
CS 8392 OBJECT ORIENTED PROGRAMMING

A Course Material on

OBJECT ORIENTED PROGRAMMING

By

Mr.C.KAMATCHI

ASSISTANT PROFESSOR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PRATHYUSHA ENGINEERING COLLEGE

1

CS 8392 OBJECT ORIENTED PROGRAMMING

CS 8392 OBJECT ORIENTED PROGRAMMING

S.NO CONTENTS PAGE NO

 Unit I – OVERVIEW

1.1 Why Object-Oriented Programming in C++ 9

 1.1.1 History of C++ 9

 1.1.2 Why C++? 9

1.2 Native Types 10

 1.2.1 Implicit conversions (coercion) 10

 1.2.2 Enumeration Types 10

 1.3 Native C++ Statements 11

1.4 Functions and pointers 11

 1.4.1 functions 11

 1.4.2 Declarations 12

 1.4.3 Parameters and arguments 13

 1.4.4 Parameters 14

 1.4.5 by pointer 14

1.5 Pointers 17

 1.5.1 Pointer Arithmetic 18

1.6. Implementing Adts In The Base Language. 19

 1.6.1Simple ADTs 19

 1.6.2 Complex ADTs 19

3

CS 8392 OBJECT ORIENTED PROGRAMMING

 UNIT II -BASIC CHARACTERISTICS OF OOP

2.1 Data Hiding 21

2.2 Member Functions 22

 2.2.1 Defining member functions 22

2.3 Object Creation And Destruction 23

 2.3.1 Object Creation 23

 2.3.2 Accessing class members 24

 2.3.3 Creation methods 26

 2.3.4 Object destruction 27

2.4 Polymorphism And Data Abstraction 28

 2.4.1 Polymorphism 28

2.5 Data Abstraction 30

 2.5.1 Procedural Abstraction 30

 2.5.2Modular Abstraction 31

 2.5.3 Data Abstraction 31

2.6 Iterators 33

2.7 Containers 34

 UNIT III -ADVANCED PROGRAMMING

3.1 Templates 36

 3.1.1 Templates and Classes 38

 3.1.2 Template Meta-programming overview 42

 3.1.3 Compile-time programming 42

 3.1.4 The nature of template meta-programming 42

 4

CS 8392 OBJECT ORIENTED PROGRAMMING

 3.1.5 Building blocks 44

3.2 Generic programming 47

 3.2.1 Type parameter 47

 3.2.2 A generic function 48

 3.2.3 Subprogram parameters 48

3.3 Standard Template Library (Stl) 49

 3.3.1 History 50

 3.3.2 List of STL implementations. 51

 3.3.3 containers 51

 3.3.4 Linked lists 55

 3.3.5 Maps and Multimaps 56

 3.3.6 Iterators 57

 3.3.7 Functors 58

 3.3.8 Allocators 61

3.4 Inheritance 62

 3.4.1public inheritance 63

 3.4.2 Types 64

3.5 Exception Handling 70

 3.5.1 Constructors and destructors 74

 3.5.2 Partial handling 76

 3.5.3 Exception specifications 80

 3.5.4 Run-Time Type Information (RTTI) 81

3.6 Oop Using C++ 84

 UNIT IV -OVERVIEW OF JAVA

4.1 Data Types, Variables 86

 5

CS 8392 OBJECT ORIENTED PROGRAMMING

4.2 Arrays 88

4.3 Operators 90

4.4 4.4.1 Control Statements 92

4.5 Classes And Objects,Methods 94

 4.5.1 Classes contain data definitions 95

 4.5.2 Classes contain methods 95

 4.5.3 Methods contain statements 96

4.6 Inheritance 99

 UNIT V-EXCEPTION HANDLING

5.1 Packages 108

 5.1.1 Importing the Package 109

 5.1.2 CLASSPATH Environmental Variables 110

5.2 Interface 110

5.3 Exception Handling 112

5.4 Multithreaded Programming 114

5.5 Strings 118

5.6 Java i/o – the basics 120

I Unit I Important Two marks & Big Questions 123

II Unit II Important Two marks & Big Questions 127

III Unit III Important Two marks & Big Questions 132

IV Unit IV Important Two marks & Big Questions 136

V Unit V Important Two marks & Big Questions 139

VI Anna University Old Question Papers 142

6

CS 8392

OBJECT ORIENTED PROGRAMMING

CS 8392 OBJECT ORIENTED PROGRAMMING

1.WHY OBJECT-ORIENTED PROGRAMMING IN C++

1.1.1 History of C++

C, C++, Java, and C# are very similar. C++ evolved from C. Java was modeled after
C++. C# is a subset of C++ with some features similar to Java. If you know one of these
languages, it is easy to learn the others.

C evolved from the B language and the B language evolved from the BCPL language.
BCPL was developed by Martin Richards in the mid-1960s for writing operating systems and
compilers.
C++ is an extension of C, developed by Bjarne Stroustrup at Bell Labs during 1983-1985. C++
added a number of features that improved the C language.
1.1.2 Why C++?

C++ embodies the dominant computing paradigm, Object-Oriented Programming (OOP).

Object-oriented programming techniques are more natural than structured programming. You’ll
learn both since OOP is built upon structured programming. Learning C++ also teaches you an

enhanced form of C.
Advanced computing topics (operating systems, etc) are typically and more efficiently
implemented in C/C++.
Legacy migration of systems from C to C++ (30+ years of C code to migrate to C++ means
jobs!).
Contrary to popular belief, it’s fun!

Object orientation
 Why object-oriented programming?

A natural way of thinking about the world and computer programs
Object-oriented design (OOD)
Models real-world objects in software
Models communication among objects
Encapsulates attributes and operations (behaviors)

Information hiding

Communication through well-defined interfaces

Object-oriented language

Programming in object oriented languages is called object-oriented programming

(OOP) C++ is an object-oriented language

Programmers can create user-defined types called classes
Contain data members (attributes) and member functions (behaviors)

 What are objects?

Time objects, paycheck objects, record objects, etc. o
Any noun can be represented as an object

 Size, shape, color, weight,
etc. Exhibit behaviors

8

CS 8392 OBJECT ORIENTED PROGRAMMING

 Babies cry, crawl, sleep, etc.; cars accelerate, brake, turn, etc.
More understandable, better organized and easier to maintain than procedural
programming
Libraries of reusable software

 MFC (Microsoft Foundation Classes)
o

1.2 NATIVE TYPES
bool
char, wchar_t

 modified with signed or unsigned

int
modified with signed or unsigned o
can be modified with short or long o
int can be dropped! long num;
o can be modified with const or volatile

Native C++ Types: Bottom Line
float double long double
bool
char
int unsigned long
float double

pitfalls
 size is machine-dependent
 sizeof(‘a’) == sizeof(int) in C,
o but sizeof(char) in C++ (char is smaller than int)

Type Size

Language standard does not define the size of native types
sizeof(type) operator
limits.h and float.h

 Defines the largest and smallest type values
include <limits>

o numeric_limits<type>::max()
1.2.1 Implicit conversions (coercion)

Occur in mixed expressions
Widening conversions:

int < unsigned < long < unsigned long < float < double < long

double Widening safe, narrowing unsafe.
But: narrowing conversions allowed with assignments

enum Animal {Cat, Dog, Horse = 5};

Tag name, enumerators must be unique

Implicit conversion to integer
 int i = Dog; // assigns 1 to i

9

CS 8392 OBJECT ORIENTED PROGRAMMING

Explicit cast from integer
 Animal anim = static_cast<Animal>i;

C++ trick:
enum {SIZE = 100};
replaces #define SIZE 100

1.3 NATIVE C++ STATEMENTS

Expressions
 expression ;

 compound

Conditional

o if/if-else
Iteration

o while
o for

o do (not as common as iteration)
switch/case

Formatting conventions

 Syntax template

Variable = Expression ;

 Operation
– The expression on the right hand side is evaluated and assigned to the memory

location named by the variable on the left hand side.

1.4 FUNCTIONS AND POINTERS

1.4.1 FUNCTIONS

A function, which can also be referred to as subroutine, procedure, subprogram or even
method, carries out tasks defined by a sequence of statements called a statement block that need

only be written once and called by a program as many times as needed to carry out the same task.
Functions may depend on variables passed to them, called arguments, and may pass

results of a task on to the caller of the function, this is called the return value.
It is important to note that a function that exists in the global scope can also be called global

function and a function that is defined inside a class is called a member function. (The term
method is commonly used in other programming languages to refer to things like member

functions, but this can lead to confusion in dealing with C++ which supports both virtual and
non-virtual dispatch of member functions.)

1.4.2 Declarations
A function must be declared before being used, with a name to identify it, what type of

value the function returns and the types of any arguments that are to be passed to it. Parameters

10

http://en.wikipedia.org/wiki/subroutine
http://en.wikipedia.org/wiki/subroutine
http://en.wikipedia.org/wiki/Method_%28computer_science%29
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Statements
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Statements/Functions#Parameters_and_arguments
http://en.wikipedia.org/wiki/Return_statement
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Statements/Scope

CS 8392 OBJECT ORIENTED PROGRAMMING

must be named and declare what type of value it takes. Parameters should always be passed as

const if their arguments are not modified. Usually functions performs actions, so the name
should make clear what it does. By using verbs in function names and following other naming

conventions programs can be read more naturally.
The next example we define a function named main that returns an integer value int and

takes no parameters. The content of the function is called the body of the function. The word int

is a keyword. C++ keywords are reserved words, i.e., cannot be used for any purpose other than

what they are meant for. On the other hand main is not a keyword and you can use it in many

places where a keyword cannot be used (though that is not recommended, as confusion could

result).

int main()

{
code

return 0;

}

The inline keyword declares an inline function, the declaration is a (non-binding) request

to the compiler that a particular function be subjected to in-line expansion; that is, it suggests that

the compiler insert the complete body of the function in every context where that function is used

and so it is used to avoid the overhead implied by making a CPU jump from one place in code to

another and back again to execute a subroutine, as is done in naive implementations of

subroutines.
inline swap(int& a, int& b) { int const tmp(b); b=a; a=tmp; }

When a function definition is included in a class/struct definition, it will be an implicit inline, the

compiler will try to automatically inline that function. No inline keyword is necessary in this
case; it is legal, but redundant, to add the inline keyword in that context, and good style is to omit

it.

Example:

struct length

{
explicit length(int metres) : m_metres(metres) {}

operator int&() { return m_metres; } private:

int m_metres;

};
Inlining can be an optimization, or a pessimization. It can increase code size (by

duplicating the code for a function at multiple call sites) or can decrease it (if the code for the

function, after optimization, is less than the size of the code needed to call a non-inlined
function). It can increase speed (by allowing for more optimization and by avoiding jumps) or

can decrease speed (by increasing code size and hence cache misses).
One important side-effect of inlining is that more code is then accessible to the optimizer.
Marking a function as inline also has an effect on linking: multiple definitions of an inline
function are permitted (so long as each is in a different translation unit) so long as they are

identical. This allows inline function definitions to appear in header files; defining non-inlined
functions in header files is almost always an error (though function templates can also be defined
in header files, and often are).

11

http://en.wikipedia.org/wiki/inline_expansion
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Style_Conventions

CS 8392 OBJECT ORIENTED PROGRAMMING

Mainstream C++ compilers like Microsoft Visual C++ and GCC support an option that

lets the compilers automatically inline any suitable function, even those that are not marked as
inline functions. A compiler is often in a better position than a human to decide whether a

particular function should be inlined; in particular, the compiler may not be willing or able to
inline many functions that the human asks it to.

Excessive use of inlined functions can greatly increase coupling/dependencies and
compilation time, as well as making header files less useful as documentation of interfaces.

Normally when calling a function, a program will evaluate and store the arguments, and
then call (or branch to) the function's code, and then the function will later return back to the

caller. While function calls are fast (typically taking much less than a microsecond on modern
processors), the overhead can sometimes be significant, particularly if the function is simple and

is called many times.
One approach which can be a performance optimization in some situations is to use so-

called inline functions. Marking a function as inline is a request (sometimes called a hint) to the
compiler to consider replacing a call to the function by a copy of the code of that function.
The result is in some ways similar to the use of the #define macro, but as mentioned before,
macros can lead to problems since they are not evaluated by the preprocessor. inline functions do
not suffer from the same problems.

If the inlined function is large, this replacement process (known for obvious reasons as
"inlining") can lead to "code bloat", leading to bigger (and hence usually slower) code. However,
for small functions it can even reduce code size, particularly once a compiler's optimizer runs.
Note that the inlining process requires that the function's definition (including the code) must be
available to the compiler. In particular, inline headers that are used from more than one source

file must be completely defined within a header file (whereas with regular functions that would
be an error).

The most common way to designate that a function is inline is by the use of the inline
keyword. One must keep in mind that compilers can be configured to ignore the keyword and
use their own optimizations.
Further considerations are given when dealing with inline member function, this will be covered
on the Object-Oriented Programming
1.4.3 Parameters and arguments

The function declaration defines its parameters. A parameter is a variable which takes on
the meaning of a corresponding argument passed in a call to a function.

An argument represents the value you supply to a function parameter when you call it.

The calling code supplies the arguments when it calls the function.
The part of the function declaration that declares the expected parameters is called the

parameter list and the part of function call that specifies the arguments is called the argument list.
//Global functions declaration
int subtraction_function(int parameter1, int parameter2) { return (parameter1 - parameter2); }
//Call to the above function using 2 extra variables so the relation becomes more evident int
argument1 = 4;
int argument2 = 3;
int result = subtraction_function(argument1, argument2
); // will have the same result as
int result = subtraction_function(4, 3);

12

http://en.wikipedia.org/wiki/Visual_C_Plus_Plus
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/inline
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/inline
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Compiler/Preprocessor#Macros
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Compiler/Preprocessor
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/inline
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/inline
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Classes/Member_Functions#Inline
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Chapter_Object_Oriented_Programming

CS 8392 OBJECT ORIENTED PROGRAMMING

Many programmers use parameter and argument interchangeably, depending on context

to distinguish the meaning. In practice, distinguishing between the two terms is usually
unnecessary in order to use them correctly or communicate their use to other programmers.

Alternatively, the equivalent terms formal parameter and actual parameter may be used instead
of parameter and argument.

1.4.4 Parameters
We can define a function with no parameters, one parameter, or more than one, but to use

a call to that function with arguments you must take into consideration what is defined. Empty
parameter list
//Global functions with no parameters

void function() { /*...*/ }
//empty parameter declaration equivalent the use of void

void function(void) { /*...*/ } Multiple parameters

The syntax for declaring and invoking functions with multiple parameters can be a source
of errors. When you write the function definition, you must declare the type of each and every
parameter.
Example - function using two int parameters by value
void printTime (int hour, int minute) {
std::cout << hour;
std::cout << ":";
std::cout << minute;

}
It might be tempting to write (int hour, minute), but that format is only legal for variable
declarations, not for parameter declarations.
However, you do not have to declare the types of arguments when you call a function. (Indeed, it
is an error to attempt to do so).
Example
int main (void) {
int hour = 11;

int minute = 59;
printTime(int hour, int minute); // WRONG!

printTime(hour, minute); // Right!

}
In this case, the compiler can tell the type of hour and minute by looking at their

declarations. It is unnecessary and illegal to include the type when you pass them as arguments..
1.4.5 by pointer

A function may use pass by pointer when the object pointed to might not exist, that is,
when you are giving either the address of a real object or NULL. Passing a pointer is not

different to passing anything else. Its a parameter the same as any other. The characteristics of

the pointer type is what makes it a worth distinguishing.
The passing of a pointer to a function is very similar to passing it as a reference. It is used

to avoid the overhead of copying, and the slicing problem (since child classes have a bigger

memory footprint that the parent) that can occur when passing base class objects by value. This
is also the preferred method in C (for historical reasons), were passing by pointer signifies that

13

CS 8392 OBJECT ORIENTED PROGRAMMING

wanted to modify the original variable. In C++ it is preferred to use references to pointers and
guarantee that the function before dereferencing it, verifies the pointer for validity. #include
<iostream>
void MyFunc(int *x)

{

std::cout << *x << std::endl; // See next section for explanation

}

int main()

{

int i;

MyFunc(&i);

return 0;
}

Since a reference is just an alias, it has exactly the same address as what it refers to, as in the

following example:

#include <iostream>

void ComparePointers (int * a, int * b)

{

if (a == b)
std::cout<<"Pointers are the

same!"<<std::endl; else
std::cout<<"Pointers are different!"<<std::endl;

}

int main()

{

int i, j;

int& r = i;

ComparePointers(&i, &i);

ComparePointers(&i, &j);

ComparePointers(&i, &r);

ComparePointers(&j, &r);

return 0;

}
In object-oriented programming, a friend function that is a "friend" of a given class is

allowed access to private and protected data in that class that it would not normally be able to as

if the data was public.
[1]

 Normally, a function that is defined outside of a class cannot access

such information. Declaring a function a friend of a class allows this, in languages where the
concept is supported.

A friend function is declared by the class that is granting access, explicitly stating what
function from a class is allowed access. A similar concept is that of friend class.
Friends should be used with caution. Too many functions or external classes declared as friends
of a class with protected or private data may lessen the value of encapsulation of separate classes

in object-oriented programming and may indicate a problem in the overall architecture design.
Generally though, friend functions are a good thing for encapsulation, as you can keep data of a

14

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Friend_function#cite_note-1
http://en.wikipedia.org/wiki/Function_%28computer_science%29
http://en.wikipedia.org/wiki/Friend_class
http://en.wikipedia.org/wiki/Separation_of_concerns

CS 8392 OBJECT ORIENTED PROGRAMMING

class private from all except those who you explicitly state need it, but this does mean your
classes will become tightly coupled.
1.4.6 Use cases

This approach may be used in friendly function when a function needs to access private data
in objects from two different classes. This may be accomplished in two similar ways

a function of global or namespace scope may be declared as friend of both classes
 a member function of one class may be declared as friend of another one.

#include <iostream>
using namespace std;

class Foo; // Forward declaration of class Foo in order for example to
compile. class Bar {

private:
int a;

public:

Bar(): a(0) {}

void show(Bar& x, Foo& y);

friend void show(Bar& x, Foo& y); // declaration of global friend

};

class Foo {

private:

int b;

public:

Foo(): b(6) {}

friend void show(Bar& x, Foo& y); // declaration of global friend

friend void Bar::show(Bar& x, Foo& y); // declaration of friend from other class

};

Definition of a member function of Bar; this member is a friend of Foo
void Bar::show(Bar& x, Foo& y) {
cout << "Show via function member of Bar" <<
endl; cout << "Bar::a = " << x.a << endl;
cout << "Foo::b = " << y.b << endl;

}

 Friend for Bar and Foo, definition of global function
void show(Bar& x, Foo& y) {

cout << "Show via global function" << endl;

cout << "Bar::a = " << x.a << endl;

cout << "Foo::b = " << y.b << endl;

}

int main() {

Bar a;

Foo b;

15

http://en.wikipedia.org/wiki/Namespace

CS 8392 OBJECT ORIENTED PROGRAMMING

show(a,b);

a.show(a,b);

}

1.5 POINTERS

Getting the address of a Variable

The address operator (&) returns the memory address of a variable.

 This program uses the & operator to determine a variable’s
address and the sizeof operator to determine its size.
#include <iostream.h>
void main(void)

{

int x = 25;

cout << "The address of x is " << &x << endl;
cout << "The size of x is " << sizeof(x) << " bytes\n";
cout << "The value in x is " << x << endl;

}

The address of x is 0x8f05

The size of x is 2 bytes

The value in x is 25

Pointer Variables
Pointer variables, which are often just called pointers, are designed to hold memory
addresses. With pointer variables you can indirectly manipulate data stored in other variables
Pointers are useful for the following:
Working with memory locations that regular variables don’t give you access to
Working with strings and arrays
Creating new variables in memory while the program is
running Creating arbitrarily-sized lists of values in memory
 This program stores the address of a variable in a pointer.
#include <iostream.h>
void main(void)

{

int x = 25;

int *ptr;

ptr = &x; // Store the address of x in ptr
cout << "The value in x is " << x << endl;

cout << "The address of x is " << ptr << endl;

}

The value in x is 25

The address of x is 0x7e00

16

CS 8392 OBJECT ORIENTED PROGRAMMING

1.5.1 Pointer Arithmetic

Some mathematical operations may be performed on pointers.
The ++ and – operators may be used to increment or decrement a pointer variable. An
integer may be added to or subtracted from a pointer variable. This may be performed
with the +, - +=, or -= operators.
A pointer may be subtracted from another pointer.

 This program uses a pointer to display the contents

 of an integer array.

#include <iostream.h>

void main(void)

{

int set[8] = {5, 10, 15, 20, 25, 30, 35, 40};
int *nums, index;

nums = set;

cout << "The numbers in set are:\n";

for (index = 0; index < 8; index++)

{

cout << *nums << " ";

nums++;

}
cout << "\nThe numbers in set backwards are:\n";

for (index = 0; index < 8; index++)
{

nums--;

cout << *nums << " ";

}

}

Initializing Pointers

Pointers may be initialized with the address of an existing object.

 This program uses a pointer to display the contents

 of an integer array.

#include <iostream.h>

void main(void)

{
int set[8] = {5, 10, 15, 20, 25, 30, 35, 40};

int *nums = set; // Make nums point to set

cout << "The numbers in set are:\n";

cout << *nums << " "; // Display first element

while (nums < &set[7])

{

nums++;

cout << *nums << " ";

}

17

CS 8392 OBJECT ORIENTED PROGRAMMING

cout << "\nThe numbers in set backwards are:\n";
cout << *nums << " "; // Display last element
while (nums > set)
{

nums--;

cout << *nums << " ";

}

}

The numbers in set are:

510152025303540

The numbers in set backwards are:

403530252015105

1.6. IMPLEMENTING ADTS IN THE BASE LANGUAGE.

1.6.1Simple ADTs

Many programming languages already define some simple ADTs as integral parts of the

language. For example, the C language defines a simple ADT as an integer. The type of this

ADT is an integer with predefined ranges. C also defines several operations that can be applied

to this data type (addition, subtraction, multiplication, division and so on). C explicitly defines

these operations on integers and what we expect as the results. A programmer who writes a C

program to add two integers should know about the integer ADT and the operations that can be

applied to it.
1.6.2 Complex ADTs

Although several simple ADTs, such as integer, real, character, pointer and so on, have been

implemented and are available for use in most languages, many useful complex ADTs are not.

As we will see in this chapter, we need a list ADT, a stack ADT, a queue ADT and so on. To be
efficient, these ADTs should be created and stored in the library of the computer to be used.

Model for an abstract data type
The ADT model is shown in Figure 12.1. Inside the ADT are two different parts of the model:

data structure and operations (public and private).

18

CS 8392 OBJECT ORIENTED PROGRAMMING

Implementation

Computer languages do not provide complex ADT packages. To create a complex ADT,

it is first implemented and kept in a library. The main purpose of this chapter is to introduce
some common user-defined ADTs and their applications. However, we also give a brief

discussion of each ADT implementation for the interested reader. We offer the pseudocode
algorithms of the implementations as challenging exercises.
1.6.3 STACKS

A stack is a restricted linear list in which all additions and deletions are made at one end,

the top. If we insert a series of data items into a stack and then remove them, the order of the data
is reversed. This reversing attribute is why stacks are known as last in, first out (LIFO) data

structures.

Operations on stacks

The pop operation deletes the item at the top of the stack. The following shows the format.

The empty operation

The empty operation checks the status of the stack. The following shows the format

19

CS 8392 OBJECT ORIENTED PROGRAMMING

20

CS 8392 OBJECT ORIENTED PROGRAMMING

UNIT II

BASIC CHARACTERISTICS OF OOP

Data Hiding and Member Functions- Object Creation and Destruction- Polymorphism
data abstraction: Iterators and Containers.

2.1.DATA HIDING

 With data hiding

 accessing the data is restricted to authorized functions

 “clients” (e.g., main program) can’t muck with the data directly

 this is done by placing the data members in the private section

 and, placing member functions to access & modify that data in the public section

 So, the public section
 includes the data and operations that are visible, accessible, and useable by all of

the clients that have objects of this class
 this means that the information in the public section is “transparent”; therefore, all

of the data and operations are accessible outside the scope of this class
 by default, nothing in a class is public!

 The private section

 includes the data and operations that are not visible to any other class or client
 this means that the information in the private section is “opaque” and therefore is

inaccessible outside the scope of this class
 the client has no direct access to the data and must use the public member

functions
 this is where you should place all data to ensure the memory’s integrity

 The good news is that
 member functions defined in the public section can use, return, or modify the

contents of any of the data members, directly
 it is best to assume that member functions are the only way to work with private

data
 (there are “friends” but don’t use them this term)

 Think of the member functions and private data as working together as a team
 Notice, that the display_all function can access the private my_list and num_of_videos

members, directly
 without an object in front of them!!!
 this is because the client calls the display_all function through an object

object.display_all();
so the object is implicitly available once we enter “class scope

 In reality, the previous example was misleading. We don’t place the implementation of
functions with this this class interface

 Instead, we place them in the class implementation, and separate this into its own file

• Class Interface: list.h

class list {

public:

21

CS 8392 OBJECT ORIENTED PROGRAMMING

int display_all()

•••

};

 list.h can contain:

 prototype statements

 structure declarations and definitions

 class interfaces and class declarations

include other files

2.2MEMBER FUNCTIONS

2.2.1 Defining member functions

Data members of a class must be declared within the body of the class.

Member functions can be defined in Two ways:

Inside the class

Outside the class

 Member functions inside the class body:

 This is similar to a normal function definition expect that it is enclosed within the body of a class.

 These are considered as inline by default.

 In some implementations member function a having loops like for, do, while etc. are not treated as
inline function.

#include<iostream.h>

Class date

{

private: int day;

int month;

int year;

public: void set(int d, int m, int y)
{ day = d;

month= m;

year = y;

}
void show()
{ cout<<
};

void main()

{

day<<“-”

month<<“-”

year<<endl;

}

Ȁ⸀ĀᜀĀᜀ creating

two objects

D1.set(15,8,2011);

d2,.set(26,1,2011);

Cout<<“ independence day”;

D1.show();

22

CS 8392 OBJECT ORIENTED PROGRAMMING

Cout<<“ republic day”;

D2.show();

}

Inline is actually just a request, not a command, to the compiler.

The compiler can choose to ignore it.

Also, some compilers may not inline all types of functions.

For example, it is common for a compiler not to inline a recursive function.

Inline functions may be class member functions.

For example, this is a perfectly valid C++ program

#include <iostream>

class myclass

{

int a, b;
public:

void init(int i, int j);

void show();

};

// Create an inline function.

inline void myclass::init(int i, int j)

{

a = i;

b = j;

}
Create another inline function.

inline void myclass::show()

{

cout << a << " " << b << "\n";

}

int main()

{
myclass x;

x.init(10, 20);

x.show();

return 0;

}

2.3 OBJECT CREATION AND DESTRUCTION

2.3.1 OBJECT CREATION

 Classes are the object oriented
Programing constructs which are
Out of data types.

 Defining variables of a class is

23

CS 8392 OBJECT ORIENTED PROGRAMMING

Called a class specification and

Such variables are called objects.
 A class encloses both data and functions that operate on the data. These are called data

members and member functions.
 Classes are basic constructs of C++ for creating user defined data types.
 Classes are extension of structures.
 Difference is - all members of a structure are public by default where as all members of a

class are private by default.
 The property of C++ which allows association of data and functions in to a single unit

called encapsulation.
Defining variables of a class type is known as a CLASS INSTANTIATION and such variables
are called OBJECTS.
An object is an instance of a class.
The necessary resources are created when the class is instantiated.

The class specifies the type and scope of its members.

The members are usually grouped under two sections – private and public.

Private members are accessible only to their own class members.

Public members are accessible from outside the class also.
 Syntax of defining a class

: class class_name
{

body of the class

}
 Here class is the keyword and body has declaration of variables and functions

The variables and functions enclosed in a class are called data members and member functions
respectively.
A class should be given a meaningful name.

The name of data and member functions of a class can be same as those in other classes.

A class can have multiple functions with the same name.

But it cannot have multiple variables with same name.

Class objects

A class specification only declares the structure of objects and it must be instantiated in
order to make use of the services provided by it.

The syntax

Similar to structure variable objects can also be created by placing their names
immediately after the closing braces like in the example below…..
class student

{…

….} c1, c2, c3;

OR

class student

{…

24

CS 8392 OBJECT ORIENTED PROGRAMMING

 ….};

student c1, c2, c3;

2.3.2 Accessing class members

Class members can be accessed using the objects.

Objects must use member access operator, the dot(.)

Syntax

ObjectName.DataMember

Data Member can be variable or function.

Should be public to be accessible.

objectName.function_Name(actual parameters)

Ex: s1.name; // cannot be accessed -> data hiding if private
S1.gatdata();

class student

{ int roll; char *name;

public:

void setdata(int r_no, char *name1)
{roll=r_no;

name=name1; }
};

void main(){

student s1;

s1.setdata(1, “Abhishek”);

}

The object accessing its class members resembles a client-server model.

A client seeks a service

A server provides services requested by a client.

Class – like a server

Objects – like clients

In typical case, the process is as follows:
calculate the size of an object - the size is mostly the same as that of the class but can
vary. When the object in question is not derived from a class, but from a prototype

instead, the size of an object is usually that of the internal data structure (a hash for

instance) that holds its slots.
allocation - allocating memory space with the size of an object plus the growth later, if
possible to know in advance
binding methods - this is usually either left to the class of the object, or is resolved at

dispatch time, but nevertheless it is possible that some object models bind methods at
creation time.
calling an initializing code (namely, constructor) of superclass

25

http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Prototype_based_programming
http://en.wikipedia.org/wiki/Name_binding
http://en.wikipedia.org/w/index.php?title=Dispatch_time&action=edit&redlink=1

CS 8392 OBJECT ORIENTED PROGRAMMING

calling an initializing code of class being created
Those tasks can be completed at once but are sometimes left unfinished and the order of the tasks
can vary and can cause several strange behaviors. For example, in multi-inheritance, which
initializing code should be called first is a difficult question to answer. However, superclass
constructors should be called before subclass constructors.

It is a complex problem to create each object as an element of an array.
[further explanation needed]

Some languages (e.g. C++) leave this to programmers.
Handling exceptions in the midst of creation of an object is particularly problematic because

usually the implementation of throwing exceptions relies on valid object states. For instance,

there is no way to allocate a new space for an exception object when the allocation of an object

failed before that due to a lack of free space on the memory. Due to this, implementations of OO

languages should provide mechanisms to allow raising exceptions even when there is short

supply of resources, and programmers or the type system should ensure that their code is

exception-safe. Note that propagating an exception is likely to free resources (rather than allocate

them). However, in object oriented programming, object construction may always fail, because

constructing an object should establish the class invariants, which are often not valid for every

combination of constructor arguments. Thus, constructors can always raise exceptions.
The abstract factory pattern is a way to decouple a particular implementation of an object from
code for the creation of such an object.

2.3.3 Creation methods

The way to create objects varies across languages. In some class-based languages, a
special method known as a constructor, is responsible for validating the state of an object. Just
like ordinary methods, constructors can be overloaded in order to make it so that an object can be
created with different attributes specified. Also, the constructor is the only place to set the state of

immutable objects
[Wrong

clarification needed]

. A copy constructor is a constructor which takes a
(single) parameter of an existing object of the same type as the constructor's class, and returns a
copy of the object sent as a parameter.

Other programming languages, such as Objective-C, have class methods, which can
include constructor-type methods, but are not restricted to merely instantiating objects.

C++ and Java have been criticized
[by whom?]

 for not providing named constructors—a

constructor must always have the same name as the class. This can be problematic if the
programmer wants to provide two constructors with the same argument types, e.g., to create a
point object either from the cartesian coordinates or from the polar coordinates, both of which
would be represented by two floating point numbers. Objective-C can circumvent this problem,
in that the programmer can create a Point class, with initialization methods, for example,
+newPointWithX:andY:, and +newPointWithR:andTheta:. In C++, something similar can be
done using static member functions.
A constructor can also refer to a function which is used to create a value of a tagged union,
particularly in functional languages.

26

http://en.wikipedia.org/wiki/Multi-inheritance
http://en.wikipedia.org/wiki/Wikipedia:Please_clarify
http://en.wikipedia.org/wiki/Wikipedia:Please_clarify
http://en.wikipedia.org/wiki/Exception_handling
http://en.wikipedia.org/wiki/Exception-safe
http://en.wikipedia.org/wiki/Class_invariants
http://en.wikipedia.org/wiki/Abstract_factory_pattern
http://en.wikipedia.org/wiki/Constructor_(computer_science)
http://en.wikipedia.org/wiki/Method_overloading
http://en.wikipedia.org/wiki/Immutable_object
http://en.wikipedia.org/wiki/Wikipedia:Please_clarify
http://en.wikipedia.org/wiki/Copy_constructor
http://en.wikipedia.org/wiki/Objective-C
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Words_to_watch#Unsupported_attributions
http://en.wikipedia.org/wiki/Cartesian_coordinate
http://en.wikipedia.org/wiki/Coordinates_(elementary_mathematics)
http://en.wikipedia.org/wiki/Tagged_union

CS 8392 OBJECT ORIENTED PROGRAMMING

2.3.4 Object destruction

It is generally the case that after an object is used, it is removed from memory to make

room for other programs or objects to take that object's place. However, if there is sufficient

memory or a program has a short run time, object destruction may not occur, memory simply

being deallocated at process termination. In some cases object destruction simply consists of

deallocating the memory, particularly in garbage-collected languages, or if the "object" is

actually a plain old data structure. In other cases some work is performed prior to deallocation,

particularly destroying member objects (in manual memory management), or deleting references

from the object to other objects to decrement reference counts (in reference counting). This may

be automatic, or a special destruction method may be called on the object.
In class-based OOLs with deterministic object lifetime, notably C++, a destructor is a method

called when an instance of a class is deleted, before the memory is deallocated. Note that in C++,
destructors differs from constructors in various ways: it cannot be overloaded, it has to have no

arguments, it does not need to maintain class invariants, and exceptions that escape a destructor
cause program termination.

In garbage collecting languages, objects may be destroyed when they can no longer be

reached by the running code. In class-based GCed languages, the analog of destructors are

finalizers, which are called before an object is garbage-collected. These differ in running at an

unpredictable time and in an unpredictable order, since garbage collection is unpredictable, and

are significantly less-used and less complex than C++ destructors. Example of such languages

include Java, Python, and Ruby.
Destroying an object will cause any references to the object to become invalid, and in

manual memory management any existing references become dangling references. In garbage

collection (both tracing garbage collection and reference counting), objects are only destroyed

when there are no references to them, but finalization may create new references to the object,

and to prevent dangling references, object resurrection occurs so the references remain valid.

Examples
class Foo

{
 This is the prototype of the constructors

public:
Foo(int x);
Foo(int x, int y); // Overloaded
Constructor Foo(const Foo &old); // Copy
Constructor ~Foo(); // Destructor

};

Foo::Foo(int x)

{

 This is the implementation of

 the one-argument constructor

}

Foo::Foo(int x, int y)

{

27

http://en.wikipedia.org/wiki/Plain_old_data_structure
http://en.wikipedia.org/wiki/Destructor_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Class_invariant
http://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
http://en.wikipedia.org/wiki/Finalizer
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Ruby_programming_language
http://en.wikipedia.org/wiki/Dangling_reference
http://en.wikipedia.org/wiki/Object_resurrection

CS 8392 OBJECT ORIENTED PROGRAMMING

This is the implementation of

the two-argument constructor

}

Foo::Foo(const Foo &old)

{

ᜀĀᜀĀ This is the implementation of

ᜀĀᜀĀ the copy constructor

}

Foo::~Foo()

{

// This is the implementation of the destructor
}

int main()

{

Foo foo(14); // call first constructor

Foo foo2(12, 16); // call overloaded constructor

Foo foo3(foo); // call the copy constructor

return 0;

 destructors called in backwards-order

 here, automatically

2.4POLYMORPHISM AND DATA ABSTRACTION

2.4.1 POLYMORPHISM
 many forms

 Greek

"poly" – many o
"morph" form the same method can be called on different objects

 they may respond to it in different ways

 all Vehicles have a move method

 Cars and Truck drive

 Airplanes fly

#include "Vehicle.h"

int main(){

Vehicle v ("Transporter 54");

Airplane a("Tornado 2431", 14);

LandVehicle lv("My wheels");

Car c("Ford Anglia 22");

Truck t("Red pickup");

v.move();

28

CS 8392 OBJECT ORIENTED PROGRAMMING

a.move();

lv.move();

c.move();

t.move();

}
OUTPUT

Vehicle constructor

Vehicle constructor

Airplane constructor

Vehicle constructor

Land vehicle constructor

Vechicle constructor
Land vehicle constructor

Car constructor

Vechicle constructor

Land vehicle constructor

Truck constructor

Vehicle Transporter 54 moving

Airplane Tornado 2431 flying

Land Vehicle My wheels driving

Land Vehicle Ford Anglia 22 driving

Land Vehicle Red pickup driving

Polymorphic behaviour
 to get polymorphic behaviour, we would like the version of move() to be determined at run-time

 if moveVehicle is sent an Airplane object, it should get it to fly

▪

 do this by using the virtual keyword in the first (base class) declaration of the polymorphic
method

class Vehicle {

protected:

string name;

public:

// other members
virtual void move() { cout << "Vehicle " << name << " moving" << endl;

} };
 now it works

 Vehicle Transporter 54 moving

 Airplane Tornado 2431 flying

 Land Vehicle My wheels driving

 Land Vehicle Ford Anglia 22 driving

 Land Vehicle Red pickup driving
 polymorphism allows us to use a pointer to a derived type object wherever a pointer to base

type is expected
Car c("Ford Anglia
22"); Vehicle * v2 = &c;

29

CS 8392 OBJECT ORIENTED PROGRAMMING

v2->move();

Vehicle & v3 = c;

v3.move();

 only works for pointer and reference types
 they store an address – same size for all objects

Airplane a("Tornado 2431", 14);
Vehicle v2 = a;
v2.move();

 trying to fit an airplane into a space meant for any vehicle

 can call the move() method, but we've lost the wingspan member variable

 Polymorphism:
 Ability for objects of different classes to respond differently to the same function

call
 Base-class pointer (or reference) calls a virtual function

̀⠀⤀ĀᜀĀ C++ chooses the correct overridden function in object

 Suppose print not a virtual function

Employee e, *ePtr = &e;

HourlyWorker h, *hPtr = &h;

ePtr->print(); //call base-class print function

hPtr->print(); //call derived-class print function

ePtr=&h; //allowable implicit conversion

ePtr->print(); // still calls base-class print

2.5 DATA ABSTRACTION

 Abstract Data Types

 Introduction to...Object Models

 Introduction to...Data Abstraction

 Using Data Abstraction in C++ ...an introduction to the class

 Members of a Class

 The class interface, using the class, the class interface versus implementation

 Classes versus Structures

 Constructors, Destructors

 Dynamic Memory and Linked Lists
 The most important aspect of C++ is its ability to support many different programming

paradigms
 procedural abstraction

 modular abstraction

 data abstraction
 object oriented programming (this is discussed later, once we learn about the

concept of inheritance)
2.5.1 Procedural Abstraction

 This is where you build a “fence” around program segments, preventing some parts of the
program from “seeing” how tasks are being accomplished.

30

CS 8392 OBJECT ORIENTED PROGRAMMING

 Any use of globals causes side effects that may not be predictable, reducing the viability of
procedural abstraction

2.5.2Modular Abstraction
With modular abstraction, we build a “screen” surrounding the internal structure of our

program prohibiting programmers from accessing the data except through specified
functions.

Many times data structures (e.g., structures) common to a module are placed in a header files
along with prototypes (allows external references)

2.5.3 Data Abstraction

Data Abstraction is one of the most powerful programming paradigms

It allows us to create our own user defined data types (using the class construct) and

 then define variables (i.e., objects) of those new data types.
With data abstraction we think about what operations can be performed on a particular type

of data and not how it does it
Here we are one step closer to object oriented programming

Data abstraction is used as a tool to increase the modularity of a program

It is used to build walls between a program and its data structures

 what is a data structure?

 talk about some examples of data structures

We use it to build new abstract data types

An abstract data type (ADT) is a data type that we create

 consists of data and operations that can be performed on that data

Think about a char type
 it consists of 1 byte of memory and operations such as assignment, input, output,

arithmetic operations can be performed on the data
An abstract data type is any type you want to add to the language over and above the

fundamental types

• For example, you might want to add a new type called: list

 which maintains a list of data

 the data structure might be an array of structures

 operations might be to add to, remove, display all, display some items in the list

Once defined, we can create lists without worrying about how the data is stored
We “hide” the data structure used for the data within the data type -- so it is transparent to the

program using the data type
We call the program using this new data type: the client program (or client)
Once we have defined what data and operations make sense for a new data type, we can

define them using the class construct in C++
Once you have defined a class, you can create as many instances of that class as you want

Each “instance” of the class is considered to be an “object” (variable)

Think of a class as similar to a data type

 and an object as a variable

And, just as we can have zero or more variables of any data type...

 we can have zero or more objects of a class!
Then, we can perform operations on an object in the same way that we can access members

of a struct...

31

CS 8392 OBJECT ORIENTED PROGRAMMING

An abstraction is a view or representation of an entity that includes only the most significant
attributes

The concept of abstraction is fundamental in programming (and computer science)

Nearly all programming languages support process abstraction with subprograms

Nearly all programming languages designed since 1980 support data abstraction
An abstract data type is a user-defined data type that satisfies the following two conditions:

 The representation of, and operations on, objects of the type are defined in a
single syntactic unit

 The representation of objects of the type is hidden from the program units that use
these objects, so the only operations possible are those provided in the type's
definition

Advantages of Data Abstraction

Advantage of the first condition
– Program organization, modifiability (everything associated with a data structure is

together), and separate compilation
Advantage the second condition

– Reliability--by hiding the data representations, user code cannot directly access
objects of the type or depend on the representation, allowing the representation to
be changed without affecting user code
EXAMPLE

class Stack {

private:

int *stackPtr, maxLen, topPtr;

public:

Stack() { // a constructor

stackPtr = new int [100];

maxLen = 99;

topPtr = -1;

};

~Stack () {delete [] stackPtr;};

void push (int num) {…};

void pop () {…};

int top () {…};

int empty () {…};
} // Stack.h - the header file for the Stack
class #include <iostream.h>
class Stack {
private: //** These members are visible only to other
//** members and friends (see Section 11.6.4)
int *stackPtr;
int maxLen;
int topPtr;

public: //** These members are visible to clients

32

CS 8392 OBJECT ORIENTED PROGRAMMING

2.6 ITERATORS

An iterator points to (refers to, denotes) an element of a sequence

The end of the sequence is “one past the last element”

 not “the last element”

 That’s necessary to elegantly represent an empty sequence

 One-past-the-last-element isn’t an element

 You can compare an iterator pointing to it

 You can’t dereference it (read its value)

Returning the end of the sequence is the standard idiom for “not found” or “unsuccessful”

Simple algorithm: find_if()
Find the first element that matches a criterion (predicate)

 Here, a predicate takes one argument and returns a bool
template<class In, class Pred>

In find_if(In first, In last, Pred pred)

{

while (first!=last && !pred(*first)) ++first;
return first;

}

void f(vector<int>& v)

{
vector<int>::iterator p = find_if(v.begin(),v.end,Odd());
if (p!=v.end()) { /* we found an odd number */ }
 …

}

Iterator Operators

* dereferencing operator Produces a reference to the object to which the iterator p points

*p

++ point to next element in list
 Iterator p now points to the element that followed the previous element to which p points

++p

-- point to previous element in list
 Iterator p now points to the element that preceded the previous element to which p points

--p

33

CS 8392 OBJECT ORIENTED PROGRAMMING

viiterator p = C.begin(), q = C.end();

for(;p!=q; p++) {

cout << *p << endl;

}

for(int i=0; i < 10; i++) { cout << C[i] << endl;}
int A[10];

for(int * p = A, i =0; i < 10; i++, p++) {

cout << *p << endl;

2.7 CONTAINERS

(hold sequences in difference ways)

34

CS 8392 OBJECT ORIENTED PROGRAMMING

The simplest algorithm: find()

find()

void f(vector<int>& v, int x) // works for vector of ints

{
vector<int>::iterator p = find(v.begin(),v.end(),x);
if (p!=v.end()) { /* we found x */ }
 …

}

void f(list<string>& v, string x) // works for list of strings

{
list<string>::iterator p = find(v.begin(),v.end(),x);

if (p!=v.end()) { /* we found x */ }

 …

}
void f(set<double>& v, double x) // works for set of doubles

{
set<double>::iterator p = find(v.begin(),v.end(),x); if

(p!=v.end()) { /* we found x */ }

 …

}

}

35

CS 8392 OBJECT ORIENTED PROGRAMMING

UNIT III

ADVANCED PROGRAMMING

Templates, Generic Programming, and STL-Inheritance-Exceptions-OOP Using C++.

3.1 TEMPLATES

Templates are a way to make code more reusable. Trivial examples include creating
generic data structures which can store arbitrary data types. Templates are of great utility to

programmers, especially when combined with multiple inheritance and operator overloading.
The Standard Template Library (STL) provides many useful functions within a framework of

connected templates.
As templates are very expressive they may be used for things other than generic

programming. One such use is called template metaprogramming, which is a way of pre-
evaluating some of the code at compile-time rather than run-time. Further discussion here only

relates to templates as a method of generic programming.
By now you should have noticed that functions that perform the same tasks tend to look

similar. For example, if you wrote a function that prints an int, you would have to have the int

declared first. This way, the possibility of error in your code is reduced, however, it gets

somewhat annoying to have to create different versions of functions just to handle all the

different data types you use. For example, you may want the function to simply print the input

variable, regardless of what type that variable is. Writing a different function for every possible

input type (double, char *, etc. ...) would be extremely cumbersome. That is where templates

come in.
Templates solve some of the same problems as macros, generate "optimized" code at

compile time, but are subject to C++'s strict type checking.
Parameterized types, better known as templates, allow the programmer to create one function

that can handle many different types. Instead of having to take into account every data type, you
have one arbitrary parameter name that the compiler then replaces with the different data types

that you wish the function to use, manipulate, etc.
Templates are instantiated at compile-time with the source code.
Templates are type safe.
Templates allow user-defined specialization.
Templates allow non-type parameters.
Templates use “lazy structural constraints”.
Templates support mix-ins.

Syntax for Templates

Templates are pretty easy to use, just look at the syntax:

template <class TYPEPARAMETER>

(or, equivalently, and preferred by some)

template <typename TYPEPARAMETER>

Function template

36

http://en.wikipedia.org/wiki/Inheritance_in_object-oriented_programming
http://en.wikipedia.org/wiki/operator_overloading
http://en.wikibooks.org/wiki/C%2B%2B_Programming/STL
http://en.wikipedia.org/wiki/template_metaprogramming

CS 8392 OBJECT ORIENTED PROGRAMMING

There are two kinds of templates. A function template behaves like a function that can accept

arguments of many different types. For example, the Standard Template Library contains the
function template max(x, y) which returns either x or y, whichever is larger. max() could be

defined like this:
template <typename TYPEPARAMETER>

TYPEPARAMETER max(TYPEPARAMETER x, TYPEPARAMETER y)

{

if (x < y)

return y;

else

return x;

}

This template can be called just like a function:
std::cout << max(3, 7); // outputs 7

The compiler determines by examining the arguments that this is a call to max(int, int)
and instantiates a version of the function where the type TYPEPARAMETER is int.
This works whether the arguments x and y are integers, strings, or any other type for which it

makes sense to say "x < y". If you have defined your own data type, you can use operator

overloading to define the meaning of < for your type, thus allowing you to use the max()

function. While this may seem a minor benefit in this isolated example, in the context of a

comprehensive library like the STL it allows the programmer to get extensive functionality for a

new data type, just by defining a few operators for it. Merely defining < allows a type to be used

with the standard sort(), stable_sort(), and binary_search() algorithms; data structures such as

sets, heaps, and associative arrays; and more.

As a counterexample, the standard type complex does not define the < operator, because

there is no strict order on complex numbers. Therefore max(x, y) will fail with a compile error if

x and y are complex values. Likewise, other templates that rely on < cannot be applied to

complex data. Unfortunately, compilers historically generate somewhat esoteric and unhelpful

error messages for this sort of error. Ensuring that a certain object adheres to a method protocol

can alleviate this issue.
{TYPEPARAMETER} is just the arbitrary TYPEPARAMETER name that you want to

use in your function. Some programmers prefer using just T in place of TYPEPARAMETER.

Let us say you want to create a swap function that can handle more than one data type...
something that looks like this:
template <class SOMETYPE>

void swap (SOMETYPE &x, SOMETYPE &y)

{
SOMETYPE temp = x;

x = y;

y = temp;

}
The function you see above looks really similar to any other swap function, with the

differences being the template <class SOMETYPE> line before the function definition and the
instances of SOMETYPE in the code. Everywhere you would normally need to have the name or

class of the datatype that you're using, you now replace with the arbitrary name that you used in

37

http://en.wikipedia.org/wiki/complex_number
http://en.wikipedia.org/wiki/protocol_%28computer_science%29

CS 8392 OBJECT ORIENTED PROGRAMMING

the template <class SOMETYPE>. For example, if you had SUPERDUPERTYPE instead of

SOMETYPE, the code would look something like this:

template <class SUPERDUPERTYPE>

void swap (SUPERDUPERTYPE &x, SUPERDUPERTYPE &y)

{

SUPERDUPERTYPE temp = x;

x = y;

y = temp;

}

As you can see, you can use whatever label you wish for the template

TYPEPARAMETER, as long as it is not a reserved word.

Class template
A class template extends the same concept to classes. Class templates are often used to

make generic containers. For example, the STL has a linked list container. To make a linked list
of integers, one writes list<int>. A list of strings is denoted list<string>. A list has a set of

standard functions associated with it, which work no matter what you put between the brackets.
If you want to have more than one template TYPEPARAMETER, then the syntax would be:
template <class SOMETYPE1, class SOMETYPE2, ...>
3.1.1 Templates and Classes

Let us say that rather than create a simple templated function, you would like to use

templates for a class, so that the class may handle more than one datatype. You may have noticed

that some classes are able to accept a type as a parameter and create variations of an object based

on that type (for example the classes of the STL container class hierarchy). This is because they

are declared as templates using syntax not unlike the one presented below: template <class T>

class Foo
{

public:

Foo();

void some_function();

T some_other_function();

private:

int member_variable;

 parametrized_variable;

};

Defining member functions of a template class is somewhat like defining a function
template, except for the fact, that you use the scope resolution operator to indicate that this is the
template classes' member function. The one important and non-obvious detail is the requirement
of using the template operator containing the parametrized type name after the class name.
The following example describes the required syntax by defining functions from the example
class above.
template <class T> Foo<T>::Foo()

{

member_variable = 0;

}

38

http://en.wikipedia.org/wiki/linked_list

CS 8392 OBJECT ORIENTED PROGRAMMING

template <class T> void Foo<T>::some_function()

{

cout << "member_variable = " << member_variable << endl;

}

template <class T> T Foo<T>::some_other_function()

{

return parametrized_variable;

}
As you may have noticed, if you want to declare a function that will return an object of

the parametrized type, you just have to use the name of that parameter as the function's return
type.
Advantages and disadvantages

Some uses of templates, such as the max() function, were previously filled by function-like

preprocessor macros.

// a max() macro

#define max(a,b) ((a) < (b) ? (b) : (a))
Both macros and templates are expanded at compile time. Macros are always expanded

inline; templates can also be expanded as inline functions when the compiler deems it
appropriate. Thus both function-like macros and function templates have no run-time overhead.
However, templates are generally considered an improvement over macros for these purposes.
Templates are type-safe. Templates avoid some of the common errors found in code that makes

heavy use of function-like macros. Perhaps most importantly, templates were designed to be

applicable to much larger problems than macros. The definition of a function-like macro must fit
on a single logical line of code.

There are three primary drawbacks to the use of templates. First, many compilers

historically have very poor support for templates, so the use of templates can make code

somewhat less portable. Second, almost all compilers produce confusing, unhelpful error

messages when errors are detected in template code. This can make templates difficult to

develop. Third, each use of a template may cause the compiler to generate extra code (an

instantiation of the template), so the indiscriminate use of templates can lead to code bloat,

resulting in excessively large executables.
The other big disadvantage of templates is that to replace a #define like max which acts

identically with dissimilar types or function calls is impossible. Templates have replaced using
#defines for complex functions but not for simple stuff like max(a,b). For a full discussion on

trying to create a template for the #define max, see the paper "Min, Max and More" that Scott
Meyer wrote for C++ Report in January 1995.

The biggest advantage of using templates, is that a complex algorithm can have a simple

interface that the compiler then uses to choose the correct implementation based on the type of
the arguments. For instance, a searching algorithm can take advantage of the properties of the

container being searched. This technique is used throughout the C++ standard library. Linkage

problems
While linking a template-based program consisting over several modules spread over a

couple files, it is a frequent and mystifying situation to find that the object code of the modules
won't link due to 'unresolved reference to (insert template member function name here) in (...)'.

39

http://en.wikipedia.org/wiki/preprocessor
http://en.wikipedia.org/wiki/macro
http://en.wikipedia.org/wiki/code_bloat
http://www.aristeia.com/Papers/C%2B%2BReportColumns/jan95.pdf

CS 8392 OBJECT ORIENTED PROGRAMMING

The offending function's implementation is there, so why is it missing from the object code? Let
us stop a moment and consider how can this be possible.

Assume you have created a template based class called Foo and put its declaration in the

file Util.hpp along with some other regular class called Bar: template <class T> Foo

{

public:

Foo();

T some_function();

T some_other_function();
some_yet_other_function(); T

member;

};

class Bar

{

Bar();

void do_something();

};

Now, to adhere to all the rules of the art, you create a file called Util.cc, where you put all the

function definitions, template or otherwise:

#include "Util.hpp"

template <class T> T Foo<T>::some_function()

{

...

}

template <class T> T Foo<T>::some_other_function()

{

...

}

template <class T> T Foo<T>::some_yet_other_function()

{

...

}
and, finally:

void Bar::do_something()

{

Foo<int> my_foo;

int x = my_foo.some_function();

int y = my_foo.some_other_function();

}
Next, you compile the module, there are no errors, you are happy. But suppose there is an
another (main) module in the program, which resides in MyProg.cc:

40

CS 8392

OBJECT ORIENTED PROGRAMMING

#include "Util.hpp"

// imports our utility classes' declarations, including the template

int main()

{

Foo<int> main_foo;

int z = main_foo.some_yet_other_function();

return 0;

}
This also compiles clean to the object code. Yet when you try to link the two modules

together, you get an error saying there is an undefined reference to Foo<int>::some_yet_other
function() in MyProg.cc. You defined the template member function correctly, so what is the

problem?
As you remember, templates are instantiated at compile-time. This helps avoid code

bloat, which would be the result of generating all the template class and function variants for all
possible types as its parameters. So, when the compiler processed the Util.cc code, it saw that the

only variant of the Foo class was Foo<int>, and the only needed functions were: int
Foo<int>::some_function();
int Foo<int>::some_other_function();

No code in Util.cc required any other variants of Foo or its methods to exist, so the

compiler generated no code other than that. There is no implementation of

some_yet_other_function() in the object code, just as there is no implementation for double
Foo<double>::some_function();
or

string Foo<string>::some_function();
The MyProg.cc code compiled without errors, because the member function of Foo it

uses is correctly declared in the Util.hpp header, and it is expected that it will be available upon

linking. But it is not and hence the error, and a lot of nuisance if you are new to templates and
start looking for errors in your code, which ironically is perfectly correct.

The solution is somewhat compiler dependent. For the GNU compiler, try experimenting
with the -frepo flag, and also reading the template-related section of 'info gcc' (node "Template

Instantiation": "Where is the Template?") may prove enlightening. In Borland, supposedly, there
is a selection in the linker options, which activates 'smart' templates just for this kind of problem.

The other thing you may try is called explicit instantiation. What you do is create some
dummy code in the module with the templates, which creates all variants of the template class

and calls all variants of its member functions, which you know are needed elsewhere. Obviously,
this requires you to know a lot about what variants you need throughout your code. In our simple

example this would go like this:
 Add the following class declaration to Util.hpp:
class Instantiations
{

private:
void Instantiate();

};
 Add the following member function definition to Util.cc:
void Instantiations::Instantiate()
{

41

CS 8392 OBJECT ORIENTED PROGRAMMING

Foo<int> my_foo;

my_foo.some_yet_other_function();

// other explicit instantiations may follow

}
we never need to actually instantiate the Instantiations class, or call any of its methods.

The fact that they just exist in the code makes the compiler generate all the template variations
which are required. Now the object code will link without problems.
There is still one, if not elegant, solution. Just move all the template functions' definition code to

the Util.hpp header file. This is not pretty, because header files are for declarations, and the

implementation is supposed to be defined elsewhere, but it does the trick in this situation. While

compiling the MyProg.cc (and any other modules which include Util.hpp) code, the compiler

will generate all the template variants which are needed, because the definitions are readily

available.
3.1.2 Template Meta-programming overview

Template meta-programming (TMP) refers to uses of the C++ template system to

perform computation at compile-time within the code. It can, for the most part, be considered to
be "programming with types" — in that, largely, the "values" that TMP works with are specific

C++ types. Using types as the basic objects of calculation allows the full power of the type-
inference rules to be used for general-purpose computing.

3.1.3 Compile-time programming
The preprocessor allows certain calculations to be carried out at compile time, meaning

that by the time the code has finished compiling the decision has already been taken, and can be

left out of the compiled executable. The following is a very contrived example: #define myvar 17

#if myvar % 2

cout << "Constant is odd" << endl;

#else

cout << "Constant is even" << endl;

#endif
This kind of construction does not have much application beyond conditional inclusion of

platform-specific code. In particular there's no way to iterate, so it can not be used for general
computing. Compile-time programming with templates works in a similar way but is much more

powerful, indeed it is actually Turing complete.
Traits classes are a familiar example of a simple form of template meta-programming:

given input of a type, they compute as output properties associated with that type (for example,
std::iterator_traits<> takes an iterator type as input, and computes properties such as the iterator's

difference_type, value_type and so on).
3.1.4 The nature of template meta-programming

Template meta-programming is much closer to functional programming than ordinary

idiomatic C++ is. This is because 'variables' are all immutable, and hence it is necessary to use
recursion rather than iteration to process elements of a set. This adds another layer of challenge

for C++ programmers learning TMP: as well as learning the mechanics of it, they must learn to
think in a different way.
Limitations of Template Meta-programming

Because template meta-programming evolved from an unintended use of the template
system, it is frequently cumbersome. Often it is very hard to make the intent of the code clear to

42

CS 8392 OBJECT ORIENTED PROGRAMMING

a maintainer, since the natural meaning of the code being used is very different from the purpose

to which it is being put. The most effective way to deal with this is through reliance on idiom; if
you want to be a productive template meta-programmer you will have to learn to recognize the

common idioms.
It also challenges the capabilities of older compilers; generally speaking, compilers from

around the year 2000 and later are able to deal with much practical TMP code. Even when the
compiler supports it, the compile times can be extremely large and in the case of a compile

failure the error messages are frequently impenetrable.
Some coding standards may even forbid template meta-programming, at least outside of third-

party libraries like Boost.

History of TMP
Historically TMP is something of an accident; it was discovered during the process of

standardizing the C++ language that its template system happens to be Turing-complete, i.e.,

capable in principle of computing anything that is computable. The first concrete demonstration

of this was a program written by Erwin Unruh which computed prime numbers although it did

not actually finish compiling: the list of prime numbers was part of an error message generated

by the compiler on attempting to compile the code.[1] TMP has since advanced considerably,

and is now a practical tool for library builders in C++, though its complexities mean that it is not

generally appropriate for the majority of applications or systems programming contexts. #include

<iostream>
template <int p, int i>

class is_prime {

public:

enum { prim = ((p % i) && is_prime<p, i - 1>::prim) };

};

template <int p>

class is_prime<p, 1> {

public:

enum { prim = 1 };

};

template <int i>
class Prime_print { // primary template for loop to print prime numbers
public:

Prime_print<i - 1> a;

enum { prim = is_prime<i, i - 1>::prim };
void f() {

a.f();

if (prim)

{

std::cout << "prime number:" << i << std::endl;

}

}

};

43

CS 8392 OBJECT ORIENTED PROGRAMMING

template<>
class Prime_print<1> { // full specialization to end the loop
public:

enum { prim = 0 };

void f() {}

};

#ifndef LAST

#define LAST 18

#endif

int main()

{
Prime_print<LAST> a;

a.f();

}
3.1.5 Building blocks

Values

The 'variables' in TMP are not really variables since their values cannot be altered, but you can

have named values that you use rather like you would variables in ordinary programming. When

programming with types, named values are typedefs: struct ValueHolder

{

typedef int value;

};

You can think of this as 'storing' the int type so that it can be accessed under the value name.

Integer values are usually stored as members in an enum:

struct ValueHolder

{

enum { value = 2 };

};

This again stores the value so that it can be accessed under the name value. Neither of these

examples is any use on its own, but they form the basis of most other TMP, so they are vital

patterns to be aware of.

Functions

A function maps one or more input parameters into an output value. The TMP analogue to this is

a template class:
template<int X, int Y>

struct Adder

{

enum { result = X + Y };

};
This is a function that adds its two parameters and stores the result in the result enum member.

You can call this at compile time with something like Adder<1, 2>::result, which will be

expanded at compile time and act exactly like a literal 3 in your program. Branching

44

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/enum

CS 8392 OBJECT ORIENTED PROGRAMMING

A conditional branch can be constructed by writing two alternative specialisations of a template

class. The compiler will choose the one that fits the types provided, and a value defined in the
instantiated class can then be accessed. For example, consider the following partial

specialisation:
template<typename X, typename Y>

struct SameType

{

enum { result = 0 };

};

template<typename T>

struct SameType<T, T>

{
enum { result = 1 };

};
This tells us if the two types it is instantiated with are the same. This might not seem very useful,
but it can see through typedefs that might otherwise obscure whether types are the same, and it

can be used on template arguments in template code. You can use it like this: if
(SameType<SomeThirdPartyType, int>::result)
{

// ... Use some optimised code that can assume the type is an int

}

else

{

// ... Use defensive code that doesn't make any assumptions about the type

}
The above code isn't very idiomatic: since the types can be identified at compile-time, the

if() block will always have a trivial condition (it'll always resolve to either if (1) { ... } or if (0) {
... }). However, this does illustrate the kind of thing that can be achieved.
Recursion

Since you don't have mutable variables available when you're programming with

templates, it's impossible to iterate over a sequence of values. Tasks that might be achieved with

iteration in standard C++ have to be redefined in terms of recursion, i.e. a function that calls

itself. This usually takes the shape of a template class whose output value recursively refers to

itself, and one or more specialisations that give fixed values to prevent infinite recursion. You

can think of this as a combination of the function and conditional branch ideas described above.
Calculating factorials is naturally done recursively: 0!=1, and for n>0, n!=n∗(n−1)!. In TMP, this corresponds to a class template "factorial"
whose general form uses the recurrence relation, and a specialization of which terminates the recursion.
First, the general (unspecialized) template says that factorial<n>::value is given by

n*factorial<n-1>::value:

template <unsigned n>

struct factorial

{

enum { value = n * factorial<n-1>::value };

};

45

CS 8392 OBJECT ORIENTED PROGRAMMING

Next, the specialization for zero says that factorial<0>::value evaluates to 1:

template <>

struct factorial<0>

{

enum { value = 1 };

};

And now some code that "calls" the factorial template at compile-time:

int main() {

 Because calculations are done at compile-time, they can be

 used for things such as array sizes.

int array[factorial<7>::value];

}
Observe that the factorial<N>::value member is expressed in terms of the factorial<N> template,

but this can't continue infinitely: each time it is evaluated, it calls itself with a progressively

smaller (but non-negative) number. This must eventually hit zero, at which point the

specialisation kicks in and evaluation doesn't recurse any further. Example: Compile-time "If"

The following code defines a meta-function called "if_"; this is a class template that can be used
to choose between two types based on a compile-time constant, as demonstrated in main below:

template <bool Condition, typename TrueResult, typename FalseResult>
class if_;
template <typename TrueResult, typename

FalseResult> struct if_<true, TrueResult, FalseResult> {

typedef TrueResult result;

};

template <typename TrueResult, typename
FalseResult> struct if_<false, TrueResult, FalseResult>
{
typedef FalseResult result;

};

int main()

{
typename if_<true, int, void*>::result number(3);
typename if_<false, int, void*>::result pointer(&number);
typedef typename if_<(sizeof(void *) > sizeof(uint32_t)), uint64_t,

uint32_t>::result integral_ptr_t;
integral_ptr_t converted_pointer = reinterpret_cast<integral_ptr_t>(pointer);

}

On line 18, we evaluate the if_ template with a true value, so the type used is the first of
the provided values. Thus the entire expression if_<true, int, void*>::result evaluates to int.

46

CS 8392 OBJECT ORIENTED PROGRAMMING

Similarly, on line 19 the template code evaluates to void *. These expressions act exactly the
same as if the types had been written as literal values in the source code.

Line 21 is where it starts to get clever: we define a type that depends on the value of a

platform-dependent sizeof expression. On platforms where pointers are either 32 or 64 bits, this
will choose the correct type at compile time without any modification, and without preprocessor

macros. Once the type has been chosen, it can then be used like any other type. For comparison,
this problem is best attacked in C90 as follows

include <stddef.h> typedef
size_t integral_ptr_t;
typedef int the_correct_size_was_chosen [sizeof (integral_ptr_t) >= sizeof (void *)? 1: -1];
1.
As it happens, the library-defined type size_t should be the correct choice for this particular

problem on any platform. To ensure this, line 3 is used as a compile time check to see if the
selected type is actually large enough; if not, the array type the_correct_size_was_chosen will be

defined with a negative length, causing a compile-time error. In C99, <stdint.h> may define the

types intptr_h and uintptr_h.

Conventions for "Structured" TMP

3.2.GENERIC PROGRAMMING

In the simplest definition, generic programming is a style of computer programming in which
algorithms are written in terms of types to-be-specified-later that are then instantiated when needed

for specific types provided as parameters. This approach, pioneered by ML in 1973,
[citation

needed]

permits writing common functions or types that differ only in the set of types on which
they operate when used, thus reducing duplication. Such software entities are known as generics
in Ada, Delphi, Eiffel, Java, C#, F#, Swift, and Visual Basic .NET; parametric polymorphism in
ML, Scala and Haskell (the Haskell community also uses the term "generic" for a related but
somewhat different concept); templates in C++ and D; and parameterized types in the influential
1994 book Design Patterns. The authors of Design Patterns note that this technique, especially
when combined with delegation, is very powerful but that "[dynamic], highly parameterized

software is harder to understand than more static software."
[1]

Define software components with type parameters
– A sorting algorithm has the same structure, regardless of the types being sorted

– Stack primitives have the same semantics, regardless of the

– objects stored on the stack.

Most common use: algorithms on containers: updating, iteration, search

C model: macros (textual substitution)

Ada model: generic units and instantiations

C++ model: templates

• Construct parameter supplying parameter

3.2.1 Type parameter

The generic type declaration specifies the class of types for which an instance of the generic
will work:

47

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/sizeof
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Parameter_%28computer_programming%29
http://en.wikipedia.org/wiki/ML_%28programming_language%29
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Function_%28computer_science%29
http://en.wikipedia.org/wiki/Type_%28computer_science%29
http://en.wikipedia.org/wiki/Duplicate_code
http://en.wikipedia.org/wiki/Ada_%28programming_language%29
http://en.wikipedia.org/wiki/Delphi_%28programming_language%29
http://en.wikipedia.org/wiki/Eiffel_%28programming_language%29
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://en.wikipedia.org/wiki/F_Sharp_%28programming_language%29
http://en.wikipedia.org/wiki/Swift_%28programming_language%29
http://en.wikipedia.org/wiki/Visual_Basic_.NET
http://en.wikipedia.org/wiki/Parametric_polymorphism
http://en.wikipedia.org/wiki/ML_%28programming_language%29
http://en.wikipedia.org/wiki/Scala_%28programming_language%29
http://en.wikipedia.org/wiki/Haskell_%28programming_language%29
http://en.wikipedia.org/wiki/Template_%28C%2B%2B%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/D_%28programming_language%29
http://en.wikipedia.org/wiki/Design_Patterns_%28book%29
http://en.wikipedia.org/wiki/Delegation_%28programming%29
http://en.wikipedia.org/wiki/Generic_programming#cite_note-1

CS 8392 OBJECT ORIENTED PROGRAMMING

• type T is private; -- any type with assignment (Non-limited)

• type T is limited private; -- any type (no required operations)

• type T is range <>; -- any integer type (arithmetic operations)

• type T is (<>); -- any discrete type (enumeration or

• -- integer)

• type T is digits <>; -- any floating-point type

• type T is delta <>; -- any fixed-point type

Within the generic, the operations that apply to any type of the class can be used.

The instantiation must use a specific type of the class
3.2.2 A generic function

generic
type T is range <>; -- parameter of some integer type

type Arr is array (Integer range <>) of T;
 parameter is array of those

function Sum_Array (A : Arr) return T;

 Body identical to non-generic version

function Sum_array (A : Arr) return T is

Result : T := 0; -- some integer type, so literal 0 is legal

begin

for J in A’range loop -- some array type, so attribute is available

Result := Result + A (J); -- some integer type, so “+” available.

end loop;

return Result;

end;

Instantiating a generic function

type Apple is range 1 .. 2 **15 - 1;

type Production is array (1..12) of Apple;

type Sick_Days is range 1..5;

type Absences is array (1 .. 52) of Sick_Days;
function Get_Crop is new Sum_array (Apple, Production);

function Lost_Work is new Sum_array (Sick_Days, Absences);

generic private types
Only available operations are assignment and equality. generic

type T is private;

procedure Swap (X, Y : in out T);
procedure Swap (X, Y : in out T)

is Temp : constant T := X;
begin

X:=Y;
Y := Temp;

end Swap;

3.2.3 Subprogram parameters
A generic sorting routine should apply to any array whose components are comparable, i.e.

for which an ordering predicate exists. This class includes more that the numeric types:

48

CS 8392

OBJECT ORIENTED PROGRAMMING

generic

type T is private; -- parameter

with function “<“ (X, Y : T) return Boolean; -- parameter

type Arr is array (Integer range <>) of T; -- parameter

procedure Sort (A : in out Arr);

Supplying subprogram parameters
The actual must have a matching signature, not necessarily the same name:

procedure Sort_Up is new Sort (Integer, “<“, …);
procedure Sort_Down is new Sort (Integer, “>”, …);

type Employee is record .. end record;
function Senior (E1, E2 : Employee) return Boolean;
function Rank is new Sort (Employee, Senior, …);

Value parameters
Useful to parametrize containers by size:

generic

type Elem is private; -- type parameter

Size : Positive; -- value parameter

package Queues is

type Queue is private;

procedure Enqueue (X : Elem; On : in out Queue);

procedure Dequeue (X : out Elem; From : in out Queue);

function Full (Q : Queue) return Boolean;
function Empty (Q : Queue) return

Boolean; private
type Contents is array (Natural range <>) of Elem;
type Queue is record

Front, Back: Natural;

C : Contents (0 .. Size);

end record;

end Queues

3.3STANDARD TEMPLATE LIBRARY (STL)

The Standard Template Library (STL), part of the C++ Standard Library, offers

collections of algorithms, containers, iterators, and other fundamental components, implemented
as templates, classes, and functions essential to extend functionality and standardization to C++.

STL main focus is to provide improvements implementation standardization with emphasis in
performance and correctness.

Instead of wondering if your array would ever need to hold 257 records or having

nightmares of string buffer overflows, you can enjoy vector and string that automatically extend

to contain more records or characters. For example, vector is just like an array, except that

vector's size can expand to hold more cells or shrink when fewer will suffice. One must keep in

mind that the STL does not conflict with OOP but in itself is not object oriented; In particular it

makes no use of runtime polymorphism (i.e., has no virtual functions).

49

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code#Core_vs_Standard_Library

CS 8392 OBJECT ORIENTED PROGRAMMING

The true power of the STL lies not in its container classes, but in the fact that it is a

framework, combining algorithms with data structures using indirection through iterators to

allow generic implementations of higher order algorithms to work efficiently on varied forms of

data. To give a simple example, the same std::copy function can be used to copy elements from

one array to another, or to copy the bytes of a file, or to copy the whitespace-separated words in

"text like this" into a container such as std::vector<std::string>.
std::copy from array a to array b
int a[10] = { 3,1,4,1,5,9,2,6,5,4 };
int b[10];
std::copy(&a[0], &a[9], b);

std::copy from input stream a to an arbitrary OutputIterator
template <typename OutputIterator>
void f(std::istream &a, OutputIterator destination)
{ std::copy(std::istreambuf_iterator<char>(a),

std::istreambuf_iterator<char>(),
destination);

}

 std::copy from a buffer containing text, inserting items in
order at the back of the container called words.

std::istringstream buffer("text like this");

std::vector<std::string> words;

std::copy(std::istream_iterator<std::string>(buffer),
std::istream_iterator<std::string>(),

std::back_inserter(words));
assert(words[0] == "text");

assert(words[1] == "like");

assert(words[2] == "this");

3.3.1 History
The C++ Standard Library incorporated part of the STL (published as a software library

by SGI/Hewlett-Packard Company). The primary implementer of the C++ Standard Template
Library was Alexander Stepanov.

Today we call STL to what was adopted into the C++ Standard. The ISO C++ does not
specify header content, and allows implementation of the STL either in the headers, or in a true

library.
Compilers will already have one implementation included as part of the C++ Standard

(i.e., MS Visual Studio uses the Dinkum STL). All implementations will have to comply to the

standard's requirements regarding functionality and behavior, but consistency of programs across

all major hardware implementations, operating systems, and compilers will also depends on the

portability of the STL implementation. They may also offer extended features or be optimized to

distinct setups.
There are many different implementations of the STL, all based on the language standard

but nevertheless differing from each other, making it transparent for the programmer, enabling

specialization and rapid evolution of the code base. Several open source implementations are
available, which can be useful to consult.

50

http://en.wikibooks.org/w/index.php?title=C%2B%2B_Programming/Chapter_Advanced_Features_Print_version&printable=yes#Containers
http://en.wikipedia.org/wiki/Alexander_Stepanov

CS 8392 OBJECT ORIENTED PROGRAMMING

3.3.2 List of STL implementations.

libstdc++ from gnu (was part of libg++)

SGI STL library (http://www.sgi.com/tech/stl/) free STL implementation.
Rogue Wave standard library (HP, SGI, SunSoft, Siemens-Nixdorf) / Apache C++
Standard Library (STDCXX)
Dinkum STL library by P.J. Plauger (http://www.dinkumware.com/) commercial STL
implementation widely used, since it was licensed in is co-maintained by Microsoft and it
is the STL implementation that ships with Visual Studio.
Apache C++ Standard Library (http://stdcxx.apache.org/) (open source)
STLport STL library (http://www.stlport.com/) open source and highly cross-platform
implementation based on the SGI implementation.

3.3.3 containers

The containers we will discuss in this section of the book are part of the standard
namespace (std::). They all originated in the original SGI implementation of the STL. Sequence
Containers
Sequences - easier than arrays
Sequences are similar to C arrays, but they are easier to use. Vector is usually the first sequence

to be learned. Other sequences, list and double-ended queues, are similar to vector but more
efficient in some special cases. (Their behavior is also different in important ways concerning

validity of iterators when the container is changed; iterator validity is an important, though
somewhat advanced, concept when using containers in C++.)

vector - "an easy-to-use array"

list - in effect, a doubly-linked list
deque - double-ended queue (properly pronounced "deck", often mispronounced as "dee-
queue")

vector
The vector is a template class in itself, it is a Sequence Container and allows you to easily create
a dynamic array of elements (one type per instance) of almost any data-type or object within a
programs when using it. The vector class handles most of the memory management for you.

Since a vector contain contiguous elements it is an ideal choice to replace the old C style

array, in a situation where you need to store data, and ideal in a situation where you need to store

dynamic data as an array that changes in size during the program's execution (old C style arrays

can't do it). However, vectors do incur a very small overhead compared to static arrays

(depending on the quality of your compiler), and cannot be initialized through an initialization

list.
Accessing members of a vector or appending elements takes a fixed amount of time, no

matter how large the vector is, whereas locating a specific value in a vector element or inserting

elements into the vector takes an amount of time directly proportional to its location in it (size

dependent).

Example

/*

David Cary 2009-03-04

quick demo for wikibooks

*/

51

http://www.sgi.com/tech/stl/
http://en.wikipedia.org/wiki/Apache_C%2B%2B_Standard_Library
http://en.wikipedia.org/wiki/Apache_C%2B%2B_Standard_Library
http://www.dinkumware.com/
http://stdcxx.apache.org/
http://www.stlport.com/
http://en.wikipedia.org/wiki/dynamic_array

CS 8392 OBJECT ORIENTED PROGRAMMING

#include <iostream>

#include <vector>

using namespace std;

vector<int> pick_vector_with_biggest_fifth_element(vector<int> left,vector<int>
right) {

if(left[5] < right[5])

{

return(right);

}
else return

left ;

}

int* pick_array_with_biggest_fifth_element(int * left,int * right)

{

if(left[5] < right[5])

{

return(right);

}
else return

left ;

}

int vector_demo(void)

{

cout << "vector demo" << endl;

vector<int> left(7);

vector<int> right(7);

left[5] = 7;

right[5] = 8;

cout << left[5] << endl;

cout << right[5] << endl;

vector<int> biggest(pick_vector_with_biggest_fifth_element(left, right));

cout << biggest[5] << endl;

return 0;

}
int array_demo(void)

{

cout << "array demo" << endl;

int left[7];

int right[7];

left[5] = 7;

right[5] = 8;

cout << left[5] << endl;

52

CS 8392 OBJECT ORIENTED PROGRAMMING

cout << right[5] << endl;

int * biggest =
pick_array_with_biggest_fifth_element(left, right);

cout << biggest[5] << endl;

return 0;

}

int main(void)

{

vector_demo();

array_demo();

}
Member Functions

The vector class models the Container concept, which means it has begin(), end(), size(),
max_size(), empty(), and swap() methods.

informative
vector::front - Returns reference to first element of vector. o
vector::back - Returns reference to last element of vector. o
vector::size - Returns number of elements in the vector. o

vector::empty - Returns true if vector has no elements.
standard operations

 vector::insert - Inserts elements into a vector (single & range), shifts later
elements up. Inefficient.

 vector::push_back - Appends (inserts) an element to the end of a vector,
allocating memory for it if necessary. Amortized O(1) time.

 vector::erase - Deletes elements from a vector (single & range), shifts later
elements down. Inefficient.

 vector::pop_back - Erases the last element of the vector, (possibly reducing
capacity - usually it isn't reduced, but this depends on particular STL
implementation). Amortized O(1) time.

 vector::clear - Erases all of the elements. Note however that if the data elements
are pointers to memory that was created dynamically (e.g., the new operator was
used), the memory will not be freed.

allocation/size modification
 vector::assign - Used to delete a origin vector and copies the specified elements to

an empty target vector.
 vector::reserve - Changes capacity (allocates more memory) of vector, if needed.

In many STL implementations capacity can only grow, and is never reduced.
vector::capacity - Returns current capacity (allocated memory) of vector. o
vector::resize - Changes the vector size.

iteration
 vector::begin - Returns an iterator to start traversal of the vector.
 vector::end - Returns an iterator that points just beyond the end of the vector.
 vector::at - Returns a reference to the data element at the specified location in the

vector, with bounds checking.

53

http://www.sgi.com/tech/stl/Container.html
http://en.wikipedia.org/wiki/concept_%28generic_programming%29
http://en.wikipedia.org/wiki/Amortized_analysis
http://en.wikipedia.org/wiki/Amortized_analysis

CS 8392 OBJECT ORIENTED PROGRAMMING

vector<int> v;
for (vector<int>::iterator it = v.begin(); it!=v.end(); ++it/* increment operand is used to move to
next element*/) {

cout << *it << endl;

}

vector::Iterators

std::vector<T> provides Random Access Iterators; as with all containers, the primary access to

iterators is via begin() and end() member functions. These are overloaded for const- and non-

const containers, returning iterators of types std::vector<T>::const_iterator and

std::vector<T>::iterator respectively.

vector examples

/* Vector sort example */

#include <iostream>
#include <vector>

int main()

{

using namespace std;

cout << "Sorting STL vector, \"the easier array\"... " << endl;

cout << "Enter numbers, one per line. Press ctrl-D to quit." << endl;

vector<int> vec;

int tmp;

while (cin>>tmp) {

vec.push_back(tmp);

}

cout << "Sorted: " << endl;

sort(vec.begin(), vec.end());

int i = 0;

for (i=0; i<vec.size(); i++) {

cout << vec[i] << endl;;

}

return 0;

}
The call to sort above actually calls an instantiation of the function template std::sort,

which will work on any half-open range specified by two random access iterators.
If you like to make the code above more "STLish" you can write this program in the following
way:
#include <iostream>

#include <vector>

#include <algorithm>

#include <iterator>

54

CS 8392 OBJECT ORIENTED PROGRAMMING

int main()

{

using namespace std;

cout << "Sorting STL vector, \"the easier array\"... " << endl;

cout << "Enter numbers, one per line. Press ctrl-D to quit." << endl;

istream_iterator<int> first(cin);

istream_iterator<int> last;

vector<int> vec(first, last);

sort(vec.begin(), vec.end());

cout << "Sorted: " << endl;

copy(vec.begin(), vec.end(), ostream_iterator<int>(cout, "\n"));

return 0;

}
3.3.4 Linked lists

The STL provides a class template called list (part of the standard namespace (std::)) which
implements a non-intrusive doubly-linked list. Linked lists can insert or remove elements in the

middle in constant time, but do not have random access. One useful feature of std::list is that

references, pointers and iterators to items inserted into a list remain valid so long as that item

remains in the list.

list examples

/* List example - insertion in a list */

#include <iostream>

#include <algorithm>

#include <iterator>

#include <list>

void print_list(std::list<int> const& a_filled_list)

{

using namespace std;

ostream_iterator<int> out(cout, " ");
copy(a_filled_list.begin(), a_filled_list.end(), out);

}

int main()

{

std::list<int> my_list;

my_list.push_back(1);

my_list.push_back(10);

55

http://en.wikipedia.org/wiki/linked_list

CS 8392 OBJECT ORIENTED PROGRAMMING

print_list(my_list); //print : 1 10

std::cout << std::endl;

my_list.push_front(45);

print_list(my_list); //print : 45 1 10

return 0;

}

Associative Containers (key and value)
This type of container point to each element in the container with a key value, thus

simplifying searching containers for the programmer. Instead of iterating through an array or
vector element by element to find a specific one, you can simply ask for people["tero"]. Just like

vectors and other containers, associative containers can expand to hold any number of elements.
3.3.5 Maps and Multimaps
map and multimap are associative containers that manage key/value pairs as elements as seen

above. The elements of each container will sort automatically using the actual key for sorting
criterion. The difference between the two is that maps do not allow duplicates, whereas,

multimaps does.
map - unique keys
multimap - same key can be used many times
set - unique key is the value

 multiset - key is the value, same key can be used many times
/* Map example - character distribution */
#include <iostream>

#include <map>

#include <string>

#include <cctype>

using namespace std;

int main()

{

/* Character counts are stored in a map, so that

 character is the key.
 Count of char a is chars['a']. */
map<char, long> chars;

cout << "chardist - Count character distributions" << endl;
cout << "Type some text. Press ctrl-D to quit." << endl;
char c;
while (cin.get(c)) {

Upper A and lower a are considered the same

c=tolower(static_cast<unsigned char>(c));

chars[c]=chars[c]+1; // Could be written as ++chars[c];

}

56

CS 8392 OBJECT ORIENTED PROGRAMMING

cout << "Character distribution: " << endl;

string alphabet("abcdefghijklmnopqrstuvwxyz");
for (string::iterator letter_index=alphabet.begin(); letter_index != alphabet.end();

letter_index++) {
if (chars[*letter_index] != 0) {

cout << char(toupper(*letter_index))

 ":" << chars[*letter_index]

 "\t" << endl;

}

}

return 0;
}

Container Adapters

stack - last in, first out (LIFO)
queue - first in, first out (FIFO)

priority queue
3.3.6 Iterators
C++'s iterators are one of the foundation of the STL. Iterators exist in languages other than C++,
but C++ uses an unusual form of iterators, with pros and cons.
In C++, an iterator is a concept rather than a specific type, they are a generalization of the
pointers as an abstraction for the use of containers. Iterators are further divided based on
properties such as traversal properties.
The basic idea of an iterator is to provide a way to navigate over some collection of objects
concept.
Some (overlapping) categories of iterators are:

Singular iterators
Invalid iterators

Random access iterators
Bidirectional iterators
Forward iterators

Input iterators
Output iterators
Mutable iterators

A pair of iterators [begin, end) is used to define a half open range, which includes the element
identified from begin to end, except for the element identified by end. As a special case, the half
open range [x, x) is empty, for any valid iterator x.
The most primitive examples of iterators in C++ (and likely the inspiration for their syntax) are
the built-in pointers, which are commonly used to iterate over elements within arrays. Iteration
over a Container
Accessing (but not modifying) each element of a container group of type C<T> using an
iterator. for (

typename C<T>::const_iterator iter = group.begin();

iter != group.end();

++iter

57

http://en.wikibooks.org/wiki/Algebra/Interval_Notation

CS 8392 OBJECT ORIENTED PROGRAMMING

)

{

T const &element = *iter;

// access element here

}
Note the usage of typename. It informs the compiler that 'const_iterator' is a type as

opposed to a static member variable. (It is only necessary inside templated code, and indeed in
C++98 is invalid in regular, non-template, code. This may change in the next revision of the C++

standard so that the typename above is always permitted.)
Modifying each element of a container group of type C<T> using an iterator.

for (

typename C<T>::iterator iter = group.begin();
iter != group.end();

++iter

)

{

T &element = *iter;

// modify element here

}
When modifying the container itself while iterating over it, some containers (such as

vector) require care that the iterator doesn't become invalidated, and end up pointing to an invalid
element. For example, instead of:
for (i = v.begin(); i != v.end(); ++i) {

...

if (erase_required) {

v.erase(i);

}

}

Do:

for (i = v.begin(); i != v.end();) {

...

if (erase_required) {

i = v.erase(i);
} else {

++i;

}
}

The erase() member function returns the next valid iterator, or end(), thus ending the
loop. Note that ++i is not executed when erase() has been called on an element.

3.3.7 Functors
A functor or function object, is an object that has an operator (). The importance of

functors is that they can be used in many contexts in which C++ functions can be used, whilst

58

CS 8392 OBJECT ORIENTED PROGRAMMING

also having the ability to maintain state information. Next to iterators, functors are one of the
most fundamental ideas exploited by the STL.
The STL provides a number of pre-built functor classes; std::less, for example, is often used to

specify a default comparison function for algorithms that need to determine which of two objects

comes "before" the other.

#include <vector>

#include <algorithm>

#include <iostream>

Define the Functor for AccumulateSquareValues
template<typename T>
struct AccumulateSquareValues

{

AccumulateSquareValues() : sumOfSquares()

{

}

void operator()(const T& value)

{

sumOfSquares += value*value;

}

T Result() const

{

return sumOfSquares;

}

T sumOfSquares;

};

std::vector<int> intVec;

intVec.reserve(10);

for(int idx = 0; idx < 10; ++idx)

{

intVec.push_back(idx);

}

AccumulateSquareValues<int> sumOfSquare = std::for_each(intVec.begin(),

intVec.end(),

AccumulateSquareValues<int>());

std::cout << "The sum of squares for 1-10 is " << sumOfSquare.Result() << std::endl;

 note: this problem can be solved in another, more clear way:
 int sum_of_squares = std::inner_product(intVec.begin(), intVec.end(), intVec.begin(),
0); Algorithms
The STL also provides several useful algorithms, in the form of template functions, that are
provided to, with the help of the iterator concept, manipulate the STL containers (or derivations).
The STL algorithms aren't restricted to STL containers, for instance:
#include <algorithm>

59

CS 8392 OBJECT ORIENTED PROGRAMMING

int array[10] = { 2,3,4,5,6,7,1,9,8,0 };

int* begin = &array[0];

int* end = &array[0] + 10;

std::sort(begin, end);// the sort algorithm will work on a C style array

The _if suffix

The _copy suffix

Non-modifying algorithms
Modifying algorithms
Removing algorithms

Mutating algorithms
Sorting algorithms
Sorted range algorithms

Numeric algorithms

Permutations

Sorting and related operations

sort

stable_sort

partial_sort

Minimum and maximum
The standard library provides function templates min and max, which return the

minimum and maximum of their two arguments respectively. Each has an overload available that

allows you to customize the way the values are compared. template<class T>

const T& min(const T& a, const T& b);

template<class T, class Compare>

const T& min(const T& a, const T& b, Compare c);

template<class T>

const T& max(const T& a, const T& b);

template<class T, class Compare>

const T& max(const T& a, const T& b, Compare c);

An example of how to use the Compare type parameter :

#include <iostream>
#include <algorithm>

#include <string>

class Account

{

private :

std::string owner_name;

int credit;

int potential_credit_transfer;

60

CS 8392 OBJECT ORIENTED PROGRAMMING

public :

Account(){}

Account(std::string name, int initial_credit, int initial_credit_transfer) :

owner_name(name),

credit(initial_credit),

potential_credit_transfer(initial_credit_transfer)

{}

bool operator<(Account const& account) const { return credit < account.credit;
} int potential_credit() const { return credit + potential_credit_transfer; }
std::string const& owner() const { return owner_name; }

};

struct CompareAccountCredit

{
bool operator()(Account const& account1, Account const& account2) const

{ return account1 < account2; }
};

struct CompareAccountPotentialCredit

{
bool operator()(Account const& account1, Account const& account2) const

{ return account1.potential_credit() < account2.potential_credit(); }
};

int main()

{
Account account1("Dennis Ritchie", 1000, 250), account2("Steeve Jobs", 500, 10000),

result_comparison;

result_comparison = std::min(account1, account2, CompareAccountCredit());
std::cout << "min credit of account is : " + result_comparison.owner() << std::endl;

result_comparison = std::min(account1, account2, CompareAccountPotentialCredit());
std::cout << "min potential credit of account is : " + result_comparison.owner() <<

std::endl;

return 0;

}

3.3.8 Allocators

Allocators are used by the Standard C++ Library (and particularly by the STL) to allow
parameterization of memory allocation strategies.

61

CS 8392 OBJECT ORIENTED PROGRAMMING

The subject of allocators is somewhat obscure, and can safely be ignored by most
application software developers. All standard library constructs that allow for specification of an
allocator have a default allocator which is used if none is given by the user.

Custom allocators can be useful if the memory use of a piece of code is unusual in a way

that leads to performance problems if used with the general-purpose default allocator. There are
also other cases in which the default allocator is inappropriate, such as when using standard

containers within an implementation of replacements for global operators new and delete.

3.4. INHERITANCE

Introduction

Inheritance

– Single Inheritance

 Class inherits from one base class

– Multiple Inheritance

 Class inherits from multiple base classes

– Three types of inheritance:
 public: Derived objects are accessible by the base class objects (focus of

this chapter)
 private: Derived objects are inaccessible by the base class

 protected: Derived classes and friends can access protected members of

the base class

Base and Derived Classes

 Base class Derived classes

 Student GraduateStudent
 UndergraduateStudent

 Shape Circle
 Triangle

 Rectangle

 Loan CarLoan
 HomeImprovementLoan

Base and Derived ClassesMortgageLoan

Employee FacultyMember

StaffMember

Account CheckingAccount

SavingsAccount

Fig. 19.1 Some simple inheritance examples.

62

CS 8392 OBJECT ORIENTED PROGRAMMING

3.4.1 public inheritance

Implementation of public inheritance

class CommissionWorker : public Employee {

...

};

Class CommissionWorker inherits from class Employee

– friend functions not inherited
– private members of base class not accessible from derived class

Protected Members
protected inheritance

– Intermediate level of protection between public and private inheritance
– Derived-class members can refer to public and protected members of the base class

simply by using the member names
– Note that protected data “breaks” encapsulation

class base {
• int x;

public:

• void setx(int n) { x = n; }

• void showx() { cout << x << ‘\n’ }

};

Example: Derived Class

// Inherit as public

class derived : public base {

63

CS 8392 OBJECT ORIENTED PROGRAMMING

int y;

public:

void sety(int n) { y = n; }

void showy() { cout << y << ‘\n’;}

};

Access Specifier: public

z The keyword public tells the compiler that base will be inherited such that:
 all public members of the base class will also be public members of derived.

However, all private elements of base will remain private to it and are not directly accessible by
derived.
Example: main()

int main() {
derived ob;
ob.setx(10);

ob.sety(20);
ob.showx();

ob.showy();
}
3.4.2 Types

Single Level Inheritance

Multiple Inheritance

Hierarchical inheritance

Multilevel

Inheritance

Hybrid Inheritance.

Single Level Inheritance

#include <iostream.h>

Class B

{

int a;

public:

int b;

void get_ab();

int get_a();
void show_a();

};

Class D: public B

{

int c;

public:

void mul();

void display();

};

64

CS 8392 OBJECT ORIENTED PROGRAMMING

Void B :: get_ab()
{ a=5;b=10; }

Int B :: get_a()

{ return a;}

{ count<< “a=”<<a<< “

\

n” ;}
Void D :: mul()
{ c=b*
get_a();}

Void D :: display()

{
Count<< “a=”<<get_a()

Count<< “b=”<<b

Count<< “c=”<<c

}

int main()

{

D d;

d.get_ab();

d.mul();

d.show_a();

d.display();

d.b=20;

d.mul();

d.display();

return 0

Multiple Inheritance

#include <iostream.h>

Class M

{

Protected:

Int m;

Public :
Void get_m(int);

};

Class N

{

Protected:

Int n;

Public :

Void get_n(int);

};

65

CS 8392 OBJECT ORIENTED PROGRAMMING

Class P :public M,public N

{

Public :

Void display();

};

Void M :: get_m(int x)

{

M=x;

}

Void N::get_n(int y)

{

N=y;

}
Void P:: dis play()

{

Count<<”m=”<<m<<”

\

n”;

Count<<”n=”<<n<<”

\

n”;

Count<<”m*n=”<<m*n<<”

\

n”;

}

int main()

{

P p1;

P1.get_m(10);

P1.get_n(20);

P1.display();

Return 0

Hierarchical inheritance

class first
{

int x=10,y=20;

void display()

{

System.out.println("This is the method in

class one");

System.out.println("Value of X= "+x);

System.out.println("Value of Y= "+y);

}

66

CS 8392 OBJECT ORIENTED PROGRAMMING

}

class two extends first

{

void add()

{
System.out.println("This is the method in class

two"); System.out.println("X+Y= "+(x+y)) ;

}

}

class three extends first

{

void mul()
{
System.out.println("This is the method in class

three"); System.out.println("X*Y= "+(x*y)); }

}

class Hier

{

public static void main(String args[])

{

two

t1=new two();

three t2=new three();

t1.display();

t1.add();

t2.mul();

Multilevel Inheritance

class A

{

A()

{

System.out.println(

"Constructor of Class A has been called");
}

}

class B extends A

{

B()

{

super();

System.out.println("Constructor of Class B has been called");

}

67

CS 8392

OBJECT ORIENTED PROGRAMMING

}

class C extends B

{

C()

{

super();

System.out.println(

"Constructor of Class C has been called");

}

}

class Constructor_Call

{

public static void main(String[] args)
{

System.out.println("

Welcome to Constructor call Demo

")

C objc = new C();

Hybrid Inheritance

class stud

{

Protected:

int rno;

Public:

Void getno(int n)

{

Rno=n;

}

Void display_rno()

{

Cout<<“Roll_no=”<<rno<<”

\

n
”;

}

};

Class test: Public stud

{

Protected:

Int sub1,sub2;

Public:

Void get_mark(int m1,int m2)

68

CS 8392 OBJECT ORIENTED PROGRAMMING

{

Sub1=m1;

Sub2=m2;

}

Void display_mark()

{ Cout<<”sub1”<<sub1<<”

\
n”; Cout<<”sub2”<<

sub2<<”

\

n”;

}

};

Class sports

{
Protected:

Float score;

Public :
Void get_score(float s)
{ Score=s;
}

Void put_score()

{ Cout<<”Sort :”<<score<<”

\

n”;

}

};

Class result: public test ,public sports

{
Float total;

Public:
Void display();
};
Void result::display()

{
Total=sub1+sub2+score;

display_rno();
display_mark();

put_score();
cout<<” total score:”<<total<<”

\

n”;

}

int main()

{ Result s r1;

r1. getno(123);

69

CS 8392 OBJECT ORIENTED PROGRAMMING

r1. get_mark(60,80)

r1.get_score(6);

r1.display()

3.5. EXCEPTION HANDLING

Exception handling is a construct designed to handle the occurrence of exceptions, that is

special conditions that changes the normal flow of program execution. Since when designing a

programming task (a class or even a function), one cannot always assume that application/task

will run or be completed correctly (exit with the result it was intended to). It may be the case that

it will be just inappropriate for that given task to report an error message (return an error code) or

just exit. To handle these types of cases, C++ supports the use of language constructs to separate

error handling and reporting code from ordinary code, that is, constructs that can deal with these

exceptions (errors and abnormalities) and so we call this global approach that adds uniformity to

program design the exception handling.
An exception is said to be thrown at the place where some error or abnormal condition is

detected. The throwing will cause the normal program flow to be aborted, in a raised exception.
An exception is thrown programmatic, the programmer specifies the conditions of a throw.

In handled exceptions, execution of the program will resume at a designated block of

code, called a catch block, which encloses the point of throwing in terms of program execution.

The catch block can be, and usually is, located in a different function/method than the point of

throwing. In this way, C++ supports non-local error handling. Along with altering the program

flow, throwing of an exception passes an object to the catch block. This object can provide data

that is necessary for the handling code to decide in which way it should react on the exception.

Consider this next code example of a try and catch block combination for clarification:
void AFunction()

{

 This function does not return normally,

 instead execution will resume at a catch block.

 The thrown object is in this case of the type char const*,

 i.e. it is a C-style string. More usually, exception

 objects are of class type.

throw "This is an exception!";

}

void AnotherFunction()

{

 To catch exceptions, you first have to introduce

 a try block via " try { ... } ". Then multiple catch

 blocks can follow the try block.
" try { ... } catch(type 1) { ... } catch(type 2) { ... }"
try
{

AFunction();

70

http://en.wikipedia.org/wiki/Exception_handling

CS 8392 OBJECT ORIENTED PROGRAMMING

 Because the function throws an exception,

 the rest of the code in this block will not

 be executed

}

catch(char const* pch) // This catch block

 will react on exceptions

 of type char const*

{

 Execution will resume here.

 You can handle the exception here.

}

// As can be seen

catch(...) // The ellipsis indicates that this
// block will catch exceptions of any type.

{

 In this example, this block will not be executed,

 because the preceding catch block is chosen to

 handle the exception.

}

}
Unhandled exceptions on the other hand will result in a function termination and the

stack will be unwound (stack allocated objects will have destructors called) as it looks for an
exception handler. If none is found it will ultimately result in the termination of the program.

From the point of view of a programmer, raising an exception is a useful way to signal

that a routine could not execute normally. For example, when an input argument is invalid (e.g. a

zero denominator in division) or when a resource it relies on is unavailable (like a missing file, or

a hard disk error). In systems without exceptions, routines would need to return some special

error code. However, this is sometimes complicated by the semi-predicate problem, in which

users of the routine need to write extra code to distinguish normal return values from erroneous

ones.
Because it is hard to write exception safe code, you should only use an exception when

you have to—when an error has occurred that you can not handle. Do not use exceptions for the
normal flow of the program.
This example is wrong, it is a demonstration on what to avoid:

void sum(int iA, int iB)

{

throw iA + iB;
}

int main()

{

int iResult;

try

{

sum(2, 3);

71

http://en.wikibooks.org/w/index.php?title=C%2B%2B_Programming/Chapter_Advanced_Features_Print_version&printable=yes#Stack_unwinding
http://en.wikipedia.org/wiki/semipredicate_problem

CS 8392 OBJECT ORIENTED PROGRAMMING

}

catch(int iTmpResult)

{

 Here the exception is used instead of a return value!

 This is wrong!

iResult = iTmpResult;

}

return 0;

}

Stack unwinding

Consider the following code

void g()
{

throw std::exception();

}

void f()

{
std::string str = "Hello"; // This string is newly
allocated g();

}

int main()

{

try

{

f();

}

catch(...)

{ }

}

The flow of the program:

main() calls f()
f() creates a local variable named str
str constructor allocates a memory chunk to hold the string "Hello"

f() calls g()
g()throws an exception
f() does not catch the exception.
Because the exception was not caught, we now need to exit f() in a clean
fashion. At this point, all the destructors of local variables previous to the throw
are called—This is called 'stack unwinding'.
The destructor of str is called, which releases the memory occupied by it.
As you can see, the mechanism of 'stack unwinding' is essential to prevent resource
leaks—without it, str would never be destroyed, and the memory it used would be lost

72

CS 8392 OBJECT ORIENTED PROGRAMMING

until the end of the program (even until the next loss of power, or cold boot depending on

the Operative System memory management). main() catches the exception

The program continues.
The 'stack unwinding' guarantees destructors of local variables (stack variables) will be

called when we leave its scope.

Throwing objects

There are several ways to throw an exception object.

Throw a pointer to the object:

void foo()

{

throw new MyApplicationException();

}

void bar()

{

try

{

foo();

}

catch(MyApplicationException* e)

{

// Handle exception

}

}

But now, who is responsible to delete the exception? The handler? This makes code

uglier. There must be a better way!

How about this:

void foo()

{

throw MyApplicationException();

}

void bar()

{

try

{

foo();
}

catch(MyApplicationException e)

{

// Handle exception

}

}
But now, the catch handler that catches the exception, does it by value, meaning that a

copy constructor is called. This can cause the program to crash if the exception caught was a

bad_alloc caused by insufficient memory. In such a situation, seemingly safe code that is

73

http://en.wikipedia.org/wiki/Reboot_%28computing%29

CS 8392 OBJECT ORIENTED PROGRAMMING

assumed to handle memory allocation problems results in the program crashing with a failure of

the exception handler. Moreover, catching by value may cause the copy to have different

behavior because of object slicing.

The correct approach is:

void foo()

{

throw MyApplicationException();

}

void bar()

{

try

{
foo();

}

catch(MyApplicationException const& e)

{

// Handle exception

}

}
This method has all the advantages—the compiler is responsible for destroying the

object, and no copying is done at catch time!
The conclusion is that exceptions should be thrown by value, and caught by (usually const)
reference.
3.5.1 Constructors and destructors

When an exception is thrown from a constructor, the object is not considered instantiated, and

therefore its destructor will not be called. But all destructors of already successfully constructed

base and member objects of the same master object will be called. Destructors of not yet

constructed base or member objects of the same master object will not be executed. Example:

class A : public B, public C

{

public:

 sD;

 sE;

A(void)

:B(), C(), sD(), sE()

{

}

};

Let's assume the constructor of base class C throws. Then the order of execution is:

B
C (throws)
~B

Let's assume the constructor of member object sE throws. Then the order of execution is:

B
C

74

CS 8392 OBJECT ORIENTED PROGRAMMING

sD
sE (throws)
~sD

~C
~B

Thus if some constructor is executed, one can rely on that all other constructors of the same
master object executed before, were successful. This enables one, to use an already constructed

member or base object as an argument for the constructor of one of the following member or
base objects of the same master object.
What happens when we allocate this object with new?

Memory for the object is allocated

The object's constructor throws an exception
 The object was not instantiated due to the

exception The memory occupied by the object is deleted

The exception is propagated, until it is caught
The main purpose of throwing an exception from a constructor is to inform the program/user that
the creation and initialization of the object did not finish correctly. This is a very clean way of

providing this important information, as constructors do not return a separate value containing
some error code (as an initialization function might).
In contrast, it is strongly recommended not to throw exceptions inside a destructor. It is
important to note when a destructor is called:

as part of a normal deallocation (exit from a scope, delete)
as part of a stack unwinding that handles a previously thrown exception.

In the former case, throwing an exception inside a destructor can simply cause memory leaks due

to incorrectly deallocated object. In the latter, the code must be more clever. If an exception was
thrown as part of the stack unwinding caused by another exception, there is no way to choose

which exception to handle first. This is interpreted as a failure of the exception handling

mechanism and that causes the program to call the function terminate.
To address this problem, it is possible to test if the destructor was called as part of an exception
handling process. To this end, one should use the standard library function uncaught_exception,

which returns true if an exception has been thrown, but hasn't been caught yet. All code executed
in such a situation must not throw another exception.

Situations where such careful coding is necessary are extremely rare. It is far safer and
easier to debug if the code was written in such a way that destructors did not throw exceptions at
all.
Writing exception safe code

Exception safety
A piece of code is said to be exception-safe, if run-time failures within the code will not produce

ill effects, such as memory leaks, garbled stored data, or invalid output. Exception-safe code
must satisfy invariants placed on the code even if exceptions occur. There are several levels of

exception safety:
Failure transparency, also known as the no throw guarantee: Operations are guaranteed to

succeed and satisfy all requirements even in presence of exceptional situations. If an
exception occurs, it will not throw the exception further up. (Best level of exception

safety.)

75

http://en.wikipedia.org/wiki/memory_leak
http://en.wikipedia.org/wiki/Invariant_%28computer_science%29

CS 8392 OBJECT ORIENTED PROGRAMMING

Commit or rollback semantics, also known as strong exception safety or no-change
guarantee: Operations can fail, but failed operations are guaranteed to have no side
effects so all data retain original values.

Basic exception safety: Partial execution of failed operations can cause side effects, but
invariants on the state are preserved. Any stored data will contain valid values even if
data has different values now from before the exception.

Minimal exception safety also known as no-leak guarantee: Partial execution of failed
operations may store invalid data but will not cause a crash, and no resources get leaked.

No exception safety: No guarantees are made. (Worst level of exception safety)
3.5.2 Partial handling

Consider the following case:
void g()

{
throw "Exception";

}

void f()

{

int* pI = new int(0);

g();

delete pI;

}

int main()

{

f();

return 0;

}
Can you see the problem in this code? If g() throws an exception, the variable pI is never deleted
and we have a memory leak.
To prevent the memory leak, f() must catch the exception, and delete pI. But f() can't handle the
exception, it doesn't know how!
What is the solution then? f() shall catch the exception, and then re-throw it:

void g()

{

throw "Exception";

}

void f()

{

int* pI = new int(0);

try

{

g();

}

76

CS 8392 OBJECT ORIENTED PROGRAMMING

catch (...)

{

delete pI;
throw; // This empty throw re-throws the exception we caught

// An empty throw can only exist in a catch block
}

delete pI;

}

int main()

{

f();
return 0;

}
There's a better way though; using RAII classes to avoid the need to use exception
handling. Guards
If you plan to use exceptions in your code, you must always try to write your code in an
exception safe manner. Let's see some of the problems that can occur: Consider the following
code:
void g()

{

throw std::exception();

}

void f()

{

int* pI = new int(2);

*pI = 3;

g();

 Oops, if an exception is thrown, pI is never deleted

 and we have a memory leak

delete pI;

}

int main()
{

try

{

f();

}

catch(...)
{ }

return 0;

77

CS 8392 OBJECT ORIENTED PROGRAMMING

}
Can you see the problem in this code? When an exception is thrown, we will never run the line
that deletes pI!
What's the solution to this? Earlier we saw a solution based on f() ability to catch and re-throw.

But there is a neater solution using the 'stack unwinding' mechanism. But 'stack unwinding' only

applies to destructors for objects, so how can we use it? We can write a simple wrapper class:

Note: This type of class is best implemented using templates, discussed in the next chapter.
class IntDeleter {
public:

IntDeleter(int* piValue)

{

m_piValue = piValue;

}

~IntDeleter()

{

delete m_piValue;

}

 operator *, enables us to dereference the object and use it

 like a regular pointer.

int& operator *()

{

return *m_piValue;

}

private:

int* m_piValue;

};

The new version of f():

void f()

{

IntDeleter pI(new int(2));

*pI = 3;

g();
 No need to delete pI, this will be done in destruction.

 This code is also exception safe.

}
The pattern presented here is called a guard. A guard is very useful in other cases, and it can also
help us make our code more exception safe. The guard pattern is similar to a finally block in
other languages.
Note that the C++ Standard Library provides a templated guard by the name of
auto_ptr. Exception hierarchy

78

CS 8392 OBJECT ORIENTED PROGRAMMING

You may throw as exception an object (like a class or string), a pointer (like char*), or a

primitive (like int). So, which should you choose? You should throw objects, as they ease the
handling of exceptions for the programmer. It is common to create a class hierarchy of exception

classes:
class MyApplicationException {};

 class MathematicalException : public MyApplicationException {};

 class DivisionByZeroException : public MathematicalException {};
o class InvalidArgumentException : public MyApplicationException {};

An example:

float divide(float fNumerator, float fDenominator)

{

if (fDenominator == 0.0)

{
throw DivisionByZeroException();

}

return fNumerator/fDenominator;

}

enum MathOperators {DIVISION, PRODUCT};

float operate(int iAction, float fArgLeft, float fArgRight)

{

if (iAction == DIVISION)

{

return divide(fArgLeft, fArgRight);

}

else if (iAction == PRODUCT))

{

 call the product function

 ...

}

No match for the action! iAction is an invalid agument
throw InvalidArgumentException();

}

int main(int iArgc, char* a_pchArgv[])

{

try

{

operate(atoi(a_pchArgv[0]), atof(a_pchArgv[1]), atof(a_pchArgv[2]));

}

catch(MathematicalException&)

{

// Handle Error

79

CS 8392 OBJECT ORIENTED PROGRAMMING

}

catch(MyApplicationException&)

{

 This will catch in InvalidArgumentException too.

 Display help to the user, and explain about the arguments.

}

return 0;

}
3.5.3 Exception specifications
The range of exceptions that can be thrown by a function are an important part of that function's

public interface. Without this information, you would have to assume that any exception could
occur when calling any function, and consequently write code that was extremely defensive.

Knowing the list of exceptions that can be thrown, you can simplify your code since it doesn't
need to handle every case.

This exception information is specifically part of the public interface. Users of a class don't need

to know anything about the way it is implemented, but they do need to know about the

exceptions that can be thrown, just as they need to know the number and type of parameters to a

member function. One way of providing this information to clients of a library is via code

documentation, but this needs to be manually updated very carefully. Incorrect exception

information is worse than none at all, since you may end up writing code that is less exception-

safe than you intended to.
C++ provides another way of recording the exception interface, by means of exception

specifications. An exception specification is parsed by the compiler, which provides a measure
of automated checking. An exception specification can be applied to any function, and looks like

this:
double divide(double dNumerator, double dDenominator) throw (DivideByZeroException);
You can specify that a function cannot throw any exceptions by using an empty exception
specification:
void safeFunction(int iFoo) throw();

Shortcomings of exception specifications
C++ does not programmatically enforce exception specifications at compile time. For example,
the following code is legal:
void DubiousFunction(int iFoo) throw()

{

if (iFoo < 0)

{
throw RangeException();

}

}
Rather than checking exception specifications at compile time, C++ checks them at run

time, which means that you might not realize that you have an inaccurate exception specification
until testing or, if you are unlucky, when the code is already in production.

If an exception is thrown at run time that propagates out of a function that doesn't allow
the exception in its exception specification, the exception will not propagate any further and
instead, the function RangeException() will be called. The RangeException() function doesn't

80

CS 8392 OBJECT ORIENTED PROGRAMMING

return, but can throw a different type of exception that may (or may not) satisfy the exception
specification and allow exception handling to carry on normally. If this still doesn't recover the
situation, the program will be terminated.

Many people regard the behavior of attempting to translate exceptions at run time to be

worse than simply allowing the exception to propagate up the stack to a caller who may be able

to handle it. The fact that the exception specification has been violated does not mean that the

caller can't handle the situation, only that the author of the code didn't expect it. Often there will

be a catch (...) block somewhere on the stack that can deal with any exception. Noexcept

specifiers
3.5.4 Run-Time Type Information (RTTI)

RTTI refers to the ability of the system to report on the dynamic type of an object and to

provide information about that type at runtime (as opposed to at compile time), when utilized
consistently can be a powerful tool to ease the work of the programmer in managing resources.

dynamic_cast
Consider what you have already learned about the dynamic_cast keyword and let's say that we

have the following class hierarchy:

class Interface

{

public:

virtual void GenericOp() = 0;// pure virtual function

};

class SpecificClass : public Interface

{

public:

virtual void GenericOp();

virtual void SpecificOp();

};

Let's say that we also have a pointer of type Interface*, like so:

Interface* ptr_interface;
Supposing that a situation emerges that we are forced to presume but have no guarantee that the

pointer points to an object of type SpecificClass and we would like to call the member
SpecificOp() of that class. To dynamically convert to a derived type we can use dynamic_cast,

like so:
SpecificClass* ptr_specific =
dynamic_cast<SpecificClass*>(ptr_interface); if(ptr_specific){

our suspicions are confirmed -- it really was a SpecificClass
ptr_specific->SpecificOp();

}else{

 our suspicions were incorrect -- it is definitely not a SpecificClass.
The ptr_interface points to an instance of some other child class of the base InterfaceClass.
ptr_interface->GenericOp();

};

81

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/dynamic_cast
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/dynamic_cast
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/dynamic_cast

CS 8392 OBJECT ORIENTED PROGRAMMING

With dynamic_cast, the program converts the base class pointer to a derived class pointer and

allows the derived class members to be called. Be very careful, however: if the pointer that you
are trying to cast is not of the correct type, then dynamic_cast will return a null pointer. We can

also use dynamic_cast with references.
SpecificClass& ref_specific = dynamic_cast<SpecificClass&>(ref_interface);

This works almost in the same way as pointers. However, if the real type of the object being cast

is not correct then dynamic_cast will not return null (there's no such thing as a null reference).

Instead, it will throw a std::bad_cast exception.

typeid

Syntax

typeid(object);
The typeid operator, used to determine the class of an object at runtime. It returns a reference to a

std::type_info object, which exists until the end of the program, that describes the "object". If the
"object" is a dereferenced null pointer, then the operation will throw a std::bad_typeid exception.

Objects of class std::bad_typeid are derived from std::exception, and thrown by typeid and
others.
The use of typeid is often preferred over dynamic_cast<class_type> in situations where just the

class information is needed, because typeid, applied on a type or non de-referenced value is a

constant-time procedure, whereas dynamic_cast must traverse the class derivation lattice of its

argument at runtime. However, you should never rely on the exact content, like for example

returned by std::type_info::name(), as this is implementation specific with respect to the compile.

It is generally only useful to use typeid on the dereference of a pointer or reference (i.e.

typeid(*ptr) or typeid(ref)) to an object of polymorphic class type (a class with at least one

virtual member function). This is because these are the only expressions that are associated with

run-time type information. The type of any other expression is statically known at compile time.

Example
#include <iostream>

#include <typeinfo> //for 'typeid' to work

class Person {

public:

 ... Person members ...

virtual ~Person() {}

};

class Employee : public Person {

 ... Employee members ...

};

int main () {

Person person;

Employee employee;

Person *ptr = &employee;

// The string returned by typeid::name is implementation-defined

std::cout << typeid(person).name() << std::endl; // Person (statically known at compile-time)

82

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/dynamic_cast
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/dynamic_cast
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/dynamic_cast
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/dynamic_cast
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/typeid
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/dynamic_cast
http://en.wikipedia.org/wiki/Constant_time
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/Keywords/dynamic_cast
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Classes#Virtual_member_functions

CS 8392 OBJECT ORIENTED PROGRAMMING

std::cout << typeid(employee).name() << std::endl; // Employee (statically known at compile-
time)

std::cout << typeid(ptr).name() << std::endl;
std::cout << typeid(*ptr).name() << std::endl;
time

// Person * (statically known at compile-time)

// Employee (looked up dynamically at run-

 because it is the dereference of a

 pointer to a polymorphic class)

}

Output (exact output varies by system):

Person

Employee

Person*

Employee

In RTTI it is used in this setup:

const std::type_info& info = typeid(object_expression);
Sometimes we need to know the exact type of an object. The typeid operator returns a reference
to a standard class std::type_info that contains information about the type. This class provides

some useful members including the == and != operators. The most interesting method is
probably:
const char* std::type_info::name() const;
This member function returns a pointer to a C-style string with the name of the object type. For
example, using the classes from our earlier example:
const std::type_info &info = typeid(*ptr_interface);
std::cout << info.name() << std::endl;

This program would print something like
[1]

 SpecificClass because that is the dynamic type of the
pointer ptr_interface.
typeid is actually an operator rather than a function, as it can also act on types:

const std::type_info& info = typeid(type);

for example (and somewhat circularly)

const std::type_info& info = typeid(std::type_info);

will give a type_info object which describes type_info objects. This latter use is not RTTI, but

rather CTTI (compile-time type identification).

Limitations
There are some limitations to RTTI. First, RTTI can only be used with polymorphic types. That

means that your classes must have at least one virtual function, either directly or through

inheritance. Second, because of the additional information required to store types some
compilers require a special switch to enable RTTI.
Note that references to pointers will not work under RTTI:

void example(int*& refptrTest)

{

std::cout << "What type is *&refptrTest : " << typeid(refptrTest).name() << std::endl;

}

Will report int*, as typeid() does not support reference types.

Misuses of RTTI

83

http://en.wikibooks.org/w/index.php?title=C%2B%2B_Programming/Chapter_Advanced_Features_Print_version&printable=yes#cite_note-1

CS 8392 OBJECT ORIENTED PROGRAMMING

RTTI should only be used sparingly in C++ programs. There are several reasons for this. Most

importantly, other language mechanisms such as polymorphism and templates are almost always

superior to RTTI. As with everything, there are exceptions, but the usual rule concerning RTTI is

more or less the same as with goto statements. Do not use it as a shortcut around proper, more

robust design. Only use RTTI if you have a very good reason to do so and only use it if you

know what you are doing.

3.6 OOP USING C++

-

Creating an object of a Class

Declaring a variable of a class type creates an object. You can have many variables of the same type

(class).

– Instantiation

Once an object of a certain class is instantiated, a new memory location is created for it to store its
data members and code

You can instantiate many objects from a class type.

Ex) Circle c; Circle *

Implementing class methods
Class implementation: writing the code of class methods.

There are two ways:

 Member functions defined outside class

84

CS 8392 OBJECT ORIENTED PROGRAMMING

 Using Binary scope resolution operator (::)

 “Ties” member name to class name

 Uniquely identify functions of particular class

 Different classes can have member functions with same name

 Format for defining member functions
ReturnType ClassName::MemberFunctionName(){

…

}

85

CS 8392 OBJECT ORIENTED PROGRAMMING

UNIT IV

OVERVIEW OF JAVA

Data types, variables and arrays, operators, control statements, classes, objects, methods
– Inheritance

4..1 DATA TYPES, VARIABLES

Data Types

For all data, assign a name (identifier) and a data type

Data type tells compiler:

– How much memory to allocate

– Format in which to store data

– Types of operations you will perform on data

Compiler monitors use of data

– Java is a "strongly typed" language

Java "primitive data types"
byte, short, int, long, float, double, char, boolean

Declaring Variables

Variables hold one value at a time, but that value can change

Syntax:

dataType identifier;

or

dataType identifier1, identifier2, …;

Naming convention for variable names:

– first letter is lowercase

– embedded words begin with uppercase letter

Names of variables should be meaningful and reflect the data they will store

– This makes the logic of the program clearer

Don't skimp on characters, but avoid extremely long names

Avoid names similar to Java keywords

Integer Types - Whole Numbers

Type Size Minimum Value Maximum Value

 in Bytes

byte 1 -128 127

short 2 -32,768 32,767

int 4 -2, 147, 483, 648 2, 147, 483, 647

long 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

Example declarations:

int testGrade;

int numPlayers, highScore, diceRoll;

short xCoordinate, yCoordinate;

byte ageInYears;

long cityPopulation;

 86

CS 8392 OBJECT ORIENTED PROGRAMMING

Floating-Point Data Types

Numbers with fractional parts

Type Size Minimum Value Maximum Value

 in Bytes

float 4 1.4E-45 3.4028235E38

double 8 4.9E-3241.7976931348623157E308

Example declarations:

float salesTax;

double interestRate;

double paycheck, sumSalaries;

char Data Type

One Unicode character (16 bits - 2 bytes)

Type Size Minimum Value Maximum Value
in Bytes

char 2 character character

encoded as 0 encoded as FFFF

Example declarations:

char finalGrade;

char newline, tab, doubleQuotes;

boolean Data Type

Two values only:
true
false

Used for decision making or as "flag" variables

Example declarations:

boolean isEmpty;

boolean passed, failed;

Assigning Values to Variables

Assignment operator =

– Value on the right of the operator is assigned to the variable on the left
– Value on the right can be a literal (text representing a specific value), another

variable, or an expression (explained later)
Syntax:

dataType variableName = initialValue;

Or

dataType variable1 = initialValue1,

variable2 = initialValue2, …;
Literals

int, short, byte

Optional initial sign (+ or -) followed by digits 0 – 9 in any combination.

long
Optional initial sign (+ or -) followed by digits 0–9 in any combination, terminated with an L
or l.
***Use the capital L because the lowercase l can be confused with the number 1.
Floating-Point Literals

float

87

CS 8392 OBJECT ORIENTED PROGRAMMING

Optional initial sign (+ or -) followed by a floating-point number in fixed or scientific
format, terminated by an F or f.

double
Optional initial sign (+ or -) followed by a floating-point number in fixed or scientific
format. Assigning the Values of Other Variables

Syntax:

dataType variable2 = variable1;

 Rules:

 variable1 needs to be defined before this statement appears in the source code
 variable1 and variable2 need to be compatible data types; in other words, the precision of

variable1 must be lower than or equal to that of variable2.
Compatible Data Types

Any type in right column can be assigned to type in left column:
Data Type Compatible Data Types

byte byte

short byte, short

int byte, short, int, char

long byte, short, int, long, char

float float, byte, short, int, long, char

double float, double, byte, short, int, long, char

boolean boolean

char char

4.2ARRAYS

Declaring an Array Variable

Do not have to create an array while declaring array variable

– <type> [] variable_name;

– int [] prime;

– int prime[];

Both syntaxes are equivalent

No memory allocation at this point

Define an array as follows:

– variable_name=new <type>[N];

– primes=new int[10];

Declaring and defining in the same statement:

– int[] primes=new int[10];
In JAVA, int is of 4 bytes, total space=4*10=40 bytes

Array Size through Input
BufferedReader stdin = new BufferedReader (new
InputStreamReader(System.in)); String inData;
int num;
System.out.println("Enter a Size for
Array:"); inData = stdin.readLine();

88

CS 8392

OBJECT ORIENTED PROGRAMMING

num = Integer.parseInt(inData); // convert inData to int

long[] primes = new long[num];

System.out.println(“Array Length=”+primes.length);

….

SAMPLE RUN:

Enter a Size for Array:

4

Array Length=4

Default Initialization

When array is created, array elements are initialized

– Numeric values (int, double, etc.) to 0

– Boolean values to false

– Char values to ‘\u0000’ (unicode for blank character)

– Class types to null

Index of an array is defined as

– Positive int, byte or short values

– Expression that results into these types

Any other types used for index will give error

– long, double, etc.

– Incase Expression results in long, then type cast to int

Indexing starts from 0 and ends at N-1

primes[2]=0;

int k = primes[2];

Validating Indexes

JAVA checks whether the index values are valid at runtime
– If index is negative or greater than the size of the array then an

IndexOutOfBoundException will be thrown
– Program will normally be terminated unless handled in the try {} catch {}

long[] primes = new long[20];

primes[25]=33;

….

Runtime Error:

Exception in thread “main” java.lang.ArrayIndexOutOfBoundsException: 25

at MorePrimes.main(MorePrimes.java:6)
Initializing Arrays

Initialize and specify size of array while declaring an array variable
int[] primes={2,3,5,7,11,13,17}; //7 elements

You can initialize array with an existing array
int[] even={2,4,6,8,10};
int[] value=even;

– One array but two array variables!

– Both array variables refer to the same array

– Array can be accessed through either variable name

Refer to array length using length

89

CS 8392 OBJECT ORIENTED PROGRAMMING

– A data member of array object

– array_variable_name.length

– for(int k=0; k<primes.length;k++)

….

Sample Code:

long[] primes = new long[20];

System.out.println(primes.length);

Output: 20
Sample Program

class MinAlgorithm

{

public static void main (String[] args)

{

int[] array = { -20, 19, 1, 5, -1, 27, 19, 5 } ;

int min=array[0]; // initialize the current minimum

for (int index=0; index < array.length; index++)

if (array[index] < min)

min = array[index] ;

System.out.println("The minimum of this array is: " + min);

}

}
Arrays of Arrays

Two-Dimensional arrays

– float[][] temperature=new float[10][365];

– 10 arrays each having 365 elements

– First index: specifies array (row)

– Second Index: specifies element in that array (column)

– In JAVA float is 4 bytes, total Size=4*10*365=14,600 bytes
Multidimensional Arrays

A farmer has 10 farms of beans each in 5 countries, and each farm has 30 fields!

Three-dimensional array
long[][][] beans=new long[5][10][30];

//beans[country][farm][fields]

4.3 OPERATORS

•
The Assignment Operator and Expressions

Arithmetic Operators

Operator Precedence

Integer Division and Modulus

Division by Zero

Mixed-Type Arithmetic and Type Casting

Shortcut Operators
Assignment Operator

Syntax:
target = expression;

90

CS 8392 OBJECT ORIENTED PROGRAMMING

expression: operators and operands that evaluate to a single
value --value is then assigned to target

--target must be a variable (or constant)

--value must be compatible with target's data type

Examples:

int numPlayers = 10; // numPlayers holds 10

numPlayers = 8; // numPlayers now holds 8

int legalAge = 18;

int voterAge = legalAge;

The next statement is illegal

int height = weight * 2; // weight is not defined

int weight = 20;

and generates the following compiler error:
illegal forward reference

Arithmetic Operators

Operator

Operation

+ addition

- subtraction

* multiplication

/ division

% modulus (remainder after division)

Operator Precedence

Operator

Order of

Operation

 evaluation

() left - right parenthesis for explicit

 grouping

 91

CS 8392 OBJECT ORIENTED PROGRAMMING

* / % left - right multiplication, division,

 modulus

+ - left - right addition, subtraction

= right - left assignment

Shortcut Operators

++ increment by 1-- decrement by 1

Example:

count++; // count = count + 1;

count--; // count = count - 1;

Postfix version (var++, var--): use value of var in expression, then increment or decrement.

Prefix version (++var, --var): increment or decrement var, then use value in expression

Operator

Example

Equivalent

+= a += 3; a = a + 3;

-= a -= 10; a = a - 10;

*= a *= 4; a = a * 4;

/= a /= 7; a = a / 7;

%= a %= 10; a = a % 10;

4.4.CONTROL STATEMENTS

4.4.1 Types

 if else
 switch
 while

92

CS 8392 OBJECT ORIENTED PROGRAMMING

do while
for
break
continue
return
Labeled break, continue

if-else

if(conditional_statement){
statement to be executed if conditions becomes
true }else{
statements to be executed if the above condition becomes false

}
Switch

switch(byte/short/int){

case expression:

statements
case expression:

statements

default:

statement

}

while – loop

while(condition_statement
→

true){

Statements to be executed when the condition becomes true and execute them repeatedly until
condition becomes false.
}

E.g.
int x =2; while(x>5){

system.out.println(“value of x:”+x);

x++;

}
do while – loop
do{
statements to be executed at least once without looking at the
condition. The statements will be exeucted until the condition becomes
true. }while(condition_statement);
for – loop
for(initialization; condition; increment/decrement){

statements to be executed until the condition becomes false

}

E.g:

for(int x=0; x<10;x++){

System.out.println(“value of x:”+x);

}

Break

93

CS 8392 OBJECT ORIENTED PROGRAMMING

Break is used in the loops and when executed, the control of the execution will come out of
the loop.

for(int i=0;i<50;i++){
if(i%13==0){
break;
}
System.out.println(“Value of i:”+i);
}

Continue
Continue makes the loop to skip the current execution and continues with the next iteration.

for(int i=0;i<50;i++){

if(i%13==0){
continue;

}

}

Return
return statement can be used to cause execution to branch back to the caller of the
method Labeled break,continue

Labeled break and continue statements will break or continue from the loop that is
mentioned.

Used in nested loops.
Primitive data types

– char, byte, short, int, long, float, double, boolean

– Building blocks for more complicated types

 All variables must have a type before being used

 Strongly typed language

– Primitive types portable, unlike C and C++

 In C/C++, write different versions of programs

– Data types not guaranteed to be identical

– ints may be 2 or 4 bytes, depending on system

 WORA - Write once, run anywhere

– Default values

 boolean gets false, all other types are 0

4.5 .CLASSES AND OBJECTS,METHODS
A Java program consists of one or more classes

A class is an abstract description of objects

Here is an example class:

 class Dog { ...description of a dog goes here... }

94

CS 8392 OBJECT ORIENTED PROGRAMMING

Here are some objects of that class:

Here is another example of a class:

 class Window { ... }

Here are some examples of Windows:

4.5.1 Classes contain data definitions
Classes describe the data held by each of its objects

Example:

 class Dog {
String name;
int age;

...rest of the class...
}

A class may describe any number of objects

 Examples: "Fido", 3; "Rover", 5; "Spot", 3;

A class may describe a single object, or even no objects at all

4.5.2 Classes contain methods
A class may contain methods that describe the behavior of objects

Example:

 class Dog {

...

95

CS 8392 OBJECT ORIENTED PROGRAMMING

void bark() {

System.out.println("Woof!");

}

}
When we ask a particular Dog to bark, it says “Woof!”

Only Dog objects can bark; the class Dog cannot bark

4.5.3 Methods contain statements
A statement causes the object to do something

 (A better word would be “command”—but it isn’t)

Example:

 System.out.println("Woof!");

 This causes the particular Dog to “print” (actually, display on the screen) the characters
Woof!

Data described in a class exists in all objects of that class

 Example: Every Dog has its own name and age

A method may contain local temporary data that exists only until the method finishes

Example:

 void wakeTheNeighbors() {

int i = 50; // i is a temporary variable

while (i > 0) {

bark();

i = i – 1;

}

}
Classes always contain constructors

A constructor is a piece of code that “constructs,” or creates, a new object of that class

If you don’t write a constructor, Java defines one for you (behind the scenes)

You can write your own constructors

Example:

 class Dog {

String name;

int age;

Dog(String n, int age) {

name = n;

this.age = age;

}
}

Diagram of program structure

96

CS 8392 OBJECT ORIENTED PROGRAMMING

class Dog {

String name;

int age;

Dog(String n, int age) {

name = n;

this.age = age;

}

void bark() {

System.out.println("Woof!");

}
void wakeTheNeighbors() { int i =

50;

while (i > 0) {

bark();

i = i – 1;

}

}

public static void main(String[] args) {

Dog fido = new Dog("Fido", 5);

97

CS 8392 OBJECT ORIENTED PROGRAMMING

fido.wakeTheNeighbors();

}
} // ends the class

Method Definitions

Method definition format
return-value-type

method-name(parameter-list)

{

declarations

and statements

}

– Method-name: any valid identifier

– Return-value-type: data type of the result

 void - method returns nothing

 Can return at most one value

– Parameter-list: comma separated list, declares parameters
 Method call must have proper number and type of parameters

– Declarations and statements: method body (block)

 Variables can be declared inside blocks (can be nested)

 Method cannot be defined inside another function

– Program control

– When method call encountered

 Control transferred from point of invocation to method

– Returning control

 If nothing returned: return;

– Or until reaches right brace

 If value returned: return expression;

– Returns the value of expression

– Example user-defined method:

public int square(int y

{

)

return y * y

}

Calling methods

– Three ways

 Method name and arguments

– Can be used by methods of same class

– square(2);

 Dot operator - used with objects

– g.drawLine(x1, y1, x2, y2);

 Dot operator - used with static methods of classes

– Integer.parseInt(myString);

– More Chapter 26

More GUI components

– Content Pane - on-screen display area

98

CS 8392 OBJECT ORIENTED PROGRAMMING

 Attach GUI components to it to be displayed

 Object of class Container (java.awt)

– getContentPane

 Method inherited from JApplet
 Returns reference to Content Pane

Container c = getContentPane();
– Container method add

 Attaches GUI components to content pane, so they can be displayed

 For now, only attach one component (occupies entire area)

 Later, learn how to add and layout multiple components

c.add(myTextArea);

4.6.INHERITANCE

Reusability is achieved by INHERITANCE
Java classes Can be Reused by extending a class. Extending an existing class is nothing but

reusing properties of the existing classes.
The class whose properties are extended is known as super or base or parent class.
The class which extends the properties of super class is known as sub or derived or child

class
A class can either extends another class or can implement an interface

class B extends A { ….. }

A super class

class B implements A { ….. }

 interface

 sub class

Various Forms of Inheritance

7.1Defining a Subclass

Syntax :
class <subclass name> extends <superclass
name> {
variable declarations;

method declarations;
}

Extends keyword signifies that properties of the super class are extended to sub class

Sub class will not inherit private members of super class

Access Control

99

CS 8392 OBJECT ORIENTED PROGRAMMING

Access Modifiers public protected friendly private

Access Location

Same Class Yes Yes Yes Yes

sub classes in same Yes Yes Yes No

package

Other Classes in Yes Yes Yes No

Same package

Subclasses in other Yes Yes No No

packages

Non-subclasses in other Yes No No No

packages

Inheritance Basics

When super class has a Unparametrized constructor

class A

{

A()
{

System.out.println("This is constructor of class A");

}
} // End of class A
class B extends A
{

B()

{

super();

100

CS 8392 OBJECT ORIENTED PROGRAMMING

System.out.println("This is constructor of class
B"); }
} // End of class
B class inhtest
{

public static void main(String args[])

{

B b1 = new B();

}

}

OUTPUT
This is constructor of class
A This is constructor of
class B class A
{

A()

{

System.out.println("This is class A");

}

}

class B extends A

{

B()

{

System.out.println("This is class B");

}

}

class inherit1

{

public static void main(String args[])

{

B b1 = new B();

}

}
File Name is xyz.java
/*
E:\Java>java

inherit1 This is class
A This is class B

E:\Java>
*/ class

A

{

private A()

{

System.out.println("This is class A");

101

CS 8392 OBJECT ORIENTED PROGRAMMING

}

}

class B extends A

{

B()

{

System.out.println("This is class B");

}

}

class inherit2

{

public static void main(String args[])

{
B b1 = new B();

}

}

/*

E:\Java>javac xyz1.java

xyz1.java:12: A() has private access in A

{

^
error */

class A

{

private A()

{

System.out.println("This is class A");

}

A()

{

System.out.println("This is class A");

}

}

class B extends A

{

B()

{

System.out.println("This is class B");

}

}

class inherit2

{

public static void main(String args[])

{

B b1 = new B();

102

CS 8392

} }

/*

E:\Java>javac xyz2.java

xyz2.java:7: A() is already defined in A

A()

^

xyz2.java:16: A() has private access in A

{

^
errors
*/
When Super class has a parametrized constructor.
class A
{
private int a;
A(int a)
{

this.a =a;
System.out.println("This is constructor of class A");

}

}

class B extends A

{
private int b;
private double c;
B(int b,double c)
{

this.b=b;

this.c=c;

System.out.println("This is constructor of class B");

}

}
B b1 = new B(10,8.6);

D:\java\bin>javac inhtest.java
inhtest.java:15: cannot find

symbol symbol : constructor A()
location: class A
{

^
errors
class A
{
private int a; protected
String name; A(int a,
String n)
{

103

OBJECT ORIENTED PROGRAMMING

CS 8392 OBJECT ORIENTED PROGRAMMING

this.a = a;

this.name = n;

}

void print()

{

System.out.println("a="+a);

}

}

class B extends A

{

int b;

double c;

B(int a,String n,int b,double c)
{

super(a,n);

this.b=b;

this.c =c;

}

void show()

{

//System.out.println("a="+a);

print();

System.out.println("name="+name);

System.out.println("b="+b);

System.out.println("c="+c);

}

} class A

{
private int a;
A(int a)
{

this.a =a;

System.out.println("This is constructor of class A");

}

void show()

{

System.out.println("a="+a);

}

void display()

{

System.out.println("hello This is Display in A");

}

}

class B extends A

{

private int b;

104

CS 8392 OBJECT ORIENTED PROGRAMMING

private double c;

B(int a,int b,double c)

{

super(a);

this.b=b;

this.c=c;

System.out.println("This is constructor of class B");

}

void show()

{

super.show();

System.out.println("b="+b);

System.out.println("c="+c);
display();

}

}

class inhtest1

{

public static void main(String args[])

{

B b1 = new B(10,8,4.5);

b1.show();

}

}

/* OutPut

D:\java\bin>java inhtest1

This is constructor of class A

This is constructor of class B

a=10

b=8

c=4.5

hello This is Display in A

*/

7.2 Types

Single inheritance

Class A

{

public void methodA()

{

System.out.println("Base class method");

}

}

105

CS 8392 OBJECT ORIENTED PROGRAMMING

Class B extends A

{

public void methodB()

{

System.out.println("Child class method");

}

public static void main(String args[])

{

B obj = new B();

obj.methodA(); //calling super class method

obj.methodB(); //calling local method

}

}
Multiple Inheritance

“Multiple Inheritance” refers to the concept of one class extending (Or inherits) more
than one base class. The inheritance we learnt earlier had the concept of one base class or parent.

The problem with “multiple inheritance” is that the derived class will have to manage the

dependency on two base classes.

Multilevel Inheritance
Multilevel inheritance refers to a mechanism in OO technology where one can inherit

from a derived class, thereby making this derived class the base class for the new class. As you
can see in below flow diagram C is subclass or child class of B and B is a child class of A. For

more details and example refer – Multilevel inheritance in Java.

Multilevel Inheritance example program in Java

Class X

{

public void methodX()
{

System.out.println("Class X method");

}

}

Class Y extends X

{

public void methodY()

{

106

http://beginnersbook.com/2013/12/multilevel-inheritance-in-java-with-example/

CS 8392 OBJECT ORIENTED PROGRAMMING

System.out.println("class Y method");

}

}

Class Z extends Y

{

public void methodZ()

{

System.out.println("class Z method");

}

public static void main(String args[])

{

Z obj = new Z();
obj.methodX(); //calling grand parent class
method obj.methodY(); //calling parent class
method obj.methodZ(); //calling local method

}

}
Hierarchical Inheritance

In such kind of inheritance one class is inherited by many sub classes. In below example
class B,C and D inherits the same class A. A is parent class (or base class) of B,C & D. Read
More at – Hierarchical Inheritance in java with example program.

Hybrid Inheritance
In simple terms you can say that Hybrid inheritance is a combination of Single and

Multiple inheritance. A typical flow diagram would look like below. A hybrid inheritance can be
achieved in the java in a same way as multiple inheritance can be!! Using interfaces. yes you

heard it right. By using interfaces you can have multiple as well as hybrid inheritance in Java.
Read the full article here – hybrid inheritance in java with example program.

107

http://beginnersbook.com/2013/10/hierarchical-inheritance-java-program/
http://beginnersbook.com/2013/10/hybrid-inheritance-java-program/

CS 8392 OBJECT ORIENTED PROGRAMMING

UNIT V

EXCEPTION HANDLING

Packages and Interfaces, Exception handling, Multithreaded programming, Strings, Input/Output

5.1 PACKAGES

Packages enable grouping of functionally related classes

Package names are dot separated, e.g., java.lang.

Package names have a correspondence with the directory structure
Packages Avoid name space collision. There can not be two classes with same name in a

same Package But two packages can have a class with same name.
Exact Name of the class is identifed by its package structure. << Fully Qualified Name>>

java.lang.String ;java.util.Arrays; java.io.BufferedReader ; java.util.Date

Packages are mirrored through directory structure.
To create a package, First we have to create a directory /directory structure that matches the

package hierarchy.
Package structure should match the directory structure also.
To make a class belongs to a particular package include the package statement as the first

statement of source file.

Package ABC and IJK have classes with same name.
A class in ABC has name mypackage.mypackageA.ABC.A
A class in IJK has name mypackage.mypackageB.IJK.A

Include a proper package statement as first line in source file
Make class S1 belongs to mypackageA package
mypackage.mypackageA;
public class S1

108

CS 8392 OBJECT ORIENTED PROGRAMMING

{

public S1()

{

System.out.println("This is Class S1");

}

}
Name the source file as S1.java and compile it and store the S1.class file in mypackageA
directory
Make class S2 belongs to mypackageA

package mypackage.mypackageA;

public class S2

{

public S2()
{

System.out.println("This is Class S2");

}

}
Name the source file as S2.java and compile it and store the S2.class file in mypackageA
directory
Make class A belongs to IJK

package mypackage.mypackageB.IJK;

public class A

{

public A()

{

System.out.println("This is Class A in IJK");

}

}

Name the source file as A.java and compile it and store the A.class file in IJK directory
5.1.1 Importing the Package

import statement allows the importing of package
Library packages are automatically imported irrespective of the location of compiling and
executing program
JRE looks at two places for user created packages

 Under the current working directory
 At the location specified by CLASSPATH

environment variable
Most ideal location for compiling/executing a program is immediately above the package

structure.
Example importing

import mypackage.mypackageA.ABC

import mypackage.mypackageA.ABC.*;

class packagetest

{

public static void main(String args[])

{

109

CS 8392 OBJECT ORIENTED PROGRAMMING

B b1 = new B();

C c1 = new C();

}

}

import mypackage.mypackageA.ABC.*;

Import mypackage.mypackageB.IJK.*;

class packagetest

{

public static void main(String args[])

{

A a1 = new A();

}

}
mypackage.mypackageA.ABC.A a1 = new mypackage.mypackageA.ABC.A();

OR

mypackage.mypackageB.IJK.A a1 = new mypackage.mypackageB.IJK.A();
5.1.2 CLASSPATH Environmental Variables

CLASSPATH Environmental Variable lets you define path for the location of the root of the
package hierarchy

Consider the following statement :

package mypack;

What should be true in order for the program to find mypack.

 Program should be executed from the location immediately above mypack

OR

 mypack should be listed in the set of directories for CLASSPATH

5.2 INTERFACE

An interface may be considered a “pure” abstract class.

{

public void scale(double amt);

}
public class It provides method names, parameter lists, and return types, none of which are
implemented.
An interface may contain data fields (attributes), but they are implicitly static and final.

An interface provides to the client a description of what the classes that implement the

interface must look like.
public interface Comparables {

public boolean lessThan(Object x);

public boolean greaterThan(Object x);

}

public class Rectangle extends Shape,

implements Comparables {

//methods and attributes from previous slide

public boolean lessThan(Object x) throws

IncompatibleTypeException{

110

CS 8392 OBJECT ORIENTED PROGRAMMING

if (x instanceof Rectangle)

return area() < x.area();

else throw new

IncompatibleTypeException(); }

//similarly for method greaterThan()

}
public class Complex implements Comparables

{ private double re, im, modulus, theta;
//other methods
public boolean lessThan(Object x) throws

IncompatibleTypeException {

if (x instanceof Complex)

return modulus < x.modulus;
else throw new IncompatibleTypeX (); }

}
In the previous example, the classes Rectangle and Complex implemented the interface

Comparables by first determining that the object being compared was an object of the same
class, then performing a test on an appropriate attribute.
A class that implements an interface must implement ALL of the methods in the interface.

Note! Interface Comparables was developed here strictly for explanatory purposes. It
could be created and implemented just as described, but it must be noted that there exists an
interface Comparable found in java.util that has a single method – compareTo() – that

returns a negative integer if less than, a positive integer if greater than, or 0 if equal to. A
class may implement multiple interfaces
public interface Scalable Rectangle extends Shape,

implements Comparables, Scalable { private
double length, width;
//methods previously developed

public void scale(double amt) {

length *= amt; width *= amt;

}

}

An interface can inherit from another interface
public interface MyInterface2 extends MyInterface1

{ public void myNewMethod(double param);
}

public class Base implements
InterfaceA, InterfaceB {

//base class attributes

//base class methods

//base class implements methods

// of the two interfaces

}

public class Derived extends Base {

//implement interfaces A and B too!

//my additional attributes and methods

111

CS 8392 OBJECT ORIENTED PROGRAMMING

}
One may use the fact that the data fields (attributes) in an interface are static and final to

create “enumerated types”
public interface Months {

int

JANUARY = 1, FEBRUARY = 2, MARCH = 3, APRIL = 4,MAY = 5,

JUNE = 6, JULY = 7, AUGUST = 8, SEPTEMBER = 9, OCTOBER = 10,

NOVEMBER = 11, DECEMBER = 12;

}

In an application you may have code that uses this interface

if (!(Months.MAY || Months.JUNE || Months.JULY || Months.AUGUST))

System.out.println(“Eat Oysters! “);

5.3.EXCEPTION HANDLING

 ClassNotFoundException

 IOException

 ArithmeticException

 Exception AWTException

 NullPointerException

 RuntimeException

 IndexOutOfBoundsException

 Object Throwable Several more classes

 IllegalArgumentException

Several more classes LinkageError

1 import java.util.*; VirtualMachineError
2

Error

3

 public class HandleExceptionDemo {

4 public static void main(String[]AWTErrorargs) {

5 Scanner scanner = new Scanner(System.in);

6 boolean continueInput = true;

7 Several more classes
8 do {

9 try {
10 System.out.print("Enter an integer: ");

11 int number = scanner.nextInt();

 If an exception occurs on this line,

13 the rest of lines in the try block are // Display the result

14 skipped and the control is System.out.println(

15 transferred to the catch block. "The number entered is " + number);

16 Declaring Exceptions
17 continueInput = false;

18 Every method must state the types of checked exceptions it might throw. This is known as
 }

19 declaring exceptions. catch (InputMismatchException ex) {
20

 System.out.println("Try again. (" +

public void myMethod() 21 "Incorrect input: an integer is required)");

22
throws IOException

 scanner.nextLine(); // discard input
23 }

 public void myMethod()

24 } while (continueInput);
25 }

 throws IOException, OtherException

112

CS 8392 OBJECT ORIENTED PROGRAMMING

Throwing Exceptions

When the program detects an error, the program can create an instance of an appropriate
exception type and throw it. This is known as throwing an exception. Here is an example, throw
new TheException();
TheException

ex

=

new

TheException();

throw ex;

/** Set a new radius */

public void setRadius(double newRadius)

throws IllegalArgumentException {

if (newRadius >= 0)
radius = newRadius;

else

throw new IllegalArgumentException(

"Radius cannot be negative");

}

3.2Catching Exceptions

try {

statements; // Statements that may throw exceptions

}

catch (Exception1 exVar1) {

handler for exception1;

}

catch (Exception2 exVar2) {

handler for exception2;

}

...

catch (ExceptionN exVar3) {

handler for exceptionN;

}

F An error message appears on the console, but the GUI application continues running.
Write a program that creates a user interface to perform integer divisions. The user enters two

numbers in the text fields Number 1 and Number 2. The division of Number 1 and
Number 2 is displayed in the Result field when the Divide button is clicked.

113

CS 8392 OBJECT ORIENTED PROGRAMMING

5.4 MULTITHREADED PROGRAMMING

A single threaded program

class ABC

{

….

public void main(..)

{

…

..

}

}
A Multithreaded Program

114

CS 8392 OBJECT ORIENTED PROGRAMMING

Multithreading – Multiprocessors

An example
class MyThread extends Thread { // the thread

public void run() {

System.out.println(" this thread is running ... ");

}

} // end class MyThread
class ThreadEx1 { // a program that utilizes the thread public

static void main(String [] args) {
MyThread t = new MyThread();

 due to extending the Thread class (above)

 I can call start(), and this will call

 run(). start() is a method in class Thread.

t.start();

} // end main()

}// end class ThreadEx1

class MyThread implements Runnable

{

.....

public void run()

{

// thread body of execution

115

CS 8392 OBJECT ORIENTED PROGRAMMING

}

}
Creating Object:

MyThread myObject = new MyThread();
Creating Thread Object:

Start Execution:

thr1.start();

class MyThread implements Runnable {

public void run() {

System.out.println(" this thread is running ... ");

}
} // end class MyThread
class ThreadEx2 {

public static void main(String [] args) { Thread t

= new Thread(new MyThread());

 due to implementing the Runnable interface

 I can call start(), and this will call run().
t.start();

} // end main()
}// end class ThreadEx2

Life Cycle of Thread

Three threads example

116

CS 8392 OBJECT ORIENTED PROGRAMMING

class A extends Thread

{

public void run()

{

for(int i=1;i<=5;i++)

{

System.out.println("\t From ThreadA: i= "+i);

}

System.out.println("Exit from A");

}

}

class B extends Thread

{
public void run()

{

for(int j=1;j<=5;j++)

{

System.out.println("\t From ThreadB: j= "+j);

}

System.out.println("Exit from B");

}

}

class C extends Thread

{

public void run()

{

for(int k=1;k<=5;k++)

{

System.out.println("\t From ThreadC: k= "+k);

}

System.out.println("Exit from C");

}

}

class ThreadTest

{

public static void main(String args[])

{
new A().start();

new B().start();

new C().start();

}

}

[raj@mundroo] threads [1:76] java ThreadTest

From ThreadA: i= 1

From ThreadA: i= 2

From ThreadA: i= 3

117

CS 8392 OBJECT ORIENTED PROGRAMMING

From ThreadA: i= 4

From ThreadA: i= 5

Exit from A

From ThreadC: k= 1

From ThreadC: k= 2

From ThreadC: k= 3

From ThreadC: k= 4

From ThreadC: k= 5

Exit from C

From ThreadB: j= 1

From ThreadB: j= 2

From ThreadB: j= 3

From ThreadB: j= 4
From ThreadB: j= 5

Exit from B

5.5.STRINGS

 string: An object storing a sequence of text characters.

 Unlike most other objects, a String is not created with new.
String name = "text";

String name = expression;
 Examples:

String name = "Marla Singer";

int x = 3;

int y = 5;

String point = "(" + x + ", " + y + ")";
Indexes Characters of a string are numbered with 0-based indexes:

String name = "P. Diddy";

 The first character's index is always 0

 The last character's index is 1 less than the string's length

 The individual characters are values of type char (seen later)

String methods

indexOf(str) index where the start of the given string appears

 in this string (-1 if it is not there)

length() number of characters in this string

118

CS 8392 OBJECT ORIENTED PROGRAMMING

substring(index1, index2) the characters in this string from index1

or (inclusive) to index2 (exclusive);

substring(index1) if index2 omitted, grabs till end of string

toLowerCase() a new string with all lowercase letters

toUpperCase() a new string with all uppercase letters

 index 012345678901

String s1 = "Stuart Reges";

String s2 = "Marty Stepp";

System.out.println(s1.length()); // 12

System.out.println(s1.indexOf("e")); // 8

System.out.println(s1.substring(7, 10)) // "Reg"

String s3 = s2.substring(2, 8);

System.out.println(s3.toLowerCase()); // "rty st"
 Given the following string:

index 0123456789012345678901 String

book = "Building Java Programs";
 How would you extract the word "Java" ?

 How would you extract the first word from any string?

Modifying strings

Methods like substring, toLowerCase,
a new string, rather than modifying the current string.

String s = "lil bow wow";

s.toUpperCase();

System.out.println(s); // lil bow wow

etc. create/return

 To modify a variable, you must reassign it:
String s = "lil bow wow";

s = s.toUpperCase(); System.out.println(s);
// LIL BOW WOW

Strings as parameters

public class StringParameters {
public static void main(String[] args) {

sayHello("Marty");

String teacher = "Helene";

sayHello(teacher);

}

public static void sayHello(String name) {
System.out.println("Welcome, " + name);

}

}

119

CS 8392 OBJECT ORIENTED PROGRAMMING

Output:

Welcome, Marty

Welcome, Helene

Strings as user input
Scanner's next method reads a word of input as a String.

Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");

String name = console.next(); name =
name.toUpperCase(); System.out.println(name + "
has " + name.length() +

 letters and starts with " + name.substring(0,
1)); Output:
What is your name? Madonna
MADONNA has 7 letters and starts with M

The nextLine method reads a line of input as a String.

Relational operators such as < and == fail on objects.

Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");

String name = console.next();
if (name == "Barney") {

System.out.println("I love you, you love me,");
System.out.println("We're a happy family!");

}
 This code will compile, but it will not print the song.

 == compares objects by references (seen later), so it often gives false even when two
Strings have the same letters.

Objects are compared using a method named equals.
Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");

String name = console.next();
if (name.equals("Barney")) {

System.out.println("I love you, you love me,");
System.out.println("We're a happy family!");

}

 Technically this is a method that returns a value of type boolean, the type used in logical
tests.

5.6.JAVA I/O – THE BASICS

Java I/O is based around the concept of a stream

– Ordered sequence of information (bytes) coming from a source, or going to a

‘sink’

– Simplest stream reads/writes only a single byte, or an array of bytes at a time

120

CS 8392 OBJECT ORIENTED PROGRAMMING

Designed to be platform-independent

The stream concept is very generic

– Can be applied to many different types of I/O

– Files, Network, Memory, Processes, etc

The java.io package contains all of the I/O classes.

– Many classes specialised for particular kinds of stream operations, e.g. file I/O

Reading/writing single bytes is quite limited

– So, it includes classes which provide extra functionality

– e.g. buffering, reading numbers and Strings (not bytes), etc.
Results in large inheritance hierarchy, with separate trees for input and output stream classes

6.1Java I/O – InputStream

Java I/O – InputStreams

I/O in Java:
InputStream in = new
FileInputStream(“c:\\temp\\myfile.txt”); int b = in.read();
//EOF is signalled by read() returning -1

while (b != -1)

{
//do something…

b = in.read();

}

in.close();
But using buffering is more efficient, therefore we always nest our streams…

InputStream inner = new FileInputStream(“c:\\temp\\myfile.txt”);
InputStream in = new
BufferedInputStream(inner); int b = in.read();
//EOF is signalled by read() returning -1

121

CS 8392 OBJECT ORIENTED PROGRAMMING

while (b != -1)

{

//do something…

b = in.read();

}

in.close();

We’ve omitted exception handling in the previous examples
Almost all methods on the I/O classes (including constructors) can throw an IOException or

a subclass.
Always wrap I/O code in try…catch blocks to handle errors.

6.2 I/O – OutputStream

OutputStream out = null;

try

{
OutputStream inner = new FileOutputStream(“c:\\temp\\myfile.txt”);
out = new BufferedOutputStream(inner);

//write data to the file

} catch (IOException e)

{

e.printStackTrace();

}

finally

{

try { out.close(); } catch (Exception e) {}

}

122

CS 8392 OBJECT ORIENTED PROGRAMMING

I.Unit I Important Two marks & Big Questions

UNIT – I

PART A(2 MARKS)

1. Define object oriented programming?
OOP is an approach that provides a way of modularizing programs by creating partitioned
memory areas for both data and functions that can be used as an templates for creating copies of
such modules on demand.
2. List some features of OOP?

i. Emphasis is on data rather than procedures.

 Programs that are divided into what are known as objects.

 Follows bottom – up approach in program design.
Functions that operate on the data of an object are tried together in the
data structure.
3. What do you mean by nesting of member functions?
A member function can be called by using its name inside another member function of the same
class. This is known as nesting of member functions.
4. What do you mean by friend function?
By declaring a non member function as friend of a class , we can give full rights to access its

private data members (i.e.)A friend function although not a member function have full access
rights to the private members
5.What are the special characteristics of a friend function?

sing the object of the class.

to use an object name and dot membership operator with each member
name sually it has the object as arguments.

6. What is a const member function?
If a member function does not alter any data in the class, then we may declare it as a const
member function.
e.g. : void getbalance () const;

void mul(int,int) const;

7. What is a main function?
All the C++ programs start with the function main(). Function main returns the integer value that

indicates whether the program executed successfully or not. Syntax: main(){ }

8. What is the purpose for the return statement?
The return statement is used to return the value from a function. The statement return 0; returns
the value 0. The return statement supplies a value from the called function to the calling function.
9. Explain function prototype?
It is used to describe the function interface to the compiler by giving details such as type number
and type arguments and the type of return values. Function prototype is a declaration statement
in the calling program.

123

CS 8392 OBJECT ORIENTED PROGRAMMING

Syntex: Type function_name (arguments);

10 Define macro?

A short piece of text or text template that can be expanded into a longer text.

11. What do you inline function?
A function definition such that each call to the function is in effect replaced by the statements
that define the function.
12. What are the situations that inline functions may not work?

 For function returning values, if a loop, a switch, or a goto exists.

 For function not returning values, if a return statement exists.

 If function contains static variables.

 If inline functions are recursive.

13. What are pointers?
A pointer is a variable that holds a memory address. This address is the location of another object
in memory.
14.What are pointer operators?

The pointer operators are * and &.

The & is a unary operator that returns the memory address of its operand.
The * is a unary operator that returns the value located at the address that
follows. Example: char*p; // declaration of pointer p
char c=‟a‟;
p=&c; //address of variable c is assigned to pointer
p cout<<”*p=”<<*p; // output:*p=a
15.What is meant by storage class specifiers?

Storage class specifiers tell the compiler how to store the subsequent variable.

There are five storage class specifiers supported by C++:

i. extern ii. static iii.register iv. auto v.mutable

16.What is the use of ‘extern’ variables?
In a multifile program, we can declare all of the global variables in one file and use extern

declarations in the other without defining it again. The extern keyword has this general form:

extern var-list;

17. what is function?

Functions are the building blocks of C++ and the place where all program activity

occurs. The general form is

ret-type function-name(parameter list)

{ body of the function }
The ret-type specifies the type of data that the function returns. The parameter list is a comma-

separated list of variable names and their associated types that receive the values of the
arguments when the function is called. When the function is called the control is transferred to

the first statement in the body.
18. What are the two ways to pass arguments to the function?
Call by value: This method copies the value of an argument into the formal
parameter of the function.
Call by reference: This method copies the address of an argument into the
formal parameter of the function.
19. How to create call by reference?

124

CS 8392 OBJECT ORIENTED PROGRAMMING

We can create call by reference by passing a pointer (i.e. address of the argument) to an

argument, instead of argument itself.

Example: void swap (int *x,int *y)
{ int temp;

temp=*x;
*x=*y;

*y=temp;
}
this function can be invoked with the addresses of the arguments as swap(&i,&j); //for
interchanging the integer values i and j
20. What is the difference between endl and ‘\n'?
Using endl flushes the output buffer after sending a '\n', which means endl is more expensive in
performance. Obviously if you need to flush the buffer after sending a '\n', then use endl; but if
you don't need to flush the buffer, the code will run faster if you use '\n'.
21 What is the use of reference variables?
A reference variable provides an alias (alternate name) for a previously define variable. A
reference variable is created as follows:
Datatype & reference-name =variablename;
Example: int i=10;
int &sum=i;
cout<<sum; //
output:10 sum=100;
cout<<i; // output:100
22. Define keywords?
Keywords are explicitly reserved identifiers and cannot be used as names for the program
variables or other user defined program elements.
23. Why do we need the preprocessor directive #include <iostream.h>?
This directive causes the preprocessor to add the contents of the iostream.h file to the program. It
contains the declarations for the identifier cout and the operator <<. It contains function
prototypes for the standard input output functions.
24.What is the use of return statement in main() function?
In C++, main() returns an integer type value to the operating system. Therefore, every main() in
C++ should end with a return(0) statement; otherwise a warning or an error might occur.
25. How does a main() function in C++ differ from main() in C?
In C++, main() returns an integer type value to the operating system but in C , main() returns
nothing to operating system by default.
26. What is formal parameter?
If a function is to use arguments , it must declare variables that will accept the values of the

arguments. These variables are called the formal parameters of the

function.
Example : int max(int a , int b) // Variables a and b are formal parameter{ if(a>b) return a; return
b; }
27. What is global variable?

Global variables are known throughout the program and may be used by any

piece of code. Also, they will hold their value throughout the program‟ s execution.

125

CS 8392 OBJECT ORIENTED PROGRAMMING

28 What is the use of exit() function?

The exit() function causes immediate termination of the entire program, forcing a return to the

operating system.

The general form :

Void exit(int return code);
The value of return code is returned to the calling process, which is usually the
operating system. Zero is generally used as a return code to indicate normal
program termination.
29. What is the use of break and continue statements?
Break is used to terminate a case in the switch statement. Force immediate termination of a loop,
bypassing the normal loop conditional test.
Continue is used to force the next iteration of the loop to take place, skipping any code in
between.

16 Mark Questions

 Basic concepts of oops.

 What is Object oriented Paradigm? Explain the various Features of oops

 Advantages of OOP.

 Write about Merits &Demerits of OOP.

 Explain object oriented languages?

 What are the applications of OOPs?

 Write about If. Else Statements and Switch Statement and Do…While Statement.

 Write about functions in C++ in detail.

 Explain about pointers in C++.

9. How will you implement ADTs in the Base Language? Explain.

126

CS 8392 OBJECT ORIENTED PROGRAMMING

II.Unit II Important Two marks & Big Questions

UNIT – II

PART A(2 MARKS)

1. What do you mean by object?
Objects are basic run-time entities in an object-oriented system. They may represent a person, a
place, a bank account, a table of data or any item that the program has to handle. Each object has
the data and code to manipulate the data and theses objects interact with each other.
2. What is meant by Encapsulation?

The wrapping up of data and function into a single unit(class) is known as Encapsulation.

3. What do you mean by Data abstraction?
Abstraction refers to the act of representation of essential features without including the
background details or explanations. Classes use the concept of abstraction & are defined as a list
of abstraction attributes such as size, weight & cost & functions to operate on these attributes.
4. What do you mean by inheritance?
Inheritance is the process by which objects of one class acquire the properties of objects of
another class.
5. What do you mean by reusability?
The process of adding additional features to an existing class without modifying it is known as

„Reusability‟ . The reusability is achieved through inheritance. This is possible by deriving a

new class from an existing class. The new class will have the combined features of both the
classes.
What do you mean by destructor?

tilde.

ments nor does it return any value.

clean up storage. Ex., ~integer () { }
 Write some special characteristics of constructor

They should be declared in the public section

They are invoked automatically when the objects are created

return values

ments

8. List the difference between constructor and destructor?

Constructor can have parameters. There can be more than one constructor.

Constructors is invoked when from object is declared.
Destructor has no parameters. Only one destructor is used in class. Destructor is
invoked up on exit program.
9. How do you allocate / unallocated an array of things?

Use “p = new T(n)” for allocating memory and “delete() p” is for releasing ofallocated memory.

Here p is the array of type T and of size n.

127

CS 8392 OBJECT ORIENTED PROGRAMMING

Example:

Fred*p=new Fred[100]; // allocating 100 Fred objects to p

...

delete[]p; //release memory
Any time we allocate an array of objects via new , we must use [] in the delete
statement. This syntax is necessary because there is no syntactic difference between a
pointer to a thing and a pointer to an array of things.
10. Can you overload the destructor for class?
No. You can have only one destructor for a class. It's always called Fred::~Fred().
It never takes any parameters, and it never returns anything. You can't pass
parameters to the destructor anyway, since you never explicitly call a destructor.
11. What is the advantage of using dynamic initialization?
The advantage of using dynamic initialization is that various initialization formats
can be provided using overloaded constructor.
12. Define operator overloading?
A language feature that allows a function or operator to be given more than one definition.

For instance C++ permits to add two variables of user defined types with the

same syntax that is applied to the basic types. The mechanism of giving such
special meaning to an operator is known as operator overloading.
Give the operator in C++ which cannot be overloaded? i.
Sizeof ->size of operator
ii. :: ->scope resolution opertor
iii. ?: -> conditional operator

iv. . ->Membership operator

v. .* ->pointer to member operator

 How can we overload a function?
With the help of a special operator called operator function. The general form of
an operator function is:
Return type class name :: operator op(arg list)

{ Function body }

 Give any four rules for operator overloading?

(i) Only existing operators can be overloaded.
(ii) The overloaded operator must have at least one operand that is of user
defined type.
(iii) We cannot used friend functions to overload certain operators.

(iv) Overloaded operators follow the syntax rules of the original operators.
What are the steps that involves in the process of overloading?

that is to be used in the
overloading operation.

 What are the restriction and limitations overloading operators?

Operator function must be member functions are friend functions. The

overloading operator must have atleast one operand that is of user defined datatype.

 Give a function overload a unary minus operator using friend function?

128

CS 8392 OBJECT ORIENTED PROGRAMMING

frinend void operator –(space &s)

19. List the difference between constructor and destructor?

Constructor can have parameters. There can be more than one constructor.

Constructors is invoked when from object is declared.
Destructor have no parameters. Only one destructor is used in class. Destructor is
invoked up on exit program.
20. Define Class?

-defined data types and behave like built-in types of
a programming language.

he data and its associated functions together.

-defined data type with a template that serves to define its

properties.

all objects of a certain kind

21. Define polymorphism?
Polymorphism means the ability to take more than one form. For example, an

operation may exhibit different behavior in different instances. The behavior

depends upon the types of data used in the operation. Example: Consider the
operation of addition.
For two numbers, the operation will generate a sum.

For two strings, the operation will generate a concatenation.

and Run time polymorphism

22. Define Compile time polymorphism / Early Binding / static Binding
Compile time polymorphism is implemented by using the overloaded functions and overloaded
operators.
The overloaded operators or functions are selected for invokation by matching arguments both

by type and number. This information is known to the compiler at the compile time therefore the

compiler is able to select the appropriate function for a particular function call at the compile

time itself. This is called as „Early Binding‟ or „Static Binding‟ or „Static Linking‟ or

„Compile time polymorphism‟ . Early binding simply means an object is bound to its function

call at the compile time.
23. Define Runtime Polymorphism?

At runtime, when it is known what class objects are under consideration, the appropriate version

of the function is invoked. Since the function is linked with a particular class much later after its

compilation, this process is termed as „late binding‟ . It is also known as dynamic binding
because the selection of the appropriate function is done dynamically at run time. This runtime

polymorphism can be achieved by the use of

pointers to objects and virtual functions.

24. What do you mean by message passing?
Objects communicate with one another by sending and receiving information. A message for an

object is a request for execution of a procedure, and therefore will invoke a function in the
receiving object that generates the desired result. Message passing involves specifying the name

of the object, the name of the function and the information to be sent.
25. List out the benefits of OOPS.

129

CS 8392 OBJECT ORIENTED PROGRAMMING

ossible to have multiple instances of an object to co-exist without any interference.

26 List out the applications of OOPS.
me systems

27. What is an expression?
An expression is a combination of operators, constants and variables arranged
as per rules of the language. It may include function calls which return values.
What are the different memory management operators used in C++?
The memory management operators are new and delete.
The new and delete operators are used to allocate and deallocate a memory respectively.
General form of new : Pointer-variable = new datatype;
General form of delete: delete pointer-variable;

 What is the general form of a class definition in C ++

Class class_name

{

Private:

Variable declaration;

Function declaration;

Public:

Variable declarations;

Function declarations;

};
Differentiate Structure and Classes
Structures Classes
By default the members of the structure are public.
1.By default the members of Class are
private.
Data hiding is not possible 2.Data hiding is possible

3.sturcture data type cannot be treated like built-in-type
3.Objects can be treated like built-intypes
by means of operator overloading.
4.Structure are used only for holding data
Classes are used to hold data and functions

5.Keyword „struct‟ 5.Keyword „class‟
 How objects are created?

130

CS 8392 OBJECT ORIENTED PROGRAMMING

Once a class has been declared, we can create variables of that type by using the class name .The
class variables are known as objects .The necessary memory space is allocated to an object at the
time of declaration.
32. How the members of a class can be accessed?

The private data of a class can be accessed only through the member functions of that class. The

format for calling a member function:

Objectname.function_name(actual _arguments);
What are the two ways of defining member functions?

Member functions can be defined in two places

 Explain about ‘static’ variables.

object of its class is created.
member is created for the entire class, no matter how many objects are

created.

35 Explain about static member functions.
c members declared in the same class

Classname :: function name;

36. What are the ways of passing objects as function arguments?

Pass by value : A copy of the entire object is passed to the function. Any changes made to the

object inside the function don‟t affect the objects used to call the function.

Pass by Reference: Only the address of the object is transferred to the function. When an
address of the object is passed, the called function works directly on the actual object

used in the call. This means that any changes made to the object inside the function will

reflect in the actual object.
37. What are constant arguments?
The qualifier const tells the compiler that the function should not modify the argument. The
compiler will generate an error when this condition is violated.
PART B-16 Mark Questions
Explain the declaration of a class in c++. How will you define the member
function of a class? Explain.
What is the need for parameterized constructor? Explain the function of
constructors with their declaration inside a class
 Explain Data abstraction.

 What is virtual function? Give an example to highlight its need?
What is a Friend function? Describe their benefits and limitations? Give
Suitable example.
What is meant by function overloading? Write the rules associated with
Function overloading. Give suitable example to support your answer?
 Explain virtual base classes and virtual function, pure virtual function.

 Explain about runtime polymorphism.

9.Explain in detail about Destructor

10.Explain about Iterators and containers.

131

CS 8392 OBJECT ORIENTED PROGRAMMING

III.Unit III Important Two marks & Big Questions

UNIT – III

PART A(2 MARKS)

1. Define Template.

 A template in C++ allows the construction of a family of template

 functions and classes to perform the same operation on different data types. The template

 type arguments are called “generic data types”.

2. Define function template.

 The templates declared for functions are called function templates. A function

 template is prefixed with a keyword template and list of template type arguments.

3. What is the syntax used for writing function template?

 template <class T>,……….>

 class name function name(arguments)

 {

 Body of template function

 }

4. Define class template.

 The templates declared for classes are called class templates. Classes can also be

 declared to operate on different data types. A class template specifies how individual

 classes can be constructed similar to normal class specification.

5. What is the syntax used for writing class template?

 template < class T1, class T2, ……. >

 class class name

 {

 // data items of template type T1, T2……..

 // functions of template arguments T1, T2 …

 };

6. Define exception handling process.

 The error handling mechanism of C++ is generally referred to as an exception

 handling. It provides a mechanism for adding error handling mechanism in a program.
What are the two types of an exception? There

are two types of an exception.
 Synchronous exception.

 Asynchronous exception.

How many blocks contained in an exception handling model?

 Try block

 Throw block

 Catch block

132

CS 8392 OBJECT ORIENTED PROGRAMMING

9. Define throw construct.
The keyword throw is used to raise an exception when an error is generated

in the computation. The throw expression initializes a temporary object of the type T
used in throw.

Syntax: throw T // named object, nameless object or by default nothing.

10. Define catch construct.
The exception handler is indicated by the keyword catch. It must be used

immediately after the statements marked by the keyword try. Each catch handler will

evaluate an exception that matches to the specified type in the argument list. Syntax:

Catch (T) // named object or nameless object
{

Actions for handling an exception

}

11. Define try construct.
Try keyword defines a boundary within which an exception can occur. The try

keyword is a block of code enclosed by braces. This indicates that the program is

prepared to test for the exceptions. If an exception occurs, the program flow is
interrupted.

Syntax:

try

{

Code raising an exception

}

catch (type_id1)

{

Actions for handling an exception

}

…………….

…………….

catch (type_idn)

{

Actions for handling an exception

}

What are the tasks performed by an error handling mechanism?

 Detect the problem causing an exception(hit the exception)

 inform that an error has occurred(throw the exception)

 receive the error information(catch the exception)

 Take correct actions(handle the exception)

Define exception specification.
It is possible to specify what kind of exception can be thrown by functions, using

a specific syntax. We can append the function definition header with throw keyword and

133

CS 8392 OBJECT ORIENTED PROGRAMMING

possible type of expressions to be thrown in the parenthesis. It is known as exception
specification.

What are the two types of an exception specification?

 Terminate () function.Unexpected () function.

Define terminate () function.
Terminate () is the function which calls abort () function to exit the program in the

event of runtime error related to the exception.
16. Define unexpected () function.

If a function throws an exception which is not allowed, then a function
unexpected () is called which is used to call abort () function to exit the program from its
control. It is similar to Terminate () function.

17. Define multiple catch.

Using more than one catch sections for a single try block. At first
matching, catch block will get executed when an expression is thrown. If no matching
catch block is found, the exception is passed on one layer up in the block hierarchy.

18. Define catch all exception.
It is possible for us to catch all types of exceptions in a single catch section. We

can use catch (…) (three dots as an argument) for representing catch all exception.
19. Define An Exception.

Exceptions refer to unusual conditions or errors occurred in a program.

20. Define synchronous exception.
This type of an exception occurs during the program execution due to some fault

in the input data or technique is known as synchronous exception.
Examples are errors such as out-of-range, overflow, and underflow.

21. Define asynchronous exception.
The exceptions caused by events or faults that are unrelated to the program.

Examples are errors such as keyboard interrupts, hardware malfunctions and disk
failures.

22. Define inheritance.
Inheritance is the most important property of object oriented

programming. It is a mechanism of creating a new class from an already defined

class. The old class is referred to as base class. And the new one is called derived

class.

What are the advantages of an inheritance?

 Inheritance is used for extending the functionality of an existing class.
 By using this, we have multiple classes with some attributes

common to them.
 We HAVE to avoid problems between the common attributes.

 It is used to model a real-world hierarchy in our program.

How to derive a derived class from the base class?
A Derived class is defined by specifying its relationship with the base

class in addition to its own class.
Syntax is,

134

CS 8392

OBJECT ORIENTED PROGRAMMING

class derivedclassname : visibilitymode baseclassname

{ // members of derivedclass };

25. What is protected derivation?
In case of protected derivation, the protected members of the baseclass

become protected members of the derived class. The public members of the base class
also become the protected members of the derived class.
A member is declared as protected is accessible by the member functions within its.

26. Define multiple inheritance.

A single derived class is derived from more than one base classes is called

multiple inheritance.

Syntax:
class derivedclassname : visibilitymode baseclass1, visibilitymode baseclass2

{

body of the derivedclass

27. Define multipath inheritance or virtual baseclass.

}

This form of inheritance derives a new class by multiple inheritance of

baseclasses which are derived earlier from the baseclass is known as multipath
inheritance.
It involves more than one form of inheritance namely multilevel, multiple and

What is Generic function? Or Define function template

A generic function defines a general set of operations that will be applied to
various types data. The type of data that the function will operate upon is passed to it as a
parameter. Through a generic function, a single general procedure can be applied to a
wide range of data.
A generic function is created using the keyword „template‟
General format:

Template <class T type>ret_type function name(arg list)

{

body of function

}

note : T type is a place holder name for a data type used by the function.

28. Define generic classes?

Using generic classes, we can create a class that defines all the algorithms used

by the class. The actual type of data being manipulated will be specified as a parameter
when objects of that class are created

.
PART B(16 MARKS)

 Explain in detail about Templates

 Explain Generic Programming and its different form.

 Explain with example STL.

 Explain all types Inheritance

 Explain about blocks of Exceptions

135

CS 8392 OBJECT ORIENTED PROGRAMMING

6. Explain about arithmetic Exception.
IV.Unit IV Important Two marks & Big Questions

UNIT – IV

PART (2 MARKS)

1) What is meant by Object Oriented Programming?
OOP is a method of programming in which programs are organised as cooperative collections

of objects. Each object is an instance of a class and each class belong to a hierarchy.
2) What is a Class?

Class is a template for a set of objects that share a common structure and a common
behaviour.
3) What is an Object?

Object is an instance of a class. It has state,behaviour and identity. It is also called as
an instance of a class.
4) What are methods and how are they defined?
Methods are functions that operate on instances of classes in which they are defined. Objects can
communicate with each other using methods and can call methods in other classes. Method

definition has four parts. They are name of the method, type of object or primitive type the
method returns, a list of parameters and the body of the method. A method’s signature is a

combination of the first three parts mentioned above.
5) What are different types of access modifiers (Access specifiers)?

Access specifiers are keywords that determine the type of access to the member of a class. These
keywords are for allowing privileges to parts of a program such as functions and variables. These
are:
public: Any thing declared as public can be accessed from anywhere. private: Any thing
declared as private can’t be seen outside of its class. protected: Any thing declared as protected
can be accessed by classes in the same package and subclasses in the other packages.

default modifier : Can be accessed only to classes in the same
package. 6) What is an Object and how do you allocate memory to it?

Object is an instance of a class and it is a software unit that combines a structured set of
data with a set of operations for inspecting and manipulating that data. When an object is created
using new operator, memory is allocated to it.
7) Explain the usage of Java packages.

This is a way to organize files when a project consists of multiple modules. It also helps
resolve naming conflicts when different packages have classes with the same names. Packages
access level also allows you to protect data from being used by the non-authorized classes.
8) What is method overloading and method overriding?
Method overloading: When a method in a class having the same method name with different
arguments is said to be method overloading. Method overriding : When a method in a class
having the same method name with same arguments is said to be method overriding.
9) What gives java it’s “write once and run anywhere” nature?
All Java programs are compiled into class files that contain bytecodes. These byte codes can be
run in any platform and hence java is said to be platform independent.
10) What is a constructor? What is a destructor?

Constructor is an operation that creates an object and/or initialises its state. Destructor is an

136

CS 8392 OBJECT ORIENTED PROGRAMMING

operation that frees the state of an object and/or destroys the object itself. In Java, there is no
concept of destructors. Its taken care by the JVM.
11) What is the difference between constructor and method?
Constructor will be automatically invoked when an object is created whereas method has to be
called explicitly
12) What is Static member classes?
A static member class is a static member of a class. Like any other static method, a static
member class has access to all static methods of the parent, or top-level, class.
13) What is Garbage Collection and how to call it explicitly?
When an object is no longer referred to by any variable, java automatically reclaims memory
used by that object. This is known as garbage collection. System. gc() method may be used to
call it explicitly
14) In Java, How to make an object completely encapsulated?

All the instance variables should be declared as private and public getter and setter
methods should be provided for accessing the instance variables.
15) What is the difference between String and String Buffer?
String objects are constants and immutable whereas StringBuffer objects are not. b) String class
supports constant strings whereas StringBuffer class supports growable and modifiable strings.
16) What is the difference between Array and vector?
Array is a set of related data type and static whereas vector is a growable array of objects and
dynamic
17) What is the difference between this() and super()?
this() can be used to invoke a constructor of the same class whereas super() can be used to
invoke a super class constructor.
18) Explain working of Java Virtual Machine (JVM)?

JVM is an abstract computing machine like any other real computing machine which first
converts .java file into .class file by using Compiler (.class is nothing but byte code file.) and
Interpreter reads byte codes.
19) What is meant by Inheritance and what are its advantages?
Inheritance is the process of inheriting all the features from a class. The advantages of
inheritance are reusability of code and accessibility of variables and methods of the super class
by subclasses.
20) Differentiate between a Class and an Object?

The Object class is the highest-level class in the Java class hierarchy. The Class class is

used to represent the classes and interfaces that are loaded by a Java program. The Class class is

used to obtain information about an object's design. A Class is only a definition or prototype of
real life object. Whereas an object is an instance or living representation of real life object. Every

object belongs to a class and every class contains one or more related objects.
21) What is an Interface?

Interface is an outside view of a class or object which emphaizes its abstraction while
hiding its structure and secrets of its behaviour.
22) What is a base class?

Base class is the most generalised class in a class structure. Most applications have such
root classes. In Java, Object is the base class for all classes.
23)Define inheritance?

137

CS 8392 OBJECT ORIENTED PROGRAMMING

The mechanism of deriving a new class from an old one is called inheritance. The
old class is referred to as the base class and the new one is called the derived class or the
subclass.
24)What are the types in inheritance?

i. Single inheritance
Multiple inheritance

iii.Multilevel inheritance

 Hierarchical inheritance

 Hybrid inheritance

25) Explain single inheritance?
A derived class with only one base class is called single
inheritance 26)What is multiple inheritance?
A derived class with more than one base class is called multiple inheritance.

27)Define hierarchical inheritance?
One class may be inherited by more than one class. This process is known as
hierarchical inheritance.
28)What is hybrid inheritance?
There could be situations where we need to apply two or more type of
inheritance to design a program. This is called hybrid inheritance.
29)What is multilevel inheritance?
The mechanism of deriving a class from another derived class is known
as multilevel inheritance.

PART B(16 MARKS)

1.Explain about different datatypes in java

 Explain about variables and how initialized in java

 Explain the different types of arrays with example.

 Explain about operators with examples.

 Explain in detail about control structures in JAVA

 Explain classes and initialized with object with example.

 Explain about all types of inheritance with example.

138

CS 8392 OBJECT ORIENTED PROGRAMMING

V.Unit V Important Two marks & Big Questions

UNIT – V

PART (2 MARKS)

Explain the usage of Java packages.
This is a way to organize files when a project consists of multiple modules. It also

helps resolve naming conflicts when different packages have classes with the same

names. Packages access level also allows you to protect data from being used by the non-
authorized classes.

If a class is located in a package, what do you need to change in the OS environment to be
able to use it?
You need to add a directory or a jar file that contains the package directories to the

CLASSPATH environment variable. Let's say a class Employee belongs to a package

com.xyz.hr; and is located in the file c:\dev\com\xyz\hr\Employee.java. In this case,

you'd need to add c:\dev to the variable CLASSPATH. If this class contains the method

main(), you could test it from a command prompt window as follows: c:\>java

com.xyz.hr.Employee

What's the difference between J2SDK 1.5 and J2SDK 5.0? There's no difference, Sun
Microsystems just re-branded this version.

What would you use to compare two String variables - the operator == or the method
equals()?
A. I'd use the method equals() to compare the values of the Strings and the == to check if
two variables point at the same instance of a String object.

Does it matter in what order catch statements for FileNotFoundException and IOExceptipon
are written?
Yes, it does. The FileNoFoundException is inherited from the IOException. Exception's
subclasses have to be caught first.

Can an inner class declared inside of a method access local variables of this method?

 It's possible if these variables are final.
What can go wrong if you replace && with & in the following code: String a=null; if

(a!=null && a.length()>10) {...} A.
 single ampersand here would lead to a NullPointerException.

What's the main difference between a Vector and an ArrayList A. Java

Vector class is internally synchronized and ArrayList is not.

When should the method invokeLater()be used? A
. This method is used to ensure that Swing components are updated through the event-
dispatching thread.

How can a subclass call a method or a constructor defined in a superclass? Use the following
syntax: super.myMethod(); To call a constructor of the superclass, just write super(); in
the first line of the subclass's constructor For senior

What is Java Streaming?

139

CS 8392 OBJECT ORIENTED PROGRAMMING

Java streaming is nothing more than a flow of data. There are input streams that

direct data from the outside world from the keyboard, or a file for instance, into the
computer; and output streams that direct data toward output devices such as the computer

screen or a file.

What are Byte streams?

Byte streams provide a convenient means for handling input and output of bytes.

Byte streams are used for example when reading or writing binary data.

What are Character streams?
Character streams, provide a convenient means for handling input and output of

characters. They use Unicode, and therefore, can be internationalized.

some Byte Stream supported classes.

BufferedInputStream

BufferedOutputStream

ByteArrayInputStream

ByteArrayOutputStream

DataInputStream

DataOutputStream
List some Character Stream supported classes.

BufferedReader BufferedWriter

CharArrayReader

CharArrayWriter
FileReader

FileWriter

Write note on FileInputStream class.
The FileInputStream class creates an InputStream that you can use to read bytes

from a file. Its two most common constructors are
FileInputStream(String filepath)

FileInputStream(File fileobj)

Define Multithread Programming.

A multithreaded program contains two or more parts that can run concurrently. Each part
of such program is called a thread, and each thread defines a separate path of execution. Thus,
multithreading is a specialized form of multitasking.

What is Synchronization?
When two or more threads need access to a shared resource, they need some way to

ensure that the resource will be used by only one thread at a time. The process by which this is

achieved is called synchronization.
The general form of the synchronized statement is

synchronized (object){
 statements to be synchronized

140

CS 8392 OBJECT ORIENTED PROGRAMMING

}

In multithreading, When does a deadlock situation occur?
Deadlock situation occurs, when two threads have a circular dependency on a pair

of synchronized objects.

What is the need of Thread Priorities?
Thread priorities are used by the thread scheduler to decide when each thread be

allowed to run. Higher-priority threads get more CPU time than lower-priority threads.
To set a thread’s priority, use the setPriority() method, which is a member of

Thread. final void setPriority(int level)
 What is the difference between String and String Buffer?

 String objects are constants and immutable whereas StringBuffer objects are not.
String class supports constant strings whereas StringBuffer class supports growable
and modifiable strings

PART B(16 MARKS)

1.Explain about Packages and how to import

 Explain the different interfaces

 Explain interface and how will you implement

 Explain in detail about Exception handling

 Explain in detail about Multithreaded programming

 Explain the different Strings methods

 Explain about input/ouput operations.

141

CS 8392 OBJECT ORIENTED PROGRAMMING

ANNA UNIVERSITY OLD QUESTION PAPERS

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2011

Fifth Semester

Electrical and Electronics Engineering

CS 2311 — OBJECT ORIENTED PROGRAMMING

(Common to Instrumentation and Control Engineering and

Electronics and Instrumentation Engineering)

(Regulation 2008)

Time : Three hours Maximum : 100 marks

Answer ALL questions.

PART A —

 Define abstraction and encapsulation.
 When will the destructors be called? Is it implicit or explicit?

 List the operators that cannot be overloaded.

 What are pure virtual functions? Where are they used?

 Define Exception. Give example.

 State the purpose of namespaces with an example.

 What is byte code? Mention its advantage.

 What are packages?

 Define interface. State its use.

 What is thread? How does it differ from a process?

PART B — (5
 (a) Explain in detail about Class, Objects, Methods and Messages.

Or
Write a C++ program to define overloaded constructor to perform string initialization, string
copy and string destruction.
12. (a) Write a C++ program to implement C A B , C A B and C A ∗ B where A , B and C are objects containing a int value (vector).

Or
Explain run time polymorphism with example program in C++. 13. (a) Explain the different
types of streams and various formatted I/O in C++.

Or

(b) Explain the various file handling mechanisms in C++.
(a) Write a java program to create two single dimensional arrays, initialize them and add them;
store the result in another array. .

Or
(b) Write a java program to perform all string operations using the String class.
15. (a) Explain in detail about the inheritance mechanism in Java with example

programs. Or
(b) Explain with example program, exception handling in java

142

CS 8392 OBJECT ORIENTED PROGRAMMING

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2010

Fifth Semester

Electrical and Electronics Engineering

CS 2311 — OBJECT ORIENTED PROGRAMMING

(Common to Instrumentation and Control Engineering and Electronics and

Instrumentation Engineering)

(Regulation 2008)

Time : Three hours Maximum : 100 Marks

Answer ALL questions

PART A — (10 × 2 = 20 Marks)

 With respect to C++ distinguish ‘objects’ from ‘classes’.

 Write a copy constructor for class date (assume mm, dd, yy as its members).

 What is encapsulation? Do friend functions violate encapsulation?

 How are virtual functions declared in C++?

 What are IO streams? Give an example.

 What is the purpose of the STL (Standard Template Library)?

 Give two examples for java modifiers.

 What is the purpose of the getBytes() method?

 Give a sample statement for parseInt() and give comments for the statement.

 What are the two ways of creating java threads?
PART B — (5 × 16 = 80 Marks)

 (a) Write a C++ program to perform 2D matrix operations as follows:
(i) Define class MATRIX, use appropriate constructor(s). (5)
(ii) Define methods for the following two matrix operations:
determinant and transpose. (6)
(iii) Write a main program to demonstrate the use of the MATRIX
class and its methods. (5)

Or
Explain the features of object oriented programming. Describe how each of these is implemented
in C++ and Java.
12. (a) Write a C++ program as follows to perform arithmetic operations on Rational numbers of
type a/b, where a and b are integers.
 Define a class by ‘Rational Number’. (4)

 Use operator overloaded methods for addition and subtraction. (6)
Write a main program to demonstrate the use of this class and its
methods. (4)
(iv) Give a sample output. (2)

Or
What is meant by inheritance? Explain with examples, the various types of
inheritance supported in C ++.
13. (a) Write a C++ program to demonstrate file handling as follows: get strings as

input from the user, store them in a file, retrieve them and display them.

Or

(b) Explain the exception handling mechanism available in C++ with suitable examples.
(a) Write a menu-based java program that can calculate the area of a triangle, circle or square,
based on the user’s choice.

143

CS 8392 OBJECT ORIENTED PROGRAMMING

Or

(b) Explain the Virtual Machine concept with reference to Java.
(a) Write a java class called ‘student’ with name, Marks of 3 subjects and total Marks. Write
another class named ‘calculate’ that gets the Marks
of the student and calculates the total Marks and displays the result (pass or fail).

 Explain the following with examples from Java. (2 × 8 =16)

 Streams and IO

 Java threads.

144

CS 8392 OBJECT ORIENTED PROGRAMMING

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER-2009

Third Semester

Computer Science and Engineering

CS 2203 — OBJECT ORIENTED PROGRAMMING

(Common to Information Technology)

(Regulation 2008)Time : Three hours

Maximum : 100 Marks

Answer ALL Questions

PART A — (10 ×2 = 20 Marks)

1.List any four Object Oriented programming concepts.
2.What is an abstract class?

3.What is a copy constructor?

4.What are the operators that cannot be overloaded?
5.What are templates?

6.Illustrate the exception handling mechanism.

7.What are the visibility modes in inheritance?

8.Write the prototype for a typical pure virtual function.

9.What are the file stream classes used for creating inputand output files?

10.List out any four containers supported by Standard Template Library.

PART B — (5 ×16 = 80 Marks)
11.(a) (i) Explain the idea of Classes, Data abstraction and en capsulation. (8)
(ii) Write a C++ program that inputs two numbers and outputs the

largest number using class. (8)

Or

(b) (i) What are the rules to be followed in function overloading. (4)
Write a C++ program that can take either two inte gers or two floating point numbers and outputs
the smallest number u sing class, friend functions and function overloading. (12)
12.(a) (i) Explain the various types of constructors. (4)
Write a C++ program that takes the (x,y) coordinat es of two points and outputs the distance
between them using constructo rs. (12)

Or
Write a C++ program that takes two values of time (h r, min, sec) and outputs their sum using
constructors and operator ov erloading. (16)
13.(a) (i) Write the syntax for member function template. (4)
Write a C++ program using class template for f inding the scalar product for int
type vector and float type vector. (12)

Or

(b) (i) Explain how rethrowing of an exception is done . (4)
Write a C++ program that illustrates multiple catch statements. (12)
14.(a) (i) Explain the different forms of inheritance. (4)
Write a C++ program handling the following detai ls for students and staff using inheritance.
Student details : name, address, percentage marks. (12)

Or

15(b)Staff details : name, address, salary.

Create appropriate base and derived classes. Input the details and output them. (12)

145

CS 8392 OBJECT ORIENTED PROGRAMMING

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2011 Third Semester-Computer

Science and Engineering CS 2203 — OBJECT ORIENTED PROGRAMMING (Common

to Information Technology)
(Regulation 2008)Time : Three hours

Maximum : 100 marks

Answer ALL questions

PART A — (10×2 = 20 marks)

1.Define abstraction and encapsulation.
2.Justify the need for static members.

3.Explain the functions of default constructor.

4.What is the need for overloading the assignment operator?
5.What is an exception?

6.What is a function template?

7.What is a pure virtual function?

8.What is meant by dynamic casting?

9.What is a namespace?

10.Justify the need for object serialization.

PART B — (5 ×16 = 80 marks)

11.(a) (i) Highlight the features of object oriented programming language. (8)
 Explain function overloading with an example.(8)

Or
(i) Consider a Bank Account class with Acc No. and balance as data members. Write a C++
program to implement the member functions get_Account_Details () and
display_Account_Details (). Also write a suitable main function. (10)
 Write a C++ program to explain how the member functions can be

accessed using pointers. (6)

12.(a) (i) Explain copy constructor with an example. (8)

 Consider a Fruit Basket class with no. of Apples and no. of Mangoes as data members.

Overload the ‘+’ operator to add two objects of this class. (8)

 (i) Justify the need for using friend functions in overloading with an example. (10)

 Explain the use of destructor with an example . (6)

13.(a) (i) Explain with an example, how exception hand ling is carried out in C++. (8)

 Write a class template to insert an element into a linked list. (8)
Or

(b) (i) Write a class template to implement a stack . (10)
What is a user defined exception? Explain with an example. (6)
14.(a) (i) Explain runtime polymorphism with an example. (10)
 Write short notes on: RTTI, down casting. (3+ 3)

(i) Discuss the different types of inheritance supported in C++
with suitable illustration. (10)
 Describe the purpose of a virtual base class,giving a suitable example. (6)

146

CS 8392 OBJECT ORIENTED PROGRAMMING

15.(a) Write a C++ program to store set of objects in a file and to
retrieve the same. (16)

Or

(b) (i) Highlight the features of STL. (6)

 List the different stream classes supported in C++ (4)

 Write a C++ program to read the contents of a text file. (6)

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER2013.

Third Semester

Computer Science and Engineering

CS 2203/CS 35/CS 1202/10144 CS 304/080230004 — OBJECT ORIENTED

PROGRAMMING

(Common to Information Technology)(Regulation 2008/20 10)

Time : Three hours Maximum: 100 marksAnswer ALL questions.

PARTA—(1O x2 = 20 marks)

 State any four advantages of object oriented programming?
 What is data encapsulation?

 What is a default constructor? Illustrate.

 What is a destructor?

 List the advantages of generic programming.

 What is an exception? What is its use?
 What is inheritance? Illustrate

 What is meant by abstract class?

 What are streams? What are their advantages?

 What is a manipulator?
PARTB—(5 x 16=80 marks)
(a) Explain the major principles of object oriented programming with illustrations and neat
sketches. (16)

Or
 Illustrate the various function call mechanismswith suitable programming examples. (16)
12. (a) Define a class Time with string containing seconds elapsed till midnight (12.00 AM) as a
single data member. Write AddTime function which adds two different Time objects and returns

a new Time object. Write a DisplayNormal function which converts the time in seconds and
displays in a normal fashion HH:MM:SS. (16)

Or
Define a class called Complex. Include functions for reading and displaying complex objects.
Write a function to overload operator to add two Complex objects. (16)
13. (a) What is a function template? Write a template function to sort arrays of float andint

147

CS 8392 OBJECT ORIENTED PROGRAMMING

using bubble sort. (16)

Or
Discuss in detail about exception handling constructs and write a program to illustrate divide-by-
zero exception. (16)
14. (a) What are virtual functions? Explain with an example how late binding is achieved using
virtualfunction. (16)

Or

(b) Explain the various runthne casting methods in detail. (16)

15. (a) Discuss in detail about Standard Template Library (STL). (16)

Or

 (i) Write a detailed note on namespaces. (8)

 Explain how sequence iterators work. (8)

148

CS 8392 OBJECT ORIENTED PROGRAMMING

GLOSSARY

abstract class: A class primarily intended to define an instance, but can not be instantiated

without additional methods.
abstract data type: An abstraction that describes a set of items in terms of a hidden data

structure and operations on that structure.
abstraction: A mental facility that permits one to view problems with varying degrees of detail
depending on the current context of the problem.
accessor: A public member subprogram that provides query access to a private data member.

actor: An object that initiates behavior in other objects, but cannot be acted upon itself.
agent: An object that can both initiate behavior in other objects, as well as be operated upon by

other objects.
ADT: Abstract data type.
AKO: A Kind Of. The inheritance relationship between classes and their superclasses.
allocatable array: A named array having the ability to dynamically obtain memory. Only when

space has been allocated for it does it have a shape and may it be referenced or defined.
argument: A value, variable, or expression that provides input to a subprogram. array: An

ordered collection that is indexed.
array constructor: A means of creating a part of an array by a single statement.
array overflow: An attempt to access an array element with a subscript outside the array size

bounds.
array pointer: A pointer whose target is an array, or an array section.

array section: A subobject that is an array and is not a defined type component.

assertion: A programming means to cope with errors and exceptions.

assignment operator: The equal symbol, “=”, which may be overloaded by a user.

assignment statement: A statement of the form “variable = expression”.

association: Host association, name association, pointer association, or storage association.
attribute: A property of a variable that may be specified in a type declaration statement.
automatic array: An explicit-shape array in a procedure, which is not a dummy argument, some

or all of whose bounds are provided when the procedure is invoked.
base class: A previously defined class whose public members can be inherited by another class.
(Also called a super class.)
behavior sharing: A form of polymorphism, when multiple entities have the same generic

interface.This is achieved by inheritance or operator overloading. binary operator: An operator
that takes two operands.
bintree: A tree structure where each node has two child nodes.
browser: A tool to find all occurrences of a variable, object, or component in a source code.
call-by-reference: A language mechanism that supplies an argument to a procedure by passing

the address of the argument rather than its value. If it is modified, the new value will also take

effect outside of the procedure.
call-by-value: A language mechanism that supplies an argument to a procedure by passing a

copy of its data value. If it is modified, the new value will not take effect outside of the
procedure that modifies it.
class: An abstraction of an object that specifies the static and behavioral characteristics of it,
including their public and private nature. A class is an ADT with a constructor template from

which object instances are created.

149

CS 8392 OBJECT ORIENTED PROGRAMMING

class attribute: An attribute whose value is common to a class of objects rather than a value

peculiar to each instance of the class.
class descriptor: An object representing a class, containing a list of its attributes and methods as

well as the values of any class attributes.
class diagram: A diagram depicting classes, their internal structure and operations, and the fixed

relationships between them.
class inheritance: Defining a new derived class in terms of one or more base classes.

client: A software component that users services from another supplier class.

concrete class: A class having no abstract operations and can be instantiated.

compiler: Software that translates a high-level language into machine language.

component: A data member of a defined type within a class declaration
constructor: An operation, by a class member function, that initializes a newly created instance

of a class. (See default and intrinsic constructor.)
constructor operations: Methods which create and initialize the state of an object.
container class: A class whose instances are container objects. Examples include sets, arrays,
and stacks.
container object: An object that stores a collection of other objects and provides operations to

access or iterate over them.
control variable: The variable which controls the number of loop executions.
data abstraction: The ability to create new data types, together with associated operators, and to

hide the internal structure and operations from the user, thus allowing the new data type to be
used in a fashion analogous to intrinsic data types.
data hiding: The concept that some variables and/or operations in a module may not be

accessible to a user of that module; a key element of data abstraction.
data member: A public data attribute, or instance variable, in a class declaration.
data type: A named category of data that is characterized by a set of values. together with a way

to denote these values and a collection of operations that interpret and manipulate the values. For
an intrinsic type, the set of data values depends on the values of the type parameters.

deallocation statement: A statement which releases dynamic memory that has been previously

allocated to an allocatable array or a pointer.
debugger software: A program that allows one to execute a program in segments up to selected

breakpoints, and to observe the program variables.
debugging: The process of detecting, locating, and correcting errors in software.
declaration statement: A statement which specifies the type and, optionally, attributes of one or
more variables or constants.
default constructor: A class member function with no arguments that assigns default initial
values to all data members in a newly created instance of a class.
defined operator: An operator that is not an intrinsic operator and is defined by a subprogram

that is associated with a generic identifier.
deque: A container that supports inserts or removals from either end of a queue.

dereferencing: The interpretation of a pointer as the target to which it is pointing.

derived attribute: An attribute that is determined from other attributes.
derived class: A class whose declaration indicates that it is to inherit the publicmembers of a

previously defined base class.
derived type: A user defined data type with components, each of which is either of intrinsic type

or of another derived type.

150

CS 8392 OBJECT ORIENTED PROGRAMMING

destructor: An operation that cleans up an existing instance of a class that is no longer needed.

destructor operations: Methods which destroy objects and reclaim their dynamic memory.

domain: The set over which a function or relation is defined.
dummy argument: An argument in a procedure definition which will be associated with the

actual (reference or value) argument when the procedure is invoked. dummy array: A dummy
argument that is an array.
dummy pointer: A dummy argument that is a pointer.

dummy procedure: A dummy argument that is specified or referenced as a procedure.
dynamic binding: The allocation of storage at run time rather than compile time, or the run time

association of an object and one of its generic operations..
edit descriptor: An item in an input/output format which specifies the conversion between

internal and external forms.
encapsulation: A modeling and implementation technique (information hiding) that separates

the external aspects of an object from the internal, implementation details of the object.
exception: An unexpected error condition causing an interruption to the normal flow of program

control.
explicit interface: For a procedure referenced in a scoping unit, the property of being an internal

procedure,a module procedure, an external procedure that has an interface (prototype) block, a
recursive procedure reference in its own scoping unit, or a dummy procedure that has an

interface block.
explicit shape array: A named array that is declared with explicit bounds.

external file: A sequence of records that exists in a medium external to the program.

external procedure: A procedure that is defined by an external subprogram.

FIFO: First in, first out storage; a queue.
friend: A method, in C++, which is allowed privileged access to the private implementation of
another object.
function body: A block of statements that manipulate parameters to accomplish the

subprogram’s purpose.
function definition: Program unit that associates with a subprogram name a return type, a list of
arguments, and a sequence of statements thatmanipulate the arguments to accomplish the
subprogram’s purpose
function header: A line of code at the beginning of a function definition; includes the argument
list, and the function return variable name.
generic function: A function which can be called with different types of arguments.
generic identifier: A lexical token that appears in an INTERFACE statement and is associated

with all
the procedures in the interface block.
generic interface block: A form of interface block which is used to define a generic name for a

set of procedures.
generic name: A name used to identify two or more procedures, the required one being

determined by the types of the non-optional arguments in the procedure invocation. generic

operator: An operator which can be invoked with different types of operands.
Has-A: A relationship in which the derived class has a property of the base class.
hashing technique: A technique used to create a hash table, in which the array element where an

item is to be stored is determined by converting some item feature into an integer in the range of
the size of the table.

151

CS 8392 OBJECT ORIENTED PROGRAMMING

heap: A region of memory used for data structures dynamically allocated and deallocated by a

program.
host: The program unit containing a lower (hosted) internal procedure.
host association: Data, and variables automatically available to an internal procedure from its

host.
information hiding: The principle that the state and implementation of an object should be

private to that object and only accessible via its public interface.
inheritance: The relationship between classes whereby one class inherits part or all of the public

description of another base class, and instances inherit all the properties and methods of the
classes which they contain.
instance: A individual example of a class invoked via a class constructor.
instance diagram: A drawing showing the instance connection between two objects along with

the number or range of mapping that may occur.
instantiation: The process of creating (giving a value to) instances from classes.
intent: An attribute of a dummy argument that which indicates whether it may be used to

transfer data into the procedure, out of the procedure, or both.
interaction diagram: A diagram that shows the flow of requests, or messages between objects.

interface: The set of all signatures (public methods) defined for an object.
internal file: A character string that is used to transfer and/or convert data from one internal
storage mode to a different internal storage mode.
internal procedure: A procedure contained within another program unit, or class, and which

can only be invoked from within that program unit, or class.
internal subprogram: A subprogram contained in a main program or another subprogram.
intrinsic constructor: A class member function with the same name as the class which receives

initial values of all the data members as arguments. Is-A: A relationship in which the derived
class is a variation of the base class.
iterator: A method that permits all parts of a data structure to be visited.
keyword: A programming language word already defined and reserved for a single special
purpose.
LIFO: Last in, first out storage; a stack.

link: The process of combining compiled program units to form an executable program.
linked list: A data structure in which each element identifies its predecessor and/or successor by

some form of pointer.
linker: Software that combines object files to create an executable machine language program.

list: An ordered collection that is not indexed.

map: An indexed collection that may be ordered.

matrix: A rank-two array.
member data: Variables declared as components of a defined type and encapsulated in a class.

member function: Subprograms encapsulated as members of a class.

method: A class member function encapsulated with its class data members.
method resolution: The process of matching a generic operation on an object to the unique

method appropriate to the object’s class.
message: A request, from another object, for an object to carry out one of its operations.
message passing: The philosophy that objects only interact by sending messages to each other
that request some operations to be performed.

152

CS 8392 OBJECT ORIENTED PROGRAMMING

module: A program unit which allows other program units to access variables, derived type

definitions, classes and procedures declared within it by USE association.
module procedure: A procedure which is contained within a module, and usually used to define

generic interfaces, and/or to overload or define operators.
nested: Placement of a control structure inside another control structure.
object: A concept, or thing with crisp boundaries and meanings for the problem at hand; an

instance of a class.
object diagram: A graphical representation of an object model showing relationships, attributes,
and operations.
object-oriented (OO): A software development strategy that organizes software as a collection

of objects that contain both data structure and behavior. (Abbreviated OO.)
object-oriented programming (OOP): Object-oriented programs are object-based, class-based,
support inheritance between classes and base classes and allow objects to send and receive
messages.
object-oriented programming language: A language that supports objects (encapsulating

identity, data, and operations), method resolution, and inheritance. octree: A tree structure where
each node has eight child nodes.
 (acronym): Object-oriented.

operand: An expression or variable that precedes or succeeds an operator.

operation: Manipulation of an object’s data by its member function when it receives a request.
operator overloading: A special case of polymorphism; attaching more than one meaning to the

same operator symbol. ‘Overloading’ is also sometimes used to indicate using the same name for
different objects.
overflow: An error condition arising from an attempt to store a number which is too large for the

storage location specified; typically caused by an attempt to divide by zero. overloading: Using
the same name for multiple functions or operators in a single scope.
overriding: The ability to change the definition of an inherited method or attribute in a subclass.

parameterized classes: A template for creating real classes that may differ in well-defined ways

as specified by parameters at the time of creation. The parameters are often data types or classes,

but may include other attributes, such as the size of a collection. (Also called generic classes.)

pass-by-reference: Method of passing an argument that permits the function to refer to the

memory holding the original copy of the argument
pass-by-value: Method of passing an argument that evaluates the argument and stores this value

in the corresponding formal argument, so the function has its own copy of the argument value

pointer: A single data object which stands for another (a “target”), which may be a compound

object such as an array, or defined type.
pointer array: An array which is declared with the pointer attribute. Its shape and size may not
be determined until they are created for the array by means of a memory allocation statement.

pointer assignment statement: A statement of the form “pointer-name) target”.

polymorphism: The ability of an function/operator, with one name, to refer to arguments, or

return types, of different classes at run time.

post-condition: Specifies what must be true after the execution of an operation.
pre-condition: Specifies the condition(s) that must be true before an operation can be executed.
private: That part of an class, methods or attributes, which may not be accessed by other classes,
only by instances of that class.

153

CS 8392 OBJECT ORIENTED PROGRAMMING

protected: (Referring to an attribute or operation of a class in C++) accessible by methods of
any descendent of the current class.
prototype: A statement declaring a function’s return type, name, and list of argument types.
pseudocode: A language of structured English statements used in designing a step-by-step

approach to solving a problem.
public: That part of an object, methods or attributes, which may be accessed by other objects,
and thus constitutes its interface.
quadtree: A tree structure where each tree node has four child nodes.

query operation: An operation that returns a value without modifying any objects.
rank: Number of subscripted variables an array has. A scalar has rank zero, a vector has rank

one, a matrix has rank two.
scope: That part of an executable program within which a lexical token (name) has a single

interpretation.
section: Part of an array.
sequential: A kind of file in which each record is written (read) after the previously written

(read) record.
server: An object that can only be operated upon by other objects.

service: A class member function encapsulated with its class data members.
shape: The rank of an array and the extent of each of its subscripts. Often stored in a rank-one

array.
side effect: A change in a variable’s value as a result of using it as an operand, or argument.

signature: The combination of a subprogram’s (operator’s) name and its argument (operand)

types. Does not include function result types.

size: The total number of elements in an array.
stack: Region of memory used for allocation of function data areas; allocation of variables on

the stack occurs automatically when a block is entered, and deallocation occurs when the block is
exited
stride: The increment used in a subscript triplet.
strong typing: The property of a programming language such that the type of each variable must
be declared.
structure component: The part of a data object of derived type corresponding to a component
of its type.
sub-object: A portion of a data object that may be referenced or defined independently of other
portions. It may be an array element, an array section, a structure component, or a substring.
subprogram: A function or subroutine subprogram.
subprogram header: A block of code at the beginning of a subprogram definition; includes the

name, and the argument list, if any.
subscript triplet: A method of specifying an array section by means of the initial and final
subscript integer values and an optional stride (or increment).
super class: A class from which another class inherits. (See base class.)
supplier: Software component that implements a new class with services to be used by a client
software component.
target: The data object pointed to by a pointer, or reference variable.
template: An abstract recipe with parameters for producing concrete code for class definitions or
subprogram definitions.
thread: The basic entity to which the operating system allocates CPU time.

154

CS 8392 OBJECT ORIENTED PROGRAMMING

tree: A form of linked list in which each node points to at least two other nodes, thus defining a

dynamic data structure.
unary operator: An operator which has only one operand.

undefined: A data object which does not have a defined value.
underflow: An error condition where a number is too close to zero to be distinguished from zero

in the floating-point representation being used.
utility function: A private subprogram that can only be used within its defining class.

vector: A rank-one array. An array with one subscript.
vector subscript: Amethod of specifying an array section by means of a vector containing the

subscripts of the elements of the parent array that are to constitute the array section.
virtual function: A genetic function, with a specific return type, extended later for each new

argument type.
void subprogram: A C++ subprogram with an empty argument list and/or a subroutine with no

returned argument.
work array: A temporary array used for the storage of intermediate results during processing.

155

