Ilcratin_rﬂ Bidirectional
First Cost First Limited  Deepening  (if applicable)
Complete? Yes® Yes®? No No Yes® Yes®?
Time O(b) OpLIe ey oE™) O(b%) O(b%) O(B%/2)
Space O(b%) O(BFLEE) O(bm) O(bE) O(bd) O(542)
Optimal? Yes® Yes MNo No Yes® Yese-d
Figure 3.21  Evaluation of tree-search strategies. b is the branching factor; d is the depth
of the shallowest solution; m is the maximum depth of the search tree; [ is the depth limit.
Superscript caveats are as follows: © complete if b is finite; * complete if step costs > e for
positive e © optimal if step costs are all identical; ¢ if both directions use breadth-first search.




INFORMED (HEURISTIC) SEARCH STRATEGIES

GREEDY BEST — FIRST SEARCH

Greedy best-first search tries to expand the node that is closest to the goal, on the grounds that
this 1s likely to lead to a solution quickly

* Thus. the evaluation function 1s f{n) = h(n)

* E.g. 1n minimizing road distances a heunistic lower bound for distances of cities 1s their straight-line
distance

*» Greedy search ignores the cost of the path that has already been traversed to reach n

* Therefore, the solution given 1s not necessarily optimal

» If repeating states are not detected. greedy best-first search may oscillate forever between two

promising states

Because greedy best-first search can start down an infinite path and never return to try other
possibilities, 1t 1s incomplete

Because of its greediness the search makes choices that can lead to a dead end; then one backs
up in the search tree to the deepest unexpanded node

Greedy best-first search resembles depth-first search in the way it prefers to follow a single
path all the way to the goal, but will back up when 1t hits a dead end

The worst-case time and space complexity is O(b™)

The quality of the heuristic function determines the practical usability of greedy search

L)
GREEDY : Best First Search

Combining the two 1s to follow a single path at a time, but switch paths whenever some competing

path looks more promising than the current one.

Best first search 1s an instance of graph search algorithm in which a node is selected for
expansion based on evaluation function f (n).

The node which 1s the lowest evaluation 1s selected for the explanation because the evaluation
measures distance to the goal.

Best first search can be implemented within general search frame work via a prionity queue, a
data structure that will maintain the fringe in ascending order of f values.

This search algorithm serves as combination of depth first and breadth first search
algorithm. Best first search algorithm is often referred greedy algonithm this 1s because they
quickly attack the most desirable path as soon as its heuristic weight becomes the most
desirable.

For both depth-first and breadth-first search. which node in the search tree will be considered
next only depends on the structure of the tree.

* The rationale in best-first search 1s to expand those paths next that seem the most
“promising”. Making this vague idea of what may be promising precise means defining
heuristics.

Heuristics by means of a heuristic function h that 1s used to estimate the “distance™ of the
current node n to a goal node:

h(n) = estimated cost from node n to a goal node



The definition of h i1s highly application-dependent. In the route-planning domain. for instance, we
could use the straight-line distance to the goal location. For the eight-puzzle. we might use the number
of misplaced tiles.

Concept:

Step 1: Traverse the root node

Step 2: Traverse any neighbour of the root node. that is maintaining a least distance from the root
node and msert them 1n ascending order into the queue.

Step 3: Traverse any neighbour of neighbour of the root node, that 1s maintaining a least distance from
the root node and insert them in ascending order into the queue

Step 4: This process will continue until we are getting the goal node

e OPEN: nodes that have been generated, but have not examined. This 1s organized as a priority
queue.

e CLOSED: nodes that have already been examined. Whenever a new node 1s generated. check
whether 1t has been generated before.

Algorithm
1. OPEN = {initial state}.
2. Loop until a goal 1s found or there are no nodes left in OPEN:
— Pick the best node in OPEN
— Generate 1ts successors
— For each successor:
new—> evaluate 1t add 1t to OPEN. record its parent

generated before — change parent, update successors

[A]

rie ol

Greedy search:

h(n) = cost of the cheapest path from node n to agoal state.
Neither optimal nor complete

* Uniform-cost search:

g(n) = cost of the cheapest path from the initial state to node n.

Optimal and complete, but very inefficient

Advantage:
® [t 1s more efficient than that of BFS and DFS.



e Time complexity of Best first search 1s much less than Breadth first search.

e The Best first search allows us to switch between paths by gaining the benefits of both breadth
first and depth first search. Because, depth first 1s good because a solution can be found without
computing all nodes and Breadth first search 1s good because it does not get trapped in
deadends.

Disadvantages:
Sometimes. 1t covers more distance than our consideration.

A*SEARCH

e A¥* is a comerstone name of many Al systems and has been used since it was developed in
1968 by PeterHart; Nils Nilsson and Bertram Raphael.

e It is the combination of Dijkstra’s algorithm and Best first search. It can be used to solve many
kinds of problems.

e A* search finds the shortest path through a search space to goal state using heunstic function.
This technique finds minimal cost solutions and 1s directed to a goal state called A* search.

e In A¥* the * is written for optimality purpose.

e The A* algorithm combines features of uniform-cost search and pure heuristic search to

efficiently compute optimal solutions.

The A* algorithm also finds the lowest cost path between the start and goal state, where changing

from one state to another requires some cost.

A* requires heuristic function to evaluate the cost of path that passes through the particular state.
This algorithm is complete if the branching factor 1s finite and every action has fixed cost. It can be
defined by following formula.
f (n)=g(n) + h(n)

Where

g(n): The actual cost path from the start state to the current state.

h (n): The estimated cost path from the current state to goal state.

f (n): The cost path from the start state to the goal state.
If h(n) 1s an underestimate of the path costs from node » to a goal node, then f{p) 1s an underestimate of
a path cost of going from a start node to a goal node via p.

Function f*(n):At any node n,it is the actual cost of an optimal path from node s to node n plus the
cost of an optimal path from node n to a goal node.

f*(n)=g*(n)+h*(n)

Where g*(n)=cost of the optimal path 1n the search tree from s to n:
h*(n)=cost of the optimal path in the search tree from n to a goal node:

For the implementation of A* algonithm we will use two arrays namely OPEN and CLOSE.
OPEN: An array which contains the nodes that has been generated but has not been yet examined.
CLOSE: An array which contains the nodes that have been examined.

Algorithm:
1.Create a search graph G.consisting solely of the start node s. Puts on a list called OPEN.



2 Create a list called CLOSED that s initially empty.

3.LOOP: if OPEN 1s empty, exit with failure.

4. Select the first node on OPEN, remove 1t from OPEN and put 1t on CLOSED. Call this node n.

5.If n 1s a goal node exit successfully with the solution obtained by tracing a path along the pointers
fromntosinG.

6.Expand node n. generating the set. M. of its successors and install them as successors of n in G.

7.Establish a pointer to n from those members of M that were not already in G(I .e. not already on
either OPEN or CLOSED). Add these members of M to OPEN . For each member of M that
was already on OPEN or CLOSED,decide whether or not to redirect its pointer to n. For each
member of M already on CLOSED. decide for each of its descendents in G whether or not to
redirect its pointer.

8 Reorder the list OPEN, either according to some scheme or some heuristic merit.

9.Goto LOOP

Example :

Path cost for S-D-G
JS) = g(5) + h(S)
=0+10-=210
fiD)=@0+3)+90 =12
fiG)=(0+3+3)+0 =26
Total path cost = f{S)+f{D)+f{G) = 28

Path cost for S-A-G’

fiS)=0+10 210

fid)=(0+2) + 8 =210
fiG)=(0+2+2)+0 24

Total path cost = f{S)+f{4d)+f(G’) 2 24

* Path 5-A-G 15 chosen = Lowest cost



Fig. 3.4 h’'Underestimates h

(0+4)
Fig. 3.5 h’“Overestimates h

Implementation:

The implementation of A* algorithm 1s 8-puzzle game_

Advantages:

Tt 15 complete and optimal.

It 1s the best one from other techniques.

Tt 15 used to solve very complex problems.

It is optimally efficient, i.e. there is no other optimal algorithm puaranteed to expand fewer
nodes than A*.

Disadvantages:

This algorithm 1s complete 1f the branching factor is finite and every action has fixed cost.

The speed execution of A* search is highly dependant on the accuracy of the heuristic
algorithm that 1s used to compute h (n).

It has complexity problems.

Admissibility
The property that A* always finds an optimal path, 1f one exists, and that the first path found to a goal

15 optimal is called the admissibility of A¥ Admissibility means that, even when the search space 1s

infinite, if solutions exist, a solution will be found and the first path found will be an optimal solution -

a lowest-cost path from a start node to a goal node.

Example heuristic functions:
= Let hl(n) be the straight-line distance to the goal location. This 1s an admissible heunistic, because no

solution path will ever be shorter than the straight-line connection.

Memory-bounded heuristic search

The simplest way to reduce memory requirements for Ax is to adapt the idea of iterative

deepening to the heuristic search context, resulting in the iterative-deepening A* (IDAx)
algorithm.



e The main difference between IDA* and standard iterative deepening is that the cutoff used
is the f-cost (g+h) rather than the depth; at each iteration, the cutoff value is the smallest f-
cost of any node that exceeded the cutoff on the previous iteration.

e Recursive best-first search (RBFS) is a simple recursive algorithm that attempts to mimic
the operation of standard best-first search, but using only linear space.

e RBFS is somewhat more efficient than IDAx, but still suffers from excessive node
regeneration.

e Like Axtree search, RBFS is an optimal algorithm if the heuristic function h(n) is
admissible.

e [IDAx and RBFS suffer from using too little memory.

e Between iterations, IDA# retains only a single number: the current f-cost limit.

e Two algorithms that do this memory reduce are MA* (memory-bounded Ax) and SMAx

(simplified MAx). SMAx

SMA proceeds just like Ax, expanding the best leaf until memory is full.

At this point, it cannot add a new node to the search tree without dropping an old one.

SMAx always drops the worst leaf node—the one with the highest f-value.

Like RBFS, SMAx then backs up the value of the forgotten node to its parent.

To avoid selecting the same node for deletion and expansion, SMAx* expands the newest

best leaf and deletes the oldest worst leaf.

Ca) After expanding Arad, Sibio,
amnd Rimndcn Viloe:a

(b)) After unmwinding back to Sibiw
amnd expanding Fagaras

591 A4S0

(o) After switching back to Rimnicu Vilcea
amnd expandine Pitesti

R

Figure 3 27 Stages in an RBFS search for the shortest route to Bucharest. The f-limit
wvalue for each recursive call is showmn on top of each cument node, and every node is labeled
with its f-cost. (a) The path via Rimmnicu Wilcea is followed until the current best leaf (Pitesti)
has a value that is worse than the best altermative path (Fagaras). (b) The recursion unwinds
and the best leaf wvalue of the forgotten subtree (417) is backed up to Rimnicu Wilcea:; themn
Fagaras is expanded. revealing a best leaf value of 450. {(c) The recursion unwinds and the
best leaf wvalue of the forgottem subtres (450) is backed up to Fagaras; then Rimnicu Vilcea is
expanded. This time, because the best alternative path (through Timisoara) costs at least 447
the expansion continues to Bucharest.

LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS

e Local search algorithms operate using a single current node and generally move only to
neighbors of that node.
Advantages:
(1) they use very little
memory—usually a constant amount; and



(2) they can often find reasonable solutions in large or infinite state spaces

e In addition to finding goals, local search algorithms are useful for solving pure
optimization problems, in which the aim is to find the best state according to an objective
function.

e State-space landscape: A landscape has both “location” and “elevation”.

e |f elevation corresponds to cost, then the aim is to find the lowest valley—a global
minimum;

e if elevation corresponds to an objective function, then the aim is to find the highest
peak—a global maximum.

e A complete local search algorithm always finds a goal if one exists; an optimal algorithm
always finds a global minimum/maximum.

atechve Tuncian
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Figure4.1 A one-dimensional state-space landscape in which elevation comesponds to the
chjective function. The aim is to find the global maximum. Hill-climbing search moddifies
the current state to try to improve it, a5 shown by the armow. The various topographic features
are defined in the text.
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Hill-climbing search:

function HILL-CLIMBING{ problem) returns a state that is a local maximuom

crurrent «— MAKE-NODE] problem INITIAL-STATE)

loop do
neighbor «— a highest-valued successor of current
if meighbor. VALUE < cument. VALUE then retum current STATE
eurrent «— neighbor

Figure 4.2  The hill-climbing search algorithm, which is the most basic local search tech-
nigque. At each step the cumment node is replaced by the best neighbor; in this version, that
means the neighbor with the highest VALUE, but if a heuristic cost estimate k is used, we
would find the neighbor with the lowest f.

The hill-climbing search algorithm (steepest-ascent version) is shown in Figure 4.2.
It is simply a loop that continually moves in the direction of increasing value that is,
uphill.
It terminates when it reaches a “peak” where no neighbor has a higher value.
The algorithm does not maintain a search tree, so the data structure for the current node
need only record the state and the value of the objective function.
To illustrate hill climbing, we will use the 8-queens problem
Local search algorithms typically use a complete-state formulation, where each state has
8 queens on the board, one per column.
The successors of a state are all possible states generated by moving a single queen to
another square in the same column.
The heuristic cost function h is the number of pairs of queens that are attacking each
other, either directly or indirectly.
The global minimum of this function is zero, which occurs only at perfect solutions.
Figure 4.3(a) shows a state with h=17.
The figure also shows the values of all its successors, with the best successors having
h=12.
Hill-climbing algorithms typically choose randomly among the set of best successors if
there is more than one.

» Local maxima: a local maximum is a peak that is higher than each of its

neighboring states but lower than the global maximum.
» Ridges: Ridges result in a sequence of local maxima that is very difficult for
greedy algorithms to navigate.
« Plateaux: a plateau is a flat area of the state-space landscape.
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Figure 4.3  (a) An 8-queens state with heuristic cost estimate h = 17, showing the value of
h for each possible successor obtained by moving a queen within its column. The best moves

are marked. (b) A local minimum in the 8-queens state space; the state has h =1 but every
successor has a higher cost.

Stochastic hill climbing chooses at random from among the uphill moves; the probability
of selection can vary with the steepness of the uphill move.

First-choice hill climbing implements stochastic hill climbing by generating successors
randomly until one is generated that is better than the current state.

Figure 4.4  Illustration of why ridges cause difficulties for hill climbing. The grid of states
(dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local
maxima that are not directly connected to each other. From each local maximum, all the
available actions point downhill.

Simulated annealing

Simulated annealing - To combine hill climbing with a random walk - is such an
algorithm.

In metallurgy, annealing is the process used to temper or harden metals and glass by

heating them to a high temperature and then gradually cooling them, thus allowing the
material to reach a low energy crystalline state.




To explain simulated annealing, we switch our point of view from hill climbing to
gradient descent.

Figure 2.11 shows simulated annealing algorithm.

It is quite similar to hill climbing.

Instead of picking the best move, however,it picks the random move.

If the move improves the situation,it is always accepted.

Otherwise,the algorithm accepts the move with some probability less than 1.

The probability decreases exponentially with the “badness” of the move — the amount E
by which the evaluation is worsened.

Simulated annealing was first used extensively to solve VLSI layout problems in the
early 1980s. It has been applied widely to factory scheduling and other large-scale
optimization tasks

function SIMULATED-ANNEALING( problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature™

current +— MAKE-NODE(problemn . INITIAL-STATE)
fort =1 to oo do

T <« schedule(t)

if T"'=0 then return current

next < a randomly selected successor of current

AFE «— next.VALUE — current.VALUE

if AE > 0 then current «+— next

else current «— next only with probability e2#/T

Figure 4.5 The simulated annealing algorithm, a version of stochastic hill climbing where
some downhill moves are allowed. Downhill moves are accepted readily early in the anneal-
ing schedule and then less often as time goes on. The schedule input determines the value of
the temperature 7T as a function of time.

Local beam search

The local beam search algorithm3 keeps track of k states rather than just one.

It begins with k randomly generated states.

At each step, all the successors of all k states are generated.

If any one is a goal, the algorithm halts.

Otherwise, it selects the k best successors from the complete list and repeats.

In a local beam search, useful information is passed among the parallel search threads.

In its simplest form, local beam search can suffer from a lack of diversity among the k
states where the search is expensive.

A variant called stochastic beam search, analogous to stochastic hill climbing, helps
alleviate this problem.

Instead of choosing the best k from the pool of candidate successors, stochastic beam
search chooses k successors at random, with the probability of choosing a given successor
being an increasing function of its value.

Genetic algorithms

A genetic algorithm (or GA) is a variant of stochastic beam search in which successor
states

are generated by combining two parent states rather than by modifying a single state.

The analogy to natural selection is the same as in stochastic beam search, except that now
we are dealing with sexual rather than asexual reproduction.
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Figure 4.6

The genetic algorithm, illustrated for digit strings repre senting 8-queens states.
The mitial population in (a) is ranked by the fitness function in (b), resulting in pairs for
mating in (c). They produce offspring in (d), which are subject to mutation in (e).

Figure 4.7

The 8-queens states corresponding to the first two parents in Figure 4.6(c) and
the first offspring in Figure 4.6(d). The shaded columns are lost in the crossover step and the
unshaded columns are retained.

e A Genetic algorithm(or GA) is a variant of stochastic beam search in which successor
states are generated by combining two parent states,rather than by modifying a single

state.

e Like beam search, Gas begin with a set of k randomly generated states, called the
population. Each state, or individual,is represented as a string over a finite alphabet —
most commonly, a string of 0s and 1s.

e For example, an 8 8-quuens state must specify the positions of 8 queens,each in acolumn
of 8 squares,and so requires 8 x log2 8 = 24 bits.

probabilities in (b).

e Figure 2.13 describes the algorithm that implements all these steps.

Figure 2.12 shows a population of four 8-digit strings representing 8-queen states.

The production of the next generation of states is shown in Figure 2.12(b) to (e).

In (b) each state is rated by the evaluation function or the fitness function.

In (c),a random choice of two pairs is selected for reproduction, in accordance with the




function GENETIC-ALGORITHM( population, FITNESS-FN) returns an individual
inputs: population, a set of individuals
FITNESS-FN, a function that measures the fitness of an individual

repeat
new_population «— empty set
for i = 1 to SIZE( population) do
z +— RANDOM-SELECTION( population, FITNESS-FN)
y — RANDOM-SELECTION( population, FITNESS-FN)
child — REPRODUCE(z, y)
if (small random probability) then child < MUTATE( child)
add child to new_population
population < new_population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN

function REPRODUCE(z, y) returns an individual
inputs: z, y, parent individuals

n «— LENGTH(z); ¢+ random number from | to n
return APPEND(SUBSTRING(z, 1, ¢), SUBSTRING(y, ¢ + 1, n))

Figure 4.8 A genetic algorithm. The algorithm is the same as the one diagrammed in
Figure 4.6, with one variation: in this more popular version, each mating of two parents
produces only one offspring, not two.

CONSTRAINT SATISFACTION PROBLEMS
A Constraint Satisfaction Problem is characterized by:
o _aset of variables {x1, x2, .., xn},

o _for each variable xi a domain Di with the possible values for that variable, and

0o _a set of constraints, i.e. relations, that are assumed to hold between the values of the
variables. [These relations can be given intentionally, i.e. as a formula, or extensionally, i.e. as a
set, or procedurally, i.e. with an appropriate generating or recognising function.
e We will only consider constraints involving one or two variables.
e The constraint satisfaction problem is to find, for each i from 1 to n, a value in Di for xi
so that all constraints are satisfied.
e A CS problem is usually represented as an undirected graph, called Constraint Graph
where the nodes are the variables and the edges are the binary constraints.
e Unary constraints can be disposed of by just redefining the domains to contain only the
values that satisfy all the unary constraints.
e Higher order constraints are represented by hyperarcs.
¢ In the following we restrict our attention to the case of unary and binary constraints.
e Consistency Based Algorithms use information from the constraints to reduce the search
space as early in the search as it is possible
o _This problem requires a lot of reasoning.

o _Time complexity of the problem is more as concerned to the other problems.

o _This problem can also be solved by the evolutionary approach and mutation operations.

o _This problem is dependent upon some constraints which are necessary part of the problem.
o _Various complex problems can also be solved by this technique.



Example

Variables WA, NT, Q, NSW V,SA T Tm@
Domains D), = | red, green, blue)
Constraints: adjacent regions must have different colors
eg., WA= NT (if the language allows this), or
(WA NT) = | (red, green), (red. blue), (green, red), (green. blue), . . .}

Figure 2.15 (a) Principle states and territories of Australia. Coloring this map can be viewed
as a constraint satisfaction problem. The goal is to assign colors to each region so that no
neighboring regions have the same color.

Constraint graph: nodes are vanables, arcs show constraints

O
®
=2

@

Figure 2.15 (b) The map coloring problem represented as a constraint graph.
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Figure 5.6 The progress of a map<oloring search with forward checking. WA — md
is assigned first: then forward checking deletes ivd from the domains of the neighboring
variables N7 and SA. After Q — green, green is deleted from the domains of N7, §4, and
NSW. After V' blue, blue is deleted from the domains of NS W and SA. leaving SA with
no legal values.

[1  CSP can be viewed as a standard search problem as follows :

| Initial state : the empty assignment {},in which all variables are unassigned.

| Successor function : a value can be assigned fo any unassigned vanable provided that
1t does not conflict with previously assigned variables.

| Goal test : the current assignment 1s complete.

"1 Path cost : a constant cost(E.g.,1) for every step.

] Every solution must be a complete assignment and therefore appears at depth n if there are n

variables.
Depth first search algorithms are popular for CSPs

Varieties of constraints :

(1) Unary constraimnts mvolve a single variable.

Example: SA # green

(11) Binary constraints involve pairs of variables.

Example: SA # WA

(111) Higher order constraints involve 3 or more vanables.

Example: cryptarithmetic puzzles.

(1v) Absolute constraints are the constraints, which rules out a potential solution when they are violated
(v) Preference constraints are the constraints indicating which solutions are preferred

CONSTRAINT PROPAGATION
In regular state-space search, an algorithm can do only one thing: search.

In CSPs there 1s a choice: an algorithm can search (choose a new variable assignment from several
possibilities) or do a specific type of inference called constraint propagation: using the constraints to
reduce the number of legal values for a variable, which in turn can reduce the legal values for another
variable, and so on.

Constramnt propagation may be intertwined with search, or it may be done as a preprocessing step,
before search starts. Sometimes this preprocessing can solve the whole problem, so no search i1s
required at all.

The key 1dea 1s local consistency. If we treat each variable as a node in a and each binary constraint as
an arc, then the process of enforcing local consistency in each part of the graph causes inconsistent
values to be eliminated throughout the graph. There are different types of local consistency, which we
now cover n furn.



So far our search algorithm considers the constraints on a variable only at the time that the

Varable 1s chosen by SELECT-VNASSIGNED-VARIABLE.
JBut by looking at some of the constraints earlier in the search. or even before the search has started. we
can drastically reduce the search space.

Forward checking
O Omne way to make better use of constraints during search is called forward checking.
0 Whenever a variable X 1s assigned. the forward checking process looks at each unas signed

variable Y that is connected to X by a constraint and deletes from Y "s domain any value that is
mnconsistent with the value chosen for X.

1 The following figure chows the progress of a map -coloring search with forward checling.

WA NT o NS ¥ ht T
Initial domains | R GE|RG E|RGE|RGE|RG BE|RG E|RG E
After Wai=red B} CB|RGE|REE|RGE| CGB/RGE
Adfter 0=green | B R EIRGEB B|RGE
after F=bive  |[B E| @ |R RGE

Figure 5.6  The progress of a mapcoloring search with forward checking. WA — md
is assigned first; then forward checking deletes red from the domains of the neighboring
variables N7 and 54, After (J — gieen, green is deleted from the domains of N7, 54, and
NSW. After V' — blue, blue = deleted from the domains of N&W and 54, leaving 54 with
no legal valugs,

Although forward checking detects many inconsistencies, it does not detect all of them.
J Constraint propagation is the general term for propagating the implications of a constraint on one
variable onto other variables.
Node consistency

A single variable (corresponding to a node in the CSP network) is node-consistent if all the values
mn the variable’s domain satisfy the wariable’s unary constraints. For example, in the variant of the
Australia map-coloring problem where South Australians dislike green, the variable SA starts with
domain {red , green, blue}, and we can make it node consistent by eliminating green, leaving SA
with the reduced domain {red , blue} We say that a network is node-consistent if every variable in the
network 1s node-consistent.

Arc Consistency
@ One method of constraint propagation
@ o is to enforce arc consistency
a Stronger than forward checking
a Fast
e Arc refers o a directed arc in the
@ @ constraint graph

@ Consider two nodes in the constraint
graph (e.g., 5A and N5W)
a An arc is consistent it

a For every value x of SA
@ @ There is some value y of NSV that is

consistent with x

@ Examine arcs for consistency in borh

Figure: Auvstralian Territories : ;
directions



K-Consistency
o Can define stranger forms of consistsncy

k-Consistency
A CSP is k-consistent if for any consistent assignment 1o & — 1 variables,
there is a consistent assignment for the k-th variable

@ l-consistency (node consistency)
o Each vanable by itself is consistent (has a non-empty domam)

e 2-consistency (arc consistency)
o 3-consistency (path consistency)
e Any pair of adjacent variables can be extended to a third

Local Search for CSPs

e Local search algonthms gead for many CSPs
@ Use complete-stats formulation

o Value assigned to every variable
a Successor function changes ane value at a time

o Have already seen this
4 Hill cimbing for B-quecns problem (AIMA & 4.3])
a Choose values vsing min-conflicts heurlstic

« Valuo that results in the minimum number of contlicts with other
variades

The key idea of CSP constramnt propagation is local consistency. If we treat each vanable as a node
1n a graph and each binary constraint as an arc, then the process of enforcing local consistency in each
part of the graph causes inconsistent values to be elimimated throughout the graph. There are different
types of local consistency, which we now cover in tum.

The Structure of Problems
Problem Structure

e Cansider ways in which the structurs of the problem’s constraint
graph can help find solutians

o Realworld problems require decamposition Into subproblems

Independent Sub problems

e T is not connected

e Coloning T and colring remaining
nodkes are mdependent subproblems

e Any solution for T combined with any
sclution For remaining nodes sclves the
prablkem

¢ Independent subprobiems correspond to
connected components of the
corstraint graph

NSW

o Sadly, such preblems are rare
Figure: Australon Terrtories



Tree-Structured CSPs

a A =imple case is when the constraint
graph is a tree
Figure: Tree-Structured CSP @ Can be solved in time linear in the
numizer of variables
@ Jrder wariables 5o that each parent

precedes its children
a Wiarking “hackward” apply arc

consistency between child and parent
e Warking “foreard,” assign walues
0.0:610:016 : :
censstent with parent

Figure: Linear crdering

e e & In most cases, CSPs are conmectsd
c i)

The key 1dea 15 local consistency. If we treat each vanable as a node in a graph and each binary
constraimnt as an arc, then the process of enforcing local consistency in each part of the graph causes
mconsistent values to be elmmnated throughout the graph There are different types of local
consistency, which we now cover m turm.

Global constraints

Global constraint i1s one mvolving an arbitrary number of vanables (but not necessanly all variables).
Global constramts occur frequently mn real problems and can be handled by special-purpese algonithms
that are more efficient than the general-purpose methods descnibed so far. For example, the Alldiff
constramt says that all the vanables mvolved mmst have distimct values (as m the cryptanthmete
problem above and Sudoku puzzles below). One simple form of inconsistency detection for Alldiff
constramts works as follows:

1f m variables are nvolved in the constramt, and if they have n possible distinet values altogether,

and m=n, then the constraint cannot be satsfied.

This leads to the following simple algonthm:

First, remove any vanable m the consiramnt that has a singleton domam, and delete that vanable’s value
from the domamns of the remaining vanables.

Pepeat as long as there are singleton vanables. If at any point an empty domain 15 produced or there
are more varables than domain values left, then an mconsistency has been detected.

Eesource constraint

Another mmportant higher-order constraint is the resource constraint, sometimes called the atmost
constramt. For example, in a scheduling problem, let P denote the numbers of personnel assigned to
each of four tasks. The constramnt that no more than 10 personnel are assigned m total 1s wnften as
Atmeost (10.P1.P2.P3 P14, _F).

Instead domains are represented by upper and lower bounds and are managed by bounds
propagation. For example, m an airhine-scheduling problem. let’s suppose there are two flights. F
land F2, for which the planes have capacities 165 and 385, respectively. The imfial domams for the
mumbers of passengers on each flight are then D1=[0, 165] and D2=[0, 385] .

Sudoku example
The popular Sudoku puzzle has mfroduced millhions of people to constramt satisfachon problems,
although they may not recogmize 1t. A Sudoku board consists of 81 squares, some of which are imitially



filled with digits from 1 to 9. The puzzle is to fill in all the remaining squares such that no digit appears
fwice in any row, column. or 3 x3 box (see Figure 6.4). A row, column, or box is called a unit.

The Sudoku puzzles that are pninted in newspapers and puzzle books have the property that there is
exactly one solution. Although some can be tricky to solve by hand taking tens of minutes, even the
hardest Sudoku problems yield to a CSP solver in less than 0.1 second. Sudoku puzzle can be
considered a CSP with 81 vanables, one for each square. We use the vanable names A1 through A9
for the top row (left to right), down to 11 through I9 for the bottom row. The empty squares have the
domain {1, 2,3, 4, 5, 6, 7, 8, 9} and the pre- filled squares have a domain consisting of a single
value. In addition, there are 27 different

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 B 9
A 3 2 6 Al4|813]19[2]1]6|5]7
819 3 5 | 8l9{6/7]3]4]5]18]|2]1
G 1]8 614 cl2]5/1]8[7]6]4]19]3
D 811 219 ol5|4|8]1]3]2]19]7]6
Ey7 8 Ey712]|9]5]6]4)1|3|8
F 6|7 8]2 FL1]3]16]17(9]|8]12]41]5
G 216 915 al3|712]6|8]|9]15]1]4
HI 8 > 3 9 Hi8|1]4]2]5]3]17]|6|9
' 5 | 3 1161915141 [7]3]8]2

(a) (b}
Figore 6.4  (2) A Sudoku puzzle and (b) its solution.

Alldiff constraints: one for cach row, column, and box of 9 squares.

AllGiff (A1, A2, A3, A4, A5, A6, AT, AR, A9)
Alldiff (B1, B2, B3, B, B5, BG, BT, BS. BY)

Allaiff (AL B1,C1, D1, E1. F1,G1,H1.11)
Alldiff{A2.B2,C2, D2, E2, F2,G2. H2.12)

Alldiff (A1, A2, A3, B1. B2, B3.C1,C2.C3)
Alldiff [ A4. A5, A6, B4, B5, B6.C'4.05,C6)

It is interesting to note how far we can go without saying much that is specific to Su-
doku, We do of course have to say that there are 81 vanables, that their domauns are the digits
1 t0 9, and that there are 27 Alldiff constraints. But beyond that, all the strategies—arc con-
sistency, path consistency. elc.—apply generally w all CSPs, not just o Sudoku problems.
Even naked triples s really a strategy for enforcing consistency of Alldif] constraints and
has nothing to do with Sudoku per se, This is the power of the CSP formalism: for each new
problem area, we only need to define the problem in terms of constraints: then the general
constraint-solving mechanisms can take over.



BACKTRACKING SEARCH:

The term backtracking search is used for depth-first search that chooses values for one variable
at a time and backtracks when a variable has no legal values left to assign.

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return BACKTRACK({ }. esp)

function BACKTRACK(assignment, csp) returns a solution, or failure
if assignment is complete then return assignment
var «— SELECT-UNASSIGNED-VARIABLE(csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment then
add {var = value} to assignment
inferences «— INFERENCE( csp, var, value)
if inferences # failure then
add inferences to assignment
result — BACKTRACK(assignment, csp)
if result # failure then
return result
remove { var = value } and inferences from assignment
return failure

| —
Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The al-
gorithm is modeled on the recursive depth-first search of Chapter 3. By varying the functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, we can implement the
general-purpose heuristics discussed in the text. The function INFERENCE can optionally be
used to impose arc-, path-, or k-consistency, as desired. If a value choice leads to failure
(noticed either by INFERENCE or by BACKTRACK), then value assignments (including those
made by INFERENCE) are removed from the current assignment and a new value is tried.




The term backtracking search is used for a depth-first search that chooses values for one variable

at a time and backtracks when a variable has no legal values left to assign. It repeatedly chooses an
unassigned variable, and then tries all values in the domain of that variable in turn, trying to find a
solution. If an inconsistency is detected, then BACKTRACK returns failure, causing the previous call
to try another value. Part of the search tree for the Australia problem is shown in Figure 6.6, where we
have assigned variables in the order WA, NT,Q,.... Because the representation of CSPs is tandardized.,
there is no need to supply BACKTRACKING-SEARCH with a domain-specific initial state, action
function, transition model, or goal test.

Notice that BACKTRACKING-SEARCH keeps only a single representation of a state and
alters that representation rather than creating new ones.

Figure 6.6  Pan of the search tree for the map-coloring problem in Figure 6.1.

It turns out that we can solve CSPs efficiently without such domain-specific knowledge. Instead, we
can add some sophistication to the unspecified functions, using them to address the following
questions:

1. Which variable should be assigned next (SELECT-UNASSIGNED-VARIABLE). and in

what order should its values be tried (ORDER-DOMAIN-VALUES)?

2. What inferences should be performed at each step in the search (INFERENCE)?
3. When the search arrives at an assignment that violates a constraint, can the search avoid repeating
this failure?



ADVERSARIAL SEARCH

GAME PLAYING

There were two reasons that games appeared to be a good domain in which to explore machine
intelligence:

* They provide a structured task in which if 15 very easy to measure success or failure.

* They did not obviously require large amounts of kmowledge. They were thought fo be

solvable by straightforward search from the starting state to a winning position
The first of these reasons remains valid and accounts for confinued interest in the area of game plaving
by machine.
Unfortunately, the second is not true for any but the simplest games.
For example, consider chess.

» The average branching factor is around 35.

* In an average game, each player might make 50 moves.

- So in order to examine the complete game tree, we would have to examine 35'™ positions.
Thus 1t 15 clear that a program that simply does a straight forward search of the game tree will not be
able to select even its first move during the lifetime of its opponent.

Some kinds of heuristic search procedure is necessary to improve the gffectiveness of a search-based
problem-solving program two things can be done:
1. Improve the generate procedure so that only good moves (or paths) are generated.
2. Improve the fest procedure so that the best moves {or paths) will be recognized and
gxplored first
As the number of legal moves available increases, it becomes increasmngly important to apply
heuristics to select only those that have some kind of promise.

The ideal way fo use a search procedure to find a solution fo a problem is to generate moves through
the problem space uniil a goal state is reached.

In the context of game-playing programs a goal state is one in which we win Unforthumately, for
inferesting games such as chess. it is not usually possible, even with a good Plausible- move generator,
to search until a goal state is found.

Static evaluation funcfion

In order to choose the best move, the resulting positions must be compared to discover which is most
advantageous. This is done using a static evaluation function, which uses whatever information it has
to evaluate individual board positions by estimating how likely they are to lead eventually to a win.

A very simple static evaluation function for chess based on piece advantage was proposed by Turing
—simply add the values of black’s pieces (B), the values of white's pieces (W), and then

compute the quotent W/B.
A more sophisticated approach was that taken in Samwel's checkers program in which the static
evaluation function was a linear combination of several simple functions. Thus the complete
evaluation function had the form-

cl x pieceadvantage + ¢2 x advancement + ¢3 x centercontrol



Unfortunately, deciding which moves have contributed to wins and which to losses is not always easy.
Suppose we make a very bad move. but then, because the opponent makes a mistake, we ultimately
win the game. We would not like to give credit for winning to our mistake.

Two important knowledge-based components of a good game-playing program:
® a good plausible-move generator and
® a good static evaluation function.

They must both incorporate a great deal of knowledge about the particular game being played. But
unless these functions are perfect, we also need a search procedure that makes it possible to look ahead
as many moves as possible to see what may occur.

For a simple one-person game or puzzle, the A* algorithm can be used. It can be applied to reason
forward from the current state as far as possible in the time allowed. The heuristic function h' can be
applied at terminal nodes and used to propagate values back up the search graph so that the best next
move can be chosen. But because of their adversanal nature, this procedure i1s inadequate for two-
person games such as chess.

As values are passed back up. different assumptions must be made at levels where the program
chooses the move and at the altemating levels where the opponent chooses. There are several ways
that this can be done. The most commonly used method 1s the minimax procedure.

An altemative approach 1s the B* algorithm which works on both standard problem-solving trees and
on game trees.

MINIMAX SEARCH PROCEDURE

e The minimax search procedure 1s a depth-first. depth-limited search procedure.

e The idea 1s to start at the current position and use the plausible-move generator to generate the set
of possible successor positions.

e Static evaluation function 1s applied to the positions and simply choose the best one. After doing
so, the values are backed up to the starting position to represent the evaluation of 1it.

The starting position is exactly as good for us as the position generated by the best move we can make

next. Here we assume that the static evaluation function returns large values to indicate good situations

for us. so our goal 1s to maximize the value of the static evaluation function of the next board position.

An example of this operation i1s shown in figure 2.1. It assumes a static evaluation functions that

retumns values ranging from -10 to 10, with 10 indicating a win for us, -10 a win for the opponent. and

0 an even match. Since our goal 1s to maximize the value of the heuristic function, we choose to move

to B. Backing B’s value up to A. we can conclude that A’s value 1s 8, since we know we can move to a

position with a value of 8.

B ] [o]
® @ 2

Figure 2.1 One Ply Search

But since we know that the static evaluation function i1s not completely accurate. we would like to
carry the search farther ahead than one ply.

This could be very important. for example, 1n a chess game in which we are in the middle of a piece
exchange. After our move. the situation would appear to be very good. but. if we look one move




ahead. we will see that one of our pieces also gets captured and so the situation 1s not as favorable as 1t
seemed.

¢ Jlook ahead to see what will happen to each of the new same positions at the next move
which will be made by the opponent.

* Instead of applying the static evaluation function to each of the positions that we just generated.
we apply the plausible-move generator, generating a set of successor positions for each
position,

* If we wanted to stop here. at two-ply look ahead. we could apply the static evaluation function

to each of these positions, as shown in figure 2 2.

@/ AN

(2) —6) (=) =2} =) =3

Figure 2 2: Two Ply Search

Maximizing ply

@ (=4)
d Minimizing ply
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Figure 2.3: Backing Up the Values of a Two — Ply Search

But now we must take into account that the opponent gets to choose which successor moves to make
and thus which terminal value should be backed up to the next level.
Suppose we made move B. Then the opponent must choose among moves EF, and G.
The opponent’s goal is to minimize the value of the evalunatiom function. so he or she can be
expected to choose move F. This means that if we make move B, the actual position in which we will
end up one move later 1s very bad for us. This 15 true even though a possible configuration 1s that
represented by node E. which is very good for us. But since at this level we are not the ones to move,
we will not get to choose 1t. Figure 2.3 shows the result of propagating the new values up the tree.
¢ At the level representing the opponent’s choice, the minimum value was chosen and
backed up. At the level representing our choice, the maximum value was chosen.
Once the values from the second ply are backed up. it becomes clear that the correct move for us to
make at the first level, given the information we have awvailable, 1s C, since there 1s nothing the
opponent can do from there to produce a value worse than -2.
Thus process can be repeated for as many ply as time allows, and the more accurate evaluations that are
produced can be used to choose the correct move at the top level
s  The alternation of maximizing at alternate ply when evaluations are being pushed back up
corresponds to the opposing strategies of the two players and gives this method the name

minimax.

Game can be formally defined as a search problem as below:



& 5g: The initial state, which specifies how the game is set up at the stan.

e PLAYER(s]: Dehnes whach player has the move in a state.

ACTIONS(s ): Returns the set of legal moves in a state

e ResuLT(s,a): The transition model, which defines the result of a move

® TERMINAL-TEST(5): A terminal test, which is true when the game is over and false
otherwise. States where the game has ended are called terminal states.

e UTILITY (s, p}: A utility function (also called an objective tunction or payoff function),
defines the final numeric value for a game that ends in terminal state s for a player p. In

Minimax algorithm

function MINIMAX-DECISION(state) returns an action
inputs: stafe, current state in game

return the o in AcTions(state) maximizing MiN-VALUE(RESULT( 2, stafe))

function Max-VALUE(state) returns a utility value
if TERMINAL-TEST(sfate) then return UTILITY( stale)
Ud— —0
for a. sin Successors(state) do v Max(v, Min-VALUE(<))
return v

function MIN-VALUE(state) returns o utility value
if TERMINAL-TEST(state) then return UTILITY( state)
1 = O
for a, sin SUCCESSORS(state) do v MIN(v, MAX-VALUE(s))
returm v

Tvpes of games:

deterministic chance

perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information battleships, bridge, poker, scrabble
blind tictactoe nuclear war

It 1s a straighiforward recursive procedure that relies on two auxihary procedures that are specific to
the game being played:

1. MOVEGEN(Position, Player)-The plausible-move generator, which returms a list of nodes
representing the move that can be made by Player in Positions.

2. STATIC(Position, Player)- The static evaluation function, which returns a number representing the
goodness of position from the standpoint of playerz.



As with any recursive program. a critical issue in the design of the MINIMAX procedure 1s when to
stop the recursion and simply call the static evaluation function. There are a variety of factors that may
mfluence this decision. They include:
¢ Has one side won?
¢  How many ply have we already explored?
¢ How promising is this path?
¢ How much time 1s left?
¢ How stable 1s the configuration?
DEEP-ENOUGH, which is assumed to evaluate all of these factors and to return TRUE if the search
should be stopped at the current level and FAILSE otherwise. Our simple implementation of DEEP-
ENOUGH will take two parameters, Position and Depth. It will ignore its Position parameter and
simply return TRUE if its Depth parameter exceeds a constant cutoff value.
Omne problem that anises i defining MINIMAX as a recursive procedure is that 1t needs to refurn not
one but two regults:
¢ The backed-up value of the path 1t chooses.
® The path itself We return the entire path even though probably only the first element,
representing the best move from the current position, 1s actually needed.
We assume that MINIMAX returns a structure contaiming both results and that we have two functions,
VALUE and PATH, that extract the separate components.
Since we define the MINIMAX procedure as a recwrsive functions, we must also specify how 1t is to
be called mitially. It takes three parameters, a board position, the current depth of the search, and the
player to move. So the initial call to compute the best move from the position CURRENT should be
MINIMAX(CUERRENT. 0. PLAYER-ONE) 1f PLAYER-ONE 15 to move. or
MINIMAX(CURRENT.0 PLAYER-TWO) 1of PLAYER-TWO is to move.

MINIMAX(Position, Depth, Player)
1. If DEEP-ENOUGH(Position, Depth), then return the structure
VALUE=STATIC(Position, Player);
PATH=nil
This mdicated that there 1s no path from this node and that 1ts value 1s that determined by the static
evaluation functions.
2. Otherwise, generate one more ply of the tree by calling the function MOVE-GEN({Position Player)
and setting SUCCESSORS to the list 1t returns.
3. If SUCCESSORS 1is not empty, then there are no moves to be made, so return the same structure
that would have been that would have been returned 1f DEEP-ENOUGH had returned true.
4. If SUCCESSORS 1s not empty, then examine each element in turn and keep track of the best one.
This is done as follows.
Initialize BEST-SCORE to the mintmum value that STATIC can return. It will be updated to reflect
the best score that can be achieved by an element of SUCCESSORS.
For each element SUCC of SUCCESSORS, do the following:
(a) Set RESULT-SUCC TO
MINIMAX{SUCC, Depth+1, '.CI‘P'P’C'SITEl(}"lza.‘_l,rer)]3
This recursive call to MINIMAZX will actually carry out the exploration of SUCC.
(b) Set NEW-VALUE to-VALUE(RESULT-SUCC). This will cause it to reflect the merits of the
position from the opposite perspective from that of the next lower level.



(c)If NEW-VALUE > BEST-SCORE, Then we have found a successor that is better than any that
have been examined so far. Record this by doing the following:
1. Set BEST-SCORE to NEW-VALUE.

1. The best known path 1s now from CURRENT to SUCC and then on to the appropniate path
down from SUCC as determined by the recursive call to MINIMAX. So set BEST-PATH to
the result of attaching SUCC to the front of PATH(RESULT-SUCC).
5. Now that all the successors have been examined. we know the value of Position as well as which
path to take form 1t. So return the structure.

VALUE=BEST-SCORE

PATH=BEST-PATH
When the initial call to MINIMAX returns, the best move from CURRENT is the first element of
PATH.

OPTIMAL DECISION IN GAMES : ALPHA BETA PRUNING:

The MINMAX search procedure is slightly modified to handle both maximizing and minimizing
players. It 1s also necessary to modify the branch and bound strategy to include two bounds, one for
each of the players. This modified strategy 1s called alpha beta pruning.
It requires the maintenance of two threshold values,

e Alpha o : lower bound on the value that a maximizing node may ultimately be assigned

e Beta B : upper bound on the value that a minimizing node may be assigned.

Maximizing ply

Minimizing ply

(3) (5) (-5)
Figure 2.4 An Alpha Cutoff

After examining node F, we know that the opponent 1s guaranteed a score of -5 or less at C (since the
opponent 1s the minimizing player). But we also know that we are guaranteed a score of 3 or greater at
node A which we can achieve if we move to B.

Any other move that produces a score of less than 3 1s worse than the move to B. and we can ignore 1t.
After examining only F we are sure that a move to C 1s worse (it will be <=-5) regardless of the score
of node G. Thus we need not bother to explore node G at all. Of course, cutting out one node may not
appear to justify the expense of keeping track of the limits and checking them. but if we were
exploring this tree to 6 ply. then we would have eliminated not a single node but an entire tree 3 ply
deep.
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Figure 2 3 Alpha and Beta Cutoffs

To see how the two thresholds, alpha and beta can both be used, consider the examiple shown in figure
2.3. In searching this tree the entire sub tree headed by B is searched. and we discowver that at A we can
expect a score of at least 3.

When thas alpha value 1s passed down to F_it will enable us to skip the exploration of L. After K 1s
examined, we see that I 15 guaranteed a maximum score of 0, which means that F 15 guaranteed a
mimimum of 0. But this 1s less than alpha's value of 3, so no more branches of I need to be considered.
The maximizing player already knows not to choose to move to C and then to I since, if that mowve 1s
made, the resulting score will be no better than 0 and a score of 3 can be achieved by moving to B
mstead.

Now let's see how the wvalue of beta can be used. Afier cutting off further exploration of I. J 1s
exammed. vielding a value of 5, which 1s assigned as the value of F (since 1t 1s the maxamum of 5 and
0). This value becomes the value of beta at node C. 1t indicates that C is guaranteed to get a 5 or less.
Now we must expand G. Fust M 1s examined and 1t has a value of 7, which 1s passed back to G as 1is
tentative value. But now 7 1s compared to beta (5). It 1s greater, and the player whose tum 1t 1s at node
C 1is trymng to minimize So this player will not choose G, which would lead to a score of at least 7,
since there 1s an alternative move to F. which will lead to a score of 5. Thus it 1s not necessary to

explore any of the other branches of G.

From this example,
* At maximizing levels. we can rule out a move early if 1t becomes clear that 1ts value will be
less than the current threshold,
¢ At mimimizing levels, search will be termunated if values that are greater than the current
threshold are discovered.
¢  Af maximizing levels, only beta is used to determine whether to cur off the search, and at

mimimizing levels only alpha is used.

AL PHA-BETA SEARCH ALGORITHM
- The problem with minimax search is that the number of game states it has to examine 1s
exponential i the number of moves. Unfortunately we can’t eliminate the exponent, but we

can effectively cut 1t in half The trick is that 1t 15 possible to compute the correct minimax
decision without looking at every node in the game tree.

- Alpha-beta pruning technique 1s applied to a standard munimax tree, it returns the same move
as munimax would, but prunes away branches that cannot possibly influence the final decision.



The outcome is that we can identify the minimax decision without ever evaluating two of the

leaf nodes.

Another way to look at this 1s as a simplification of the formula for MINIMAX VAT UE. Let
the two unevaluated successors of node C in figpure have values x and v and let z be the

minimum of x and v. The value of the root node 1s given by

MINIMAX-VAT UE(root)
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In other words, the value of the root and hence the mimimax decision are independent of the
values of the pruned leaves x and v

Alpha-beta pruning can be applied to trees of any depth, and it 1s ofien possible to prune entire
subtrees rather than just leaves.

The general pninciple 1s this: consider a node n somewhere mn the tree such that Player has a
choice of moving to that node.

MAX //\H
M \/ W

If Player has a better choice m either at the parent node of n or at any choice point further up,
then n will never be reached in actual play. So once we have found out enough about n to reach
this conclusion, we can prune it.

Alpha-beta pruning gets its name from the following two parameters that describe bounds on
the backed-up values that appear anywhere along the path:

a = the value of the best (1.e.. highest-value) choice we have found so far at any choice
point along the path for MAX.
p= the value of the best (i.e.. lowest-value) choice we have found so far at any choice

point along the path for MIN

Alpha-beta search updates the values of a and [ as it goes along and prunes the remaining
branches at a node as soon as the value of the current node 1s known to be worse than the
current a or P value for MAX or MIN respectively.

The effectiveness of alpha-beta pruming i1s highly dependent on the order m which the
successors are examined. For ex. i figure we could not prune any successors of D at all
because the worst successors were generated first. If the third successor had been generated
first, we would have been able to prume the other two. This suggests that it mught be
worthwhile to try to examine first the successors that are likely to be best.

The alpha-beta search algorithm



function ALPHA-BETA-SEARCH(state) returns an action
inputs: state_ current state in game

v + MAX-VALUE(state, —00, +00)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state, a, 3) returns a utility value
inputs: state. current state in game
a, the value of the best altemative for MAX along the path to state
3. the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
v —o0
for a, s 1 SUCCESSORS(state) do
v « MAX(v. MIN-VALUE(s. a. 3))
ifv > /3 then return v
a + MAX(a. V)
refurn v

function MIN-VALUE(state, a. 3) returns a utility value
inputs: state, current state in game
a, the value of the best alternative for MAX along the path to state
/3, the value of the best altemative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
v < +00
for a, s 1 SUCCESSORS(state) do
v + MIN(v, MAX-VALUE(s, a. 3))
ifv < o then return v
3+ MIN(B. V)
return v



STOCHASTI C GAMES
In real life, there are many unpredictable external events that put us into unforeseen situations.

» Many games nurror this unpredictability by including a random element, such as the throwing of dice.

» In this way, they take us a step nearer reality, and 1t 1s worthwhile to see how this affects the decision-
making process.

* Backgammon 1s a typical game that combmes luck and skill. Dice are rolled at the beginmng of a
player’s turn to determine the legal moves. In the backgammon position of figure. for example, whate
has rolled a 6-5. and has four possible moves.

s Although White knows what his or her own legal moves are, White does not know what Black is going
to roll and thus does not know what Black’s legal moves will be.

¢ That means White cannot construct a standard game tree of the sort we saw 1n chess and tic-tac-toe.

* A game tree i backgammon must include chance nodes i addition to MAX and MIN node Chance
nodes are shown as circles in Fig.

¢ The branches leading from each chance node denote the possible dice rolls, and each 1s labeled with the
roll and the chance that it will occur.

Figure: A typical backgammon position. The goal of the game is to move all one’s pieces off the

board.

L8] 1 2 3 4 5 6 F 8 9 10 11 12

25 24 23 22 21 20 19 18 17 16 15 14 13

+ There are 36 ways to roll two dice, each equally likely: but because a 6-5 is the same as a 5-6, there are
only 21 distinct rolls a 1/18 chance each.

» The next step 1s to understand how to make correct decisions.

»  Obwviously, we still want to pick the move that leads to the best position.

* However, the resulting positions do not have definite minimax values.

+ Instead, we can only calculate the expected value, where the expectation is taken owver all the possible
dice rolls that could occur.

This leads us to generalize the mummmax value for deterministic games to an expectimumimax value for

games with chance nodes.

- Terminal nodes and MAX and MIN nodes work exactly the same way as before; chance nodes
are evaluated by taking the weighted average of the values resulting from all possible dice rolls,

that 1s.
EXPECTIMINIMAX(n) =
UTILITY (n) if n 15 a terminal state
Max. € Successors(n) EXPECTIMINIMAX(s) 1fn 15 a MAX node
min.eSuccessors(n) EXPECTIMINIMAX(s) ifn 1s a MIN node

¥ :E5uccessors(n)P(s). EXPECTIMINIMAX(s) if n 1s a chance node

Where the successor function for a chance node n simply augments the state of n with
each possible dice roll to produce each successor s and P(s) 1s the probability that that
dice roll occurs. These equations can be backed up recursively all the way to the root of
the tree, just as in minimax.



Position evaluation in games with chance nodes

- As with mimmimax, the obvious approximation to make with expectiminimax 1s to cut the search
off at some point and apply an evaluation function to each leaf.

- One mught think that evaluation functions for games such as backgammon should be just like
evaluation functions for chess — they just need to give higher scores to better positions.

- But in fact. the presence of chance nodes means that one has to be more careful about what the

evaluation values mean.
Figure: An order preserving transformation on leaf values changes the hest mave.

DICE

- Figure shows what happens: with an evaluation function that assigns values [1.2.3.4] to the
leaves, move Al 1s best; with values [1,20,30.400], move A2 1s best. Hence, the program
behaves totally differently if we make a change in the scale of some evaluation values.

- It turns out that, to avoid this sensitivity, the evaluation function must be a positive linear
transformation of the probability of winning from a position

Complexity of expectiminimax

- If the program knew in advance all the dice rolls that would occur for the rest of the game,
solving a game with dice would be just like solving a game without dice, which minimax does
m O(b™) time. Because expectiminimax is also considering all the possible dice-roll sequences,
it will take O(b™n™), where n is the number of distinct rolls.

- Even if the search depth is limited to some small depth d . the extra cost compared with that of
mimmax makes it unrealistic to consider looking ahead very far in most games of chance.

- In backgammon n is 21 and b is usually around 20, but in some situations can be as high as
4000 for dice rolls that are doubles. Three plies 1s probably all we could manage



UNIT Il PROBABILISTIC REASONING
Acting Under Uncertainty

[1 When an agent knows enough facts about its environment, the logical plans and
actions produces a guaranteed work.

[1 Unfortunately, agents never have access to the whole truth about their environment.
Agents act under uncertainty.
[Without full knowledge about the environment, taking decisions are difficult or it
will go wrong.]

Nature of Uncertain Knowledge

[1 The Diagnosis: medicine, automobile repair, or whatever is a task that almst always
involves uncertainty.

[ Let us try to write rules for dental diagnosis using first-order logic, so that we can see
how the logical approach breaks down. Consider the following rule:

Vp symptom(p, Toothache) = Disease(p, Cavity)

(1 The problem is that this rule is wrong.
[0 Not all the patients with toothaches have cavities; some of them have gum disease,
swelling, or one of several other problems

Vp Symptom(p, Toothache)
= Diseae(p, Cavity)vDisease(p, GumDisease)vDisease(p, Swelling) ...

[1 To make the rule true, we have to add almost unlimited list of possible causes.
[0 We could try a casual rule:

Vp Disease(p, Cavity) = Symptom(p, Toothache)

0 But this rule is also not right either; not all cavities cause pain
[0 Toothache and a Cavity are unconnected, so the judgement may go wrong.
[ This is a type of the medical domain, as well as most other judgmental domains: law,
business, design, automobile repair, gardening, dating, and so on.
(1 Three main reasons of failures
I.  Laziness- we are too much lazy to represent all antecedants/consequents (this
is our inability, we don’t know all the reasons of toothache.)
ii.  Theoritical ignorance- there is no complete knowledge( we don’t know the
exact reason/ all the reasons of toothache.
iii.  Practical ignorance- not all tests can be run (we cant take all test to determine
the problem)
[J The agent take action, only a degree of belief relevant sentences.
) Our main tool for dealing with degrees of belief will be probability theory.
(1 The Probability assigns to each sentence a numerical degree of belief between 0 and
1.
[ Probability theory provides a way of summarizing the uncertainty that come from the
laziness & ignorance.
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Uncertainty and rational decisions (we have uncertainty but still we want to take rational
decisions)

[0 Example : Automated taxi
i. Plan 1(Aqp) — Leave 90 mins early
ii.  Plan 2((A1g0) — Leave 180 mins early
iii.  Plan 3(A1440)- Leave 24 hours early

We have to evaluate the plan. Inorder to overcome, | have to evaluate the problem using
utility values ( timely arrival, whether my ride was legal, whether the ride was comfortable,
whether it is safe ride)

Based on this we have to make rational decisions. We will leave that decision to decision
theory , it will make the use of probability theory and utility theory. So, preferences will be
given for utility values.

[1 Preferences, as expressed by utilities, are combined with probabilities in the general
theory of rational decisions called decision theory:

Decision theory = probability theory + utility theory.

[J Decision theory combines the agent’s beliefs and desires, defining the best action as
the one that maximizes expected utility. (i.e, not all the time the utility values are
satisfied, but we have to maximize the expected utilities).

function DT-AGENT(percept) returns an action
persistent: belief_state, probabilistic beliefs about the current state of the world
action, the agent’s action

update belief state based on action and percept
calculate outcome probabilities for actions,

given action descriptions and current belief_state
select action with highest expected utility

given probabilities of outcomes and utility information
return action

A decision-theoretic agent that selects rational actions.

Basic Probability Notation

[1 Sample space- the set of all possible worlds (one instance is known as possible
world)
For example: two dice are rolled — 36 possible worlds (if | enumerate them | have
(1,1) (1,2...(1,6), (2,1)....(6,6). 6*6 options total 36. These 36 instances are called 36
possible worlds)

U Probability model- associates a numerical probability with each possible world

Downloaded by Viji Jai (nancymeena@gmail.com)


mailto:nancymeena@gmail.com

0 < P(w) < 1 for every w and Z Plw) = 1.

wel)

(In this example all events are equally likely, so there is no biasing for any instance,
So we can say that the probability of each event is 1/36. Assigning this probability to a
particular possible world is govern by this probability model)

W is representing one of the possible world, probability of any world will lie between
0 and 1. OCrepresent impossible event, 1[represent certain event. So, it is true always for
every w, & the summation of probability of all the possible world will 1. (we have 36 events
each wit probability 1/36 , so summation is 1)

Unconditional Probability/ Prior Probability

[0 For example, rolling the 2 dices and they add up to 11( which instance will add 1115
& 6 or 6 & 5. And their probability is 1/36 +1/36 i.e 2/36] 1/18)

P(Total = 11) = P((5,6)) + P((6,5)) = 1/36 + 1/36 = 1/18.

Conditional Probability/Posterior Probability

[0 For example, rolling the two dices given that the first die is a 5, (this condition is
imposed here, P(5,6)|die; = 5)

. P (doubles |Die, = 5)

[0 Mathematically, conditional probability is given by, (find probability of A given B
that is already occurred.

P(a|b) = ————

which holds whenever P(b) > 0. For example,

P(doubles N\ Die; = 5)

P(doubles | Die; = 5) = P(Dier = 5)

Product rule

P(a Ab) = P(a|b)P(b).
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Random variables — variables in probability theory are called random variables.(we don’t
know the exact occurance of those variables, tat’s why we call them as random variables.)

Domain- Each variable will have domain
(we have our syntax of logical statement inorder to represent our knowledge)

Example: “The probability that the patient has a cavity, given that she is a teenager with no
toothache, is 0.1 as follows:

P(cavity | -toothache A teen) = 0.1.

Probability distribution

[1 For example, Weather={ sunny, rain, cloudy, snow}

Sometimes we will want to talk about the probabilities of all the possible values of a random
variable. We could write:

P(Weather = sun) = 0.6
P(Weather = rain) = 0.1
P(Weather = cloud) = 0.29
P(Weather = snow) = 0.01,

but as an abbreviation we will allow,

P(Weather) = (0.6,0.1,0.29,0.01) ,

[1 Statement P defines a probability distributions for the random variable Weather.
0 For a continuous variables, P defines the probability density function(pdf)

Probability axioms

[1 Relationship between a proposition and its negation

P(-a) =

£

) + Zwéa‘ P(w) - Zwéa P(w)
W) = D peq P(W)

&
m
)
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Inclusion-exclusion principle

P(a V b) = P(a) + P(b) — P(a A b).

Sum rule
P(AVB)=P(A) + P(B)
Independent event

P(A[B)=P(A)

So, that we have product rule,
P(AAB)=P(A|B). P(B)
=P(A). P(B)

So, this is true for independent events.

Full Joint Probability Distribution

[ Distributions on multiple variables
(1 For example,
[0 Weather= {sunny, rain, cloudy, snow}
[0 Cavity={ cavity, -cavity}
1 Joint Probability distribution of Weather & Cavity
P(W = sun A C = true) = P (W = sun|C = true) P (C = true)
P (W = rain A C = true) = P (W = rain|C = true) P (C = true)
P (W = cloud N\ C = true) = P (W = cloud|C = true) P (C = true)
P (W = snow A C = true) = P (W = snow|C = true) P (C = true)
P(W = sun A C = false) = P(W = sun|C = false) P (C = false)
P (W =rain A C = false) = P(W = rain|C = false) P (C = false)
P (W = cloud A\ C = false) = P (W = cloud|C = false) P (C = false)
P (W = snow A C = false) = P (W = snow|C = false) P (C = false).

Here, Weather & Cavity are the variables. Weather has 4 values & Cavity having 2 values.
What are the possible combination of these variables. Consider (W, C) = 8 combinations.

So, find the probability of distribution on these 2 variables.
One of the instance we have, sunny weather with cavity 7 sunny with no cavity

Similarly, rain with cavity, rain without cavity. So, 4*2=8 combinations possible
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So, every possible world will have some probability. Some possible world will be more
probable i.e) probability will be more, called joint probability.

When you have multiple variables, probability distribution over multiple variables is known
as joint probability.

And if you enlist all the possible world then it becomes, full joint probability distribution.

(1 Can be written as a single equation:

P(Weather, Cavity) = P(Weather | Cavity)P(Cavity) ,

Inference Using Full joint Distributions

[ To study the method for probabilistic inference. So, how to infer a new fact in case of
uncertainty.

[0 When you infer a new fact, that fact will have some probability, because uncertainty
is there.

[1 Given data itself will have a probability

[1 Consider an instance with three variables

toothache —toothache
catch —catch catch =catch
cavity 0.108 0.012 0.072 0.008
—cavity 0.016 0.064 0.144 0.576

A full joint distribution for the T'oothache, Cavity, Catch world.

catch (the dentist’s nasty steel probe catches in my tooth).
The table is fully depicting the joint distribution of these three variables.
Toothache has 2 values, Cavity 2 values, Catch 2 values. Total 8 entries

[1 How to infer the probability of any proposition (new fact).
Here, our new proposition is Cavity or Toothache
Now, what is the probability of Cavity with Toothachel] we can have OR, we
have only Cavity, only Toothache or both

(1 direct way to calculate the probability of any proposition, simple or complex:
simply identify those possible worlds in which the proposition is true and add up
their probabilities. For example, there are six possible worlds in which
Cavity v toothache holds:

P(cavity V toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28.

To compute conditional probabilities

(1 For example, we can compute the probability of a cavity, given evidence of a
toothache, as follows:
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P(cavity A toothache)
P(toothache)
0.108 + 0.012
~ 0.108 + 0.012 + 0.016 + 0.064

P(cavity | toothache) =

0.6.

Just to check, we can also compute the probability that there is no cavity, given a toothache:

P(—cavity A toothache)
P(toothache)

0.016 + 0.064 B
0.108 + 0.012 + 0.016 + 0.064

P(—cavity | toothache) =

0.4.

In order to reduce computation complexity, we can find denominator only once,
because it is repeated.
For that we have a concept of Normalization.

The two values sum to 1.0, as they should. Notice that the term P(toothache) is in the
denominator for both of these calculations. If the variable Clavity had more than two values,
it would be in the denominator for all of them. In fact, it can be viewed as a normalization
constant for the distribution P(Cavity | toothache), ensuring that it adds up to 1. Throughout
the chapters dealing with probability, we use a to denote such constants. With this notation,

we can write the two preceding equations in one:

P (Cavity|toothache) = aP (Cavity, toothache)
= a [P (Cavity, toothache, catch) + P (Cavity, toothache, —catch))
= [(0.108,0.016) + (0.012,0.064)] = a (0.12,0.08) = (0.6,0.4) .

In other words, we can calculate P(Cavity | toothache) even if we don’t know the value of
P(toothache)! We temporarily forget about the factor 1/P(toothache) and add up the values
for cavity and —cavity, getting 0.12 and 0.08. Those are the correct relative proportions, but
they don’t sum to 1, so we normalize them by dividing each one by 0.12 + 0.08, getting the
true probabilities of 0.6 and 0.4. Normalization turns out to be a useful shortcut in many
probability calculations, both to make the computation easier and to allow us to proceed
when some probability assessment (such as P(toothache)) is not available.

Independence

0 Independence between propositions a and b can be written as
P(a|b) = P(a) or P(bla)=P(b) or P(aAb)= P(a)P(d).

[1 Example, add Weather variable in our previous example
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P(toothache, catch, Cavity, Weather)
(1 To find P(toothache, catch, cavity, cloudy), we use the product rule

P(toothache, catch, cavity, cloud)

= P(cloud | toothache, catch, cavity) P(toothache, catch, cavity).

[1 It seems safe to say that the weather does not influence the dental variables.
Therefore, the following assertion seems reasonable

P(cloud | toothache, catch, cavity) = P(cloud).
From this, we can deduce

P(toothache, catch, cavity, cloud) = P(cloud)P(toothache, catch, cavity).

[J Thus, the 32-element table for four variables can be constructed from one 8-element
table and one 4-element table.

Bayes’ Rule and its use

(1 When you have 2 independent events, two forms of product rule
P(a Ab) = P(a|b)P(b) and P(anb) = P(b|a)P(a).

Equating the two right-hand sides and dividing by P(a), we get

P(a|b)P(b)

P(bla) = 5

This equation is known as Bayes' rule (also Bayes’ law or Bayes’ theorem). This simple

equation underlies most modern Al systems for probabilistic inference.

In a task such as medical diagnosis, we often have conditional probabilities on causal
relationships. The doctor knows P(symptoms|disease)) ) and want to derive a diagnosis,

P(disease|symptoms),
For example, a doctor knows that the disease meningitis causes a patient to have a stiff neck,
say, 70% of the time. The doctor also knows some unconditional facts: the prior probability
that any patient has meningitis is 1/50,000, and the prior probability that any patient has a

stiff neck is 1%. Letting s be the proposition that the patient has a stiff neck and m be the

proposition that the patient has meningitis, we have
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P(s|m) = 0.7
P(m) = 1/50000
P(s) = 0.01
P(s|m)P(m) 0.7 x 1/50000

B )= P(s) - 0.01

= 0.0014.

That is, we expect only 0.14% of patients with a stiff neck to have meningitis. Notice that
even though a stiff neck is quite strongly indicated by meningitis (with probability 0.7), the
probability of meningitis in patients with stiff necks remains small. This is because the prior

probability of stiff necks (from any cause) is much higher than the prior for meningitis.

Probabilistic Reasoning
Bayesian Network

(1 Bayesian Network is to represent the dependencies among variables and to give a
brief specification of any full joint probability distribution.
(] Bayesian network is a data structure also called as belief network, probabilistic
network, casual network, all knowledge map.
(1 The extension of Bayesian network is called as a decision network or influence
diagram.
[0 A Bayesian is a directed graph in which each node is annotated with quantitative
probability information.
00 The full specification is a s follows:
[0 A set of random variables makes up the nodes of the network. Variables may
be discrete or continuous.
[1 A set of directed links or arrows connects a pairs of nodes. If there is an
arrow from node X to node Y, X is said to be a parent of Y.
[0 Each node X has a conditional probability distribution P(X,(Parents(X)) that
quantifies the effect of the parents on the node.(X is parent of Y)
[0 The graph has no directed cycles (and hence is a directed, acyclic graph, or

DAG.)

Example: Simple Bayesian network

A simple Bayesian network in which Weather is independent of the other three variables and Toothache
and Catch are conditionally independent, given Cavity.

Downloaded by Viji Jai (hancymeena@gmail.com)


mailto:nancymeena@gmail.com

1 Now, consider the example Burglar Alarm

[ If a thief or unknown person enter into your compound, then the alarm rings.

[1 You have installed a new burglar alarm at home.

(1 It is fairly reliable at detecting a burglary, but also responds on occasion to minor
earthquakes.

1 You also have two neighbors, John and Mary, who have promised to call you at work
when they hear the alarm.

(1 John always calls when he hears the alarm, but sometimes confuses the telephone
ringing with the alarm and calls then, too.

(1 Mary, on the other hand, likes loud music and sometimes misses the alarm altogether.

[1 Given the evidence of who has or has not called, we would like to estimate the
probability of a burglary.

P(B=true)
001

P(E=true)
.002

B P(A=true|B.E)
i .70
{oof .01
AT .70
Sy .01

P(J=true|A) A| P(M=true|A)

/ 70
/ 01

{ 90
.05

A typical Bayesian network, showing both the topology and the conditional probability tables (CPTs). In
the CPTs, the letters B, E, A, J, and M stand for Burglar, Earthquake, Alarm, JohnCalls, and MaryCalls,

respectively.

0 This, is the Bayesian network for our example.
(1 Each node is having its own conditional probability table CPT,
[ And in this diagram, alarm is directly depending on Burglary and Earthquake but John
and Mary are depending on only the Alarm.
[ So, in each CPT, they are having letters B Burglary, ECJEarthquake, S0 alarm,
JJJohn calls, MJ Mary calls.
[J From the network, the topology shows that
(1 Burglary and earthquakes directly affect the probability of the alarm,
) But John and Mary call depends on the alarm.
) Our assumptions from the network,
[1 They do not perceive any burglaries directly,
(1 They do not notice the minor earthquakes, and
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(1 They do not discuss before calling.
1 Notice that the burglar alarm network does not have any nodes corresponding to
[1 Mary is currently listening to loud music or
(1 The telephone ringing and confusing john
(1 These factors are summarizing in the uncertainty, associated with the links from
Alarm to JohnCalls and MaryCalls.
(1 This shows both laziness and ignorance in operation.

Conditional Probability Tables- CPT

1 The conditional probability tables in the network give the probabilities for the
values of the random variable depending on the combination of values for the
parent nodes.

(1 Each row must sum to 1.

00 All variables are Boolean, and therefore, the probability of a true value is p, the
probability of false must be 1-p.

[J A table for a Boolean variable with k parents contains 2* independently
specifiable probabilities.

[1 A variable with no parents has only one row, representing the prior probabilities
of each possible value of the variable.

Semantics of Bayesian Networks

Before that, lets discuss about Joint Probability Distribution
00 The full joint probability distribution specifies the probability of values to
random variables.
(1 It is usually too large to create or use in its explicit form.
(1 Joint probability distribution of two variables X and Y are

Joint Probabilities X X’
Y 0.20 0.12
Y’ 0.65 1.03

(1 Joint Probability distribution for n variables require 2™ entries with all possible
combination.( entries also increased & this is the drawback of joint probability)
Drawbacks of joint probability distribution

i.  Large number of variables and grows rapidly.
ii.  Time and space complexity are huge.
iii.  Statistical estimation with probability is difficult.
iv.  Human tends signal out few propositions.
v.  The alternative to this is Bayesian Networks.

Example:

(1 We can calculate the probability that the alarm has sounded, but neither a burglary nor
an earthquake has occurred, and both John and Mary call.

P(j,m,a,~b,~e) = P(jla)P(m|a)P(a|-bA —e)P(-b)P(—e)
= 0.90 x 0.70 x 0.01 x 0.999 x 0.998 = 0.00628.
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The Semantics of Bayesian Networks

1 An entry in joint distribution is the probability of conjunction of particular assignment
to each variable, such as (here X[ random variables, x-[J values to random
variables,m — product & here x;is depending on the parent X; value)

PXi=ziAN...NXy =2zy),
which is equal to

n

Py @85 ) = H O(z;|parents(X;)),

1=1

Method for constructing Bayesian Network

[1 Rewrite the joint distribution in terms of a conditional probability, using the product
rule

P(@1::500580) = Pl |Snaseas s JP(Eh=15555581)

[1 Then we repeat the process, reducing each conjunctive probability to a conditional
probability and a smaller conjunction. We end up with one big product:

P(xl,---’mn) = P(mnlmn—la- ..,wl)P(a:,,_,||m,7A2,...,a:]) P($2l$])P(iB])

== H P(.CC.,‘|JI.,'_1, ce ,,’.l?l).

i=1

(1 This identity is called the chain rule. The specification of the joint distribution is
equivalent to the general assertion that, for every variable X; in the network,

P(X;|X;_1,...,X1) = P(X;|Parents(X;)),

[1 We can directly implement this formula into our example
P(MaryCalls|JohnCalls,Alarm,Earthquake, Burglary) = P(MaryCalls| Alarm).
[1 No need to consider all the other things, because the parent of MaryCalls is Alarm.
So, MaryCalls is the child node of Alarm.

Compactness and node ordering

[J The compactness of Bayesian network is an example of general property of locally
constructed systems. (also called as spare systems, inside some components there, and
those are communicated)

O In alocally structured system, each subcomponent interacts directly with only a
bounded number of other components, regardless of the total number of components.
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O Therefor the correct in which to add node is to add the ‘root causes’ first, then the
variables they influenced and so on until we reach the leaves.

(1 Suppose, we decide to add the nodes in the order MaryCalls, JohnCalls,Alarm,
Burglary, Earthquake.

[0 Adding MaryCalls: No parents

1 Adding JohnCalls: If Mary calls, the probably means the alarm has gone off, which of
course would make it more likely that John calls. Therfore, johnCalls needs
MaryCalls as a parent.

[0 Adding Alarm: Clearly, if both call, it is more likely that the alarm has gone off than
if just one or neither call, so we need both MaryCalls and JohnCalls as parents.

1 Adding Burglary: If we know the alarm state, then the call from John or Mary might
give us information about our phone ringing or Mary’s music, but not about burglary:

P(Burglary|Alarm,JohnCalls,MaryCalls) = P(Burglary|Alarm).

1 Hence we need just Alarm as parent.
[0 Adding Earthquake: If the alarm is on, it is more likely that there has been an
earthquake. But if we know that there has been a burglary, then that explains the
alarm, and the probability of an earthquake would be only slightly above normal.
Hence we need both Alarm and Burglary as parents.
1

MaryCalls

2
JohnCalls

(b)

Network structure and number of parameters depends on order of introduction. (a) The structure
obtained with ordering M,J,A,B,E. (b) The structure obtained with M,J,E,B,A. Each node is annotated
with the number of parameters required; 13 in all for (a) and 31 for (b). In Figure 13.218, only 10

parameters were required.

Conditional independence relations in Bayesian networks

I. A node is conditionally independent of its non-descendants, given its parents.

[ For example, JohnCalls is independent of Burglary and Earthquake, given the
value of Alarm.
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Burglary

Earthquake

ii. A node is conditionally independent of all other nodes in the network, given
its parents, children, and children’s parents- that is, given its Markov blanket.
[1 For example, Burglary is independent of JohnCalls and MaryCalls, given
Alarm and Earthquake.

(a) (b)

(a) A node X is conditionally independent of its non-descendants (e.g., the Z;;s) given its parents (the Ujs
shown in the gray area). (b) A node X is conditionally independent of all other nodes in the network
given its Markov blanket (the gray area).

Exact Inference in Bayesian Network

0 Probabilistic Inference System is to compute Posterior Probability Distribution for a
set of query variables, given some observed events.
(1 That is, some assignment of values to a set of evidence variables.

Notations

(1 X [ denotes the query variable

[0 E [J set of evidence variables {E, ... E,.}

[1 E [particular observed event

[0 Y [Inon-evidence, non-query variables, Y5, ... Y. (called the hidden variables)

Downloaded by Viji Jai (nancymeena@gmail.com)
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[ The complete set of variables—- X ={X}UEUY

[0 A typical query asks for the Posterior Probability distribution P( X | )

[0 In the burglary network, we might observe the event in which
JohnCalls = true and MaryCalls = true.

(1 We could then ask for, say, the probability that a burglary has occurred:

P(Burglary|JohnCalls = true,MaryCalls = true) = (0.284,0.716).

Earthquake

P(B=true)
001

P(E=true)
.002

B E| P(A=true|B.E)
I 1 70
¢ f 01
AN 70
ot .01

P(J=true|A)
1 90
05

A | P(M=true|A)
! .70
f 01

A typical Bayesian network, showing both the topology and the conditional probability tables (CPTs). In
the CPTs, the letters B, E, A, J, and M stand for Burglar, Earthquake, Alarm, JohnCalls, and MaryCalls,

respectively.

Types of Inferences

Inference by Enumeration (inference by listing or recording all variables)

[1 Any conditional probability can be computed by summing terms from the full joint
distribution.
[1 More specifically, a query P(X | e) can be answered using equation.

P(Xle)=aP(Xe)=a Y P(Xey).
y

0 Where o is normalized constant
0 X O Query Variable

0 e O event

[0y [J number of terms

Consider the query P(Burglary|JohnCalls = true,MaryCalls = true).

(1 Burglary [ query variable (X)
[1 JohnCalls [ Evidence variable 1 (E1)
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1 MaryCalls [0 Evidence Variable 2 (E2)
(1 The hidden variables of this query are earthquake and alarm
(1 Using initial letter for the variables to shorten the expression we have

=« Z Z P(B,jm,e,a).

[1 The semantic of Bayesian network give us an expression, in terms of CPT entries, for
simplicity we do this just for Burglary = true

bl]? _QZZP

P(B|.7’m) = aP yJy T

P(alb,e) P(jla) P(m|a).

P(alb,e) P(-alb,e) P(alb,—e) P(~alb,~e)
95 .05 94 .06
P(jla) P(jl~a) | PQjla) | P(jl~a) |
.90 05 90 05
O O O O
P(mla) P(ml=-a) P(mla) P(ml-a)
01 O 70 O 01 O

70
O

The structure of the expression shown in Equation (13.5) 8. The evaluation proceeds top down
multiplying values along each path and summing at the “+” nodes. Notice the repetition of the paths for j

and m.
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function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayes net with variables vars

Q(X) <—a distribution over X, initially empty
for each value x; of X do
Q(x;) <~ ENUMERATE-ALL(vars, ey;)
where e, is e extended with X = x;
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY ?(vars) then return 1.0
V < FIRST(vars)
if V is an evidence variable with value v in e
then return P(v| parents(V)) x ENUMERATE-ALL(REST(vars),e)
else return Y, P(v|parents(V)) x ENUMERATE-ALL(REST(vars),e,)
where e, is e extended with V= v

The enumeration algorithm for exact inference in Bayes nets.

Inference by Variable Elimination

[0 The enumeration algorithm can be improved substantially by elimination repeated
calculations.

(1 The idea is simple: do the calculation once and solve the result for later use. This is a
form of dynamic programming.

[1 Variable elimination works by evaluating expressions,

[ Previous equation (derived in inference by enumeration)

P(blj,m) = a Z > _ P(b)P(e)P(alb.e) P(jla)P(m]a).

[1 From this the repeated variables are separated

P(b|jm) = a P(b) Y _ P(e) ) _ P(albe)P(jla)P(m|a).

U Intermediate results are stored, and summations of each variable are done, for only
those portion of the expression, that depends on the variable.

O Let us illustrate this process for the burglary network.

[1 We evaluate the expression
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P(B|j,m) = aP(B) } , P(e) > P(a|Be)P(jla) P(mla).
N e =~ a See——S——N——
f,(B) £:(E) f;(A,B,E) f£i(4) £5(4)

1 We have annotated each part of the expression with the same name of the associated
variable, these parts are called factors

(1 For example, the factors f4(A) and f5(A) corresponding to P(j | a) and P(m | a)
depending just on A because J and M are fixed by the query.

[1 They are therefore two element vectors.

n-(F0)-(02)  sen= () - (63

(1 Given two factors f(X, Y) and g(Y, Z) with probability distributions shown below,
the pointwise product f X g = h(X,Y, Z) has 21*1+1 =g

X Y f(X.,Y) Y Z g(Y.z2) X Y Z h(X.Y,Z)
t t ks ) t t 2 t t t Bx.2=1006
t f ok t ¥ i 8 t t i 3x.8=.24
I t 9 g t .6 t f t I x.6=.42
f f W | F N 4 t F " § T % A=.28
F t t 99X .2=.18
f t T 9x.8=.72
! | 2 t 1 x.6=.06
F if f Ax.4=.04

Ilustrating pointwise multiplication: f(X,Y) x g(¥,Z) = h(X,Y,Z).

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables vars

factors + (|
for each V in ORDER(vars) do

factors «— [MAKE-FACTOR(V,e)| + factors

if V is a hidden variable then factors <~ SUM-OUT(V, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))

The variable elimination algorithm for exact inference in Bayes nets.

Elimination

[J Summing out, or eliminating a variable from a factor is done by adding up the sub-
arrays formed by fixing the variable to each of its values in turn.
(1 For example, to sum out a from h(X, Y, Z), we write:
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hy(Y,Z2) = Y h(X)Y,2)=h(zY,Z)+h(-2,Y,Z)
_ (06 .24) : (.18 T2\ _ (24 .96
42 .28 .06 .04 48 32)°
Relevance

Let us consider one more query: P(JohnCalls|Burglary = true).
PJIb)
P(J|b) =aP(b) ) P(e))_ Plalb,e)P(J]a) ) P(m|a).

m

00 X,,P(m|a) = 1, therefore M is irrelevant for the query.
[ In other words, P(J|b) remains unchanged if we remove M from the network.

Complexity

The computational and space complexity of variable elimination is determined by
the largest factor.

« The elimination ordering can greatly affect the size of the largest factor.

« Does there always exist an ordering that only results in small factors? No!

= Greedy heuristic: eliminate whichever variable minimizes the size of the factor to be
constructed.

= Singly connected networks (polytrees):
= Any two nodes are connected by at most one (undirected path).
« For these netwarks, time and space complexity of variable elimination are O nd” ).
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Worst-case complexity?

truth-setting
component

clause-satisfaction-testing
component

overall-satisfaction-testing
component

3SAT is a special case of inference:

o CSP: (u, s us) A (—uy U U3 us us V uy)

« P(U 0) = P(U 1) =0.5

e C,=U,vU, vU;: C; U, Uy vUs: Cy = Uy Us vU,
e Dy =Cy:Dy; =Dy AC,

oY =D, NC4

0 If we answer whether P(Y=1)>0, then we answer whether 3SAT has a solution.
(1 By reduction, inference in Bayesian networks is therefore NP-complete.
[0 There is no known efficient probabilistic inference algorithm in general.

Approximate inference

[0 Exact inference is intractable for most probabilistic models of practical interest.
e.g) involving many variables, continuous and discrete, undirected cycles, etc.

Sampling Methods

(1 Basic idea:
(1 Draw N samples from a sampling distribution S.
[0 Compute an approximate posterior probability P.
[0 Show this approximate coverages to the true probability distribution P.

Why sampling

[1 Generating samples is often much faster than computing the right answer (e.g., with
variable elimination)

Sampling

[J How to sample from the distribution of a discrete variable X?
0 Assume k discrete outcomes x; _x; with probability P(x;)
(1 Assume sampling from the uniform U(0,1) is possible.
e.g) as enabled by a standard r and () function.
(1 Divide the [0,1] interval into k regions, with region i having size P(x;).
(1 Sample u~U(0,1) and return the value associated to the region in which u falls.
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| | | |
«——x

0 P(x;) 1
P(C)
c P 0<u<06—C =red
rod O 0.6 <u<0.7— C = green
green 0.1 0L)7<u<l1—=C = bhe

Prior Sampling

1 Sampling from a Bayesian network, without observed evidence.
(1 Sample each variable in turn, in topological order.
1 The probability distribution from which the value is sampled is conditioned on
the values already assigned to the variable’s parents.

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn, a Bayesian network specifying joint distribution P(Xj.,..., Xn)

X <—an event with n elements

for each variable X; in X,,....X,, do
x|i] - a random sample from P(X; | parents(X;))
return x

A sampling algorithm that generates events from a Bayesian network. Each variable is sampled according

to the conditional distribution given the values already sampled for the variable’s parents.

P(W]s,r)
99
90
90

e T
[~~~ ~|>

(a)
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Example

We will collect a bunch of samples from the Bayesian network:

c s, r,w
c,8,T,u

=C, 8, T, U
( s, T, u

If we want to know P(W):
« We have counts (w : 4, ~w : 1
« Normalize to obtain P(W) = (w : 0.8, ~w : 0.2)

. P( W) will get closer to the true distribution P( 1} ) as we generate more
samples.

Analysis

[1 The probability that prior sampling generates a particular event is

Sps(z1...2,) = H P(z;|parents(X;))
i—1

SpglH] - - Ty =P (D1 00 Big):

i.e) the Bayesian network’s joint probability

0 Let Npg(xq x,,) denote the number of samples of an event. We define the probability
estimator

P(xl, e xn) = Nps(xl, xn)/N
Then,

. Npg(.’l:l,...,.’l.'n)
Nhn; N

— SPS(:BI’ P ,:l!,,) = P(Z‘l, e ,.’E,,)-

Therefore, prior sampling is consistent:

P15 woslys) BNpa(@yy vy ) N
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Rejection sampling in Bayesian networks

(1 Using prior sampling, an estimate P(x|e) can be formed from the proportion of
samples x agreeing with the evidence e among all samples agreeing with the
evidence.

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network
N, the total number of samples to be generated
local variables: C, a vector of counts for each value of X, initially zero

forj=1toNdo
X ¢~ PRIOR-SAMPLE(bn)
if x is consistent with e then
C[j]<C[j]+1 where x; is the value of X in x
return NORMALIZE(C)

The rejection-sampling algorithm for answering queries given evidence in a Bayesian network.

Analysis

(1 Let consider the posterior probability estimator P(X|e) formed by rejection sampling:

Npg(X,e) z P(z,e)/P(e)

P(Xle) = aNpg(X.e) = sl ok
£

this becomes

P(X|e) ~ = P(X|e).
{1 Therefore, rejection sampling is consistent.
(] The standard deviation of the error in each probability is 0(1/+/n)), where n is the
number of samples used to compute the estimate.
[ Problem: many samples are rejected!
[1 Hopelessly expensive if the evidence is unlikely. i.e if P(e) is small.
1 Evidence is not exploited when sampling.

Likelihood weighting

[ ldea: clamp the evidence variables, sample the rest.
[0 Problem: the resulting sampling distribution is not consistent.
[1 Solution: weight by probability of evidence given parents.

Downloaded by Viji Jai (nancymeena@gmail.com)
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function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network specifying joint distribution P(Xj., ..., Xn)
N, the total number of samples to be generated
local variables: W, a vector of weighted counts for each value of X, initially zero

for j=1toN do

X, W< WEIGHTED-SAMPLE(bn, e)

W[j] <~ W[j] + w where x; is the value of X in x
return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn, ) returns an event and a weight

w1 x—an event with n elements, with values fixed from e
fori=1tondo
if X; is an evidence variable with value x;; in e
then w«w x P(X;= x;;|parents(X;))
else x|[i| +— a random sample from P(X; | parents(X;))
return x, w

The likelihood-weighting algorithm for inference in Bayesian networks. In WEIGHTED-SAMPLE, each
nonevidence variable is sampled according to the conditional distribution given the values already
sampled for the variable’s parents, while a weight is accumulated based on the likelihood for each

evidence variable.

Analysis

(1 The sampling probability for an event with likelihood weighting is
!

Sws (x, ) =[] P(x;|parents(X;))

[1 Where the product is over the non-evidlenlce variables. The weight for a given sample
X, € is
m
w(x, e) =[] P(e;|parents(E)))
i=1

[1 Where the product is over the evidence variables.
[1 The weighted sampling probability is

l m
Sws (x, e)w(x, e) =[] P(x; |parents(X;)) [] P(e;|parents(E;))
i=1 i=1
= P(x,e)

[1 The estimated posterior probability is computed as follows:
P(x, e) = aNys(x, e)w(x, e)

~ a Sys(x, e)w(x, e)

=aP(x, e)
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= P(x|e)

] Where a and ' are normalization constants.
(1 Hence likelihood weighting returns consistent estimates.
[ Likelihood weighting is helpful:
[1 The evidence is taken into account to generate a sample.
[0 More samples will reflect the state of the world suggested by the evidence.
01 Likelihood weighting does not solve all problems:
[0 Performance degrades as the number of evidence variable increases.
[1 The evidence influences the choice of downstream variables, but not upstream
ones.
o ldeally, we would like to consider the evidence when we sample each
and every variable.

Inference by Markov chain simulation

[0 Markov chain Monte Carlo (MCMC) algorithms are a family of sampling algorithms
that generate samples through a Markov chain.

[1 They generate a sequence of samples by making random changes to a preceding
sample, instead of generating each sample from scratch.

[0 Helpful to think of a Bayesian network as being in a particular current state specifying a
value for each variable and generating a next state by making random changes to the
current state.

[0 Metropolis-Hastings is one of the most famous MCMC methods, of which Gibbs
sampling is a special case.

Gibbs sampling

(1 Start with an arbitrary instance x4, ... x,, consistent with the evidence.
[0 Sample one variable at a time, conditioned on all the rest, but keep the evidence fixed.
[0 Keep repeating this for a long time.

function GIBBS-ASK(X, e, bn, N) returns an estimate of P(X | e)
local variables: C, a vector of counts for each value of X, initially zero
Z., the nonevidence variables in bn
X, the current state of the network, initialized from e

initialize x with random values for the variables in Z

fork=1toN do
choose any variable Z; from Z according to any distribution p(i)
set the value of Z; in x by sampling from P(Z; |mb(Z;))
Cl[j] < C[j] + 1 where x; is the value of X in x

return NORMALIZE(C)

The Gibbs sampling algorithm for approximate inference in Bayes nets; this version chooses variables at

random, but cycling through the variables but also works.
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Example

1) Fix the 2) Randomly

evidence initialize the other
variables

3) Repeat

« Choose a non-evidence variable X .

+ Resample X from P (X |all other variables).

e e - dige ~ e e - el
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UNIT IV ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING

Combining multiple learners: Model combination schemes, Voting, Ensemble Learning - bagging, boosting,
stacking, Unsupervised learning: K-means, Instance Based Learning: KNN, Gaussian mixture models and
Expectation maximization

1. Combining multiple learners
o Though different learning algorithms are generally successful, no one single algorithm is always the
most accurate.
e The models composed of multiple learners that complement each other so that by combining them,
we attain higher accuracy.
e Each learning algorithm dictates a certain model that comes with a set of assumptions.
e By suitably combining multiple base learners then, accuracy can be improved.
There are basically two questions here:
1. How do we generate base-learners that complement each other?
2. How do we combine the outputs of base-learners for maximum accuracy?

1.1. Generating Diverse Learners
o Different Algorithms
e We can use different learning algorithms to train different base-learners.
e For example, one base-learner may be parametric and another may be nonparametric.

Different Hyperparameters
e We can use the same learning algorithm but use it with different hyperparameters.
o Examples are the number of hidden units in a multilayer perceptron, k in k-nearest neighbor, error
threshold in decision trees, the kernel function in support vector machines, and so forth.

Different Input Representations

e Separate base-learners may be using different representations of the same input object or event,
making it possible to integrate different types of sensors/measurements/modalities.

e Sensor fusion where the data from different sensors are integrated to extract more information for a
specific application.

e To Combine more sources to find the right set of images; this is also sometimes called

e multi-view learning multi-view learning.

e Even if there is a single input representation, by choosing random subsets

e from it, we can have classifiers using different input features; this is called the random subspace
method.

Different Training Sets
e Another possibility is to train different base-learners by different subsets of the training set.
e This can be done randomly by drawing random training sets from the given sample; this is called
bagging.
e Or, the learners can be trained serially. Examples are boosting and cascading

2. Model Combination Schemes
e There are also different ways the multiple base-learners are combined to generate the final output:

e Multiexpert combination methods have base-learners that work in parallel. These methods can in
turn be divided into two:



Global Approach : In the global approach, also called learner fusion, given an input, all base-learners
generate an output and all these outputs are used.

Examples are voting and stacking.

Local Approach : In the local approach, or learner selection, for example, in mixture of experts, there
is a gating model, which looks at the input and

chooses one (or very few) of the learners as responsible for generating the output.

Multistage combination methods use a serial approach where the next combination base-learner is
trained with or tested on only the instances where the previous base-learners are not accurate
enough.

Let us say that we have L base-learners.

We denote by dj(x) the prediction of base-learner Mj given the arbitrary dimensional input x.

In the case of multiple representations, each Mj uses a different input representation
Xj .
The final prediction is calculated from the predictions of the base-learners:

¥ = f(dlldzl-"!d!_lib}l

where f (+) is the combining function with @ denoting its parameters.

When there are K outputs, for each learner there are dji(x),i=1,...,K,j=1,...,L, and, combining
them, we also generate K values, yi,i =1, ..., K and then for example in classification, we choose the
class with the maximum yi value:

Choose C; if y; = Iﬁai‘:{yk

Figure 17.1 Base-learners are d; and their outputs are combined using f(-).
This is for a single output; in the case of classification, each base-learner has K
outputs that are separately used to calculate y;, and then we choose the maxi-
mum. Note that here all learners observe the same input; it may be the case that
different learners observe different representations of the same input object or
evernt.



3. Voting

The simplest way to combine multiple classifiers is by voting, which corresponds

to taking a linear combination of the learners.

This is also known as ensembles and linear opinion pools.

Linear Option Pools : In the simplest case, all learners are given equal weight and we have simple
voting that corresponds to taking an average.

Table 17.1 Classifier combination rules

Rule Fusion function f(-)

Sum Vi = 1 Sy dii

Weighted sum | y; = 3> ;widj,w; = 0,3 ;w; =
Median Vi = median;d;;

Minimum ¥i = min; dj;

Maximum Vi = max; d;

Product vi =[1;dji

Table 17.2 Example of combination rules on three learners and three classes

Rules :

G | G C3
dh 0.2 | 0.5 0.3
ds 0.0 |06 |04
ds 04|04 0.2
Sum 0.2 | 0.5 0.3

Median 0.2 | 0.5 0.4
Minimum | 0.0 | 0.4 0.2
Maximum | 0.4 | 0.6 0.4
Product 0.0 | 0.12 | 0.032

Median rule is more robust to outliers; minimum and maximum rules are pessimistic and optimistic,
respectively.

With the product rule, each learner has veto power; regardless of the other ones, if one learner has
an output of 0, the overall output goes to 0.

Note that after the combination rules, yi do not necessarily sum up to 1.



Voting Bagging

’_) Voting ¢ ,_) Voting ¢
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Dataset dataset #1 dataset #2 dataset #3

In weighted sum, dji is the vote of learner j for class Ci and wj is the weight of its vote. Simple voting
is a special case where all voters have equal weight, namely, wj = 1/L.

Plurality Voting: Plurality voting where the class having the maximum number of votes is the winner.
When there are two classes, this is majority voting where the winning class gets more than half of the
votes.

Weighted Voting Scheme : If the voters can also supply the additional information of how much they
vote for each class, then after normalization, these can be used as weights in a weighted voting
scheme.

In the case of regression, simple or weighted averaging or median can be used to fuse the outputs of
base-regressors.

Bayesian combination model :

Voting schemes can be seen as approximations under a Bayesian framework with weights
approximating prior model probabilities, and model decisions approximating model-conditional
likelihoods.

P(Ci|x) = > P(Ci|x, M;)P(M;)
all models M;

We only choose a subset for which we believe P(M;j ) is high, or we can have another Bayesian step
and calculate P(Mj|X), the probability of a model given the sample, and sample high probable
models from this density.

The independent two class classifiers with success probability higher than 1/2, namely, better than
random guessing, by taking a majority vote, the accuracy increases as the number of voting
classifiers increases.

Let us assume that dj are iid with expected value E[dj] and variance Var(dj ), then when we take a
simple average with wj = 1/L, the expected value and variance of the output are

Flyl = [Z %d;} = FLE(d)]) = Eld))
J

| 1 1 1 1
Var(y) = ﬁrﬁhﬁ;=zﬂm Z%'=E#Wﬂ¢ﬁjﬁﬂﬁﬂ
J I



o We see that the expected value does not change, so the bias does not change.
e Butvariance, and therefore mean square error, decreases as the number of independent voters, L,
increases.

Var(y) = é\far ddj| = Li [Z Var(d;) +2> > Cm-‘{dj,d,-}—l
J L J Joi<j J
e The further decrease in variance is possible if the voters are not independent but negatively
correlated.
e The error then decreases if the accompanying increase in bias is not higher.
e Voting has the effect of smoothing in the functional space and can be thought of as a regularizer with
a smoothness assumption on the true function.
e We vote over models with high variance and low bias so that after combination, the bias remains
small and we reduce the variance by averaging.
4. Ensemble Learning
o Ensemble methods are techniques that aim at improving the accuracy of results in models by
combining multiple models instead of using a single model.
o The combined models increase the accuracy of the results significantly.
e This has boosted the popularity of ensemble methods in machine learning.
e Ensemble methods fall into two broad categories, i.e., sequential ensemble techniques and parallel
ensemble techniques.
e Sequential ensemble techniques generate base learners in a sequence, e.g., Adaptive Boosting
(AdaBoost).
e The sequential generation of base learners promotes the dependence between the base learners.
o The performance of the model is then improved by assigning higher weights to previously
misrepresented learners.
e In parallel ensemble techniques, base learners are generated in a parallel format, e.g., random
forest.
e Parallel methods utilize the parallel generation of base learners to encourage independence
between the base learners.
o The independence of base learners significantly reduces the error due to the application of
averages.

Ensemble
Methods

Bagging Boosting




(A) bagging (B) boosting
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5. Bagging:

e Bagging is a voting method whereby base-learners are made different by training them over slightly
different training sets.

e Generating L slightly different samples from a given sample is done by bootstrap, where given a
training set X of size N, we draw N instances randomly from X with replacement.

e [tis possible that some instances are drawn more than once and that certain instances

e arenotdrawn atall.

o The samples are similar because they are all drawn from the same original sample, but they are also
slightly different due to chance.

e The base-learners dj are trained with these L samples Xj .

Unstable algorithm:
e Alearning algorithm is an unstable algorithm if small changes in the training set causes a large
difference in the generated learner.
e Bagging - bootstrap aggregating:
o Uses bootstrap to generate L training sets, trains L base-learners using an unstable learning
procedure,
o During testing, takes an average.
e Bagging can be used both for classification and regression.
e Regression - Can take the median instead of the average when combining predictions.
e An algorithm is stable if different runs of the same algorithm on resampled versions of the same
dataset lead to learners with
¢ high positive correlation.
e Algorithms such as decision trees and multilayer perceptrons are unstable.
o Nearest neighbor is stable, but condensed nearest neighbor is unstable.
e Ifthe original training set is large, then we may want to generate smaller sets of size N' <N from
them using bootstrap, since otherwise the bootstrap replicates Xj will be
e too similar, and dj will be highly correlated.
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6. Boosting:

e In boosting, we try to generate complementary base-learners by training the next learner

e on the mistakes of the previous learners.

e The original boosting algorithm combines three weak learners to generate a strong

e learner.

Weak learner:

o A weaklearner has error probability less than 1/2, which makes it better than random
guessing on a two-class problem, and a strong learner has arbitrarily small error probability.

e Given a large training set, we randomly divide it into three.

e We use X; and train d;. We then take X, and feed it to d:.

e We take all instances misclassified by d; and also as many instances on which d; is correct

e from Xy, and these together form the training set of d..

e We then take X3 and feed it to d1 and da.

e The instances on which d: and d; disagree form the training set of ds.

e During testing, given an instance, we give it to d1 and dy; if they agree, that is the response,
otherwise the response of ds is taken as the output.

e The overall system has reduced error rate.

e The error rate can arbitrarily be reduced by using systems recursively, that is, a boosting system of
three models used as d; in a higher system.

Disadvantage :
e Itrequires a very large training sample.

e The sample should be divided into three and furthermore, the second and third classifiers



e are only trained on a subset on which the previous ones.
AdaBoost:

e Adaptive boosting - that uses the same training set over and over and thus need not be large, but
the classifiers should be simple so that they do not overfit.
e AdaBoost can also combine an arbitrary number of base learners, not three.

It works in the following steps:

e Initially, Adaboost selects a training subset randomly.

e Ititeratively trains the AdaBoost machine learning model by selecting the training set based on the
accurate prediction of the last training.

e Itassigns the higher weight to wrong classified observations so that in the next iteration these
observations will get the high probability for classification.

e Also, It assigns the weight to the trained classifier in each iteration according to the accuracy of the
classifier. The more accurate classifier will get high weight.

o This process iterate until the complete training data fits without any error or until reached to the
specified maximum number of estimators.

e To classify, perform a "vote" across all of the learning algorithms we built.

. Updated Weighted Updated Weighted
Crignal Datasnt 01 Training Dataset, D2 Training Dataset, D3
¥ . 4 ¥
Model-1 Model-2 Model-3
(lteration-1) (lteration-2) (Iteration-3)
¥ . 4 ¥

Predictions on Same Predictions on Predictions on
Training Data D1 Weighted Data, D2 Weighted Data, D3




Training:

For all {x',r'}., € X, initialize p} = 1/N

For all base-learners j=1,...,L
Randomly draw X; from X with probabilities p_’,—
Train d; using X;
For each (x',r!), calculate y} — d;(x")
Calculate error rate: €; — X, pj - Ly} #r')
If€; > 1/2, then L — j —1; stop
Bj —€;/(1~-¢j)
For each (x',r"), decrease probabilities if correct:

If}’} =r', then pji+l - ﬁ.fp_ti Else pji+1 - p_i;'

MNormalize probabilities:

Zj— 2t I’}-li F"}—l - I’;ﬂfrzj

Testing:
Given x, calculate d;(x),j=1,...,L
Calculate class outputs,i=1,...,K:

yi = Xy (log 5-) dji(x)

Figure 17.2 AdaBoost algorithm.

Many variants of AdaBoost have been proposed; here, we discuss the
original algorithm AdaBoost.M1 (see figure 17.2). The idea is to modify
the probabilities of drawing the instances as a function of the error. Let
us say pj- denotes the probability that the instance pair (x',r") is drawn
to train the jth base-learner. Initially, all p] = 1/N. Then we add new



base-learners as follows, starting from j = 1: €; denotes the error rate
of dj. AdaBoost requires that learners are weak, that is, €; < 1/2, ¥ j; if
not, we stop adding new base-learners. Note that this error rate is not
on the original problem but on the dataset used at step j. We define
Bi = €;/(1 —€j) < 1, and we set p;,, = B;p; if d; correctly classifies
x'; otherwise, p|,, = p}. Because p’ ., should be probabilities, there is a
normalization where we divide p_',-H by > ; pf,-+1, s0 that they sum up to 1.
This has the effect that the probability of a correctly classified instance
is decreased, and the probability of a misclassified instance increases.
Then a new sample of the same size is drawn from the original sample
according to these modified probabilities, pj-ﬂ, with replacement, and is
used to train dj41.

This has the effect that d;,; focuses more on instances misclassified
by d;; that is why the base-learners are chosen to be simple and not accu-
rate, since otherwise the next training sample would contain only a few
outlier and noisy instances repeated many times over. For example, with
decision trees, decision stumps, which are trees grown only one or two
levels, are used. So it is clear that these would have bias but the decrease
in variance is larger and the overall error decreases. An algorithm like the
linear discriminant has low variance, and we cannot gain by AdaBoosting
linear discriminants.

Once training is done, AdaBoost is a voting method. Given an instance,
all d; decide and a weighted vote is taken where weights are proportional
to the base-learners’ accuracies (on the training set): w; = log(1/8;). Fre-
und and Schapire (1996) showed improved accuracy in twenty-two bench-
mark problems, equal accuracy in one problem, and worse accuracy in
four problems.

e The success of AdaBoost is due to its property of increasing the margin.
o [fthe margin increases, the training instances are better separated and an error is less likely.

7. Stacking:
e The steps of Stacking are as follows:
e We use initial training data to train m-number of algorithms.
o Using the output of each algorithm, we create a new training set.
e Using the new training set, we create a meta-model algorithm.
o Using the results of the meta-model, we make the final prediction. The results are combined using
weighted averaging.
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Stacking mainly differ from bagging and boosting on two points. First stacking often considers
heterogeneous weak learners whereas bagging and boosting consider mainly homogeneous weak
learners.

Second, stacking learns to combine the base models using a meta-model whereas bagging and
boosting combine weak learners following deterministic algorithms.

How stacking works?

We split the training data into K-folds just like K-fold cross-validation.

A base model is fitted on the K-1 parts and predictions are made for Kth part.

We do for each part of the training data.

The base model is then fitted on the whole train data set to calculate its performance on the test set.
We repeat the last 3 steps for other base models.

Predictions from the train set are used as features for the second level model.

Second level model is used to make a prediction on the test set.

Data - The Dataset to be used is split into training and testing data into n folds. This is achieved by
repeated n-fold cross-validation, a technique to guarantee the efficient performance of the model.
Fitting data to base model - Based on the above n-fold data, the first fold is assigned to the base
model, and the output is generated. This is done for all n folds for all the base models.

Level 1 model - Now that we have the results for the base models, we train the level 1 model.

Final prediction - Predictions based on the level 1 model are used as the features for the model, and
then they can be tested on the test data for the final results of the stack model

8. Unsupervised Learning:

Unsupervised Learning Algorithms allow users to perform more complex processing tasks
compared to supervised learning.

Although, unsupervised learning can be more unpredictable compared with other natural learning
methods.

Unsupervised learning algorithms include clustering, anomaly detection, neural networks, etc.

Supervised Learning Unsupervised Learning

It uses known and labeled data as input [t uses unlabeled data as input



It has a feedback mechanism It has no feedback mechanism

The most commonly used supervised The most commonly used unsupervised
learning algorithms are: learning algorithms are:

o Decision tree e K-means clustering

e Logistic regression e Hierarchical clustering

e Support vector machine e Apriori algorithm

9. K-means Clustering:
K-means is a data clustering approach for unsupervised machine learning that can separate unlabeled
data into a predetermined number of disjoint groups of equal variance - clusters - based on their

similarities.
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e Step 1: First, we need to provide the number of clusters, K, that need to be generated by this
algorithm.

e Step 2: Next, choose K data points at random and assign each to a cluster. Briefly, categorize the data
based on the number of data points.

e Step 3: The cluster centroids will now be computed.

e Step 4: Iterate the steps below until we find the ideal centroid, which is the assigning of data points
to clusters that do not vary.

e 4.1 The sum of squared distances between data points and centroids would be calculated first.

e 4.2 At this point, we need to allocate each data point to the cluster that is closest to the others
(centroid).

e 4.3 Finally, compute the centroids for the clusters by averaging all of the cluster’s data points.



K-means implements the Expectation-Maximization strategy to solve the problem.

Let us say we have an image that is stored with 24 bits/pixel and can have up to 16 million colors.
Assume we have a color screen with 8 bits/pixel that can display only 256 colors.

We want to find the best 256 colors among all 16 million colors such that the image using only the
256 colors color quantization in the palette looks as close as possible to the original image. This is
color quantization where we map from high to lower resolution.

The aim is to map from a continuous space to a discrete space; this process is called vector
quantization.

If we quantize uniformly, it wastes the colormap by assigning entries to colors not existing in the
image.

Eg: If the image is a seascape, we expect to see many shades of blue and maybe no red.

The colormap entries should reflect the original density.

Reference Vectors:

Let us say we have a sample of X = ix’]';":l_ We have k reference
vectors, my, j = 1,..., k. In our example of color quantization, x° are the
image pixel vialues in 24 bits and m; are the color map entries also in 24
bits, with k = 256.

m; - values
xt— pixels

M - colour map

[laf — mmy| = m}inllx‘ — |l

Codebook vectors:

Instead of the original data value, we use the closest value we have in the alphabet of reference
vectors. m; are also called codebook vectors or code words, because this is a process of
encoding/decoding.

Going from x; to i is a process of encoding the data using the codebook of m;,i=1, ..., kand, on the
receiving end, generating m; from i is decoding. Quantization also allows compression.
Eg: 24 bits to 8 bits

Let us see how we can calculate my: When x° 15 represented by my, there
15 an error that is proportional to the distance, |x* — my|. For the new
image to look like the original image, we should have these distances as

peconsTRUCTION  small as possible for all pivels. The total reconstruction ervor is defined

ERROR  yg

(73 E(img 10 = ¥ Y blx" - my?
r I

where

. 1 if &' - my|| = min, x" - my
",-' [ — _f .|I
(74) b | 0 otherwise



| Encoder | Decoder
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Find closesi

Figure 7.1 CGiven x, the encoder sends the index of the closest code word and
the decoder generates the code word with the received index as x'. Error is

¥
Ix" — x||=.

k-MEANS CLUSTERING

(7.5)

The best reference vectors are those that minimize the total reconstruc-
tion error. b} also depend on m;, and we cannot solve this optimization
problem analytically. We have an iterative procedure named k-means
clustering for this: First, we start with some py initalized randomly.
Then at each iteration, we first use equation 7.4 and calculate b] for all
x', which are the estimated labels; if b is 1, we say that x' belongs to the
group of m;. Then, once we have these labels, we minimize equation 7.3.
Taking its derivative with respect to m; and setting it to 0, we zet

_ Zibixt
by

The reference vector is set to the mean of all the instances that it rep-
resents. Mote that this is the same as the formula for the mean in equa-
tion 7.2, except that we place the estimated labels b} in place of the labels
#;. This is an iterative procedure because once we calculate the new my,
b} change and need to be recalculated, which in turn affect m;. These two
steps are repeated until my stabilize (see figure 7.2). The pseudocode of
the k-means algorithm is given in figure 7.3,

One disadvantage is that this is a local search procedure, and the fi-
nal my; highly depend on the imitial m;. There are various methods for
imitialization:

my

m We can simply take randomly selected k instances as the initial m;.

m The mean of all data can be calculared and small random vectors may
be added to the mean to get the k initial m;.
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Figure 7.2 Evolution of k-means. Crosses indicate center positions. Data points
are marked depending on the closest center.

e We can calculate the principal component, divide its range into k equal intervals, partitioning the
data into k groups, and then take the means of these groups as the initial centers.

o There are also algorithms for adding new centers incrementally or deleting empty leader cluster
ones.

e Inleader cluster algorithm, an instance that is far away algorithm from existing centers causes the
creation of a new center at that point

Imitialize m;,1 = 1,...,k, for example, to k random x'
Repeat
For all x* = X
pe . § 1 f Il —myll = miny Ix* — my]|
71 0 otherwise
Forall mp,i=1,....k
my — 3, bixt[ 3, b}
Until m; converge

Figure 7.3 Ek-means algorithm.

10. Instance Based Learning : KNN

o Instance based learning is a supervised classification learning algorithm that performs operation
after comparing the current instances with the previously trained instances, which have been
stored in memory.

e Its name is derived from the fact that it creates assumption from the training data instances.

e Components of Instance Based Learning Framework

o The framework requires three components: Similarity function, Classification function, and Concept
Description Updater.



e Similarity Function: This computes similarity between a training instance the instances in the CD ata
certain point in time. Similarities are numeric-valued.
« Classification Function: Given a new instance, it gives us the classification for that instance, based on the
values coming from the similarity function, instances in the CD and performance of these instances in
classification so far.
» Concept Description Updater: Maintains record of classification performance and decides which instances
to include in the CD.
Some of the instance-based learning algorithms are :

e K Nearest Neighbor (KNN)

e Self-Organizing Map (SOM)

e Learning Vector Quantization (LVQ)

e Locally Weighted Learning (LWL)

e (ase-Based Reasoning

The Nearest Neighbor Classifier
e The most commonly used instance-based classification method is the nearest neighbor method.
e In this method, the nearest k instances to the test instance are determined.
e Then, a simple model is constructed on this set of k nearest neighbors in order to determine the
class label.
o Binary class
o Multi label class



0. Look at the data
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Say you want to classify the grey point
into a class. Here, there are three potential
classes - lime green, green and orange.

2. Find neighbours

Point Distance

O-¢ 2.1 —> 1stNN

O 2.4 —> 2nd NN

O-® 31 —> 3rdNN
O-® 45 —> athnN

Next, find the nearest neighbours by
ranking points by increasing distance. The
nearest neighbours (NNs) of the grey
point are the ones closest in dataspace.

1. Calculate distances
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Start by calculating the distances between
the grey point and all other points.

3. Vote on labels

Class Fof
votes Class = wins
2 the vote!
® 1™ it s
. 1 therefore predicted

to be of class

Vote on the predicted class labels based
on the classes of the k nearest neigh-
bours. Here, the labels were predicted
based on the k=3 nearest neighbours.

0

0

o

o

The K-NN working can be explained on the basis of the below algorithm:

Step-1: Select the number K of the neighbors

Step-2: Calculate the Euclidean distance of K number of neighbors
Step-3: Take the K nearest neighbors as per the calculated Euclidean distance.



Step-4: Among these k neighbors, count the number of the data points in each category.
Step-5: Assign the new data points to that category for which the number of the neighbor is maximum.
Step-6: The model is ready.

o Firstly, we will choose the number of neighbors, so we will choose the k=5.

o Next, we will calculate the Euclidean distance between the data points.

e The Euclidean distance is the distance between two points, which we have already studied in
geometry. It can be calculated as:
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e By calculating the Euclidean distance we got the nearest neighbors, as three nearest neighbors in
category A and two nearest neighbors in category B.

e Consider the below image:

e As we can see the 3 nearest neighbors are from category A, hence this new data point must belong
to category A.
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e Kvalue indicates the count of the nearest neighbors.

e We have to compute distances between test points and trained labels points.

e Updating distance metrics with every iteration is computationally expensive, and so KNN is a lazy
learning algorithm.

o Ifwe proceed with K=3, then we predict that test input belongs to class B, and if we continue with
K=7, then we predict that test input belongs to class A.

Optimal K-Value:
o There are no pre-defined statistical methods to find the most favorable value of K.



e |nitialize a random K value and start computing.

e Choosing a small value of K leads to unstable decision boundaries.

e The substantial K value is better for classification as it leads to smoothening the decision
boundaries.

e Derive a plot between error rate and K denoting values in a defined range.

e Then choose the K value as having a minimum error rate.

e (alculating distance: The first step is to calculate the distance between the new point and each
training point. There are various methods for calculating this distance, of which the most commonly
known methods are — Euclidian, Manhattan (for continuous) and Hamming distance (for
categorical).

e Euclidean Distance: Euclidean distance is calculated as the square root of the sum of the squared
differences between a new point (x) and an existing point (y).

e Manhattan Distance: This is the distance between real vectors using the sum of their absolute
difference.

o Hamming Distance: It is used for categorical variables. If the value (x) and the value (y) are the
same, the distance D will be equal to 0 . Otherwise D=1.

11. Gaussian mixture models and Expectation maximization

A Generative View of Clustering

® Last time: hard and soft k-means algorithm

@ Today: statistical formulation of clustering — principled, justification for
updates

@ We need a sensible measure of what it means to cluster the data well

» This makes it possible to judge different methods
» It may help us decide on the number of clusters

@ An obvious approach is to imagine that the data was produced by a
generative model

» Then we adjust the model parameters to maximize the probability that
it would produce exactly the data we observed




@ We model the joint distribution as,

p(x,z) = p(x|z)p(2)

@ But in unsupervised clustering we do not have the class labels z.

@ What can we do instead?

p(x) =D p(x,2) = D _ p(x|2)p(2)

@ [his is a mixture model

Gaussian Mixture Model (GMM)

Most common mixture model: Gaussian mixture model (GMM)

@ A GMM represents a distribution as

K
p(x) =D mN (x|, T)

k=1

with 7, the mixing coefficients, where:

K
Zﬂ'k:]. and m, >0 Vk
k=1

@ GMM is a density estimator

@ GMMs are universal approximators of densities (if you have enough
Gaussians). Even diagonal GMMs are universal approximators.

@ In general mixture models are very powerful, but harder to optimize




Visualizing a Mixture of Gaussians — 1D Gaussians

@ If you fit a Gaussian to data:
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@ Now, we are trying to fit a GMM (with K = 2 in this example):

Mixture Model Data Samples (nSamp = 500)
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Fitting GMMs: Maximum Likelihood

@ Maximum likelihood maximizes

Inp(X|m, 1, 5) = 3 I (Z TN (X zk))

n=1 k=1

w.rt © = {m, g, Lp}
@ Problems:
» Singularities: Arbitrarily large likelihood when a Gaussian explains a
single point
» ldentifiability: Solution is invariant to permutations
» Non-convex

Latent Variable

@ Our original representation had a hidden (latent) variable z which would
represent which Gaussian generated our observation x, with some probability

@ Let z ~ Categorical(w) (where 7 >0, >, m =1)
@ Then:

K
p(x) = > plx,z = k)

1
Lp(z = klg(x\z = kl
Vome Nl Ee)

k=
K
k=

@ This breaks a complicated distribution into simple components - the price is
the hidden variable.




Latent Variable Models

Some model variables may be unobserved, either at training or at test time,
or both

If occasionally unobserved they are missing, e.g., undefined inputs, missing
class labels, erroneous targets

Variables which are always unobserved are called latent variables, or
sometimes hidden variables

We may want to intentionally introduce latent variables to model complex
dependencies between variables — this can actually simplify the model

Form of divide-and-conquer: use simple parts to build complex models

In @ mixture model, the identity of the component that generated a given
datapoint is a latent variable

Back to GMM

A Gaussian mixture distribution:

K
p(x) = D miN (x|, Tk)

k=1

We had: z ~ Categorical(w) (where m >0, > m=1)
Joint distribution: p(x,z) = p(z)p(x|z)
Log-likelihood:

N
O(m, 1, X) = In p(X|m, 1, T) = Y In p(x()|, s, X)

n=1

N K
=Y In Y p(x| 2"; p, T)p(2")| )
n=1 zlnl=1

Note: We have a hidden variable z{" for every observation
General problem: sum inside the log

How can we optimize this?



Maximum Likelihood

n=1

He =

T =

o If we knew z(" for every x("), the maximum likelihood problem is easy:

N N
U, B) = D Inp(x, 20w, p, £) = 3 In p(x)] 207; 1, T)+n p(27)] )

n=1

@ We have been optimizing something similar for Gaussian bayes classifiers

@ We would get this (check old slides):
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Intuitively, How Can We Fit a Mixture of Gaussians?

@ Optimization uses the Expectation Maximization algorithm, which alternates

between two steps:

1. E-step: Compute the posterior probability over z given our current
model - i.e. how much do we think each Gaussian generates each

datapoint.

2. M-step: Assuming that the data really was generated this way, change
the parameters of each Gaussian to maximize the probability that it
would generate the data it is currently responsible for.

.95
¢
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.
.95




Relation to k-Means

@ The K-Means Algorithm:

1. Assignment step: Assign each data point to the closest cluster
2. Refitting step: Move each cluster center to the center of gravity of the
data assigned to it

@ The EM Algorithm:
1. E-step: Compute the posterior probability over z given our current
model

2. M-step: Maximize the probability that it would generate the data it is
currently responsible for.

@ Elegant and powerful method for finding maximum likelihood solutions for
models with latent variables
1. E-step:

» In order to adjust the parameters, we must first solve the inference
problem: Which Gaussian generated each datapoint?
» We cannot be sure, so it's a distribution over all possibilities.

W = p(" = kx7; 7,0, 7)
2. M-step:

» Each Gaussian gets a certain amount of posterior probability for each
datapoint.

» We fit each Gaussian to the weighted datapoints

» We can derive closed form updates for all parameters




Remember that optimizing the likelihood is hard because of the sum inside
of the log. Using © to denote all of our parameters:

{((X,0) = Z log(P(x(); ©)) = Z log (Z P(x), () = j; @))

We can use a common trick in machine learning, introduce a new
distribution, g:

)z( _
(x.0) =3 o (Z g =) 9))

Now we can swap them! Jensen's inequality - for concave function (like log)

F(E[) = £ (Z p,-x,-) > 7 pif () = EIF()]
Applying Jensen's,

Zlog ZqJP(x _Je) >qujlog(P(x qj_;e))

Maximizing this lower bound will force our likelihood to increase.

But how do we pick a g; that gives a good bound?




@ We got the sum outside but we have an inequality.

P x(f),z(f.) =j: 0
E(X,@)EZqulog( ( : J ))
i J

dj

@ Lets fix the current parameters to ©° and try to find a good g;
@ What happens if we pick q; = p(z() = jx(1), @°ld)?

p(ﬁg’i;[j:ﬂjglm) = P(x(); ©°) and the inequality becomes an equality!
@ We can now define and optimize

Q(O) = ZZp(z(f} = j|x(), ©°) log (P(x("),z(") = J @))
o

= EP{Z{’.) |x(.-},e.,;d)[log (P(x(f)! z(f); 9))]

@ We ignored the part that doesn't depend on ©

L L

Gaussian Residuals
Mixture Model

EM-Algorithm
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Factor Graph
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o Conceptually: We don't know z(7) so we average them given the
current model.

@ Practically: We define a function
Q(©) = Ep(,0)x() oy [log (P(x(),2(1); ©))] that lower bounds the
desired function and is equal at our current guess.

@ If we now optimize © we will get a better lower bound!

log(P(X|©°7)) = Q(&°) < Q(8") < P(P(X|©""))

@ We can iterate between expectation step and maximization step and
the lower bound will always improve (or we are done)

Visualization of the EM Algorithm

Inp(X|0)

L(q,0)

\

gold guew

@ The EM algorithm involves alternately computing a lower bound on the log
likelihood for the current parameter values and then maximizing this bound
to obtain the new parameter values.



General EM Algorithm

1. Initialize @°/d

2. E-step: Evaluate p(Z|X,©°“) and compute

Q(©,0°) =) " p(Z|X,©°)Inp(X,Z|©)

3. M-step: Maximize
enew = arg mea)( 0(91 eald}

4. Evaluate log likelihood and check for convergence (or the parameters). If
not converged, @°d — @"w  Go to step 2

GMM E-Step: Responsibilities

Lets see how it works on GMM:

@ Conditional probability (using Bayes rule) of z given x

p(z = k)p(x|z = k)
p(x)
p(z = k)p(x|z = k)
> plz = j)p(xlz = j)
kN (x| i, )
Y mN (X, X))

e =plz = klx) =

@ -, can be viewed as the responsibility of cluster k towards x



GMM E-Step

@ Once we computed q/f:]

likelihood

= p(z{) = k|x()) we can compute the expected

Ep(z0x) [Z_ Iog(P(x"'hz“He))]
_ Z Z (q{j) ;og(P(z" = k|©)) + log(P(x|z1) = ‘ﬂ@)))
_ Z Z oy (Iog(ﬂ'k) + log(N(x); g, Ek)))
— Z Zw) log(m) + Z qu Y log(N (x; i, )

@ We need to fit k Gaussians, just need to weight examples by ~,

GMM M-5Step

@ Need to optimize
DDk log(me) + 30> 1og(W(x; uk, T4))
ki ki

@ Solving for pux and Xy is like fitting k separate Gaussians but with weights
()
Vi -

@ Solution is similar to what we have already seen:

e = zw 2

1 n n n
Lo = N—kai ) — ) (X = i)
n=1
N
N, ) n
Tk = N with Nk:E “‘f;;()

n=1



EM Algorithm for GMM

@ Initialize the means p, covariances X, and mixing coefficients

@ lterate until convergence:
» E-step: Evaluate the responsibilities given current parameters

N (x| e, )
S N (x|, )

» M-step: Re-estimate the parameters given current responsibilities

% = p(z"x) =

1 = ()
_ _Z n), (n)

0 N — T X

1 N
o= 2 =) — )T

n=1
N

A& . f

Tk = E with Nk:E '}f::{)

n=1

» Evaluate log likelihood and check for convergence

Inp(X|m, g1, T) = ) "In (Z N (x| Zk))

n=1 k=1

[+




UNITV NEURAL NETWORKS

Perceptron - Multilayer perceptron, activation functions, network training - gradient descent optimization
- stochastic gradient descent, error backpropagation, from shallow networks to deep networks -Unit
saturation (aka the vanishing gradient problem) - ReLU, hyperparameter tuning, batch normalization,
regularization, dropout.

WHAT IS ARTIFICIAL NEURAL NETWORK?

An Artificial Neural Network [ANN] is a mathematical model that tries to simulate the structure and
functonalities of biological neural networks. Basic building block of every artificial neural network is
artificial neuron, that is, a simple mathematical model (function). Such a model has three simple sets ol
rules: multiplication, summation and activation. At the entrance of artificial neuron the inputs are weighted
what means that every input value is multiplied with individual weight. In the middle section of artificial
neuron s sum function that sums all weighted inputs and bias. At the exit of artificial neuron the sum of
previously weighted inputs and bias is passing through activation function that is also called transfer

function.
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g2 ] aW2 |
[ nputd M '
|
| + H o gt )
Input i / / |
| -
I
|
Ir||:||:lrn —t
Multiplicat on Sum Transfer hunction
Input 1 )—t E
[ Input2 : Output )
~Input3 — | : |
i Input | Hidden | Output |
i lLayer ! Layer ! Layer |

. Single neuron



STRUCTURE AND FUNCTIONS OF ARTIFICIAL NEURON.

An artificial neuron is a mathematical function conceived as a model of biclogical neurons, a neural
network. Artificial neurons are elementary units in an artificial neural network. The artificial neuron
receives one or more inputs (representing excitatory postsynaptic potentials and inhibitory postsynaptic
potentials at neural dendrites) and sums them to produce an output (or activation, representing a neuron's
action potential which is transmitted along its axon). Usually each input is separately weighted, and the
sum is passed through a non-linear function known as an activation function or transfer function. The
transfer functions usually have a sigmoid shape, but they may also take the form of other non-lineat
functions, piecewise linear functions, or step functions. They are also often monotonically increasing
continuous, differentiable and bounded. The thresholding function has inspired building logic gates
referred to as threshold logic; applicable to building logic circuits resembling brain processing. For
example, new devices such as memristors have been extensively used to develop such logic in recent times.

in2 Z ,f out

In
n
bias
glin;) .
\ e(in;)
+1 +1
in; ,',:
(a) (b)
step function sigmoid function

Perceptron

Whereas a computer generally has one processor, the brain is composed of a very large (1011) number of
processing units, namely, neurons, operating in parallel.

Neurons in the brain have connections, called synapses, to around 104 other neurons, all operating in
parallel.

In a computer, the processor is active and the memory is separate and passive,

but it is believed that in the brain, both the processing and memory are distributed together over the
network;

processing is done by the neurons, and the memory is in the synapses between the neurons.



The perceptron is the basic processing element. It has inputs that may
come from the environment or may be the outputs of other perceptrons.
Associated with each input, x; € ®,5 = 1,...,d, is a connection weight,
or synaptic weight w; = R, and the output, y, in the simplest case is a
weighted sum of the inputs (see figure 11.1)

d
¥ =2 WiX; + Wy
J=1
wy 15 the mtercept value to make the model more general; it 1s generally
modeled as the weight commng from an extra bigs uni, xq, which is always

+1. We can write the output of the perceptron as a dot product

y=wlx

where w = [wo,wi1,...,wd]¥ and x = [1,x1,...,x4]" are augmented vec-
tors to include also the bias weight and mmput.

During testing, with given weights, w, for input x, we compute the
output ¥. To implement a given task, we need to learn the weights w, the
parameters of the system, such that correct outputs are generated given

the inputs.
When d = 1 and x is fed from the environment through an input unit,
we have

¥ = WX + wWao
The perceptron as defined in equation 11.1 defines a hyperplane and as
such can be used to divide the input space into two: the half-space where
it is positive and the half-space where it is negative (see chapter 10). By
using it to implement a linear discriminant function, the perceptron can
separate two classes by checking the sign of the output. If we define s(-)
as the threshold function

(@) = 1 ifa=0
S =7 0 otherwise

then we can

Oy ifsiwTx)=0

EhlIISE{ s otherwise



Figure 11.2 K parallel perceptrons. xj,j = 0...., d are the inputs and y;,i =
1,.... K are the outputs. w;; is the weight of the connection from input x; to
output y;. Each output is a weighted sum of the inputs. When used for K-class
classification problem, there is a postprocessing to choose the maximum, or
softmax if we need the posterior probabilities.



WHAT IS A PERCEPTRON?

A perceptron is a binary classification algorithm modeled after the functioning of the human brain—it
was intended to emulate the neuron. The perceptron, while it has a simple structure, has the ability to
learna

Perceptron Input And Qutput

.\'l

—
Inputs X3.W3 o Output e yloori)
— 7\)
e .\'5 . WS

What is Multilayer Perceptron?

A multilayer perceptron (MLP) is a group of perceptrons, organized in multiple layers, that can
accurately answer complex questions. Each perceptron in the first layer (on the left) sends signals to all
the perceptrons in the second layer, and so on. An MLP contains an input layer, at least one hidden layer,

and an output layer’ Perceptron Input And Output

@

Output Layer

o

Input Layer

Hidden Layer

The perceptron learns as follows:

1. Takes the inputs which are fed into the perceptrons in the input layer, multiplies them by their
weights, and computes the sum.

2. Adds the number one, multiplied by a "bias weight”. This is a technical step that makes it possible to
move the output function of each perceptron (the activation function) up, down, left and right on
the number graph.

3. Feeds the sum through the activation function—in a simple perceptron system, the activation
function is a step function,

4. The result of the step function is the output.



A multlayer perceptron is quite similar to a medern neural network. By adding a few ingredients, the
perceptron architecture becomes a full-lledged deep learning system:

# Activation functions and other hyperparameters: a full neural network uses a variety of
activation functions which output real values, not boolean values like in the classic perceptron. It is
more flexible in terms of other details of the learning process, such as the number of training
iterations [lterations and epochs), weight initialization schemes, regularization, and so on. All these
can be tuned as hyperparameters.

« Backpropagation: a full neural network uses the backpropagation algorithm, to perform iterative
backward passes which try to find the optimal values of perceptron weights, to penerate the most
accurate prediction.

+  Advanced architectures: full neural networks can have a variety of architectures that can help
solve specific problems. A few examples are Recurrent Neural Networks (RNN), Convelutional
Neural Networks [CNN), and Generative Adversarial Networks [GAN).

Training a Perceptron

The perceptron defines a hyperplane, and the neural network perceptron is just a way of implementing the
hyperplane.

Given a data sample, the weight values can be calculated offline and then when they are plugged in, the
perceptron can be used to calculate the output values.

ONLINE LEARNING In online learning, we do not write the error function over the whole
sample but on individual instances. Starting from random initial weights,
at each iteration we adjust the parameters a little bit to minimize the
error, without forgetting what we have previously learned. If this error
function is differentiable, we can use gradient descent.

For example, in regression the error on the single instance pair with
index t, (xf, ¥, is

and for j =0,...,d, the online update is

(1L.7)  Awj =n(r' - y")x]

where n is the learning factor, which is gradually decreased in time for
sTOCHASTIC  convergence. This is known as stochastic gradient descent.

GRADIENT DESCENT Similarly, update rules can be derived for classification problems using
logistic discrimination where updates are done after each pattern, instead
of summing them and doing the update after a complete pass over the
training set. With two classes, for the single instance (x',#") where 1/ = 1
if x' € C; and rf = Dif x" £ (5, the single output is

¥' = sigmoid(w” x")
and the cross-entropy is
Efiw|x', r') = —rflogy" — (1 - rf)log(1 — »")
Update = LearningFactor ° (DesiredOutput - ActualOutput) ° Input



Fori=1,...,K
Forj=0,...,d
wyy — rand(—0.01,0.01)
Repeat
For all ix",r") £ X in random order
Fori=1,...,K
oy — 0
Forj=0,...,d
o — oy +w”xj
Fori=1,...,K
¥ — explog) | Xy explog)
Fori=1,...,K
Forj=0,...,d
wip — wiy + i — yx
Until convergence

Figure 11.3 Perceptron training algorithm implementing stochastic online gra-
dient descent for the case with K > 2 classes. This is the online version of the
algorithm given in figure 10.8.

11.5

HIDIDEM LAYERS

MULTILAYER
FERCEFTRONS

(11.11)

(11.12)

Multilayer Percepirons

A perceptron that has a single layer of weights can only approximate lin-
ear functions of the input and cannot solve problems like the XOR, where
the discrimininant to be estimated is nonlinear. Similarly, a perceptron
cannot be used for nonlinear regression. This limitation does not apply
to feedforward networks with intermediate or hidden layvers between the
input and the output layers. If used for classification, such multilayer
perceptrons (MLP) can implement nonlinear discriminants and, if used
for regression, can approximate nonlinear functions of the input.

Input x is fed to the input layver (including the bias), the “activation”
propagates in the forward direction, and the values of the hidden units
#p are calculated (see fipure 11.6). Each hidden unit is a perceptron by
itself and applies the nonlinear sigmoid function to its weighted sum:

1
1+ exp [— (-1 whyxs + wio)

Iﬁ=sig:ruuid{w{x}= ],h=l,__.,H

The output y are perceptrons in the second layer taking the hidden
units as their inputs

H
N=viz= Z ¥ihZn + Vip

h=1
where there is also a bias unit in the hidden layer, which we denote by #o,
and v are the bias weights. The input layer of x; is not counted since
no computation is done there and when there is a hidden layer, this is a
two-layer network.,



xg = +1 X Xa
Figure 11.6 The structure of a multilayer perceptron. ;. j — 0,..., d are the
inputs and zg. h — 1,.... H are the hidden units where H is the dimensionality
of this hidden space. zp is the bias of the hidden laver. w01 — 1..... K are the

outpult units. wy; are weights in the first layer, and wp are the weights in the
second layer.

WHAT IS A NEURAL NETWORK ACTIVATION FUNCTION?

In a neural network, inputs, which are typically real values, are fed into the neurons in the network. Each
neuron has a weight, and the inputs are multiplied by the weight and fed into the activation

function. Each neuron’s output is the input of the neurons in the next layer of the network, and so the
inputs cascade through multiple activation functions until eventually, the output layer generates a
prediction. Neural networks rely on nonlinear activation functions—the derivative of the activation
function helps the network learn through the backpropagation process.

Input —— f S — — Output

Activation Function

Neuron



SOME COMMON ACTIVATION FUNCTIONS INCLUDE THE FOLLOWING:

L

The sigmoid function has a smooth gradient and outputs values between zero and one. For very
high or low values of the input parameters, the network can be very slow to reach a prediction,
called the vanishing gradient problem.

The TanH function is zero-centered making it easier to model inputs that are strongly negative
strongly positive or neutral.

The ReLu function is highly computationally efficient but is not able to process inputs that
approach zero or negative.

The Leaky ReLu function has a small positive slope in its negative area, enabling it to process zero
or negative values.

The Parametric ReLu function allows the negative slope to be learned, performing
backpropagation to learn the most effective slope for zero and negative input values.

Softmax is a special activation function use for output neurons. It normalizes outputs for each class
between 0 and 1, and returns the probability that the input belongs to a specific class.

Swish is a new activation function discovered by Google researchers. It performs better than ReLu
with a similar level of computational efficiency.

= Sigmoid

- Tanh

Iwo common neural network activation functions - Siemoid and Tanh
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BOOLEAN FUNCTIONS USING McCULLOGH-PITTS NEURON

In any Boolean function, all inputs are Boolean and the output is also Boolean. So essentially, the neuron is
just trying to learn a Boolean function.

I

) — ) — ye{0,1}

L 4
T3 y

This representation just denotes that, for the boolean inputs x_1, x_2 and x_3 if the g(x) i.e,, sum = theta, the
neuron will fire otherwise, it won't.

AND Function

waf N
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An AND function neuron would only fire when ALL the inputs are ON i.e, g(x) 2 3 here.

OR Function
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For an OR function neuron would fire if ANY of the inputs is ON i.e., g(x) = 1 here.
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For a NOR neuron to fire, we want ALL the inputs to be 0 so the thresholding parameter should also be 0
and we take them all as inhibitory input.

NOR Function



NOT Function

4 *

|

X1——d 0 Ly e{0,1}

\

For a NOT neuron, 1 outputs 0 and 0 outputs 1. So we take the input as an inhibitory input and set the
thresholding parameter to 0.

We can summarize these rules with the McCullough-Pitts output rule as:

The McCulloch-Pitts model of a neuron is simple yet has substantial computing potential. It also has a
precise mathematical definition. However, this model is so simplistic that it only generates a binary output
and also the weight and threshold values are fixed. The neural computing algorithm has diverse features
for various applications. Thus, we need to obtain the neural model with more flexible computational
features.

Gradient Descent Optimization:

The simplest approach to using gradient information is to choose the weight
update in (5.27) to comprise a small step in the direction of the negative gradient, so
that

wi™t — W™ _ pv E(w'™) (5.41)

where the parameter i > 0 is known as the learning rate. After each such update, the
eradient is re-evaluated for the new weight vector and the process repeated. Note that
the error function is defined with respect to a training set, and so each step requires
that the entire training set be processed in order to evaluate VE. Technigues that
use the whole data set at once are called bafch methods. At each step the weight
vector is moved in the direction of the greatest rate of decrease of the error function,
and so this approach is known as gradient descent or steepest descent. Although
such an approach might intuitively seem reasonable, in fact it turns out to be a poor
algorithm, for reasons discussed in Bishop and Nabney (2008).

For batch optimization, there are more efficient methods, such as conjugate gra-
dients and quasi-Newton methods, which are much more robust and much faster
than simple gradient descent (Gill ef al., 1981; Fletcher, 1987; Nocedal and Wright,
1999}, Unlike gradient descent, these algorithms have the property that the error
function always decreases at each iteration unless the weight vector has arrived at a
local or global minimum.

In order to find a sufficiently good minimum, it may be necessary to run a
eradient-based algorithm multiple times, each time using a different randomly cho-
sen starting point, and comparing the resulting performance on an independent vali-
dation set.

There is, however, an on-line version of gradient descent that has proved useful
in practice for training neural networks on large data sets (Le Cun ef al., 1989).
Error functions based on maximum likelihood for a set of independent observations
comprise a sum of terms, one for each data point

n
E(w) =Y En(w). (5.42)
n=1

On-line gradient descent, also known as sequential gradient descent or stochastic
gradient descent, makes an update to the weight vector based on one data point at a
time, so that

wiTHl) — ™ _ g E (wl™h). (5.43)



This update is repeated by cycling through the data either in sequence or by selecting
points at random with replacement. There are of course intermediate scenarios in
which the updates are based on batches of data points.

One advantage of on-line methods compared to batch methods is that the former
handle redundancy in the data much more efficiently. To see, this consider an ex-
treme example in which we take a data set and double its size by duplicating every
data point. Note that this simply multiplies the error function by a factor of 2 and so
15 equivalent to using the original error function. Batch methods will require double
the computational effort to evaluate the batch error function gradient, whereas on-
line methods will be unaffected. Another property of on-line gradient descent is the
possibility of escaping from local minima, since a stationary point with respect to
the error function for the whole data set will generally not be a stationary point for
each data point individually.

Error Backpropagation:
WHAT IS BACKPROPAGATION AND WHY IS IT IMPORTANT?

After a neural network is defined with initial weights, and a forward pass is performed to generate the
initial prediction, there is an error function which defines how far away the model is from the true
prediction. There are many possible algorithms that can minimize the error function—for example, one
could do a brute force search to find the weights that generate the smallest error. However, for large
neural networks, a training algorithm is needed that is very computationally efficient. Backpropagation is
that algorithm—it can discover the optimal weights relatively quickly, even for a network with millions
of weights.

HOW BACKPROPAGATION WORKS?

1. Forward pass—weights are initialized and inputs from the training set are fed into the
network. The forward pass is carried out and the model generates its initial prediction.

2. Error function—the error function is computed by checking how far away the prediction is
from the known true value.

3. Backpropagation with gradient descent—the backpropagation algorithm calculates how
much the output values are affected by each of the weights in the model. To do this, it
calculates partial derivatives, going back from the error function to a specific neuron and its
weight. This provides complete traceability from total errors, back to a specific weight which
contributed to that error. The result of backpropagation is a set of weights that minimize the
error function.

4. Weight update—weights can be updated after every sample in the training set, but this is
usually not practical. Typically, a batch of samples is run in one big forward pass, and then
backpropagation performed on the aggregate result. The batch size and number of batches
used in training, called iterations, are important hyperparameters that are tuned to get the
best results. Running the entire training set through the backpropagation process is called

an epoch. S B
an epoch.

Hidden Layer(s)

Input layer Output layer
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Training algorithm of BPNN:

1. Inputs X, arrive through the pre connected path

Input is modeled using real weights W. The weights are usually randomly selected.

3. Calculate the output for every neuron from the input layer, to the hidden layers, to the
output layer,

4. Calculate the error in the outputs

i~

Errors= Actual Output - Desired Output

5. Travel back from the output layer to the hidden layer to adjust the weights such that the
error is decreased.

Keep repeating the process until the desired output is achieved

Architecture of back propagation network:

As shown in the diagram, the architecture of BPN has three interconnected layers having weights on them.
The hidden layer as well as the output layer also has bias, whose weight is always 1, on them. As is clear
from the diagram, the working of BPN is in two phases. One phase sends the signal from the input layer to
the output layer, and the other phase back propagates the error from the output layer to the input layer.

r Input Signals >
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< Back-propagation of error ]

Our goal in this section is to find an efficient technique for evaluating the gradient
of an error function E'{w) for a feed-forward neural network. We shall see that
this can be achieved using a local message passing scheme in which information is
sent alternately forwards and backwards through the network and is known as error
backpropagation, or sometimes simply as backprop.

The term backpropagation is also used to describe the training of a multilayer perceptron using gradient
descent applied to a sum-of-squares error function.

It is important to recognize that the two stages are distinct. Thus, the first stage, namely the propagation of
errors backwards through the network in order to evaluate derivatives, can be applied to many other kinds
of network and not just the multilayer perceptron.



5.3.1 Evaluation of error-function derivatives

We now derive the backpropagation algorithm for a general network having ar-
bitrary feed-forward topology, arbitrary differentiable nonlinear activation functions,
and a broad class of error function. The resulting formulae will then be illustrated
using a simple layered network structure having a single layer of sigmoidal hidden
units together with a sum-of-squares error.

Many error functions of practical interest, for instance those defined by maxi-
mum likelihood for a set of i.i.d. data. comprise a sum of terms, one for each data
point in the training set. so that

N
E(w) =) En(w). (5.44)

Here we shall consider the problem of evaluating V E,,(w) for one such term in the
error function. This may be used directly for sequential optimization, or the results
can be accumulated over the training set in the case of batch methods.

Consider first a simple linear model in which the outputs y;. are linear combina-
tions of the input variables x; so that

Yk = E Wi 5 (5.45)
together with an error function that, for a particular input pattern n, takes the form

— 1 2
B, =5 ij{ynk ~ tak) (5.46)

where yni = yr(xn, w). The gradient of this error function with respect to a weight
w;; is given by
ETE::_: = {ynj - tﬂj]Ini (54'}“_'

which can be interpreted as a ‘local” computation involving the product of an ‘error
signal’ y,; — t,; associated with the output end of the link w;; and the variable z;
associated with the input end of the link. In Section 4.3.2, we saw how a similar
formula arises with the logistic sigmoid activation function together with the cross
entropy error function, and similarly for the softmax activation function together
with its matching cross-entropy error function. We shall now see how this simple
result extends to the more complex setting of multilayer feed-forward networks.

In a general feed-forward network, each unit computes a weighted sum of its
inputs of the form

a; =Y wjiz (5.48)



where z; is the activation of a unit, or input, that sends a connection to unit 7, and w;
is the weight associated with that connection. In Section 5.1, we saw that biases can
be included in this sum by introducing an extra unit, or input, with activation fixed
at +1. We therefore do not need to deal with biases explicitly. The sum in (5.48) is
transformed by a nonlinear activation function A(- ) to give the activation z; of unit j

in the form
z_-;i = h{ﬂ_.r:]. {5.49‘}

Mote that one or more of the variables ; in the sum in (5.48) could be an input, and
similarly, the unit j in (5.49) could be an output.

For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of
the hidden and output units in the network by successive application of (5.48) and
(5.49). This process is often called forward propagation because it can be regarded
as a forward flow of information through the network.

MNow consider the evaluation of the denvative of E,, with respect to a weight
wj;. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n
from the network variables. First we note that E,, depends on the weight w;; only
via the summed input a; to unit j. We can therefore apply the chain rule for partial
derivatives to give

i D ok, ﬂaj
ﬂwﬁ - Bﬂj ﬂwj,-' {5-5[.}
We now introduce a useful notation
aE,

where the §'s are often referred to as errors for reasons we shall see shortly. Using

(5.48), we can write
da;

B, = =, (5.52)
Substituting (5.51) and (5.52) into (5.50), we then obtain
aF,
_ﬂu_.' = IEJ A {5-53}

Jt
Equation (5.53) tells us that the required derivative is obtained simply by multiplying
the value of 4 for the unit at the output end of the weight by the value of = for the unit
at the input end of the weight (where z = 1 in the case of a bias). Note that this takes
the same form as for the simple linear model considered at the start of this section.
Thus, in order to evaluate the derivatives, we need only to calculate the value of 4;

for each hidden and output unit in the network, and then apply (5.53).
As we have seen already, for the output units, we have

=y — I (5.54)



For batch methods, the derivative of the total error £ can then be obtained by
repeating the above steps for each pattern in the training set and then summing over

all patterns:

oE OE,,
Gy 4 Dy (5.57)

In the above derivation we have implicitly assumed that each hidden or output unit in
the network has the same activation function h(-). The derivation is easily general-
ized, however, to allow different units to have individual activation functions, simply
by keeping track of which form of ki(-) goes with which unit.

T N T .

Figure 5.7 lustration of the calculation of 4, for hidden unit 5 by
backpropagation of the &'s from those units & to which =~
unit 5 sands connections. The blue arrow denotes the
direction of information flow during forward propagation,
and the red armows indicate the backward propagation
of amor information.

provided we are using the canonical link as the output-unit activation function. To
evaluate the 4's for hidden units, we again make use of the chain rule for partial
derivatives.,

aE, dE,, day
§. = — _m_ 5.55
] da; g dag da; { )

where the sum runs over all units k to which unit j sends connections. The arrange-
ment of units and weights is illustrated in Figure 5.7. Note that the units labelled k
could include other hidden units and/or output units. In writing down (5.55), we are
making use of the fact that variations in a; give rise to variations in the error func-
tion only through variations in the variables ag. If we now substitute the definition
of & given by (5.51) into (5.55), and make use of (5.48) and (5.49), we obtain the
following backpropagation formula

5 =h(a;) Y wi;by (5.56)
R

which tells us that the value of § for a particular hidden unit can be obtained by
propagating the &'s backwards from units higher up in the network, as illustrated
in Figure 5.7. Note that the summation in (5.56) is taken over the first index on
wi; (comresponding to backward propagation of information through the network),
whereas in the forward propagation equation (5.10) it is taken over the second index.
Because we already know the values of the §'s for the output units, it follows that
by recursively applying (5.56) we can evaluate the 4's for all of the hidden units in a
feed-forward network, regardless of its topology.
The backpropagation procedure can therefore be summarized as follows.



Error Backpropagation

. Apply an input vector x,, to the network and forward propagate through
the network using (5.48) and (5.49) to find the activations of all the hidden
and output units.

. Evaluate the ;. for all the output units using (5.54).

3. Backpropagate the 4’s using (5.56) to obtain d; for each hidden unit in the

network.

4. Use (5.53) to evaluate the required derivatives.

From shallow networks to deep networks :

A shallow neural network has only one hidden layer between the input and output layers, while a
deep neural network has multiple hidden layers.

A deep neural network learns to make decisions by processing information through multiple hidden
layers.

On the other hand, a shallow network is like having just one layer of decision-making, which might
not be enough to capture the complexity of the problem at hand.

A shallow network might be used for simple tasks like image classification, while a deep network
might be used for more complex tasks like image segmentation or natural language processing.

For instance, a shallow neural network with a single hidden layer can be used to recognize
handwritten digits from the MNIST dataset.

The main advantage of a shallow network is that it is computationally less expensive to train, and
can be sufficient for simple tasks.

However, it may not be powerful enough to capture complex patterns in the data.

A deep network, on the other hand, can capture more complex patterns in the data and potentially
achieve higher accuracy, but it is more computationally expensive to train and may require more
data to avoid overfitting.

Additionally, deep networks can be more challenging to design and optimize than shallow networks.

SHALLOW NEURAL NETWORK DEEP NEURAL NETWORK
Hidden Multiple hidden layers
process hierarchical features
Input ()
layer =7 . S Output
2 >SN S }\ layer
: AN S
X %
PR,
/ o oo
5 24 g &
A \ S
\ &

Unit saturation - Vanishing Gradient Problem:

Neural network models are trained by the optimization algorithm of gradient descent.

The input training data helps these models learn, and the loss function gauges how accurate the
prediction performance is for each iteration when parameters get updated.

As training goes, the goal is to reduce the loss function/prediction error by adjusting the parameters
iteratively.



e Specifically, the gradient descent algorithm has a forward step and a backward step, which lets it do
this.

e Inforward propagation, input vectors/data move forward through the network using a formula to
compute each neuron in the next layer. The formula consists of input/output, activation function f,

weight W and bias b: _
O' = f(WO1 +b)

e This computation iterates forward until it reaches an output or prediction.
o We then calculate the difference defined by a loss function, e.g., Mean Squared Error MSE, between
the target variable y (in the output layer) and each prediction, y cap:
M

1 Ay
Loss = =Y (yi — yi)*
(]
° 1=1
e With this initial evaluation, we go through a backward pass (a.k.a. backpropagation) to adjust the
weights and biases for each neuron in each layer. To update our neural nets, we first calculate the
gradients, which is nothing but the derivatives of the loss function w.r.t. weights and biases. Then
we nudge our algorithm to take a gradient descent step to minimize the loss function (where alpha
is the learning rate):
U}I 155 _

Wnew =W f;-frf—fkl
. oW c:f{f

e Two opposite scenarios could happen in this case: the derivative term gets extremely small, i.e.,
approaches zero vs. this term gets extremely large and overflows.

e These issues are referred to as the Vanishing and Exploding Gradients, respectively.

e  When you train your model for a while and the performance doesn’t seem to get better, chances are
your model is suffering from either vanishing or exploding gradients.

e Vanishing or exploding gradients - intuition behind the problem Vanishing
e During backpropagation, the calculation of (partial) derivatives/gradients in the weight update
formula follows the Chain Rule, where gradients in earlier layers are the multiplication of gradients

of later layers:
dLoss dLoss 00" 02

e OWL ot gzl owit
A=W O0 b

e As the gradients frequently become SMALLER until they are close to zero, the new model weights
(of the initial layers) will be virtually identical to the old weights without any updates.

e Asaresult, the gradient descent algorithm never converges to the optimal solution.

o This is known as the problem of vanishing gradients, and it's one example of unstable behaviors of
neural nets.

e where

o Exploding

e On the contrary, if the gradients get LARGER or even NaN as our backpropagation progresses, we
would end up with exploding gradients having big weight updates, leading to the divergence of the
gradient descent algorithm.

Vanishing
e Simply put, the vanishing gradients issue occurs when we use the Sigmoid or Tanh activation
functions in the hidden layer; these functions squish a large input space into a small space.
e Take the Sigmoid as an example, we have the following p.d.f.:

f(a) =

|l —e


https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Hyperbolic_functions#Hyperbolic_tangent

e Taking the derivative w.r.t. the parameter x, we get:

y=
l+¢

ﬂ__ | (=™ e

dc  (l+e™) (l+e™™)

— l I ‘ l— I : |:_l'(l__ll‘}
l+¢ \ l+e J

and if we visualize the Sigmoid function and its derivative:

Sigmoid function and it's derivative:

101 —— o(x)
— foix) I
0.8 -
Saturating
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o.a 4 Saturating
Derivative

Derivative Close to O

Close to O

x

Sigmoid
function and its derivative

e We can see that the Sigmoid function squeezes our input space into a range between [0,1], and
when the inputs become fairly small or fairly large, this function saturates at 0 or 1.

o These regions are referred to as ‘saturating regions’, whose derivatives become extremely close to
Zero.

e The same applies to the Tanh function that saturates at -1 and 1.

e Suppose that we have inputs that lie in any of the saturating regions, we would essentially have no
gradient values to propagate back, leading to a zero update in earlier layer weights.

e Usually, this is no big of a concern for shallow networks with just a couple of layers, however, when
we add more layers, vanishing gradients in initial layers will result in model training or convergence
failure.

e This is due to the effect of multiplying n of these small numbers to compute gradients of the early
layers in an n-layer network, meaning that the gradient decreases exponentially with n while the
early layers train very slowly and thus the performance of the entire network degrades.

Exploding
e Moving on to the exploding gradients, in a nutshell, this problem is due to the initial
weights assigned to the neural nets creating large losses.
e Big gradient values can accumulate to the point where large parameter updates are observed,
causing gradient descents to oscillate without coming to global minima.

How to identify a vanishing or exploding gradients problem?
Acknowledging that the gradients’ issues are something we need to avoid or fix when they do happen, how
should we know that a model is suffering from vanishing or exploding gradients issues? Following are the
few signs.
Vanishing

e Large changes are observed in parameters of later layers, whereas parameters of earlier layers

change slightly or stay unchanged
e In some cases, weights of earlier layers can become 0 as the training goes



e The model learns slowly and often times, training stops after a few iterations
e Model performance is poor
Exploding
e Contrary to the vanishing scenario, exploding gradients shows itself as unstable, large parameter
changes from batch/iteration to batch/iteration
e Model weights can become NaN very quickly
e Model loss also goes to NaN
Practices to fix a vanishing or exploding gradients problem
With these indicators of the gradients problems in mind, let’s explore the potential remedies to fix them.
e First, we will be focusing on the vanishing scenario: simulating a binary classification network
model that suffers from this issue, and then demonstrating various solutions to fix it

e By the same token, we will be addressing the exploding scenario with a regression network
model later

ReLU:

Activation Functions:

Sigmoid l Leaky ReLU ’
o(x) = 1 max(0.1z, x)

tanh Maxout
tanh(m) o - max(w] T + by, w3 T + by)

ReLU ELU
max (0, x) {‘” 220
; N ae®—1) z<0 - - )
Sigmoid ] Leak)(; |12eLU 1
o(z) = i max(0.1z, x)

tanh Maxout
tanh(z) ‘° max(wi z + by, wl T + by)

ReLU ELU
max (0, x) {”” 220
ae®—1) z<0 - - 0

Good default choice e &

e An activation function is basically just a simple function that transforms its inputs into outputs that
have a certain range.

o There are various types of activation functions that perform this task in a different manner.

For example, the sigmoid activation function takes input and maps the resulting values in between 0
to 1.

e ReLU stands for rectified linear activation unit and is considered one of the few milestones in the
deep learning revolution.

e [tissimple yet really better than its predecessor activation functions such as sigmoid or tanh.

ReLU activation function formula



f(x)=max(0,x)

e ReLU function is its derivative both are monotonic.

e The function returns 0 if it receives any negative input, but for any positive value x, it returns that
value back.

e Thus it gives an output that has a range from 0 to infinity.
ReLU is used as a default activation function and nowadays and it is the most commonly used
activation function in neural networks, especially in CNNs.

e The model can, therefore, take less time to train or run.

e One more important property that we consider the advantage of using ReLU activation function is
sparsity.

e Since ReLU gives output zero for all negative inputs, it’s likely for any given unit to not activate at all
which causes the network to be sparse.

o ReLU does not face vainishing gradient problem as its slope doesn’t plateau, or “saturate,” when the
input gets large.

e Due to this reason models using ReLU activation function converge faster.

o There are some problems with ReLU activation function such as exploding gradient

e Also, there is a downside for being zero for all negative values and this problem is called “dying
ReLU.”

e AReLU neuron is “dead” if it’s stuck in the negative side and always outputs 0.

e Because the slope of ReLU in the negative range is also 0, once a neuron gets negative, it's unlikely
for it to recover.

Hyperparameter tuning:



Classification of Neural Network

Hyperparameters
Classification by Classification by Classification by
Network Structure Learning & Optimization Regularization Effect
Directly affect the structure of the +  Directly control the training process of the i Directly control the overfitting in the
neural netwark b neural network b neural network :
« Number of hidden layers « Type of optimizer -+ Lambda-Ain L1and L2
regularization
+ Number of nodes in « Learning rate-a
each layer « Dropout rate in dropout
« Type of loss function regularization

Type of activation function
« Type of model evaluation
metric

« Batch size

« Epochs

- Training steps
(iterations) per epoch

How to choose a number of hidden layers

One of the hyperparameters that change the fundamental structure of a neural network is the
number of hidden layers, and we can divide them into 3 situations: 0, 1 or 2, many.

We don’t need to use the neural network at all if all we need is a linear boundary since the neural
network is for solving complex problems.

Second, if a data set isn’t linearly separable, then we need a hidden layer.

And normally, a single hidden layer is sufficient because the amount that a model improves by
adding hidden layers isn’t significant compared to the additional work you need to do.

So in many simple applications, one or two hidden layers do their job.

If we are trying to solve a complex problem such as object classification, then we need multiple
hidden layers that apply different modifications to their inputs.

# of hidden layer When
0 Linearly separable data
1~2 Nonlinear boundaries
many Complex problem

Finding an appropriate number is critical because too few neurons can lead to underfitting
whereas too many can lead to overfitting plus longer training time.

Empirically, it’s best to use a number between input and output sizes, and the number changes
based on how complex your problem is.

If a problem is simple and the input and output relationship is clear, then about %4 of the input
size can be a good starting point.



But if the relationship is complex, the number can vary from the input size to less than twice
the input size.

# of neurons in When
a hidden layer

% of the input size Simple input and output relationship

input size ~ 2 x input size - 1 Complex input and output relationship

Batch size, learning rate, epoch

When batch size increases, each batch naturally becomes similar to the full data set because each
batch starts to contain more observations.

This means that each batch will not differ too much from others.

Therefore, its noise will decrease, so it’s logical to use a large learning rate for faster training time.
In contrast, when we use a small batch size, noise increases.

Thus, we use a small learning rate to offset the noise.

Empirically, it has been shown that a large batch size could lead to poor generalization. In contrast,
when we use a small batch size, the noise helps a network to escape a local minimum and leads to
higher accuracy.

It also tends to converge to a reasonable solution faster than a network with large batch size.

So, in general, a batch size of 32 could be a good starting point, but this number really depends on
your sample size, the complexity of a problem, and your computational environment.

Therefore, using a grid search could also be appropriate.

For the learning rate, we usually start with 0.1 or 0.01 or we can use a grid search from 0.1 to 1e-5.
And when the learning rate is small, you need more iteration to find a minimum point.

Epochs: Depending on a problem and random initialization, the number of epochs we need for
convergence varies.

We often set the number of epochs high and use early stopping so that the neural network stops
training when an improvement coming from updating its weights does not pass a threshold.

Hyperparameter General starting point
Learning rate 0.1 or 0.01 or grid search
Epoch Early stopping
Batch size 32 or grid search

Batch Normalization:

Even after the model has been fully trained such that its training error is small, it exhibits a high
test error rate. This is known as the problem of Overfitting.

The training error fails to come down in-spite of several epochs of training. This is known as the
problem of Underfitting.

price

d = 1 (under-fit) d=2 d = 6 (over-fit)

house size house size house size



[llustration of Underfitting and Overfitting

Types of Normalization:

Layer Norm Batch Norm Group Normalization
A A \
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Instance Norm
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e Batch normalization is a deep learning approach that has been shown to significantly
improve the efficiency and reliability of neural network models.

e Itisparticularly useful for training very deep networks, as it can help to reduce the internal
covariate shift that can occur during training.

e Batch normalization is a technique used to improve the performance of a deep learning
network by first removing the batch mean and then splitting it by the batch standard
deviation.

e  When applied to a layer, batch normalization multiplies its output by a standard deviation parameter
(gamma) and adds a mean parameter (beta) to it as a secondary trainable parameter.

e The goal of batch normalization is to stabilize the training process and improve the generalization
ability of the model.

e It can also help to reduce the need for careful initialization of the model’s weights and can allow the
use of higher learning rates, which can speed up the training process.

Batch normalization equations
During training, the activations of a layer are normalized for each mini-batch of data using the following
equations:

e Mean: mean =1/m Yi=1to m xi

e Variance: variance = 1/m }'i=1 to m (xi - mean)”2

¢ Normalized activations: yi = (xi - mean) / sqrt(variance + €)

e Scaled and shifted activations: zi = yyi + 3, where y and 8 have learned parameters

During inference, the activations of a layer are normalized using the mean and variance of the activations
calculated during training, rather than using the mean and variance of the mini-batch:

¢ Normalized activations: yi = (xi - mean) / sqrt(variance + €)

e Scaled and shifted activations: zi = yyi + 8
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Advantages of batch normalization

Stabilize the training process. Batch normalization can help to reduce the internal covariate
shift that occurs during training, which can improve the stability of the training process and
make it easier to optimize the model.

Improves generalization. By normalizing the activations of a layer, batch normalization can
help to reduce overfitting and improve the generalization ability of the model.

Reduces the need for careful initialization. Batch normalization can help reduce the
sensitivity of the model to the initial weights, making it easier to train the model.

Allows for higher learning rates. Batch normalization can allow the use of higher learning
rates that can speed up the training process.

Dropout Regularization

When you have training data, if you try to train your model too much, it might overfit, and when you
get the actual test data for making predictions, it will not probably perform well. Dropout
regularization is one technique used to tackle overfitting problems in deep learning.

DLNs also exhibit a little understood feature called Self Regularization.

For example for a given amount of Training Set data, if we increase the complexity of the model by
adding additional Hidden Layers for example, then we should start to see overfitting, as per the
arguments that we just presented.

However, interestingly enough, increased model complexity leads to higher test data classification
accuracy, i.e., the increased complexity somehow self-regularizes the model.

Hence when using DLN models, it is a good idea to start with a more complex model that the problem
may warrant, and then add Regularization techniques if overfitting is detected.



Some commonly used Regularization techniques include:
e Early Stopping
e L1 Regularization
e L2 Regularization
e Dropout Regularization
e Training Data Augmentation
e Batch Normalization

Training with Drop-Out Layers

e Dropoutis aregularization method approximating concurrent training of many neural networks with
various designs.

e During training, some layer outputs are ignored or dropped at random.

e Dropout is an extremely versatile technique that can be applied to most neural network
architectures.

e It is useful especially when your network is very big or when you train for a very long time,
both of which put a network at a higher risk of overfitting.

(a) Standard Neural Net (b} After applying dropout.

e To apply dropout, we need to set a retention probability for each layer.

e The retention probability specifies the probability that a unit is not dropped.

e For example, if we set the retention probability to 0.8, the units in that layer have an 80% chance of
remaining active and a 20% chance of being dropped.

e Standard practice is to set the retention probability to 0.5 for hidden layers and to something close
to 1, like 0.8 or 0.9 on the input layer.

e Qutput layers generally do not apply dropout.

e Dropoutis applied by creating a mask for each layer and filling it with values between 0 and 1
generated by a random number generator according to the retention probability.

& 0.3

e

[ ] 0.2

®

e We could also fill the mask with random boolean values according to the retention probability.
o Neurons with a corresponding “True” entry are kept while those with a “False” value are discarded.
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