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UNIT I TESTING BASICS 

 

1.1 Testing as an engineering activity  

 

This is an exciting time to be a software developer. Software systems are becoming more  

challenging to build. They are playing an increasingly important role in society. People with  

software development skills are in  demand.  New methods, techniques,  and  tools are  

becoming available to support development and maintenance tasks. Because software now  

has such an important role in our lives both economically and socially, there is pressure for  

software professionals to focus on quality issues. Poor quality software that can cause loss of  

life or property is no longer acceptable to society. Failures can result in catastrophic losses.  

Conditions demand software development staffs with interest and training in the areas of  

software product and process quality. Highly qualified staff ensure that software products are  

built on time, within budget, and are of the highest quality with respect to attributes such as  

reliability, correctness, usability, and the ability to meet all user requirements.  

Using an engineering approach to software development implies that:  

   the development process is well understood;  

   projects are planned;  

   life cycle models are defined and adhered to;  

   standards are in place for product and process;  

   measurements are employed to evaluate product and process quality;  

   components are reused;  

   validation and verification processes play a key role in quality  

 determination;  

   engineers have proper education, training, and certification.  

1.2 Role of process in software quality  

 

The need for software products of high quality has pressured those in the profession to identify  

and quantify quality factors such as usability, testability, maintainability, and reliability, and to  

identify engineering practices that support the production of quality products having these  

favorable attributes. Among the practices identified that contribute to the development of high- 

quality  software  are  project  planning,  requirements  management,  development  of  formal  

specifications, structured design with use of information hiding and encapsulation, design and  

code reuse,inspections and reviews, product and process measures, education and training of  

software professionals, development and application of CASE tools, use of effective testing  

techniques, and integration of testing activities into the entire life cycle. In addition to identifying  

these individual best technical and managerial practices, software researchers realized that it was  

important to integrate them within the context of a high-quality software development process.  

Process, in the software engineering domain, is the set of methods, practices, standards, 

documents, activities, policies, and procedures that software engineers use to develop and 

maintain a software system and its associated artifacts, such as project and test plans, 

design documents, code, and manuals.  
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It also was clear that adding individual practices to an existing software development process in  

an ad hoc way was not satisfactory. The software development process, like most engineering  

artifacts, must be engineered. That is, it must be designed, implemented, evaluated, and  

maintained. As in other engineering disciplines, a software development process must evolve in  

a consistent and predictable manner, and the best technical and managerial practices must be  

integrated in a systematic way. These models allow an organization to evaluate its current  

software process and to capture an understanding of its state. Strong support for incremental  

process improvement is provided by the models, consistent with historical process evolution and  

the application of quality principles. The models have received much attention from industry,  

and resources have been invested in process improvement efforts with many successes recorded.  

 

All the software process improvement models that have had wide acceptance in industry are  

high-level models, in the sense that they focus on the software process as a whole and do not  

offer adequate support to evaluate and improve specific software development sub processes  

such as design and testing. Most software engineers would agree that testing is a vital component  
                  of a quality software process, and is one of the most challenging and costly activities carried out  

                 during software development and maintenance.  
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1.3 Testing as a process  

The software development process has been described as a series of phases, procedures, and 

steps that result in the production of a software product. Embedded within the software 

development process are several other processes including testing. Some of these are shown in 

Figure 1.3.  Testing itself is related to two other processes called verification and validation  

as shown in Figure 1.3.  

 

Validation is the process of evaluating a software system or component during, or at the end  

of,  the  development  cycle  in  order  to  determine  whether  it  satisfies  specified 

requirements.  

Validation is usually associated with traditional execution-based testing, that is, exercising the code 

with test cases.  

 

Verification is the process of evaluating a software system or component to determine  

whether the products of a given development phase satisfy the conditions imposed at the start 

of that phase [11].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Verification is usually associated with activities such as inspections and reviews of software  

deliverables. Testing itself has been defined in several ways. Two definitions are shown below.  

Testing is generally described as a group of procedures carried out to evaluate some aspect of a 

piece of software.  
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Testing can be described as a process used for revealing defects in software, and for 

establishing that the software has attained a specified degree of quality with respect to 

selected attributes.  

Note that these definitions of testing are general in nature. They cover both validation and 

verification activities, and include in the testing domain all of the following: technical reviews, test 

planning, test tracking, test case design, unit test, integration test, system test, acceptance test, and 

usability test. The definitions also describe testing as a dual-purpose process—one that reveals 

defects, as well as one that is used to evaluate quality attributes of the software such as reliability, 

security, usability, and correctness.  

 

Also note that testing and debugging, or fault localization, are two very different activities. The 

debugging process begins after testing has been carried out and the tester has noted that the 

software is not behaving as specified.  

 

Debugging, or fault localization is the process of (1) locating the fault or defect, (2) 

repairing the code, and (3) retesting the code. 

Testing as a process has economic, technical and managerial aspects. Economic aspects are  

related to the reality that resources and time are available to the testing group on a limited basis.  

In fact, complete testing is in many cases not practical because of these economic constraints. An  

organization must structure its testing process so that it can deliver software on time and within  

budget, and also satisfy the client‘s requirements. The technical aspects of testing relate to the  

techniques, methods, measurements, and tools used to insure that the software under test is as  

defect-free and reliable as possible for the conditions and constraints under which it must  

operate. Testing is a process, and as a process it must managed. Minimally that means that an  

organizational policy for testing must be defined and documented. Testing procedures and steps  

must be defined and documented. Testing must be planned, testers should be trained, the process  

should have associated quantifiable goals that can be measured and monitored. Testing as a  

process should be able to evolve to a level where there are mechanisms in place for making  

continuous improvements.  

1.4 Basic definitions  

Errors  

An error is a mistake, misconception, or misunderstanding on the part of a software developer.  

In the category of developer we include software engineers, programmers, analysts, and testers. For 
example, a developer may misunderstand a design notation, or a programmer might type a variable 
name incorrectly.  

 

Faults (Defects)  
 

A fault (defect) is introduced into the software as the result of an error. It is an anomaly in the 
software that may cause it to behave incorrectly, and not according to its specification.  
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Faults or defects are sometimes called ―bugs.‖ Use of the latter term trivializes the impact faults have 

on software quality. Use of the term ―defect‖ is also associated with software artifacts such as 

requirements and design documents. Defects occurring in these artifacts are also caused by errors 

and are usually detected in the review process.  

 

Failures  

A failure is the inability of a software system or component to perform its required functions within 

specified performance requirements .  

During execution of a software component or system, a tester, developer, or user observes that it does 

not produce the expected results. In some cases a particular type of misbehavior indicates a certain 

type of fault is  

 

Test case  
A test case in a practical sense is a test-related item which contains the following information:  

1. A set of test inputs. These are data items received from an external source by the code under test. 

The external source can be hardware, software, or human.  

2. Execution conditions. These are conditions required for running the test, for example, a certain state 

of a database, or a configuration of a hardware device.  
3. Expected outputs. These are the specified results to be produced by the code under test.  

 

Test  

A test is a group of related test cases, or a group of related test cases and test procedures.  

 

Test Oracle  

A test oracle is a document, or piece of software that allows testers to determine whether a test has 

been passed or failed.  

A program, or a document that produces or specifies the expected outcome of a test, can serve as  

an  oracle.Examples  include  a  specification (especially  one  that  contains  pre-  and  post  

conditions), a design document, and a set of requirements. Other sources are regression test 

suites. The suites usually contain components with correct results for previous versions of the 

software. If some of the functionality in the new version overlaps the old version, the appropriate 

oracle information can be extracted. A working trusted program can serve as its own oracle in a 

situation where it is being ported to a new environment. In this case its intended behavior should not 

change in the new environment.  

 

Test Bed  

A test bed is an environment that contains all the hardware and software needed to test a 

software component or a software system.This includes the entire testing environment, for 

example, simulators, emulators,memory checkers, hardware probes, software tools, and all other 

items needed to support execution of the tests.  
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Software Quality  
 

1. Quality relates to the degree to which a system, system component, or process meets specified 
requirements.  

2. Quality relates to the degree to which a system, system component, or process meets customer or 

user needs, or expectations.  
 

In order to determine whether a system, system component, or process is of high quality we use what 
are called quality attributes. the degree to which they possess a given quality attribute with quality 
metrics.  

 

Quality metric  

A metric is a quantitative measure of the degree to which a system, system component,or process 

possesses a given attribute.  

 

There are product and process metrics. A very commonly used example of a software product  
metric is software size, usually measured in lines of code (LOC). Two examples of commonly  

used process metrics are costs and time required for a given task. Quality metrics are a special  

kind of metric.  

 

A quality metric is a quantitative measurement of the degree to which an item possesses a given 

quality attribute.  

Some examples of quality attributes with brief explanations are the following:  

 

correctness—the degree to which the system performs its intended function  

reliability—the degree to which the software is expected to perform its required functions under 
stated conditions for a stated period of time  

usability—relates to the degree of effort needed to learn, operate, prepare input, and interpret 

output of the software  

integrity—relates to the system‘s ability to withstand both intentional and accidental attacks  

portability—relates to the ability of the software to be transferred from one environment to  
another  

maintainability—the effort needed to make changes in the software  

interoperability—the effort needed to link or couple one system to another.  

 

Another quality attribute that should be mentioned here is testability.  

1. the amount of effort needed to test the software to ensure it performs according to specified 

requirements (relates to number of test cases needed),  
2. the ability of the software to reveal defects under testing conditions  (some software is  

designed in such a way that defects are well hidden during ordinary testing conditions).  

Testers must work with analysts, designers and, developers throughout the software life system to 
ensure that testability issues are addressed.  
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Software Quality Assurance Group  

The software quality assurance (SQA) group in an organization has ties to quality issues. The 
group serves as the customers‘ representative and advocate. Their responsibility is to look after the 
customers‘ interests.  
 

The software quality assurance (SQA) group is a team of people with the necessary training and 
skills to ensure that all necessary actions are taken during the development process so that the 
resulting software conforms to established technical requirements.  

 

Review  

A review is a group meeting whose purpose is to evaluate a software artifact or a set of 

software artifacts.  

The composition of a review group may consist of managers, clients,developers, testers and other 

personnel depending on the type of artifact under review. A special type of review called an audit 

is usually conducted by a Software Quality Assurance group for the purpose of assessing compliance 

with specifications, and/or standards, and/or contractual agreements.  

1.5 Software testing principles  

Principles play an important role in all engineering disciplines and are usually introduced as part of an 

educational background in each branch of engineering. Figure 1.1 shows the role of basic principles 

in various engineering disciplines. Testing principles are important to test specialists/ engineers 

because they provide the foundation for developing testing knowledge and acquiring testing skills. 

They also provide guidance for defining testing activities as performed in the practice of a test 

specialist.A principle can be defined as:  

 

1. a general or fundamental, law, doctrine, or assumption;  
2. a rule or code of conduct;  

3. the laws or facts of nature underlying the working of an artificial device.  

 

Extending these three definitions to the software engineering domain we can say that software  

engineering principles refer to laws, rules, or doctrines that relate to software systems, how to  

build them, and how they behave. In the software domain, principles may also refer to rules or  

codes of conduct relating to professionals who design, develop, test, and maintain software  

systems. Testing as a component of the software engineering discipline also has a specific set of  

principles that serve as guidelines for the tester. They guide testers in defining how to test  

software systems, and provide rules of conduct for testers as professionals. Glenford Myers has  

outlined such a set of execution-based testing principles in his pioneering book, The Art of  

Software Testing [9]. Some of these principles are described below. Principles 1-8, and 11 are  

derived directly from Myers‘ original set. The author has reworded these principles, and also has  

made modifications to the original set to reflect the evolution of testing from an art, to a quality- 

related process within the context of an engineering discipline. Note that the principles as stated  

below only relate to execution-based testing. Principles relating to reviews, proof of correctness, and 

certification as testing activities are not covered. 
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Principle 1. Testing is the process of exercising a software component using a selected set of test 

cases, with the intent of (i) revealing defects, and (ii) evaluating quality.  

Software engineers have made great progress in developing methods to prevent and eliminate  

defects. However, defects do occur, and they have a negative impact on software quality. Testers  

need to detect these defects before the software becomes operational. This principle supports  

testing as an execution-based activity to detect defects. It also supports the separation of testing  

from debugging since the intent of the latter is to locate defects and repair the software. The term  

―software component‖ is used in this context to represent any unit of software ranging in size and  

complexity from an individual procedure or method, to an entire software system. The term  

―defects‖ as used in this and in subsequent principles represents any deviations in the software  

that have a negative impact on its functionality, performance, reliability, security, and/or any  

other of its specified quality attributes.  

 

Principle 2. When the test objective is to detect defects, then a good test case is one that has a 

high probability of revealing a yetundetected defect(s).  

Principle 2 supports careful test design and provides a criterion with which to evaluate test case  

design and the effectiveness of the testing effort when the objective is to detect defects. It  

requires the tester to consider the goal for each test case, that is, which specific type of defect is  

to be detected by the test case. In this way the tester approaches testing in the same way a  

scientist approaches an experiment. In the case of the scientist there is a hypothesis involved that  

he/she wants to prove or disprove by means of the experiment. In the case of the tester, the  

hypothesis is related to the suspected occurrence of specific types of defects. The goal for the  

test is to prove/disprove the hypothesis, that is, determine if the specific defect is present/absent. 

Based on the hypothesis, test inputs are selected, correct outputs are determined, and the test is run. 

Results are analyzed to prove/disprove the hypothesis. The reader should realize that many resources 

are invested in a test, resources for designing the test cases, running the tests, and recording and 

analyzing results. A tester can justify the expenditure of the resources by careful test design so that 

principle 2 is supported.  

 

Principle 3. Test results should be inspected meticulously.  

Testers need to carefully inspect and interpret test results. Several erroneous and costly scenarios may 

occur if care is not taken. For example: A failure may be overlooked, and the test may be granted a 

―pass‖ status when in reality the software has failed the test. Testing may continue based on 

erroneous test results. The defect may be revealed at some later stage of testing, but in that case it 

may be more costly and difficult to locate and repair.  

• A failure may be suspected when in reality none exists. In this case the test may be granted a  

―fail‖ status. Much time and effort may be spent on trying to find the defect that does not exist. A  

careful reexamination of the test results could finally indicate that no failure has occurred.  

• The outcome of a quality test may be misunderstood, resulting in unnecessary rework, or 
oversight of a critical problem.  
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Principle 4. A test case must contain the expected output or result.  

 

It is often obvious to the novice tester that test inputs must be part of a test case. However, the  

test case is of no value unless there is an explicit statement of the expected outputs or results, for  

example, a specific variable value must be observed or a certain panel button that must light up.  

Expected outputs allow the tester to determine (i) whether a defect has been revealed, and (ii)  

pass/fail status for the test. It is very important to have a correct statement of the output so that  

needless time is not spent due to misconceptions about the outcome of a test. The specification of  

test inputs and outputs should be part of test design activities. In the case of testing for quality  

evaluation, it is useful for quality goals to be expressed in quantitative terms in the requirements  

document if possible, so that testers are able to compare actual software attributes as determined  

by the tests with what was specified.  

 

Principle 5. Test cases should be developed for both valid and invalid input conditions.  

A tester must not assume that the software under test will always be provided with valid inputs.  

Inputs  may  be  incorrect  for  several  reasons.  For  example,  software  users  may  have  

misunderstandings, or lack information about the nature of the inputs. They often make  

typographical errors even when complete/correct information is available. Devices may also  

provide invalid inputs due to erroneous conditions and malfunctions. Use of test cases that are  

based on invalid inputs is very useful for revealing defects since they may exercise the code in  

unexpected ways and identify unexpected software behavior. Invalid inputs also help developers  

and testers evaluate the robustness of the software, that is, its ability to recover when unexpected  

events occur (in this case an erroneous input). Principle 5 supports the need for the independent  

test group called for in Principle 7 for the following reason. The developer of a software  

component may be biased in the selection of test inputs for the component and specify only valid  

inputs in the test cases to demonstrate that the software works correctly. An independent tester is  

more apt to select invalid inputs as well.  

Principle 6. The probability of the existence of additional defects in a software component is 

proportional to the number of defects already detected in that component.  

 

What this principle says is that the higher the number of defects already detected in a component, the 

more likely it is to have additional defects when it undergoes further testing. For example, if there are 

two components A and B, and testers have found 20 defects in A and 3 defects in B,  

then the probability of the existence of additional defects in A is higher than B. This empirical 

observation may be due to several causes. Defects often occur in clusters and often in code that has a 

high degree of complexity and is poorly designed. In the case of such components developers 

and testers need to decide whether to disregard the current version of the component and work on a 

redesign, or plan to expend additional testing resources on this component to insure  it  meets  its  

requirements.  This  issue  is  especially  important  for  components  that implement mission or 

safety critical functions.  
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Principle 7.  Testing  should  be  carried  out  by  a  group  that  is  independent  of  the 

development group. 

This principle holds true for psychological as well as practical reasons. It is difficult for a  

developer to admit or conceive that software he/she has created and developed can be faulty.  

Testers must realize that (i) developers have a great deal of pride in their work, and (ii) on a  

practical level it may be difficult for them to conceptualize where defects could be found. Even  

when tests fail, developers often have difficulty in locating the defects since their mental model  

of the code may overshadow their view of code as it exists in actuality. They may also have  

misconceptions or misunderstandings concerning the requirements and specifications relating to  

the software. The requirement for an independent testing group can be interpreted by an  

organization in several ways. The testing group could be implemented as a completely separate  

functional entity in the organization. Alternatively, testers could be members of a Software  

Quality Assurance Group, or even be a specialized part of the development group, but in the  

latter case especially, they need the capability to be objective. Reporting   management that is  

separate from development can support their objectivity and independence. As a member of any  

of these groups, the principal duties and training of the testers should lie in testing rather than in  

development. Finally, independence of the testing group does not call for an adversarial  

relationship between developers and testers. The testers should not play ―gotcha‖ games with  

developers. The groups need to cooperate so that software of the highest quality is released to the  

customer.  

 

Principle 8. Tests must be repeatable and reusable.  

Principle 2 calls for a tester to view his/her work as similar to that of an experimental scientist.  

Principle 8 calls for experiments in the testing domain to require recording of the exact  

conditions of the test, any special events that occurred, equipment used, and a careful accounting  

of the results. This information is invaluable to the developers when the code is returned for  

debugging so that they can duplicate test conditions. It is also useful for tests that need to be  

repeated after defect repair. The repetition and reuse of tests is also necessary during regression  

test (the retesting of software that has been modified) in the case of a new release of the  

software. Scientists expect experiments to be repeatable by others, and testers should expect the  

same!  

 

Principle 9. Testing should be planned.  

Test plans should be developed for each level of testing, and objectives for each level should be  

described in the associated plan. The objectives should be stated as quantitatively as possible.  

Plans, with their precisely specified objectives, are necessary to ensure that adequate time and  

resources are allocated for testing tasks, and that testing can be monitored and managed. Test  

planning activities should be carried out throughout the software  life cycle (Principle 10). Test  

planning must be coordinated with project planning. The test manager and project manager must  

work together to coordinate activities. Testers cannot plan to test a component on a given date  

unless the developers have it available on that date. Test risks must be evaluated. For example,  

how probable are delays in delivery of software components, which components are likely to be  
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complex and difficult to test, do the testers need extra training with new tools? A test plan 

template must be available to the test manager to guide development of  the plan according to 

organizational policies and standards. Careful test planning avoids wasteful ―throwaway‖ tests and 

unproductive and unplanned ―test-patch-retest‖ cycles that often lead to poor-quality software 

and the inability to deliver software on time and within budget.  

 

Principle 10. Testing activities should be integrated into the software life cycle.  

 

It is no longer feasible to postpone testing activities until after the code has been written. Test 

planning activities as supported by Principle 10, should be integrated into the software life cycle 

starting as early as in the requirements analysis phase, and continue on throughout the software life 

cycle in parallel with development activities. In addition to test planning, some other types of testing 

activities such as usability testing can also be carried out early in the life cycle by using prototypes. 

These activities can continue on until the software is delivered to the users. Organizations can 

use process models like the V-model or any others that support the integration of test activities into the 

software life cycle [11].  

 

Principle 11. Testing is a creative and challenging task [12].  

Difficulties and challenges for the tester include the following:  

• A tester needs to have comprehensive knowledge of the software engineering discipline.  

• A tester needs to have knowledge from both experience and education as to how software is 

specified, designed, and developed.  

• A tester needs to be able to manage many details.  

• A tester needs to have knowledge of fault types and where faults of a certain type might occur in 

code constructs.  

• A tester needs to reason like a scientist and propose hypotheses that relate to presence of 

specific types of defects.  
• A tester needs to have a good grasp of the problem domain of the software that he/she is  
testing. Familiarly with a domain may come from educational, training, and work-related  
experiences.  

• A tester needs to create and document test cases. To design the test cases the tester must select 

inputs often from a very wide domain.  

1.6  The tester’s role in a software development organization  

Testing is sometimes erroneously viewed as a destructive activity. The tester‘s job is to reveal  

defects, find weak points, inconsistent behavior, and circumstances where the software does not  

work as expected. As a tester you need to be comfortable with this role. Given the nature of the  

tester‘s tasks, you can see that it is difficult for developers to effectively test their own code  

(Principles 3 and 8). Developers view their own code as their creation, their ―baby,‖ and they  

think that nothing could possibly be wrong with it! This is not to say that testers and developers  

are adversaries. In fact, to be most effective as a tester requires extensive programming  

experience in order to understand how code is constructed,  and where, and what kind of, defects  

are likely to occur. Your goal as a tester is to work with the developers to produce high-quality  
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software that meets the customers‘ requirements. Teams of testers and developers are very  

common in industry, and projects should have an appropriate developer/tester ratio. The ratio  

will vary depending on available resources, type of project, and TMM level. For example, an  

embedded realtime system needs to have a lower developer/tester ratio (for example, 2/1) than a  

simple data base application (4/1 may be suitable). At higher TMM levels where there is a well- 

defined testing group, the developer/ tester ratio would tend to be on the lower end (for example  

2/1 versus 4/1) because of the availability of tester resources. Even in this case, the nature of the  

project and project scheduling issues would impact on the ratio. In addition to cooperating with  

code developers, testers also need to work along side with requirements engineers to ensure that  

requirements are testable, and to plan for system and acceptance test (clients are also involved in  

the latter). Testers also need to work with designers to plan for integration and unit test. In  

addition, test managers will need to cooperate with project managers in order to develop  

reasonable test plans, and with upper management to provide input for the development and  

maintenance of organizational testing standards, polices, and goals. Finally, testers also need to  

cooperate  with  software  quality  assurance  staff  and  software  engineering  process  group  

members. In view of these requirements for multiple working relationships, communication and  

team working skills are necessary for a successful career as a tester. and marketing staff need to  

realize that testers add value to a software product in that they detect defects and evaluate quality  

as early as possible in the software life cycle. This ensures that developers release code with few  

or no defects, and that marketers can deliver software that satisfies the customers‘ requirements,  

and is reliable, usable, and correct. Low-defect software also has the benefit of reducing costs  

such as support calls, repairs to operational software, and ill will which may escalate into legal  

action due to customer dissatisfaction. In view of their essential role, testers need to have a  

positive view of their work. Management must support them in their efforts and recognize their  

contributions to the organization.  

 

1.7 Origins of defects  

 

The term defect and its relationship to the terms error and failure in the context of the software 

development domain has been discussed in Chapter 2. Defects have detrimental affects on 

software users, and software engineers work very hard to produce high-quality software with a low 

number of defects. But even under the best of development circumstances errors are made, resulting 

in defects being injected in the software during the phases of the software life cycle. Defects as 

shown in Figure 3.1 stem from the following sources [1,2]:  
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1.  Education: The software engineer did not have the proper educational background to  

prepare the software artifact. She did not understand how to do something. For example, a 

software engineer who  did not understand the precedence order of operators in a 

particular programming language could inject a defect in an equation that uses the 

operators for a calculation.  

2.  Communication:  The  software  engineer  was  not  informed  about  something  by  a  

colleague. For example, if engineer  1 and engineer 2  are working on interfacing  

modules, and engineer 1 does not inform  engineer 2 that a no error checking code will  
appear in the interfacing module he is developing, engineer 2 might make an incorrect  
assumption relating to the presence/absence of an error check, and a defect will result.  

 

3.  Oversight: The software engineer omitted to do something. For example, a software  

engineer might omit an initialization statement.  

4.  Transcription: The software engineer knows what to do, but makes a mistake in doing it.  

A simple example is a variable name being misspelled when entering the code.  

 

5.  Process: The process used by the software  engineer misdirected her actions. For  

example, a development process that did not allow sufficient time for a detailed 

specification to be developed and reviewed could lead to specification defects.  
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When defects are present due to one or more of these circumstances, the software may fail, and  

the impact on the user ranges from a minor inconvenience to rendering the software unfit for use.  

Our goal as testers  is to discover these defects preferably before the software is in operation.One  

of the ways we do this is by designing test cases that have a high probability of revealing defects.  

How do we develop these test cases? One approach is to think of software testing as an  

experimental activity. The results of the test experiment are analyzed to determine whether the  

software has behaved correctly. In this experimental scenario a tester develops hypotheses about  

possible defects (see Principles 2 and 9). Test cases are then designed based on the hypotheses.  

The tests are run and results analyzed to prove, or disprove, the hypotheses.  

Myers has a similar approach to testing. He describes the successful test as one that reveals the  

presence of a (hypothesized) defect. He compares the role of a tester to that of a doctor who is in  

the process of constructing a diagnosis for an ill patient. The doctor develops hypotheses about  

possible illnesses using her knowledge of possible diseases, and the patients‘ symptoms. Tests  

are made in order to make the correct diagnosis. A successful test will reveal the problem and the  

doctor can begin treatment. Completing the analogy of doctor and ill patient, one could view  

defective software as the ill patient. Testers as doctors need to have knowledge about possible  

defects (illnesses) in order to develop defect hypotheses. They use the hypotheses to:  

• design test cases;  

• design test procedures;  

• assemble test sets;  

• select the testing levels (unit, integration, etc.)appropriate for the tests;  

• evaluate the results of the tests.  

A successful testing experiment will prove the hypothesis is true—that is, the hypothesized 

defect was present. Then the software can be repaired (treated).A very useful concept related to this 

discussion of defects, testing, and diagnosis is that of a fault model.  

A fault (defect) model can be described as a link between the error made (e.g., a missing 

requirement, a misunderstood design element, a typographical error), and the fault/defect in 

the software.  

 

Digital system engineers describe similar models that link physical defects in digital components  
to electrical (logic) effects in the resulting digital system [4,5]. Physical defects in the digital  
world may be due to manufacturing errors, component wear-out, and/or environmental effects.  
 

The fault models are often used to generate a fault list or dictionary. From that dictionary faults can 

be selected, and test inputs developed for digital components. The effectiveness of a test can be 

evaluated in the context of the fault model, and is related to the number of faults as expressed in the 

model, and those actually revealed by the test. This view of test effectiveness (success) is similar to 

the view expressed by Myers stated above.  

 

Although software engineers are not concerned with physical defects, and the relationships  
between software failures, software defects, and their origins are not easily mapped, we often use  
the fault model concept and fault lists accumulated in memory from years of experience to  
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design tests and for diagnosis tasks during fault localization (debugging) activities. A simple  

example of a fault model a software engineer might have in memory is ―an incorrect value for a  

variable was observed because the precedence order for the arithmetic operators used to calculate  

its value was incorrect.‖ This could be called ―an incorrect operator precedence order‖ fault. An  

error was made on the part of the programmer who did not understand the order in which the  

arithmetic operators would execute their operations. Some incorrect assumptions about the order  

were made.  

 

The defect (fault) surfaced in the incorrect value of the variable. The probable cause is a lack of  

education on the part of the programmer. Repairs include changing the order of the operators or  

proper use of parentheses. The tester with access to this fault model and the frequency of  

occurrence of this type of fault could use this information as the basis for generating fault  

hypotheses and test cases. This would ensure that adequate tests were performed to uncover such  

faults.  

In the past, fault models and fault lists have often been used by developers/ testers in an informal  

manner, since many organizations did not save or catalog defect-related information in an easily  

accessible form. To  increase the effectiveness of their testing and debugging processes, software  

organizations need to initiate the creation of a defect database, or defect repository. The defect  

repository concept supports storage and retrieval of defect data from all projects in a centrally  

accessible location. A defect classification scheme is a necessary first step for developing the  

repository. The defect repository can be organized by projects and for all projects defects of each  

class are logged, along their frequency of occurrence, impact on operation, and any other useful  

comments. Defects found both during reviews and execution-based testing should be cataloged.  

 

1.8 Defect classes, the defect repository and test design  

Defects can be classified in many ways. It is important for an organization to adapt a single  

classification scheme and apply it to all projects. No matter which classification scheme is  

selected, some defects will fit into more than one class or category. Because of this problem,  

developers,testers, and SQA staff should try to be as consistent as possible when recording defect  

data. The defect types and frequency of occurrence should be used to guide test planning, and  

test design. Execution-based testing strategies should be selected that have the strongest  

possibility of detecting particular types of defects. It is important that tests for new and modified  

software be designed to detect the most frequently occurring defects. The reader should keep in  

mind that execution-based testing will detect a large number of the defects that will be described;  

however, software reviews as described in Chapter 10 are also an excellent testing tool for  

detection of many of the defect types that will be discussed in the following sections.  

Defects, as described in this text, are assigned to four major classes reflecting their point of  

origin in the software life cycle—the development phase in which they were injected. These  

classes are: requirements/ specifications, design, code, and testing defects as summarized in  

Figure 3.2. It should be noted that these defect classes and associated subclasses focus on defects  

that are the major focus of attention to execution-based testers. The list does not include other  

defects types that are best found in software reviews, for example, those defects related to 

conformance to styles and standards. The review checklists in Chapter 10 focus on many of these 

types of defects.  
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2   . 1 . 1  R e q u i r e m e n t s  a n d  S p e c i f i c a t i o n   D e f e c t s  

The beginning of the software life cycle is critical for ensuring high quality in the software being  

developed. Defects injected in early phases can persist and be very difficult to remove in later  

phases. Since many requirements documents are written using a natural language representation,  

there are very often occurrences of ambiguous, contradictory, unclear, redundant, and imprecise  

requirements. Specifications in many organizations  are also developed using natural language  

representations, and these too are subject to the same types of problems as mentioned above.  
 

However, over the past several years many organizations have introduced the use of formal 
specification languages that, when accompanied by tools, help to prevent incorrect descriptions of 
system behavior. Some specific requirements/specification defects are:  

 

1 . Functional Description Defects  

The overall description of what the product does, and how it should behave (inputs/outputs), is 

incorrect, ambiguous, and/or incomplete.  

 

2 . Feature Defects  

Features may be described as distinguishing characteristics of a software component or  

system.  

Features refer to functional aspects of the software that map to functional requirements as 

described  by  the  users  and  clients.  Features  also  map  to  quality  requirements  such  as 

performance and reliability. Feature defects are due to feature descriptions that are missing, 

incorrect, incomplete, or superfluous.  

3 . Feature Interaction Defects  

These are due to an incorrect description of how the features should interact. For example, 

suppose one feature of a software system supports adding a new customer to a customer 

database. This feature interacts with another feature that categorizes the new customer. The 

classification feature impacts on where the storage algorithm places the new customer in the 

database,  and  also  affects  another  feature  that  periodically  supports  sending  advertising 

information to customers in a specific category. When testing we certainly want to focus on the 

interactions between these features.  

 

4 . Interface Description Defects  

These are defects that occur in the description of how the target software is to interface with  
external software, hardware, and users. For detecting many functional description defects, black  

box testing techniques, which are based on functional specifications of the software, offer the  

best approach. In Chapter 4 the reader will be introduced to several black box testing techniques  
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such as equivalence class partitioning, boundary value analysis, state transition testing, and  

cause-and-effect graphing, which are useful for detecting functional types of detects. Random  

testing and error guessing are also useful for detecting these types of defects. The reader should  

note that many of these types of defects can be detected early in the life cycle by software  

reviews. Black box-based tests can be planned at the unit, integration, system, and acceptance  

levels to detect requirements/specification defects. Many feature interaction and interfaces  

description defects are detected using black box-based test designs at the integration and system  

levels.  

 

D e s i g n D e f e c t s  

Design defects occur when system components, interactions between system components, 
interactions between the components and outside soft ware/hardware, or users are incorrectly 

designed. This covers defects in the design of algorithms, control, logic, data elements, module 

interface descriptions, and external software/hardware/user interface descriptions.  

 

When describing these defects we assume that the detailed design description for the software  

modules is at the pseudo code level with processing steps, data structures,  input/output  

parameters, and major control structures defined. If module design is not described in such detail  
then many of the defects types described here may be moved into the coding defects class.  

 

1 . Algorithmic and Processing Defects  

 

These occur when the processing steps in the algorithm as described by the pseudo code are 
incorrect. For example, the pseudo code may contain a calculation that is incorrectly specified, or the 

processing steps in the algorithm written in the pseudo code language may not be in the correct 

order. In the latter case a step may be missing or a step may be duplicated.  
 

Another example of a defect in this subclass is the omission of error condition checks such as 
division by zero. In the case of algorithm reuse, a designer may have selected an inappropriate 
algorithm for this problem (it may not work for all cases).  

 

2 . Control, Logic, and Sequence Defects  

Control defects occur when logic flow in the pseudo code is not correct. For example, branching  

to soon, branching to late, or use of an incorrect branching condition. Other examples in this  

subclass are unreachable pseudo code elements, improper nesting, improper procedure or  

function calls. Logic defects usually relate to incorrect use of logic operators, such as less than  

(_), greater than (_), etc. These may be used incorrectly in a Boolean expression controlling a 
branching instruction.  
 

3 . Data Defects  

These are associated with incorrect design of data structures. For example, a record may be  

lacking a field, an incorrect type is assigned to a variable or a field in a record, an array may not  

have the proper number of elements assigned, or storage space may be allocated incorrectly.  

Software reviews and use of a data dictionary work well to reveal these types of defects.  
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4 . Module Interface Description Defects  

These are defects derived from, for example, using incorrect, and/or inconsistent parameter 
types, an incorrect number of parameters, or an incorrect ordering of parameters.  
 

5 . Functional Description Defects  

The defects in this category include incorrect, missing, and/or unclear design elements. For 
example, the design may not properly describe the correct functionality of a module. These 
defects are best detected during a design review.  

 

6 . External Interface Description Defects  

These are derived from incorrect design descriptions for interfaces with COTS components,  

external software systems, databases, and hardware devices (e.g., I/O devices). Other examples  

are user interface description defects where there are missing or improper commands, improper  
sequences of commands, lack of proper messages, and/or lack of feedback messages for the user.  

 

C o d i n g D e f e c t s  

Coding defects are derived from errors in implementing the code. Coding defects classes are 

closely related to design defect classes especially if pseudo code has been used for detailed 

design.  Some  coding  defects  come  from  a  failure  to  understand  programming  language 

constructs, and miscommunication with the designers. Others may have transcription or omission 

origins. At times it may be difficult to classify a defect as a design or as a coding defect. It is best to 

make a choice and be consistent when the same defect arises again.  

 

1 . Algorithmic and Processing Defects  

Adding levels of programming detail to design, code-related algorithmic and processing defects 

would now include unchecked overflow and underflow conditions, comparing inappropriate data 

types, converting one data type to another, incorrect ordering of arithmetic operators (perhaps due to 

misunderstanding of the precedence of operators), misuse or omission of parentheses, precision 

loss, and incorrect use of signs.  

 

2 . Control, Logic and Sequence Defects  

On the coding level these would include incorrect expression of case statements, incorrect 

iteration of loops (loop boundary problems), and missing paths.  

3 . Typographical Defects  

These are principally syntax errors, for example, incorrect spelling of a variable name, that are 
usually detected by a compiler, self-reviews, or peer reviews.  

 

4 . I n i t i a l i z a t i o n Defects  

These occur when initialization statements are omitted or are incorrect. This may occur because of 
misunderstandings or lack of communication between programmers, and/or programmers and 
designers, carelessness, or misunderstanding of the programming environment.  
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5 . Data-Flow Defects  

There are certain reasonable operational sequences that data should flow  through. For example, a 

variable should be initialized, before it is usedin a calculation or a condition. It should not be 

initialized twice before there is an intermediate use. A variable should not be disregarded before it is 

used. Occurrences of these suspicious variable uses in the code may, or may not, cause 

anomalous behavior. Therefore, in the strictest sense of the definition for the term ―defect,‖ they may 

not be considered as true instances of defects. However, their presence indicates an error has 

occurred and a problem exists that needs to be addressed.  

 

6 . Data Defects  

These are indicated by incorrect implementation of data structures. For example, the programmer  

may omit a field in a record, an incorrect type or access is assigned to a file, an array may not be  

allocated the proper number of elements. Other data defects include flags, indices, and constants  

set incorrectly.  

7 . Module Interface Defects  

As in the case of module design elements, interface defects in the code may be due to using 

incorrect or inconsistent parameter types, an incorrect number of parameters, or improper 

ordering of the parameters. In addition to defects due to improper design, and improper 

implementation of design, programmers may implement an incorrect sequence of calls or calls to 

nonexistent modules.  

 

8 . Code Documentation Defects  

When the code documentation does not reflect what the program actually does, or is incomplete or 

ambiguous, this is called a code documentation defect. Incomplete, unclear, incorrect, and outof-date 

code documentation affects testing efforts. Testers may be misled by documentation defects and 

thus reuse improper tests or design new tests that are not appropriate for the code. Code reviews are 

the best tools to detect these types of defects.  

9 . External Hardware, Software Interfaces Defects  

These defects arise from problems related to system calls, links to databases, input/output 

sequences, memory usage, resource usage, interrupts and exception handling, data exchanges with 
hardware, protocols, formats,  interfaces with build files, and timing sequences (race conditions 

may result).  

 

Many initialization, data flow, control, and logic defects that occur in design and code are best  

addressed by white box testing techniques applied at the unit (single-module) level. For example,  

data flow testing is useful for revealing data flow defects, branch testing is useful for detecting  

control defects, and  loop testing helps  to  reveal loop-related defects.  White box testing  

approaches are dependent on knowledge of the internal structure of the software, in contrast to  

black box approaches, which are only dependent on behavioral specifications. The reader will  

be introduced to several white box-based techniques in Chapter 5. Many design and coding  
defects are also detected by using black box testing techniques. For example, application of  
decision tables is very useful for detecting errors in Boolean expressions. Black box tests as  
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described in Chapter 4 applied at the integration and system levels help to reveal external 

hardware and software interface defects. The author will stress repeatedly throughout the text 

that a combination of both of these approaches is needed to reveal the many types of defects that are 

likely to be found in software.  

 

T e s t i n g D e f e c t s  

Defects are not confined to code and its related artifacts. Test plans, test cases, test harnesses,  

and test procedures can also contain defects. Defects in test plans are best detected using review  

techniques.  

1 . Test Harness Defects  

In order to test software, especially at the unit and integration levels, auxiliary code must be 

developed. This is called the test harness or scaffolding code. Chapter 6 has a more detailed 

discussion of the need for this code. The test harness code should be carefully designed, 

implemented, and tested since it a work product and much of this code can be reused when new 

releases of the software are developed. Test harnesses are subject to the same types of code and 

design defects that can be found in all other types of software.  

 

2 . Test Case Design and Test Procedure Defects  

These would encompass incorrect, incomplete, missing, inappropriate test cases, and test 
procedures. These defects are again best detected in test plan reviews as described in Chapter 10. 

Sometimes the defects are revealed during the testing process itself by means of a careful 
analysis of test conditions and test results. Repairs will then have to be made.  

 

1.10 Defect Examples: The Coin Problem  

 

The following examples illustrate some instances of the defect classes that were discussed in the 

previous sections. A simple specification, a detailed design description, and the resulting code are 

shown, and defects in each are described. Note that these defects could be injected via one or more of 

the five defect sources discussed at the beginning of this chapter. Also note that there may be more 

than one category that fits a given defect. Figure 3.3 shown a sample informal specification for a 

simple program that calculates the total monetary value of a set of coins. The  

program could be a component of an interactive cash register system to support retail store 

clerks. This simple example shows requirements/ specification defects, functional description 

defects, and interface description defects.  

 

The functional description defects arise because the functional description is ambiguous and  

incomplete. It does not state that the input, number_of_coins, and the output, number_of_dollars  

and number _of_cents, should all have values of zero or greater. The number_of_coins cannot be  

negative, and the values in dollars and cents cannot be negative in the real-world domain. As a  

consequence of these ambiguities and specification incompleteness, a checking routine may be  

omitted from the design, allowing the final program to accept negative values for the input  
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number_of_coins for each of the denominations, and consequently it may calculate an invalid 

value for the results. A more formally stated set of preconditions and postconditions would be 

helpful here, and would address some of the problems with the specification. These are also 

useful for designing black box tests.  
 

A precondition is a condition that must be true in order for a software component to 
operate properly.  

In this case a useful precondition would be one that states for example:number_of_coins __0  

A postcondition is a condition that must be true when a software component completes its 

operation properly.  
A useful postcondition would be:  

number_of_dollars, number_of_cents __ 0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, the functional description is unclear about the largest number of coins of each  

denomination allowed, and the largest number of dollars and cents allowed as output values.  

Interface description defects relate to the ambiguous and incomplete description of user-software  

interaction. It is not clear from the specification how the user interacts with the program to  

provide input, and how the output is to be reported. Because of ambiguities in the user  

interaction description the software may be difficult to use. Likely origins for these types of  

specification defects lie in the nature of the development process, and lack of proper education  

and training. A poor-quality development process may not be allocating the proper time and  

resources to specification development and review. In addition, software engineers may not have  

the proper education and training to develop a quality specification. All of these specification  

defects, if not detected and repaired, will propagate to the design and coding phases. Black box  

testing techniques, which we will study in Chapter 4, will help to reveal many of these functional  

weaknesses. Figure 3.4 shows the specification transformed in to a design description.  

There are numerous design defects, some due to the ambiguous and incomplete nature of the  

specification; others are newly introduced. Design defects include the following:  
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Control, logic, and sequencing defects. The defect in this subclass arises from an incorrect 

―while‖ loop condition (should be less than or equal to six)  

Algorithmic, and processing defects. These arise from the lack of error checks for incorrect  

and/or invalid inputs, lack of a path where users can correct erroneous inputs, lack of a path for  

recovery from input errors. The lack of an error check could also be counted as a functional  

design defect since the design does not adequately describe the proper functionality for the  

program.  
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Data defects. This defect relates to an incorrect value for one of the elements of the integer 
array, coin_values, which should read 1,5,10,25,50,100.  
 

External interface description defects. These are defects arising from the absence of input  

messages or prompts that introduce the program to the user and request inputs. The user has no  

way of knowing in which order the number of coins for each denomination must be input, and  

when to stop inputting values. There is an absence of help messages, and feedback for user if he  

wishes to change an input or learn the correct format and order for inputting the number of coins.  

The output description and output formatting is incomplete. There is no description of what the  

outputs  means in terms of the problem domain. The user will note that two values are output, but  

has no clue as to their meaning. The control and logic design defects are best addressed by white  

box- based tests, (condition/branch testing, loop testing). These other design defects will need a 

combination of white and black box testing techniques for detection.  

Figure 3.5 shows the code for the coin problem in a ―C-like‖ programming language. Without 
effective reviews the specification and design defects could propagate to the code. Here 
additional defects have been introduced in the coding phase.  

 

Control, logic, and sequence defects. These include the loop variable increment step which is out 

of the scope of the loop. Note that incorrect loop condition (i _ 6) is carried over from design and 

should be counted as a design defect.  

Algorithmic and processin g defects. The division operator may cause problems if negative 

values are divided, although this problem could be eliminated with an input check.  
 

                  Data Flow defects. The variable total_coin_value is not initialized. It is used before it is defined. 

                  (This might also be considered a data defect.) 

Data Defects. The error in initializing the array coin_values is carried over from design and 

should be counted as a design defect.  

External Hardware, Software Interface Defects. The call to the external func tion ―scanf‖ is 

incorrect. The address of the variable must be provided (&number_of_coins).  

 

Code Documentation Defects. The documentation that accompanies this code is incomplete and 
ambiguous. It reflects the deficiencies in the external interface description and other defects that 

occurred during speci fication and design. Vital information is missing for anyone who will need to 

repair, maintain or reuse this code.  
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The control, logic, and sequence, data flow defects found in this example could be detected by  
using a combination of white and black box testing techniques. Black box tests may work well to  
reveal the algorithmic and data defects. The code documentation defects require a code review  
for detection. The external software interface defect would probably be caught by a good  
compiler. 
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The poor quality of this small program is due to defects injected during several of the  

life cycle phases with probable causes ranging from lack of education, a poor process, to  

oversight on the part of the designers and developers. Even though it implements a simple  

function the program is unusable because of the nature of the defects it contains. Such software  

is not acceptable to users; as testers we must make use of all our static and dynamic testing tools  

as described in subsequent chapters to ensure that such poor-quality software is not delivered to  

our user/client group. We must work with analysts, designers and code developers to ensure that  

quality issues are addressed early the software life cycle. We must also catalog defects and try to  

eliminate them by improving education, training, communication, and process.  
 

 

1.11 Developer/Tester Support for Developing a Defect Repository  

The focus of this chapter is to show with examples some of the most common types of defects  

that occur during software development. It is important if you are a member of a test  

organization to illustrate to management and your colleagues the benefits of developing a defect  

repository to store defect information. As software engineers and test specialists we should  

follow the examples of engineers in other disciplines who have realized the usefulness of defect  

data. A requirement for repository development should be a part of testing and/or debugging  

policy statements. You begin with development of a defect classification scheme and then  

initiate the collection defect data from organizational projects. Forms and  templates will need to  

be designed to collect the data. Examples are the test incident reports as described in Chapter 7,  

and defect fix reports as described in Chapter 4. You will need to be conscientious about  

recording each defect after testing, and also recording the frequency of occurrence for each of the  

defect types. Defect monitoring should continue for each on-going project. The distribution of  

defects will change as you make changes in your processes. The defect data is useful for test  

planning, a TMM level 2 maturity goal. It helps you to select applicable testing techniques,  

design (and reuse) the test cases you need, and allocate the amount of resources you will need to 

devote to detecting and removing these defects. This in turn will allow you to estimate testing 

schedules and costs.  
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The defect data can support debugging activities as well. In fact, as Figure 3.6 shows, a defect  

repository can help to support achievement and continuous implementation of several TMM  

maturity goals including controlling and monitoring of test, software quality evaluation and 

control,  test  measurement,  and  test  process  improvement.  Chapter 13  will  illustrate  the 

application of this data to defect prevention activities and process improvement. Other chapters will 

describe the role of defect data in various testing activities.  
  

 

26  



 
 
 
 

CS1016 - SOFTWARE TESTING  

 IMPORTANT QUESTIONS  

Unit I  

Part-A Questions  

1.  Compare Validation and Verification.  

2.  Define Software quality.  

3.  Define:Process  

4.  Define:Testing and debugging  

5.  Compare:Errors,faults and failures  

6.  Define:metrics  

7.  Define the role of SQA Group.  

8.  Define: Defect repository  

 

Part-B Questions  

1.  Explain the Software testing principles.  

2.  Describe the defect classes in detail with example.  

3.  Explain defect repository.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

UNIT II  TEST CASE DESIGN  

 

 

2.1 Introduction to Testing Design Strategies  

 

 

As a reader of this text, you have a goal to learn more about testing and how to become a  

good tester. You might be a student at a university who has completed some software  

engineering courses. Upon completing your education you would like to enter the profession of  

test specialist. Or you might be employed by an organization that has test process improvement  

as a company goal. On the other hand, you may be a consultant who wants to learn more about  

testing to advise your clients. It may be that you play several of these roles. You might be asking  

yourself, Where do I begin to learn more about testing? What areas of testing are important?  

Which topics need to be addressed first? The Testing Maturity Model provides some answers to  

these questions. It can serve as a learning tool, or framework, to learn about testing. Support for  

this usage of the TMM lies in its structure. It introduces both the technical and managerial  

aspects of testing in a manner that allows for a natural evolution of the testing process, both on  

the personal and organizational levels.  

 

 

In this chapter we begin the study of testing concepts using the TMM as a learning  

framework. We begin the development of testing skills necessary to support achievement of the  

maturity goals at levels 2-3 of the Testing Maturity Model. TMM level 2 has three maturity  

goals, two of which are managerial in nature. These will be discussed in subsequent chapters.  

The  technically  oriented  maturity  goal  at  level 2  which  calls  for  an  organization  to  

―institutionalize basic testing techniques and methods‖ addresses important and basic technical 

issues related to execution-based testing. Note that this goal is introduced at a low level of the 

TMM, indicating its importance as a basic building block upon which additional testing strengths can 

be built. In order to satisfy this maturity goal test specialists in an organization need to acquire 

technical knowledge basic to testing and apply it to organizational projects.  

 

 

Chapters 4 and 5 introduce you to fundamental test-related technical concepts related to 

execution-based testing. The exercises at the end of the chapter help to prepare you for their 

application to real-world problems. Testing strategies and methods are discussed that are both basic 

and practical. Consistent application of these strategies, methods, and techniques by testers across the 

whole organization will support test process evolution to higher maturity levels, and can lead to 

improved software quality.  
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2.2 The Smart Tester  

 

 

Software components have defects, no matter how well our defect prevention activities  

are  implemented.  Developers  cannot  prevent/eliminate  all  defects  during  development.  

Therefore, software must be tested before it is delivered to users. It is the responsibility of the  

testers to design tests that (i) reveal defects, and (ii) can be used to evaluate software  

performance, usability, and reliability. To achieve these goals, testers must select a finite number of 

test cases, often from a very large execution domain. Unfortunately, testing is usually 

performed under budget and time constraints. Testers often are subject to enormous pressures 

from management and marketing because testing is not well planned, and expectations are 

unrealistic. The smart tester must plan for testing, select the test cases, and monitor the process to 

insure that the resources and time allocated for the job are utilized effectively. These are 

formidable tasks, and to carry them out effectively testers need proper education and training and the 

ability to enlist management support.  

 

 

Novice testers, taking their responsibilities seriously, might try to test a module or component  

using all possible inputs and exercise all possible software structures. Using this approach, they  

reason, will enable them to detect all defects. However an informed and educated tester knows  

that is not a realistic or economically feasible goal. Another approach might be for the tester to  

select test inputs at random, hoping that these tests will reveal critical defects. Some testing  

experts believe that randomly generated test inputs have a poor performance record .  

 

 

The author believes that goal of the smart tester is to understand the functionality, input/output  

domain, and the environment of use for the code being tested. For certain types of testing, the  

tester must also understand in detail how the code is constructed. Finally, a smart tester needs to  

use knowledge of the types of defects that are commonly injected  during development or  

maintenance of this type of software. Using this information, the smart tester must then  

intelligently select a subset of test inputs as well as combinations of test inputs that she believes  

have the greatest possibility of revealing defects within the conditions and constraints placed on  

the testing process. This takes time and effort, and the tester must chose carefully to maximize  

use of resources [1,3,5]. This chapter, as well as the next, describes strategies and practical  

methods to help you design test cases so that you can become a smart tester.  
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2.3 Test Case Design Strategies  

 

 

A smart tester who wants to maximize use of time and resources knows that she needs to  

develop what we will call effective test cases for execution-based testing. By an effective test  

case we mean one that has a good possibility of revealing a defect (see Principle 2 in Chapter 2).  

The ability to develop effective test cases is important to an organization evolving toward a  

higher-quality testing process. It has many positive consequences. For example, if test cases are  

effective there is (i) a greater probability of detecting defects, (ii) a more efficient use of  

organizational resources, (iii) a higher probability for test reuse, (iv) closer adherence to testing 

and project schedules and budgets, and, (v) the possibility for delivery of a higher-quality 

software product. What are the approaches a tester should use to design effective test cases? To 

answer the question we must adopt the view that software is an engineered product. Given this 

view there are two basic strategies that can be used to design test cases. These are called the 

black box (sometimes called functional or specification) and white box (sometimes called clear or 

glassbox) test strategies. The approaches are summarized in Figure 4.1.  

 

 

Using the black box approach, a tester considers the software-under test to be an opaque box.  

There is no knowledge of its inner structure (i.e., how it works). The tester only has knowledge  

of what it does. The size of the software-under-test using this approach can vary from a simple  

module, member function, or object cluster to a subsystem or a complete Software system. The  

description of behavior or functionality for the software-under-test may come from a formal  

specification, an Input/Process/Output Diagram (IPO), or a well-defined set of pre and post  

conditions. Another source for information is a requirements specification document that usually  

describes the functionality of the software-under-test and its inputs and expected outputs. The  

tester provides the specified inputs to the software-under-test, runs the test and then determines if  

the outputs produced are equivalent to those in the specification. Because the black box approach  

only considers software behavior and functionality, it is often called functional or specification- 

based testing. This approach is especially useful for revealing requirements and specification  

defects.  

 

 

The white box approach focuses on the inner structure of the software to be tested. To  

design test cases using this strategy the tester must have knowledge of that structure. The code,  

or a suitable pseudo codelike representation must be available. The tester selects test cases to  

exercise specific internal structural elements to determine if they are working properly. For  

example, test cases are often designed to exercise all statements or true/false branches that occur  

in a module or member function. Since designing, executing, and analyzing the results of white  
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box testing is very time consuming, this strategy is usually applied to smaller-sized pieces of 

software such as a module or member function. The reasons for the size restriction will become 

more apparent in Chapter 5 where the white box strategy is described in more detail. White box 

testing methods are especially useful for revealing design and code-based control, logic and 

sequence defects, initialization defects, and data flow defects.  

The smart tester knows that to achieve the goal of providing users with low-defect, high- 

quality software, both of these strategies should be used to design test cases. Both support the  

tester with the task of selecting the finite number of test cases that will be applied during test.  

Neither approach by itself is guaranteed to reveal all defects types we have studied in Chapter 3.  

The approaches complement each other; each may be useful for revealing certain types of  

defects. With a suite of test cases designed using both strategies the tester increases the chances  

of revealing the many different type of defects in the software under test. The tester will also  

have an effective set of reusable test cases for regression testing (re-test after changes), and for  

testing new releases of the software.  

There is a great deal of material to introduce to the reader relating to both of these 

strategies. To facilitate the learning process, the material has been partitioned into two chapters. 

This chapter focuses on black box methods, and Chapter 5 will describe white box methods and 

how to apply them to design test cases.  

Test 

Strategy Tester‘s View 

 

Black box 

 

 

 

 

 

 

White box 

Knowledge Sources      Methods 
 
 

Requirements Equivalence class Partitioning 
 

document Boundary value analysis State transition 

testing Cause and effect graphing 

Specifications 

 

 

 

 

 

 

Statement testing Branch  

testing Path testing Data flow 

High-levign testing Mutation testing 

Detailed design  



 
 

Fig 4.1   The two basic testing strategies.  

 

 

 

 

2.4 Using black box approach to test case design  

 

 

Given the black box test strategy where we are considering only inputs and outputs as a  

basis for designing test cases, how do we choose a suitable set of inputs from the set of all  

possible valid and invalid inputs? Keep in mind that infinite time and resources are not available  

to exhaustively test all possible inputs. This is prohibitively expensive even if the target software  

is a simple software unit. As a example, suppose you tried to test a single procedure that  

calculates the square root of a number. If you were to exhaustively test it you would have to try  

all positive input values. This is daunting enough! But, what about all negative numbers,  

fractions? These are also possible inputs. The number of test cases would rise rapidly to the point  

of infeasibilty. The goal for the smart tester is to effectively use the resources available by  

developing a set of test cases that gives the maximum yield of defects for the time and effort  

spent. To help achieve this goal using the black box approach we can select from several  

methods. Very often combinations of the methods are used to detect different types of defects.  

Some methods have greater practicality than others.  

 

 

2.5 Random Testing  

 

 

Each software module or system has an input domain from which test input data is selected. If a 

tester randomly selects inputs from the domain, this is called random testing. For example, if the 

valid input domain for a module is all positive integers between 1 and 100, the tester using this 

approach would randomly, or unsystematically, select values from within that domain; for 

example, the values 55, 24, 3 might be chosen. Given this approach, some of the issues that 

remain open are the following:  

   Are the three values adequate to show that the module meets its specification when the  

 tests are run? Should additional or fewer values be used to make the most effective use of  

 resources?  

   Are there any input values, other than those selected, more likely to reveal defects? For  

 example, should positive integers at the beginning or end of the domain be specifically  

 selected as inputs?  

   Should any values outside the valid domain be used as test inputs? For example, should  
 test data include floating point values, negative values, or integer values greater than  
 100?  
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More structured approaches to black box test design address these issues.  

 

 

Use of random test inputs may save some of the time and effort that more thoughtful test  

input selection methods require. However, the reader should keep in mind that according to  

many testing experts, selecting test inputs randomly has very little chance of producing an  

effective set of test data [1]. There has been much discussion in the testing world about whether  

such a statement is accurate. The relative effectiveness of random versus a more structured  

approach to generating test inputs has been the subject of many research papers. Readers should  

refer to references [2-4] for some of these discussions. The remainder of this chapter and the  

next will illustrate more structured approaches to test case design and selection of inputs. As a  

final note there are tools that generate random test data for stress tests. This type of testing can be  

very useful especially at the system level. Usually the tester specifies a range for the random  

value generator, or the test inputs are generated according to a statistical distribution associated  

with a pattern of usage.  

 

 

2.6 Equivalence Class Partitioning  

 

 

If a tester is viewing the software-under-test as a black box with well- defined inputs and  

outputs, a good approach to selecting test inputs is to use a method called equivalence class  

partitioning. Equivalence class partitioning results in a partitioning of the input domain of the  

software under test. The technique can also be used to partition the output domain, but this is not  

a common usage. The finite number of partitions or equivalence classes that result allow the  

tester to select a given member of an equivalence class as a representative of that class. It is  

assumed that all members of an equivalence class are processed in an equivalent way by the  

                 target software.  
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Using equivalence class partitioning a test value in a particular class is equivalent to a test value  

of any other member of that class. Therefore, if one test case in a particular equivalence class  

reveals a defect, all the other test cases based on that class would be expected to reveal the same  

defect. We can also say that if a test case in a given equivalence class did not detect a particular  

type of defect, then no other test case based on that class would detect the defect (unless a subset  

of the equivalence class falls into another equivalence class, since classes may overlap in some  

cases). A more formal discussion of equivalence class partitioning is given in Beizer [5].  

 

 

Based on this discussion of equivalence class partitioning we can say that the partitioning of the 

input domain for the software-under-test using this technique has the following advantages:  

 

 

1. It eliminates the need for exhaustive testing, which is not feasible.  

2. It guides a tester in selecting a subset of test inputs with a high probability of detecting a  

defect.  

3. It allows a tester to cover a larger domain of inputs/outputs with a smaller subset selected from an 

equivalence class.  

 

 

Most equivalence class partitioning takes place for the input domain. How does the tester  

identify equivalence classes for the input domain? One approach is to use a set of what Glen  

Myers calls ―interesting‖ input conditions [1]. The input conditions usually come from a  

description in the specification of the software to be tested. The tester uses the conditions to  

partition the input domain into equivalence classes and then develops a set of tests cases to cover  

(include) all the classes. Given that only the information in an input/output specification is  

needed, the tester can begin to develop black box tests for software early in the software life  

cycle in parallel with analysis activities (see Principle 11, Chapter 2). The tester and the analyst  

interact during the analysis phase to develop (i) a set of testable requirements, and (ii) a correct  

and complete input/output specification. From these the tester develops, (i) a high-level test plan,  

and (ii) a preliminary set of black box test cases for the system. Both the plan and the test cases  

undergo further development in subsequent life cycle phases. The V-Model as described in  

Chapter 8 supports this approach.  
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There are several important points related to equivalence class partitioning that should be made to 

complete this discussion.  

 

 

1. The tester must consider both valid and invalid equivalence classes. Invalid classes represent 

erroneous or unexpected inputs.  

 

 

2. Equivalence classes may also be selected for output conditions.  

 

 

3. The derivation of input or outputs equivalence classes is a heuristic process. The conditions 

that are described in the following paragraphs only give the tester guidelines for identifying the 

partitions. There are no hard and fast rules. Given the same set of conditions,   individual testers 

may make different choices of equivalence classes. As a tester gains experience he is more able to 

select equivalence classes with confidence.  

 

 

4.  In  some  cases  it  is  difficult  for  the  tester  to  identify  equivalence  classes.  The  

conditions/boundaries that help to define classes may be absent, or obscure, or there may seem to  

be a very large or very small number of equivalence classes for the problem domain. These  

difficulties may arise from an ambiguous, contradictory, incorrect, or incomplete   specification  

and/or requirements description. It is the duty of the tester to seek out the analysts and meet with  

them to clarify these documents. Additional contact with the user/client group may be required.  

A tester should also realize that for some software problem domains defining equivalence classes  

is inherently difficult, for example, software that needs to utilize the tax code.  

 

 

Myers suggests the following conditions as guidelines for selecting input equivalence classes [1].  

Note that a condition is usually associated with a particular variable. We treat each condition  

separately. Test cases, when developed, may cover multiple conditions and multiple variables.  

 

 

List o f Conditions  

1. ‗‗If an input condition for the software-under-test is specified as a range of values, select one  

valid equivalence class that covers the allowed range and two invalid equivalence classes, one  

outside each  end of the range.‘‘  
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For example, suppose the specification for a module says that an input, the length of a 

widget in millimeters, lies in the range 1-499; then select one valid equivalence class that 

includes all values from 1 to 499. Select a second equivalence class that consists of all values less 

than 1, and a third equivalence class that consists of all values greater than 499.  

 

2.‗‗If an input condition for the software-under-test is specified as a number of values, then 

select one valid equivalence class that includes the allowed number of values and two invalid 

equivalence classes that are outside each end of the allowed number.‘‘  

For example, if the specification for a real estate-related module say that a house can have  

one to four owners, then we select one valid equivalence class that includes all the valid number  

of owners, and then two invalid equivalence classes for less than one owner and more than four  

owners.  

 

3.‗If an input condition for the software-under-test is specified as a set of valid input values, then 

select one valid equivalence class that contains all the members of the set and one invalid 

equivalence class for any value outside the set.‘‘  

For example, if the specification for a paint module states that the colors RED, BLUE,  

GREEN and YELLOW are allowed as inputs, then select one valid equivalence class that  

includes the set RED, BLUE, GREEN and YELLOW, and one invalid equivalence class for all  

other inputs.  

 

‗4‗If an input condition for the software-under-test is specified as a ―must be‖ condition, select one 

valid equivalence class to represent the ―must be‖ condition and one invalid class that does not 

include the ―must be‖ condition.‘‘  

For example, if the specification for a module states that the first character of a part identifier must 

be a letter, then select one valid equivalence class where the first character is a letter, and one invalid 

class where the first character is not a letter.  

 

5‗‗If the input specification or any other information leads to the belief that an element in an 

equivalence class is not handled in an identical way by the software-under-test, then the class 

should be further partitioned into smaller equivalence classes.‘‘  
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To show how equivalence classes can be derived from a specification, consider an 

example in Figure 4.2. This is a specification for a module that calculates a square root.  

 

 

The specification describes for the tester conditions relevant to the  

 

 

Function square_root  

message (x:real)  

when x >_0.0  

reply (y:real)  

where y >_0.0 & approximately (y*y,x)  

otherwise reply exception imaginary_square_root  

 end function  

 

 

Fig 4.2  A specification of a square root function.  

 

input/output variables x and y. The input conditions are that the variable x must be a real number and 

be equal to or greater than 0.0. The conditions for the output variable y are that it must be a real 

number equal to or greater than 0.0, whose square is approximately equal to x. If x is not equal to 

or greater than 0.0, then an exception is raised. From this information the tester can easily 

generate both invalid and valid equivalence classes and boundaries. For example, input equivalence 

classes for this module are the following:  

 

EC1. The input variable x is real, valid.  

EC2. The input variable x is not real, invalid.  

EC3. The value of x is greater than 0.0, valid.  

EC4. The value of x is less than 0.0, invalid.  
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Because many organizations now use some type of formal or semiformal specifications, testers 

have a reliable source for applying the input/output conditions described by Myers.  

After the equivalence classes have been identified in this way, the next step in test case design is the 

development of the actual test cases. A good approach includes the following steps.  

 

 

1. Each equivalence class should be assigned a unique identifier. A simple integer is sufficient.  

2. Develop test cases for all valid equivalence classes until all have been covered by (included in) 

a test case. A given test case may cover more than one equivalence class.  

3. Develop test cases for all invalid equivalence classes until all have been covered individually. 

This is to insure that one invalid case does not mask the effect of another or prevent the 

execution of another.  

 

 

An example of applying equivalence class partitioning will be shown in the next section.  

 

 

2.7 Boundary Value Analysis  

 

 

Equivalence class partitioning gives the tester a useful tool with which to develop black box  

based-test cases for the software-under-test. The method requires that a tester has access to a  

specification of input/output behavior for the target software. The test cases developed based on  

equivalence class partitioning can be strengthened by use of an technique called boundary value  

analysis. With experience, testers soon realize that many defects occur directly on, and above  

and below, the edges of equivalence classes. Test cases that consider these boundaries on both  

the input and output spaces as shown in Figure 4.3 are often valuable in revealing defects.  

Whereas equivalence class partitioning directs the tester to select test cases from any element of  

an equivalence class, boundary value analysis requires that the tester select elements close to the  

edges, so that both the upper and lower edges of an equivalence class are covered by test cases.  

As in the case of equivalence class partitioning, the ability to develop high quality test cases with  

the use of boundary values requires experience. The rules-of-thumb described below are useful  

for getting started with boundary value analysis.  
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1. If an input condition for the software-under-test is specified as a range of values, develop 

valid test cases for the ends of the range, and invalid test cases for possibilities just above and 

below the ends of the range. For example if a specification states that an input value for a module 

must lie in the range between _1.0 and _1.0, valid tests that include values for ends of the range, as 

well as invalid test cases for values just above and below the ends, should be included. This would 

result in input values of _1.0, _1.1, and 1.0, 1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

2. If an input condition for the software-under-test is specified as a number of values, develop  

valid test cases for the minimum and maximum numbers as well as invalid test cases that include  

one lesser and one greater than the maximum and minimum. For example, for the real-estate  

module mentioned previously that specified a house can have one to four owners, tests that  

include  

0,1 owners and 4,5 owners would be developed. The following is an example of applying 

boundary value analysis to output equivalence classes. Suppose a table of 1 to 100 values is to be 

produced by a module. The tester should select input data to generate an output table of size 0,1, and 

100 values, and if possible 101 values.  

 

 

3. If the input or output of the software-under-test is an ordered set, such as a table or a linear  

list, develop tests that focus on the first and last elements of the set. It is important for the tester  

to keep in mind that equivalence class partitioning and boundary value analysis apply to testing  

both inputs and outputs of the software-under-test, and, most importantly, conditions are not  

combined for equivalence class partitioning or boundary value analysis. Each condition is  

considered separately, and test cases are developed to insure coverage of all the individual 

conditions. An example follows.  
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An Example of the Application of Equivalence Class Partitioning and Boundary Value 

Analysis  

 

 

Suppose we are testing a module that allows a user to enter new widget identifiers into a widget  

data base. We will focus only on selecting equivalence classes and boundary values for the  

inputs. The input specification for the module states that a widget identifier should consist of 3- 

15 alphanumeric characters of which the first two must be letters. We have three separate  

conditions that apply to the input: (i) it must consist of alphanumeric characters, (ii) the range for  

the total number of characters is between 3 and 15, and, (iii) the first two characters must be  

letters. Our approach to designing the test cases is as follows. First we will identify input  

equivalence classes and give them each an identifier. Then we will augment these with the  

results from boundary value analysis. Tables will be used to organize and record our findings.  

We will label the equivalence classes with an identifier ECxxx, where xxx is an integer whose  

value is one or greater. Each class will also be categorized as valid or invalid for the input  

domain.  

 

 

First we consider condition 1, the requirement for alphanumeric characters. This is a ―must be‖ 

condition. We derive two equivalence classes.  

 

 

EC1. Part name is alphanumeric, valid.  

EC2. Part name is not alphanumeric, invalid.  

 

 

Then we treat condition 2, the range of allowed characters 3-15.  

 

EC3. The widget identifier has between 3 and 15 characters, valid.  

EC4. The widget identifier has less than 3 characters, invalid.  

EC5. The widget identifier has greater than 15 characters, invalid.  

41  



 
 

 

Finally we treat the ―must be‖ case for the first two characters. 

EC6. The first 2 characters are letters, valid.  

EC7. The first 2 characters are not letters, invalid.  

 

 

 

 

 

 

 

 

 

 

 

 

Note that each condition was considered separately. Conditions are not combined to select  

equivalence classes. The tester may find later on that a specific test case covers more than one  

equivalence class. The equivalence classes selected may be recorded in the form of a table as  

shown in Table 4.1. By inspecting such a table the tester can confirm that all the conditions and  

associated valid and invalid equivalence classes have been considered. Boundary value analysis  

is now used to refine the results of equivalence class partitioning. The boundaries to focus on are  

those in the allowed length for the widget identifier. An experienced tester knows that the  

module could have defects related to handling widget identifiers that are of length equal to, and  

directly adjacent to, the lower boundary of 3 and the upper boundary of 15. A simple set of  

abbreviations can be used to represent the bounds groups. For example:  

 

 

BLB—a value just below the lower bound  

LB—the value on the lower boundary  

ALB—a value just above the lower boundary 

BUB—a value just below the upper bound 

UB—the value on the upper bound  
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AUB—a value just above the upper bound  

 

For our example module the values for the bounds groups are: 

BLB—2 BUB—14  

LB—3 UB—15  

ALB—4 AUB—16  

 

 

Note that in this discussion of boundary value analysis, values just above the lower bound (ALB) and 

just below the upper bound (BUB) were selected. These are both valid cases and may be omitted if 

the tester does not believe they are necessary. The next step in the test case design process is to 

select a set of actual input values that covers all the equivalence classes and the boundaries. Once 

again a table can be used to organize the results. Table 4.2 shows the inputs for the sample module. 

Note that the table has the module name, identifier, a date of creation for the test input data, and the 

author of the test cases.  

 

 

Table 4.2 only describes the tests for the module in terms of inputs derived from equivalence  

classes and boundaries. Chapter 7 will describe the components required for a complete test case.  

These include test inputs as shown in Table 4.2, along with test conditions and expected outputs.  

 

 

Test logs are used to record the actual outputs and conditions when execution is complete. Actual  

outputs are compared to expected outputs to determine whether the module has passed or failed  

the test. Note that by inspecting the completed table the tester can determine whether all the  

equivalence classes and boundaries have been covered by actual input test cases. For this  

example the tester has selected a total of nine test cases. The reader should also note then when  

selecting inputs based on equivalence classes, a representative value at the midpoint of the  

bounds of each relevant class should be included as a typical case. In this example, a test case  

was selected with 9 characters, the average of the range values of 3 and 15 (test case identifier 9).  

The set of test cases  

presented here is not unique: other sets are possible that will also cover all the equivalence  

classes and bounds. Based on equivalence class partitioning and boundary value analysis these  

test cases should have a high possibility of revealing defects in the module as opposed to  
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selecting test inputs at random from the input domain. In the latter case there is no way of 

estimating how productive  

the input choices would be. This approach is also a better alternative to exhaustive testing where 

many combinations of characters, both valid and invalid cases, would have to be used. Even for 

this simple module exhaustive testing would not be feasible.  

 

 

2.8 Other Black Box Test Design Approaches  

 

 

There are alternative methods to equivalence class partitioning/boundary value analysis that a  

tester can use to design test cases based on the functional specification for the software to be  

tested. Among these are causeand effect graphing, state transition testing, and error guessing.  

Equivalence class partitioning combined with boundary value analysis is a practical approach to  

designing test cases for software written in both procedural and object-oriented languages since  

specifications are usually available for both member functions associated with an object and  

traditional procedures and functions to be written in procedural languages. However, it must be  

emphasized that use of equivalence class partitioning should be complimented by use of white  

box and, in many cases, other black box test design approaches. This is an important point for the  

tester  

to realize. By combining strategies and methods the tester can have more confidence that the test 

cases will reveal a high number of defects for the effort expended. White box approaches to test 

design will be described in the next chapter. We will use the remainder of this section to give a 

description of other black box techniques.  
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Cause - and - Effect Graphing  

 

 

A major weakness with equivalence class partitioning is that it does not allow testers to combine  

conditions. Combinations can be covered in some cases by test cases generated from the classes.  

Cause-and-effect graphing is a technique that can be used to combine conditions and derive  

an effective set of test cases that may disclose inconsistencies in a specification. However, the  

specification must be transformed into a graph that resembles a digital logic circuit. The tester is  

not required to have a background in electronics, but he should have knowledge of Boolean  

logic. The graph itself must be expressed in a graphical language [1]. Developing the graph,  

especially for a complex module with many combinations of inputs, is difficult and time  

consuming. The graph must be converted to a decision table that the tester uses to develop test  

cases. Tools are available for the latter process and allow the derivation of test cases to be more  

practical using this approach. The steps in developing test cases with a cause-and-effect graph  

are as follows [1]:  
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1. The tester must decompose the specification of a complex software component into 

lowerlevel units.  

2. For each specification unit, the tester needs to identify causes and their effects. A cause is a 

distinct input condition or an equivalence class of input conditions. An effect is an output 

condition or a system transformation. Putting together a table of causes and effects helps the 

tester to record the necessary details. The logical relationships between the causes and effects 

should be determined. It is useful to express these in the form of a set of rules.  

3. From the cause-and-effect information, a Boolean cause-and-effect graph is created. Nodes in the 

graph are causes and effects. Causes are placed on the left side of the graph and effects on the right. 

Logical relationships are expressed using standard logical operators such as AND, OR, and NOT, 

and are associated with arcs. An example of the notation is shown in Figure 4.4. Myers shows 

additional examples of graph notations [1].  

4. The graph may be annotated with constraints that describe combinations of causes and/or 

effects that are not possible due to environmental or syntactic constraints.  

5. The graph is then converted to a decision table.  

6. The columns in the decision table are transformed into test cases. The following example 

illustrates the application of this technique. Suppose we have a specification for a module that 

allows a user to perform a search for a character in an existing string. The specification states that 

the user must input the length of the string and the character to search for. If the string length is out-of-

range an error message will appear. If the character appears in the string, its position will be 

reported. If the character is not in the string the message ―not found‖ will be output.The input 

conditions, or causes are as follows:  

 

 

C1: Positive integer from 1 to 80  

C2: Character to search for is in string 

The output conditions, or effects are: E1: 

Integer out of range  

E2: Position of character in string 

E3: Character not found  

The rules or relationships can be described as follows:  

If C1 and C2, then E2.  
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If C1 and not C2, then E3. If 

not C1, then E1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the causes, effects, and their relationships, a cause-and-effect graph to represent this  

information is shown in Figure 4.5. The next step is to develop a decision table. The decision  

table reflects the rules and the graph and shows the effects for all possible combinations of  

causes. Columns list each combination of causes, and each column represents a test case. Given  

n causes this could lead to a decision table with 2n entries, thus indicating a possible need for  

many test cases. In this example, since we have only two causes, the size and complexity of the  

decision table is not a big problem. However, with specifications having large numbers of causes  

and effects the size of the decision table can be large. Environmental constraints and unlikely  

combinations may reduce the number of entries and subsequent test cases.  

 

 

A decision table will have a row for each cause and each effect. The entries are a reflection of the  

rules and the entities in the cause and effect graph. Entries in the table can be represented by a  

―1‖ for a cause or effect that is present, a ―0‖ represents the absence of a cause or effect,and a  

―—‖ indicates a ―don‘t care‖ value. A decision table for our simple example is shown in Table  

4.3 where C1, C2, C3 represent the causes, E1, E2, E3 the effects, and columns T1, T2, T3 the test 

cases. The tester can use the decision table to consider combinations of inputs to generate the actual 

tests. In this example, three test cases are called for. If the existing string is ―abcde,‖ then possible 

tests are the following:  
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Inputs   Length Character to search for outputs 

T1 5 c 3 

T2 5 w Not found 

T3 90 Integer out of range 

 

 

 

One advantage of this method is that development of the rules and the graph from the  

specification allows a thorough inspection of the specification. Any omissions, inaccuracies, or  

inconsistencies are likely to be detected. Other advantages come from exercising combinations  

of test data that may not be considered using other black box testing techniques. The major  

problem is developing a graph and decision table when there are many causes and effects to  

consider. A possible solution to this is to decompose a complex specification into lower-level,  

simpler components and develop cause-and-effect graphs and decision tables for these. Myers  

has a detailed description of this technique with examples [1]. Beizer [5] and Roper [9] also have  

discussions of this technique. Again, the possible complexity of the graphs and tables make it  

apparent that tool support is necessary for these time-consuming tasks. Although an effective set  

of test cases can be derived, some testers believe that equivalence class partitioning—if  

performed in a careful and systematic way—will generate a good set of test cases, and may make  

more effective useof a tester‘s time.  
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State transition testing  

 

 

State transition testing is useful for both procedural and object-oriented development. It is based on 

the concepts of states and finite-state machines, and allows the tester to view the developing 

software in term of its states, transitions between states, and the inputs and events that trigger 

state changes. This view gives the tester an additional opportunity to develop test cases to detect 

defects that may not be revealed using the input/output condition as well as cause-and-effect 

views presented by equivalence class partitioning and cause-and-effect graphing. Some useful 

definitions related to state concepts are as follows:  

 

A state is an internal configuration of a system or component. It is defined in terms of 

the values assumed at a particular time for the variables that characterize the system 

or component.  

 

 

 

 

A finite-state machine is an abstract machine that can be represented by a state  

graph having a finite number of states and a finite number of transitions between  

states.  
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During the specification phase a state transition graph (STG) may be generated for the  

system as a whole and/or specific modules. In object oriented development the graph may be  

called a state chart. STG/state charts are useful models of software (object) behavior. STG/state  

charts are commonly depicted by a set of nodes (circles, ovals, rounded rectangles) which  

represent states. These usually will have a name or number to identify the state. A set of arrows  

between nodes indicate what inputs or events will cause a transition or change between the two  

linked states. Outputs/actions occurring with a state transition are also depicted on a link or  

arrow. A simple state transition diagram is shown in Figure 4.6. S1 and S2 are the two states of  

interest. The black dot represents a pointer to the initial state from outside the machine. Many  

STGs also have ―error‖ states and ―done‖ states, the latter to indicate a final state for the system.  

The arrows display inputs/actions that cause the state transformations in the arrow directions. For  

example, the transition from S1 to S2 occurs with input, or event B. Action 3 occurs as part of  

this state transition. This is represented by the symbol ―B/act3.‖ It is often useful to attach to the  

STG the system or component variables that are affected by state transitions. This is valuable  

information for the tester as we will see in subsequent paragraphs. For large systems and system  

components, state transition graphs can become very complex. Developers can nest them to  

represent different  

levels of abstraction. This approach allows the STG developer to group a set of related states 

together to form an encapsulated state that can be represented as a single entity on the original 

STG. The STG developer must ensure that this new state has the proper connections to the 

unchanged states from the original STG. Another way to simplify the STG is to use a state table 

representation which may be more concise. A state table for the STG in Figure 4.6 is shown in 

Table 4.4. The state table lists the inputs or events that cause state transitions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

For each state and each input the next state and action taken are listed. Therefore, the tester can  

consider each entity as a representation of a state transition. As testers we are interested in using  
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an existing STG as an aid to designing effective tests. Therefore this text will not present a 

discussion  

of development and evaluation criteria for STGs. We will assume that the STGs have been  

prepared by developers or analysts as a part of the requirements specification. The STGs should  

be subject to a formal inspection when the requirement/specification is reviewed. This step is  

required  

for organization assessed at TMM level 3 and higher. It is essential that testers be present at the 

reviews. From the tester‘s view point the review should ensure that (i) the proper number of 

states are represented, (ii) each state transition (input/output/action) is correct, (iii) equivalent states 

are identified, and (iv) unreachable and dead states are identified. Unreachable states are those that 

no input sequence will reach, and may indicate missing transitions. Dead states are those that once 

entered cannot be exited. In rare cases a dead state is legitimate, for example, in software that 

controls a destructible device. After the STG has been reviewed formally the tester should plan 

appropriate test cases. An STG has similarities to a control flow graph in that it has paths, or 

successions of transitions, caused by a sequence of inputs. Coverage of all paths does not guarantee 

complete testing and may not be practical. A simple approach might be to develop tests that insure 

that all states are entered. A more practical and systematic approach suggested by Marik consists of 

testing every possible state transition [10]. For the simple state machine in Figure 4.6 and Table 4.4 

the transitions to be tested are:  

 

 

Input A in S1  

Input A in S2  

Input B in S1  

Input B in S2  

Input C in S1  

Input C in S2  

 

 

The transition sequence requires the tester to describe the exact inputs for each test as the next  

step. For example the inputs in the above transitions might be a command, a menu item, a signal  

from a device or a button that is pushed. In each case an exact value is required, for example,  

the command might be    ead,   the signal might be    ot   or the button might be    ff.   The  

exact sequence of inputs must also be described, as well as the expected sequence of state  
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changes, and actions. Providing these details makes state-based tests easier to execute, interpret,  

and maintain. In addition, it is best to design each test specification so that the test begins in the  

start state, covers intermediate states, and returns to the start state. Finally, while the tests are  

being executed it is very useful for the tester to have software probes that report the current state  

(defining a state variable may be necessary) and the incoming event. Making state- related  

variables visible during each transition is also useful. All of these probes allow the tester to  

monitor the tests and detect incorrect transitions and any discrepancies in intermediate results.  

 

 

For some STGs it may be possible that a single test case specification sequence could use  

(exercise) all of the transitions. There is a difference of opinion as to whether this is a good  

approach [5,10]. In most cases it is advisable to develop a test case specification that exercises  

many transitions, especially those that look complex, may not have been tried before, or that  

look ambiguous or unreachable. In this way more defects in the software may be revealed. For  

further exploration of state-based testing the following references are suggested, [5,10,11].  

 

 

Error Guessing  

 

Designing test cases using the error guessing approach is based on the tester‘s/developer‘s past  

experience with code similar to the code-under- test, and their intuition as to where defects may  

lurk in the code. Code similarities may extend to the structure of the code, its domain, the  

design  

approach used, its complexity, and other factors. The tester/developer is sometimes able to  

make an educated   uess   as to which types of defects may be present and design test cases to  

reveal them. Some examples of obvious types of defects to test for are cases where there is a  

possible  

division by zero, where there are a number of pointers that are manipulated, or conditions  

around array boundaries. Error guessing is an ad hoc approach to test design in most cases.  

However, if defect data for similar code or past releases of the code has been carefully recorded,  

the defect  

types classified, and failure symptoms due to the defects carefully noted, this approach can have  

some structure  and  value. Such  data would  be  available to  testers  in a  TMM level 4  

organization.  
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Black Box Testing and Commercial Off-the-Shelf (COTS) Components  

 

 

As  software  development  evolves  into  an  engineering  discipline,  the  reuse  of  software  

components  will  play  an  increasingly  important  role.  Reuse  of  components  means  that  

developers need not reinvent the wheel; instead they can reuse an existing software component  

with the required functionality. The reusable component may come from a code reuse library  

within their organization or, as is most likely, from an outside vendor who specializes in the  

development of specific types of software components. Components produced by vendor  

organizations are known as commercial off-the-shelf, or COTS, components. The following  

data illustrate the growing usage of COTS components. In 1997, approximately 25% of the  

component portfolio of a typical corporation consisted of COTS components. Estimates for  

1998 were about 28% and during the next several years the number may rise to 40% [12].  

 

 

Using COTS components can save time and money. However, the COTS component must be  

evaluated before becoming a part of a developing system. This means that the functionality,  

correctness, and reliability of the component must be established. In addition, its suitability  

for the application must be determined, and any unwanted functionality must be identified and  

addressed by the developers. Testing is one process that is not eliminated when COTS  

components are used for development!When a COTS component is purchased from a vendor it  

is basically a black box. It can range in size from a few lines of code, for example, a device  

driver, to thousands of lines of code, as in a telecommunication subsystem. It most cases, no  

source code is available, and if it is, it is very expensive to purchase. The buyer usually receives  

an executable version of the component, a description of its functionality, and perhaps a  

statement of how it was tested. In some cases if the component has been widely adapted, a  

statement of reliability will also be included. With this limited information, the developers and  

testers must make a decision on whether or not to use the component. Since the view is mainly  

as a black box, some of the techniques discussed in this chapter are applicable for testing the  

COTS components.  

 

 

If the COTS component is small  in size,  and a  specification of  its inputs/outputs  and  

functionality is available, then equivalence class partitioning and boundary value analysis may  

be useful for detecting defects and establishing component behavior. The tester should also use  

this approach for identifying any unwanted or unexpected functionality or side effects that could  

have a detrimental effect on the application. Assertions, which are logic statements that describe  
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correct program behavior, are also useful for assessing COTS behavior [13]. They can be 

associated with  

program components, and monitored for violations using assertion support tools. Large-sized  

COTS components may be better served by using random or statistical testing guided by usage  

profiles.  

 

 

Usage profiles are characterizations of the population of intended uses of the software in its 

intended environment .  

 

 

These are not strictly black box in nature. As in the testing of newly developing software, the  

testing of COTS  components requires the development of test cases, test oracles, and auxiliary  

code called a test harness (described in Chapter 6). In the case of COTS components, additional  

code, called glue software, must be developed to bind the COTS component to other modules  

for smooth system functioning. This glue software must also be tested. All of these activities  

add to the costs of reuse and must be considered when project plans are developed. Researchers  

are continually working on issues related to testing and certification of COTS components.  

 

Certification refers to third-party assurance that a product (in our case a software 

product), process, or service meets a specific set of requirements.  

 

 

2.9 Using white box approach to test design  

 

 

In the previous chapter the reader was introduced to a test design approach that considers the  

software to be tested as a black box with a well-defined set of inputs and outputs that are  

described in a specification. In this chapter a complementary approach to test case design will  

be examined where the tester has knowledge of the internal logic structure of the software under  

test. The tester‘s goal is to determine if all the logical and data elements in the software unit are  

functioning properly. This is called the white box, or glass box, approach to test case design.  

The knowledge needed for the white box test design approach often becomes available to the  

tester in the later phases of the software life cycle, specifically during the detailed design phase  

of development. This is in contrast to the earlier availability of the knowledge necessary for  

black box test design. As a consequence, white box test design follows black box design as the  
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test efforts for a given project progress in time. Another point of contrast between the two  

approaches is that the black box test design strategy can be used for both small and large  

software components, whereas white box-based test design is most useful when testing small  

components. This is because the level of detail required for test design is very high, and the  

granularity of the items testers must consider when developing the test data is very small. These  

points will become more apparent as the discussion of the white box approach to test design  

continues.  

 

 

2.10 Test adequacy criteria  

 

 

The goal for white box testing is to ensure that the internal components of a program are  

working properly. A common focus is on structural elements such as statements and branches.  

The tester develops test cases that exercise these structural elements to determine if defects exist  

in the program structure. The term exercise is used in this context to indicate that the target  

structural elements are executed when the test cases are run. By exercising all of the selected  

structural elements the tester hopes to improve the chances for detecting defects. Testers need a  

framework for deciding which structural elements to select as the focus of testing, for choosing  

the appropriate test data, and for deciding when the testing efforts are adequate enough to  

terminate  

the process with confidence that the software is working properly. Such a framework exists in  

the form of test adequacy criteria. Formally a test data adequacy criterion is a stopping rule  

[1,2]. Rules of this type can be used to determine whether or not sufficient testing has been  

carried out.  

The criteria can be viewed as representing minimal standards for testing a program.  

 

 

The application scope of adequacy criteria also includes:  

(i) helping testers to select properties of a program to focus on during test;  

(ii) helping testers to select a test data set for a program based on the selected properties; (iii) 

supporting testers with the development of quantitative objectives for testing;  

(iv) indicating to testers whether or not testing can be stopped for that program.  

 
 

55  



 
 

 

 

A program is said to be adequately tested with respect to a given criterion if all of the target  

structural elements have been exercised according to the selected criterion. Using the selected  

adequacy criterion a tester can terminate testing when he/she has exercised the target structures,  

and have some confidence that the software will function in manner acceptable to the user.  

 

 

If a test data adequacy criterion focuses on the structural properties of a program it is said to be  

a program-based adequacy criterion. Program-based adequacy criteria are commonly applied in  

white box testing. They use either logic and control structures, data flow, program text, or faults  

as the focal point of an adequacy evaluation [1]. Other types of test data adequacy criteria focus  

on program specifications. These are called specification-based test data adequacy criteria.  

Finally, some test data adequacy criteria ignore both program structure and specification in the  

selection and evaluation of test data. An example is the random selection criterion.  

 

 

Adequacy criteria are usually expressed as statements that depict the property, or feature of  

interest, and the conditions under which testing can be stopped (the criterion is satisfied). For  

example, an adequacy criterion that focuses on statement/branch properties is expressed as the  

following:  

 

 

A test data set is statement, or branch, adequate if a test set T for program P causes all 

the statements, or branches, to be executed respectively.  

 

 

In addition to statement/branch adequacy criteria as shown above, other types of program-based  

test data adequacy criteria are in use; for example, those based on (i) exercising program paths  

from entry to exit, and (ii) execution of specific path segments derived from data flow  

combinations such as definitions and uses of variables (see Section 5.5). As we will see in later 

sections of this  chapter, a hierarchy of test data  adequacy criteria  exists; some criteria 

presumably have better defect detecting abilities than others.  

 

 

The concept of test data adequacy criteria, and the requirement that certain features or  

properties of the code are to be exercised by test cases, leads to an approach called coverage  

analysis, which in practice is used to set testing goals and to develop and evaluate test data. In  
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the context of coverage analysis, testers often refer to test adequacy criteria as coverage criteria  

[1]. For example, if a tester sets a goal for a unit specifying that the tests should be statement  

adequate, this goal is often expressed as a requirement for complete, or 100%, statement  

coverage. It follows from this requirement that the test cases developed must insure that all the  

statements in the unit are executed at least once. When a coverage-related testing goal is  

expressed as a percent, it is often called the degree of coverage. The planned degree of coverage  

is specified in the test plan and then measured when the tests are actually executed by a  

coverage tool. The planned degree of coverage is usually specified as 100% if the tester wants  

to completely satisfy the commonly applied test adequacy, or coverage criteria. Under some  

circumstances, the planned degree of coverage may be less than 100% possibly due to the  

following:  

 

 

• The nature of the unit  

—Some statements/branches may not be reachable.  

 

 

—The unit may be simple, and not mission, or safety, critical, and so complete coverage is  

 thought to be unnecessary.  

 

 

• The lack of resources  

—The time set aside for testing is not adequate to achieve 100% coverage.  

—There are not enough trained testers to achieve complete coverage for all of the units.  

 

 

—There is a lack of tools to support complete coverage.  

 

 

• Other project-related issues such as timing, scheduling, and marketing constraints  

 

 

The following scenario is used to illustrate the application of coverage analysis. Suppose that a  

tester specifies branches as a target property for a series of tests. A reasonable testing goal  

would be satisfaction of the branch adequacy criterion. This could be specified in the test plan  

as a requirement for 100% branch coverage for a software unit under test. In this case the tester  
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must develop a set of test data that insures that all of the branches (true/false conditions) in the unit 

will be executed at least once by the test cases. When the planned test cases are executed under 

the control of a coverage tool, the actual degree of coverage is measured.  

 

 

If there are, for example, four branches in the software unit, and only two are executed by the 

planned set of test cases, then the degree of branch coverage is 50%. All four of the branches 

must be executed by a test set in order to achieve the planned testing goal. When a coverage 

goal is not met, as in this example, the tester develops additional test cases and re- executes the 

code. This cycle continues until the desired level of coverage is achieved. The greater the 

degree of coverage, the more adequate the test set. When the tester achieves 100% coverage 

according to the selected criterion, then the test data has satisfied that criterion; it is said to be 

adequate for that criterion. An implication of this process is that a higher degrees of coverage 

will lead to greater numbers of detected defects.  

 

 

It should be mentioned that the concept of coverage is not only associated with white box  

testing. Coverage can also be applied to testing with usage profiles (see Chapter 12). In this case  

the testers want to ensure that all usage patterns have been covered by the tests. Testers also use  

coverage concepts to support black box testing. For example, a testing goal might be to  

exercise, or cover, all functional requirements, all equivalence classes, or all system features. In  

contrast to black box approaches, white box-based coverage goals have stronger theoretical and  

practical  

support.  

 

 

2.11 Coverage and Control Flow Graphs  

 

 

The application of coverage analysis is typically associated with the use of control and data  

flow models to represent program structural elements and data. The logic elements most  

commonly considered for coverage are based on the flow of control in a unit of code. For  

example,  
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(i) program statements;  

(ii) decisions/branches (these influence the program flow of control); 

(iii) conditions (expressions that evaluate to true/false, and do not contain any other 

true/false-valued expressions); 

 

 

(iv) combinations of decisions and conditions;  

(v) paths (node sequences in flow graphs).  

 

 

These logical elements are rooted in the concept of a program prime. A program prime is an  

atomic programming unit. All structured programs can be built from three basic primes- 

sequential (e.g., assignment statements), decision (e.g., if/then/else statements), and iterative  

(e.g., while, for loops). Graphical representations for these three primes are shown in Figure 5.1.  

 

 

Using the concept of a prime and the ability to use combinations of primes to develop structured 

code, a (control) flow diagram for the soft- ware unit under test can be developed. The flow 

graph can be used by the tester to evaluate the code with respect to its testability, as well as to 

develop white box test cases. This will be shown in subsequent sections of this chapter. A flow 

graph representation for the code example in Figure 5.2 is found in Figure 5.3. Note that in the 

flow  graph  the  nodes  represent  sequential  statements,  as  well  as  decision  and  looping 

predicates. For simplicity, sequential statements are often omitted or combined as a block that 

indicates that if the first statement in the block is executed, so are all the following statements in the 

block. Edges in the graph represent transfer of control. The direction of the transfer depends on the 

outcome of the condition in the predicate (true or false).  

 

 

There are commercial tools that will generate control flow graphs from code and in some cases  

from pseudo code. The tester can use tool support for developing control flow graphs especially  

for complex pieces of code. A control flow representation for the software under test facilitates  

the design of white box-based test cases as it clearly shows the logic elements needed to design  

the test cases using the coverage criterion of choice.Zhu has formally described a set of  

program-based coverage criteria in the context of test adequacy criteria and control/data flow  

models [1].  
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This chapter will presents control-flow, or logic-based, coverage concepts in a less formal but  

practical manner to aid the tester in developing test  data sets, setting quantifiable testing goals,  

measuring results, and evaluating the adequacy of the test outcome. Examples based on the  

logic  

elements listed previously will be presented. Subsequent sections will describe data flow and 

fault-based coverage criteria.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.12 Covering Code Logic  

 

 

Logic-based white box-based test design and use of test data adequacy/ coverage concepts  

provide two major payoffs for the tester: (i) quantitative coverage goals can be proposed, and  

(ii) commercial tool support is readily available to facilitate the tester‘s work (see Chapter 14).  

As de- 

scribed in Section 5.1, testers can use these concepts and tools to decide on the target logic 

elements (properties or features of the code) and the degree of coverage that makes sense in 

terms of the type of software, its mission or safety criticalness, and time and resources 

available. For ex- 

ample, if the tester selects the logic element program statements, this indicates that she will  

want to design tests that focus on the execution of program statements. If the goal is to satisfy  

the statement adequacy/ coverage criterion, then the tester should develop a set of test cases so  

that when the module is executed, all (100%) of the statements in the module are executed at  

least once. In terms of a flow graph model of the code, satisfying this criterion requires that all  

the nodes in the graph are exercised at least once by the test cases. For the code in Figure 5.2  
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and its corresponding flow graph in Figure 5.3 a tester would have to develop test cases that 

exercise nodes 1-8 in the flow graph. If the tests achieve this goal, the test data would satisfy the 

statement adequacy criterion. In addition to statements, the other logic structures are also 

associated with corresponding adequacy/coverage criteria. For example, to achieve complete 

(100%) decision (branch) coverage test cases must be designed  

 

 

/* pos_sum  nds the sum of all positive numbers (greater than zero) stored in an integer  

array a. Input parameters are num_of_entries, an integer, and a, an array of integers with 

num_of_entries elements. The output parameter is the integer sume */  

1. pos_sum(a, num_of_entries, sum)  

2. sum 0  

3. inti 1  

4. while (i < num_of_entries)  

5. if a[i] > 0  

6. sum sum a[i]  

endif  

7. i i 1  

end while  

8. end pos_sum  

 

 

FIG. 5.2 Code sample with branch and loop.  

 

 

so that each decision element in the code (if-then, case, loop) executes with all possible  

outcomes at least once. In terms of the control flow model, this requires that all the edges in the  

corresponding flow graph must be exercised at least once. Complete decision coverage is  

considered to be a stronger coverage goal than statement coverage since its satisfaction results  

in satisfying statement coverage as well (covering all the edges in a flow graph will ensure  

coverage of the nodes). In fact, the statement coverage goal is so weak that it is not considered  
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to be very useful for revealing defects. For example, if the defect is a missing statement it may 

remain undetected by tests satisfying complete statement coverage. The reader should be aware 

that in spite of the weakness, even this minimal coverage goal is not required in many test plans. 

Decision (branch) coverage for the code example in Figure 5.2, requires test cases to be 

developed for the two decision statements, that is, the four true/false edges in the control flow 

graph of Figure 5.3. Input values must ensure execution the true/false possibilities for the 

decisions in line 4 (while loop) and line 5 (if statement). Note that the if statement has a full else 

component, that is, there is no else part. However, we include a test that covers both the true 

and false conditions for the statement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A possible test case that satisfies 100% decision coverage is shown in Table 5.1. The reader  

should note that the test satisfies both the branch adequacy criterion and the statement adequacy  

criterion, since all the statements 1-8 would be executed by this test case. Also note that for this  

code example, as well  as any other code component, there may be several sets of test cases that  

could satisfy a selected criterion. This code example represents a special case in that it was  

feasible to achieve both branch and statement coverage with one test case. Since one of the  

inputs, , is an array, it was possible to assign both positive and negative values to the elements  

of , thus allowing coverage of both the true/false branches of the if statement. Since more  

than one iteration of the while loop was also possible, both the true and false branches of this  

loop could also be covered by one test case. Finally, note that the code in the example does not  
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contain any checks on the validity of the input parameters. For simplicity it is assumed that the 

calling module does the checking.  

 

 

In Figure 5.2 we have simple predicates or conditions in the branch and loop instructions. 

However, decision statements may contain multiple conditions, for example, the statement  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If (x MIN and y MAX and (not INT Z))  

 

 

has three conditions in its predicate: (i) x MIN, (ii) y MAX, and (iii) not INT Z. Decision  

coverage only requires that we exercise at least once all the possible outcomes for the branch or  

loop predicates as a whole, not for each individual condition contained in a compound  

predicate. There are other coverage criteria requiring at least one execution of the all possible  

conditions and combinations of decisions/conditions. The names of the criteria reflect the extent  

of condition/decision coverage. For example, condition coverage requires that the tester insure  

that each individual condition in a compound predicate takes on all possible values at least once  

during execution of the test cases. More stringent coverage criteria also require exercising all  

possible combinations of decisions and conditions in the code. All of the coverage criterion  

described so far can be arranged in a hierarchy of strengths from weakest to strongest as  

follows: statement, decision, decision/condition. The implication for this approach to test design  

is that the stronger the criterion, the more defects will be revealed by the tests. Below is a  

simple example showing the test cases for a decision statement with a compound predicate.  
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if(age <65 and married true)  

do X  

do Y .........   

else  

do Z  
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The criteria described above do not require the coverage of all the possible combinations of 

conditions. This is represented by yet another criterion called multiple condition coverage 

where all possible combinations of condition outcomes in each decision must occur at least once 

when the test cases are executed. That means the tester needs to satisfy the following 

combinations for the example decision statement:  
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Condition 1 Condition 2 

True True 

True False 

False True 

False False 

 

 

In most cases the stronger the coverage criterion, the larger the number of test cases that must  

be developed to insure complete coverage. For code with multiple decisions and conditions the  

complexity of test case design increases with the strength of the coverage criterion. The tester  

must decide, based on the type of code, reliability requirements, and resources available which  

criterion to select, since the stronger the criterion selected the more resources are usually  

required to satisfy it.  

 

 

 

 

2.13 Paths: Their Role in White Box-Based Test Design  

 

 

In Section 5.2 the role of a control flow graph as an aid to white box test design was described.  

It was also mentioned that tools were available to generate control flow graphs. These tools  

typically calculate a value for a software attribute called McCabe‘s Cyclomatic Complexity  

V(G) from a flow graph. The cyclomatic complexity attribute is very useful to a tester [3]. The  

complexity value is usually calculated from the control flow graph (G) by the formula  
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The value E is the number of edges in the control flow graph and N is the number of nodes.  

This formula can be applied to flow graphs where  there are no disconnected components [4].  

As an example, the cyclomatic complexity of the flow graph in Figure 5.3 is calculated as  

follows:  

 

 

 

 

 

 

 

The cyclomatic complexity value of a module is useful to the tester  in several ways. One of its uses 

is to provide an approximation of the number of test cases needed for branch coverage in a module 

of structured code. If the testability of a piece of software is defined in terms of the number of 

test cases required to adequately test it, then McCabes‘ cyclomatic complexity provides an 

approximation of the testability of a module. The tester can use the value of V(G) along with past 

project data to approximate the testing time and resources required to test a software module. In 

addition, the cyclomatic complexity value and the control flow graph give the tester another tool 

for developing white box test cases using the concept of a path. A definition for this term is 

given below.  

 

 

A path is a sequence of control flow nodes usually beginning from the entry node of a 

graph through to the exit node.  

 

 

A path may go through a given segment of the control flow graph one or more times. We 

usually designate a path by the sequence of nodes it encompasses. For example, one path from the 

graph in Figure 5.3 is  

1-2-3-4-8  

 

 

where the dashes represent edges between two nodes. For example, the sequence  4-8  

represents the edge between nodes 4 and 8 Cyclomatic complexity is a measure of the number  

of so-called in-dependent paths in the graph. An independent path is a special kind of path in  

the flow graph. Deriving a set of independent paths using a flow graph can support a tester in  

identifying the control flow features in the code and in setting coverage goals. A tester identifies  
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a set of independent paths for the software unit by starting out with one simple path in the flow  

graph and iteratively adding new paths to the set by adding new edges at each iteration until  

there are no more new edges to add. The independent paths are defined as any new path through  

the graph that introduces a new edge that has not be traversed before the path is defined.  

 

 

A set of independent paths for a graph is sometimes called a basis set. For most software  

modules it may be possible to derive a number of basis sets. If we examine the flow graph in 

Figure 5.3, we can derive the following set of independent paths starting with the first path 

identified above.  

 

 

(i) 1-2-3-4-8  

(ii) 1-2-3-4-5-6-7-4-8  

(iii) 1-2-3-4-5-7-4-8  

 

 

The number of independent paths in a basis set is equal to the cyclomatic complexity of the 

graph. For this example they both have a value of 3. Recall that the cyclomatic complexity for a 

flow graph also gives us an approximation (usually an upper limit) of the number of tests 

needed to achieve branch (decision) coverage. If we prepare white box test cases so that the 

inputs cause the execution of all of these paths, we can be reasonably sure that we have 

achieved complete statement and decision coverage for the module. Testers should be aware 

that although identifying the independent paths and calculating cyclomatic complexity in a 

module of structured code provides useful support for achieving decision coverage goals, in 

some cases the number of independent paths in the basis set can lead to an overapproximation of 

the number of test cases needed for decision (branch) coverage. This is illustrated by the code 

example of Figure 5.2, and the test case as shown in Table 5.1.  

 

 

To complete the discussion in this section, one additional logic-based testing criterion based on  

the path concept should be mentioned. It is the strongest program-based testing criterion, and it  

calls for complete path coverage; that is, every path (as distinguished from independent paths)  

in  

a module must be exerc ised by the test set at least once. This may not be a practical goal for a  

tester. For example, even in a small and simple unit of code there may be many paths between  
 

68  



 
 

  

 

the entry and exit nodes. Adding even a few simple decision statements increases the number of  

paths.  

 

 

Every loop multiplies the number of paths based on the number of possible iterations of the  

loop since each iteration constitutes a different path through the code. Thus, complete path  

coverage for even a simple module may not be practical, and for large and complex modules it  

is not feasible.  

In addition, some paths in a program may be unachievable, that is, they cannot be executed no  

matter what combinations of input data are used. The latter makes achieving complete path  

coverage an impossible task. The same condition of unachievability may also hold true for some  

branches or statements in a program. Under these circumstances coverage  goals are best  

expressed in terms of the number of feasible or achievable paths, branches, or statements  

respectively.  

 

 

As a final note, the reader should not confuse the coverage based on independent path testing as 

equivalent to the strongest coverage goal—complete path coverage. The basis set is a special set of 

paths and does not represent all the paths in a module; it serves as a tool to aid the tester in 

achieving decision coverage.  

 

 

2.14 Additional White Box Test Design Approaches  

 

 

In addition to methods that make use of software logic and control structures to guide test data  

generation and to evaluate test completeness there are alternative methods that focus on other  

characteristics of the code. One widely used approach is centered on the role of variables (data)  

in  

the code. Another is fault based. The latter focuses on making modifications to the software, 

testing the modified version, and comparing results. These will be described in the following 

sections of this chapter.  
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Data Flow and White Box Test Design  

 

In order to discuss test data generation based on data flow information, some basic concepts that 

define the role of variables in a software component need to be introduced.  

 

 

We say a variable is defined in a statement when its value is assigned or changed.  

 

 

For example in the statements  

 

 

 

 

 

 

the variable Y is defined, that is, it is assigned a new value. In data flow notation this is 

indicated as a def for the variable Y.  

 

 

We say a variable is used in a statement when its value is utilized in a statement. The 

value of the variable is not changed.  

 

 

A more detailed description of variable usage is given by Rapps and Weyuker [4]. They  

describe a predicate use (p-use) for a variable that indicates its role in a predicate. A  

computational use (c-use) indicates the variable‘s role as a part of a computation. In both cases the 

variable value is un- 

changed. For example, in the statement  

 

 

Y =26*X  

the variable X is used. Specifically it has a c-use. In the statement  

 

if (X >98)  
 

Y= max  
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X has a predicate or p-use. There are other data flow roles for variables such as undefined or 

dead, but these are not relevant to the subsequent discussion. An analysis of data flow patterns for 

specific variables is often very useful for defect detection. For example, use of a variable without 

a definition occurring first indicates a defect in the code. The variable has not been initialized. 

Smart compilers will identify these types of defects. Testers and developers can utilize data flow 

tools that will identify and display variable role information. These should also be used prior to code 

reviews to facilitate the work of the reviewers.  

 

 

Using their data flow descriptions, Rapps and Weyuker identified several data-flow based test 

adequacy criteria that map to corresponding coverage goals. These are based on test sets that 

exercise specific path segments, for example:  

 

 

All def  

All p-uses  

All c-uses/some p-uses  

All p-uses/some c-uses  

All uses  

All def-use paths  

 

 

The strongest of these criteria is all def-use paths. This includes all p- and c-uses.  
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We say a path from a variable definition to a use is called a def-use path.  

 

 

To satisfy the all def-use criterion the tester must identify and classify occurrences of all the  

variables in the software under test. A tabular summary is useful. Then for each variable, test  

data is generated so that all definitions and all uses for all of the variables are exercised during  

test. As an example we will work with the code in Figure 5.4 that calculates the sum of n  

numbers.  

 

 

The variables of interest are sum, i, n, and number. Since the goal is to satisfy the all def-use  

criteria we will need to tabulate the def-use occurrences for each of these variables. The data  

flow role for each variable in each statement of the example is shown beside the statement in  

italics.  

 

 

Tabulating the results for each variable we generate the following tables. On the table each defuse 

pair is assigned an identifier. Line numbers are used to show occurrence of the def or use. Note 

that in some statements a given variable is both defined and used.  
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After completion of the tables, the tester then generates test data to exercise all of these def-use 

pairs In many cases a small set of test inputs will cover several or all def-use paths. For this 

example two sets of test data would cover all the def-use pairs for the variables:  

 

 

Test data set 1: n 0  

 

 

Test data set 2: n 5, number 1,2,3,4,5  

 

 

Set 1 covers pair 1 for n, pair 2 for sum, and pair 1 for i. Set 2 covers pair 1 for n, pair 1 for 

number, pairs 1,3,4 for sum, and pairs 1,2,3,4 for i.  
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Note even for this small piece of code there are four tables and four def-use pairs for two of the 

variables.  

 

 

As with most white box testing methods, the data flow approach is most effective at the unit level 

of testing. When code becomes more complex and there are more variables to consider it becomes 

more time consuming for the tester to analyze data flow roles, identify paths, and design the 

tests. Other problems with data flow oriented testing occur in the handling of dynamically 

bound variables such as pointers. Finally, there are no commercially available tools that provide 

strong support for data flow testing, such as those that support control-flow based testing. In the 

latter case, tools that determine the degree of coverage, and which portions of the code are yet  

uncovered, are of particular importance. These are not available for data flow methods. For 

examples of prototype tools.  

 

 

Loop Testing  

 

 

Loops are among the most frequently used control structures. Experienced software engineers  

realize that many defects are associated with loop constructs. These are often due to poor  

programming practices and lack of reviews. Therefore, special attention should be paid to loops  

during testing. Beizer has classified loops into four categories: simple, nested, concatenated,  

and unstructured [4]. He advises that if instances of unstructured loops are found in legacy code  

they should be redesigned to reflect structured programming techniques. Testers can then focus  

on the  

remaining categories of loops.  

 

 

Loop testing strategies focus on detecting common defects associated with these structures. For 

example, in a simple loop that can have a range of zero to n iterations, test cases should be 

developed so that there are:  

 

(i) zero iterations of the loop, i.e., the loop is skipped in its entirely; (ii) 

one iteration of the loop;  

(iii) two iterations of the loop;  
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(iv) k iterations of the loop where k n;  

(v) n 1 iterations of the loop;  

(vi) n 1 iterations of the loop (if possible).  

 

 

If the loop has a nonzero minimum number of iterations, try one less than the minimum. Other 

cases to consider for loops are negative values for the loop control variable, and n 1 iterations of the 

loop if that is possible. Zhu has described a historical loop count adequacy criterion that states 

that in the case of a loop having a maximum of n iterations, tests that execute the loop zero 

times, once, twice, and so on up to n times are required [1].  

 

 

Beizer has some suggestions for testing nested loops where the outer loop control variables are  

set to minimum values and the innermost loop is exercised as above. The tester then moves up  

one loop level and finally tests all the loops simultaneously. This will limit the number of tests  

to  

perform; however, the number of test under these circumstances is still large and the tester may 

have to make trade-offs. Beizer also has suggestions for testing concatenated loops.  

 

 

Mutation Testing  

 

 

Mutation testing is another approach to test data generation that requires knowledge of code  

struc- 

ture, but it is classified as a fault-based testing approach. It considers the possible faults that 

could occur in a software component as the basis for test data generation and evaluation of 

testing effectiveness.  

 

 

Mutation testing makes two major assumptions:  
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1. The competent programmer hypothesis. This states that a competent programmer writes 

programs that are nearly correct. Therefore we can assume that there are no major construction 

errors in the program; the code is correct except for a simple error(s).  

2. The coupling effect. This effect relates to questions a tester might have about how well 

mutation testing can detect complex errors since the changes made to the code are very simple. 

DeMillo has commented on that issue as far back as 1978 [10]. He states that test data that can 

distinguish all programs differing from a correct one only by simple errors are sensitive enough to 

distinguish it from programs with more complex errors.  

 

 

Mutation testing starts with a code component, its associated test cases, and the test results. The  

original code component is modified in a simple way to provide a set of similar components that  

are called mutants. Each mutant contains a fault as a result of the modification. The original test  

data is then run with the mutants. If the test data reveals the fault in the mutant (the result of the  

modification) by producing a different output as a result of execution, then the mutant is said to  

be killed. If the mutants do not produce outputs that differ from the original with the test data,  

then the test data are not capable of revealing such defects. The tests cannot distinguish the  

original from the mutant. The tester then must develop additional test data to reveal the fault  

and kill the mutants. A test data adequacy criterion that is applicable here is the following:  

 

 

A test set T is said to be mutation adequate for program P provided that for every in  

equivalent mutant Pi of P there is an element t in T such that Pi(t) is not equal to P(t).  

 

 

The term T represents the test set, and t is a test case in the test set. For the test data to be 

adequate according to this criterion, a correct program must behave correctly and all incorrect 

programs behave incorrectly for the given test data.  

 

 

Mutations  are  simple  changes  in  the  original  code  component,  for  example:  constant  

replacement, arithmetic operator replacement, data statement alteration, statement deletion, and  

logical operator replace- ment. There are existing tools that will easily generate mutants. Tool  

users  

need only to select a change operator. To illustrate the types of changes made in mutation  

testing we can make use of the code in Figure 5.2. A first mutation could be to change line 7  

from  
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If we rerun the tests used for branch coverage as in Table 5.1 this mutant will be killed, that is,  

the output will be different than for the original code. Another change we could make is in line  

5, from  

 

 

 

 

 

 

This mutant would also be killed by the original test data. Therefore, we can assume that our  

original tests would have caught this type of defect. However, if we made a change in line 5 to  

read  

 

 

this mutant would not be killed by our original test data in Table 5.1. Our inclination would be to 

augment the test data with a case that included a zero in the array elements, for example:  

 

 

 

 

However, this test would not cause the mutant to be killed because adding a zero to the output 

variable sum does not change its final value. In this case it is not possible to kill the mutant. 

When this occurs, the mutant is said to be equivalent to the original program. To measure the 

mutation adequacy of a test set T for a program P we can use what is called a mutation score 

(MS), which is calculated as  

 

 

 

 

Equivalent mutants are discarded from the mutant set because they do not contribute to the  

adequacy of the test set. Mutation testing is useful in that it can show that certain faults as  

represented in the mutants are not likely to be present since they would have been revealed by  

test data. It also helps the tester to generate hy- potheses about the different types of possible  
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faults in the code and to develop test cases to reveal them. As previously mentioned there are  

tools to support developers and testers with producing mutants. In fact, many  hundreds of  

mutants can be produced easily. However, running the tests, analyzing results, and developing  

additional tests, if needed, to kill the mutants are all time consuming. For these reasons  

mutation testing is usually applied at the unit level. However, recent research in an area called  

interface mutation (the application of mutation testing to evaluate how well unit interfaces have  

been tested) has suggested that it can be applied effectively at the integration test level as well  

.Mutation testing as described above is called strong mutation testing. There are variations that  

reduce the number of mutants produced. One of these is called weak mutation testing which  

focuses on specific code components .  

 

 

2.15 Evaluating Test Adequacy Criteria  

 

 

Most of the white box testing approaches we have discussed so far are associated with  

application of an adequacy criterion. Testers are often  faced with the decision of which  

criterion to apply to a given item under test given the nature of the item and the constraints of  

the test environment (time, costs, resources) One source of information the tester can use to  

select an appropriate criterion is the test adequacy criterion hierarchy as shown in Figure 5.5  

which describes a subsumes relationship among the criteria. Satisfying an adequacy criterion at  

the higher levels of the  hierarchy implies a greater thoroughness in testing [1,14-16]. The  

criteria at the top of the hierarchy are said to subsume those at the lower levels. For example,  

achieving all definition-use (def-use) path adequacy means the tester has also achieved both  

branch and statement adequacy. Note from the hierarchy that statement adequacy is the weakest  

of the test adequacy criteria. Unfortunately, in many organizations achieving  a high level of  

statement coverage is not even included as a minimal testing goal.  
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As a conscientious tester you might at first reason that your testing goal should be to develop 

tests that can satisfy the most stringent criterion. However, you should consider that each 

adequacy criterion has both strengths and weaknesses. Each, is effective in revealing certain 

types  of defects. Application of the so-called Stronger criteria usually requires more tester time 

and resources. This translates into higher testing costs. Testing conditions, and the nature of the 

software should guide your choice of a criterion.  

 

 

Support for evaluating test adequacy criteria comes from a theoretical treatment developed  

by Weyuker . She presents a set of axioms that allow testers to formalize properties which  

should be satisfied by any good program-based test data adequacy criterion. Testers can use the  

axioms to  

 

 

• recognize both strong and weak adequacy criteria; a tester may decide to use a weak criterion,  

 but should be aware of its weakness with respect to the properties described by the  

 axioms;  

• focus attention on the properties that an effective test data adequacy criterion should exhibit;  
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• select an appropriate criterion for the item under test;  

 

 

• stimulate thought for the development of new criteria; the axioms are the framework with  

 which to evaluate these new criteria.  

 

 

The axioms are based on the following set of assumptions :  

 

(i) programs are written in a structured programming language;  

(ii) programs are SESE (single entry/single exit);  

(iii) all input statements appear at the beginning of the program;  

(iv) all output statements appear at the end of the program.  

 

 

The axioms/properties described by Weyuker are the following :  

 

 

 

 

1. Applicability Property  

For every program there exists an adequate test set. What this axiom means is that for all  

programs we should be able to design an adequate  test set that properly tests it. The test set  

may be very large so the tester will want to select representable points of the specification  

domain to test it. If we test on all representable points, that is called an exhaustive test set. The 

exhaustive test set will surely be adequate since there will be no other test data that we can 

generate. However, in past discussions we have ruled out exhaustive testing because in most cases 

it is too expensive,  

time consuming, and impractical.  

2. Non exhaustive Applicability Property  

 

For a program P and a test set T, P is adequately tested by the test set T, and T is not an 

exhaustive test set. To paraphrase, a tester does not need an exhaustive test set in order to 

adequately test a program.  
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3. Monotonicity Property  

 

 

If a test set T is adequate for program P, and if T is equal to, or a subset of T , then T is 

adequate for program P.‖  

 

 

4. Inadequate Empty Set  

 

 

In empty test set is not an adequate test for any program. If a program is not tested at all, a tester  

cannot claim it has been adequately tested! Note that these first four axioms are very general  

and apply to all programs independent of programming language and equally apply to uses of  

both program- and specification-based testing. For some of the next group of axioms this is not 

true.  

 

 

5. Antiextensionality Property  

 

 

There are programs P and Q such that P is equivalent to Q, and T is adequate for P, but T is not  

adequate for Q. We can interpret this axiom as saying that just because two programs are  

semantically equivalent (they may perform the same function) does not mean we should test  

them the  same way. Their implementations (code structure) may be very different. The reader  

should note that if programs have equivalent specifications then their test sets may coincide  

using black box testing techniques, but this axiom applies to program-based testing and it is  

the differences that may occur in program code that make it necessary to test P and Q with  

different test sets.  
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6. General Multiple Change Property  

 

There are programs P and Q that have the same shape, and there is a test set T such that T is  

adequate for P, but is not adequate for Q. Here Weyuker introduces the concept of shape to  

express a syntactic equivalence. She states that two programs are the same shape if one can be  

transformed into the other by applying the set of rules shown below any number of times:  

 

 

(i) replace relational operator r1 in a predicate with relational operator r2;  

(ii) replace constant c1 in a predicate of an assignment statement with constant c2;  

(iii) replace arithmetic operator a1 in an assignment statement with arithmetic operator a2.  

 

 

Axiom 5 says that semantic closeness is not sufficient to imply that two programs should be  

tested in the same way. Given this definition of shape, Axiom 6 says that even the syntactic  

closeness of two programs is not strong enough reason to imply they should be tested in the  

same way.  

 

 

7. Antidecomposition Property  

There is a program P and a component Q such that T is adequate for P, T is the set of vectors of  

values that variables can assume on entrance to Q for some t in T, and T is not adequate for  

Q.This axiom states that although an encompassing program has been adequately tested, it  

does not follow that each of its components parts has been properly tested. Implications for this 

axiom are:  

 

 

1. a routine that has been adequately tested in one environment may not have been  

adequately tested to work in another environment, the environment being the enclosing  

program.  

2. although we may think of P, the enclosing program, as being more complex than Q it may 

not be. Q may be more semantically complex; it may lie on an unexecutable path of P, and thus 

would have the null set, as its test set, which would violate Axiom 4.  
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8. Anticomposition Property 

 

There are programs P and Q, and test set T, such that T is adequate for P, and the set of vectors  

of values that variables can assume on entrance to Q for inputs in T is adequate for Q, but T  

is not adequate for P; Q (the composition of P and Q).   Paraphrasing this axiom we can say  

that adequately testing each individual program component in isolation does not necessarily 

mean that we have adequately tested the entire program (the program as a whole). When we 

integrate two separate program components, there are interactions that cannot arise in the 

isolated components. Axioms 7 and 8 have special impact on the testing of object oriented 

code. These issues are covered in Chapter 6.  

 

9. Renaming Property  

If P is a renaming of Q, then T is adequate for P only if T is adequate for Q. A program P is a  

renaming of Q if P is identical to Q expect for the fact that all instances of an identifier, let us  

say a in Q have been replaced in P by an identifier, let us say b, where b does not occur in Q,  

or if there is a set of such renamed identifiers. This axiom simply says that an inessential 

change in a program such as changing the names of the variables should not change the nature of the 

test data that are needed to adequately test the program.  

 

10. Complexity Property  

For every n, there is a program P such that P is adequately tested by a size n test set, but not by any 

size n 1 test set.This means that for every program, there are other programs that require more 

testing.  

 

11. Statement Coverage Property  

If the test set T is adequate for P, then T causes every executable statement of P to be  

executed.Ensuring that their test set executed all statements in a program is a minimum  

coverage goal for a tester. A tester soon realizes that if some portion of the program has never  

been executed, then that portion could contain defects: it could be totally in error and be  

working improperly. Testing would not be able to detect any defects in this portion of the  

code. However, this axiom implies that a tester needs to be able to determine which  

statements of a program are executable. It is possible that not all of program statements are  

executable. Unfortunately, there is no algorithm to support the tester in the latter task, but  

 

Weyuker believes that developers/testers are quite good at determining whether or not code is, or 

is not, executable [2]. Issues relating to infeasible (unexecutable) paths, statements, and 

branches have been discussed in Section 5.4.  
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The first eight axioms as described by Weyuker exposed weaknesses in several well-known  

program-based adequacy criteria. For example , both statement and branch adequacy criteria  

were found to fail in satisfying several of the axioms including the applicability axiom. Some  

data flow adequacy criteria also failed to satisfy the applicability axiom. An additional three  

axioms/properties (shown here as 9-11) were added to the original set to provide an even  

stronger framework for evaluating test adequacy criteria. Weyuker meant for these axioms to  

be used as a tool by testers to understand the strengths and weaknesses of the criteria they  

select. Note that each criterion has a place on the Subsumes hierarchy as shown in Figure 5.5.  

A summary showing several criteria and eight of the axioms they satisfy, and fail to satisfy, is  

shown in Table 5.2 [11].  

 

Weyuker‘s goal for the research community is to eventually develop criteria that satisfy all of the 

axioms. Using these new criteria, testers will be able to have greater confidence that the code 

under test has been adequately tested. Until then testers will need to continue to use exiting 

criteria such as branch- and statement-based criteria. However, they should be aware of inherent 

weaknesses of each, and use combinations of criteria and different testing techniques to 

adequately test a program.  

 

Unit II  

Part-A Questions  
1.  Define Smart tester  

2.  What is white box testing?  

3.  Define:Black box testing.  

4.  Define:Random testing.  

5.  Write a note on COTS components.  

6.  Write a note on: Equivalence class partitioning, Boundary value analysis.  

 

Part-B Questions  

1.  Explain about the following methods of black box testing with example.  

 

(1) Equivalence class partitioning.  

(2) Boundary value analysis.  

 

2.   Explain  COTS components.  

 

3.  Write a note on the following:  

 

(1) Loop testing (2)Mutation testing. 

 

4.  Explain evaluating test adequacy criteria.  
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UNIT III LEVELS OF TESTING  

3.1 The need for levels of testing  

 

Execution-based software testing, especially for large systems, is usually carried out at different  

levels. In most cases there will be 3-4 levels, or major phases of testing: unit test, integration  

test, system test, and some type of acceptance test as shown in Figure 6.1. Each of these may  

consist of one or more sublevels or phases. At each level there are specific testing goals. For  

example, at unit test a single component is tested. A principal goal is to detect functional and  

structural defects in the unit. At the integration level several components are tested as a group,  

and the tester investigates component interactions. At the system level the system as a whole is  

tested and a principle goal is to evaluate attributes such as usability, reliability, and performance.  

System test begins when all of the components have been integrated successfully. It usually  

requires the bulk of testing resources. Laboratory equipment, special software, or special  

hardware may be necessary, especially for real-time, embedded, or distributed systems. At the  

system level the tester looks for defects, but the focus is on evaluating performance, usability,  

reliability, and other quality-related requirements.  
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The approach used to design and develop a software system has an impact on how testers plan and 

design suitable tests. There are two major approaches to system development—bottom-up, and top-

down. These approaches are supported by two major types of programming languages— procedure-

oriented and object-oriented.  

 

3.2 Unit test  

A unit is the smallest possible testable software component.It can be characterized in several ways. 

For example, a unit in a typical procedure-oriented software system:  

• performs a single cohesive function;  
• can be compiled separately;  

• is a task in a work breakdown structure (from the manager‘s pointof view);  

• contains code that can fit on a single page or screen.  

 

A  unit  is  traditionally  viewed  as  a  function  or  procedure  implemented  in  a  procedural  

(imperative) programming language. In object-oriented systems both the method and the  

class/object have been suggested by researchers as the choice for a unit [1-5]. The relative merits  

of each of these as the selected component for unit test are described in sections that follow. A  

unit may also be a small-sized COTS component purchased from an outside vendor that is  

undergoing evaluation by the purchaser, or a simple module retrieved from an in-house reuse  

library.  
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3.3  Unit test planning  

 

A general unit test plan should be prepared. It may be prepared as a component of the master test  

plan or as a stand-alone plan. It should be developed in conjunction with the master test plan and  

the project plan for each project. Documents that provide inputs for the unit test plan are the  

project plan, as well the requirements, specification, and design documents that describe the  

target units. Components of a unit test plan are described in detail the IEEE Standard for  

Software Unit Testing . This standard is rich in information and is an excellent guide for the test  

planner. A brief description of a set of development phases for unit test planning is found below.  

In each phase a set of activities is assigned based on those found in the IEEE unit test standard .  

The phases allow a steady evolution of the unit test plan as more information becomes available.  

The reader will note that the unit test plan contains many of the same components as the master  

test plan that will be described in Chapter 7. Also note that a unit test plan is developed to cover  

all the units within a software project; however, each unit will have its own associated set of  

tests.  

 

Phase 1: Describe Unit Test Approach and Risks  

In this phase of unit testing planning the general approach to unit testing is outlined. The test  
planner:  

(i) identifies test risks;  

(ii) describes techniques to be used for designing the test cases for the units;  

(iii) describes techniques to be used for data validation and recording of test results;  

(iv) describes the requirements for test harnesses and other software that interfaces with the units to be 
tested, for example, any special objects needed for testing object-oriented units.  
 

During this phase the planner also identifies completeness requirements—  

what will be covered by the unit test and to what degree (states, functionality, control, and data  

flow patterns). The planner also identifies termination conditions for the unit tests. This includes  

coverage requirements, and special cases. Special cases may result in abnormal termination of  

unit test (e.g., a major design flaw). Strategies for handling these special cases need to be  

documented. Finally, the planner estimates resources needed for unit test, such as hardware,  

software, and staff, and develops a tentative schedule under the constraints identified at that time.  

 

Phase 2: Identify Unit Features to be Tested  

This phase requires information from the unit specification and detailed design description. The  

planner  determines  which  features  of  each  unit  will  be  tested,  for  example:  functions,  

performance requirements, states, and state transitions, control structures, messages, and data  

flow patterns. If some features will not be covered by the tests, they should be mentioned and the  

risks of not testing them be assessed. Input/output characteristics associated with each unit  

should also be identified, such as variables with an allowed ranges of values and performance at  

a certain level.  
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Phase 3: Add Levels of Detail to the Plan 

In this phase the planner refines the plan as produced in the previous two phases. The planner 

adds new details to the approach, resource, and scheduling portions of the unit test plan. As an 

example, existing test cases that can be reused for this project can be identified in this phase. 

Unit availability and integration scheduling information should be included in the revised version of 

the test plan. The planner must be sure to include a description of how test results will be 

recorded. Test-related documents that will be required for this task, for example, test logs, and test 

incident reports, should be described, and references to standards for these documents 

provided. Any special tools required for the tests are also described. The next steps in unit testing 

consist of designing the set of test cases, developing the auxiliary code needed for testing, 

executing the tests, and recording and analyzing the results.  

 

3.4 Designing the unit tests  

 

Part of the preparation work for unit test involves unit test design. It is important to specify (i)  

the test cases (including input data, and expected outputs for each test case), and, (ii) the test  

procedures (steps required run the tests). These items are described in more detail in Chapter 7.  

Test case data should be tabularized for ease of use, and reuse. Suitable tabular formats for test  

cases are found in Chapters 4 and 5. To specifically support object-oriented test design and the  

organization of test data, Berard has described a test case specification notation. He arranges the  

components of a test case into a semantic network with parts, Object_ID, Test_Case_ID,  

Purpose, and List_of_Test_Case_Steps. Each of these items has component parts. In the test  

design specification Berard also includes lists of relevant states, messages (calls to methods),  

exceptions, and interrupts. As part of the unit test design process, developers/testers should also  

describe the relationships between the tests. Test suites can be defined that bind related tests  

together as a group. All of this test design information is attached to the unit test plan. Test cases,  

test procedures, and test suites may be reused from past projects if the organization has been  

careful to store them so that they are easily retrievable and reusable.  

 

Test case design at the unit level can be based on use of the black and white box test design  

strategies described in Chapters 4 and 5. Both of these approaches are useful for designing test  

cases for functions and procedures. They are also useful for designing tests for the individual  

methods (member functions) contained in a class. Considering the relatively small size of a unit,  

it makes sense to focus on white box test design for procedures/functions and the methods in a  

class. This approach gives the tester the opportunity to exercise logic structures and/or data flow  

sequences, or to use mutation analysis, all with the goal of evaluating the structural integrity of  

the unit. Some black box-based testing is also done at unit level; however, the bulk of black box  

testing is usually done at the integration and system levels and beyond. In the case of a smaller- 

sized COTS component selected for unit testing, a black box test design approach may be the  

only option. It should be mentioned that for units that perform mission/safely/business critical  

functions, it is often useful and prudent to design stress, security, and performance tests at the  

unit level if possible.  
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3.5 The class as a testable unit  

 

If an organization is using the object-oriented paradigm to develop software systems it will need  

to select the component to be considered for unit test. As described in Section 6.1, the choices  

consist of either the individual method as a unit or the class as a whole. Each of these choices  

requires special consideration on the part of the testers when designing and running the unit tests,  

and when retesting needs to be done. For example, in the case of the method as the selected unit  

to test, it may call other methods within its own class to support its functionality. Additional  

code, in the form of a test harness, must be built to represent the called methods within the class.  

Building such a test harness for each individual method often requires developing code  

equivalent to that already existing in the class itself (all of its other methods). This is costly;  

however, the tester needs to consider that testing each individual method in this way helps to  

ensure that all statements/branches have been executed at least once, and that the basic  

functionality of the method is correct. This is especially important for mission or safety critical  

methods.  

In spite of the potential advantages of testing each method individually, many developers/testers  

consider the class to be the component of choice for unit testing. The process of testing classes as  

units is sometimes called component test . A class encapsulates multiple interacting methods  

operating on common data, so what we are testing is the intraclass interaction of the methods.  

When testing on the class level we are able detect not only traditional types of defects, for  

example, those due to control or data flow errors, but also defects due to the nature of  

objectoriented   systems,   for   example,   defects   due   to   encapsulation,   inheritance,   and  

polymorphism errors. We begin to also look for what Chen calls object management faults, for  

example, those associated with the instantiation, storage, and retrieval of objects .  

This brief discussion points out some of the basic trade-offs in selecting the component to be 

considered for a unit test in object-oriented systems. If the class is the selected component, 

testers  may  need  to  address  special  issues  related  to  the  testing  and  retesting  of  these 

components.  Some of these issues are raised in the paragraphs that follow.  
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Issue 1: Adequately Testing Classes 

The potentially high costs for testing each individual method in a class have been described.  

These high costs will be particularly apparent when there are many methods in a class; the  

numbers can reach as high as 20 to 30. If the class is selected as the unit to test, it is possible to  

reduce these costs since in many cases the methods in a single class serve as drivers and stubs for  

one another. This has the effect of lowering the complexity of the test harness that needs to be  

developed. However, in some cases driver classes that represent outside classes using the  

methods of the class under test will have to be developed. In addition, if it is decided that the  

class is the smallest component to test, testers must decide if they are able to adequately cover all  

necessary features of each method in class testing. Some researchers believe that coverage  

objectives and test data need to be developed for each of the methods, for example, the create,  

pop, push, empty, full, and show_top methods associated with the stack class shown in Figure  

6.3. Other researchers believe that a class can be adequately tested as a whole by observation  

of method interactions using a sequence of calls to the member functions with appropriate 

parameters.  

Again, referring to the stack class shown in Figure 6.3, the methods push, pop, full, empty, and  

show_top will either read or modify the state of the stack. When testers unit (or component) test  

this class what they will need to focus on is the operation of each of the methods in the class and  

the interactions between them. Testers will want to determine, for example, if push places an  

item in the correct position at the top of the stack. However, a call to the method full may have to  

be made first to determine if the stack is already full. Testers will also want to determine if push  

and pop work together properly so that the stack pointer is in the correct position after a  

sequence of calls to these methods. To properly test this class, a sequence of calls to the methods  

needs to be specified as part of component test design. For example, a test sequence for a stack  

that can hold three items might be:  

 

create(s,3), empty(s), push(s,item-1), push(s,item-2), push(s,item-3),  

full(s), show_top(s), pop(s,item), pop(s,item), pop(s,item), empty(s), . . .  

The reader will note that many different sequences and combination of calls are possible even for this 

simple class. Exhaustively testing every  possible sequence is usually not practical. The tester 

must select those sequences she believes will reveal the most defects in the class. Finally, a tester 

might use a combination of approaches, testing some of the critical methods on an individual 

basis as units, and then testing the class as a whole.  

Issue 2: Observation of Object States and State Changes  

Methods may not return a specific value to a caller. They may instead change the state of an  

object. The state of an object is represented by a specific set of values for its attributes or state  

variables. State-based testing as described in Chapter 4 is very useful for testing objects.  

Methods will often modify the state of an object, and the tester must ensure that each state  

transition is proper. The test designer can prepare a state table (using state diagrams developed  

for the requirements specification) that specifies states the object can assume, and then in the  

table indicate sequence of messages and parameters that will cause the object to enter each state.  

When the tests are run the tester can enter results in this same type of table. For example, the first  

call to the method push in the stack class of Figure 6.3, changes the state of the stack so that  
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empty is no longer true. It also changes the value of the stack pointer variable, top. To determine  

if the method push is working properly the value of the variable top must be visible both before  

and after the invocation of this method. In this case the method show_top within the class may be  

called to perform this task. The methods full and empty also probe the state of the stack. A  

sample augmented sequence of calls to check the value of top and the full/empty state of the  

three-item stack is:  

empty(s), push(s,item-1), show_top(s), push(s,item-2),  

show_top(s), push(s,item-3), full(s), show_top(s), pop(s,item), 
show_top(s), pop(s,item), show_top(s), empty(s), . . .  
 

Issue 3: The Retesting of Classes—I  

One of the most beneficial features of object-oriented development is encapsulation. This is a  

technique that can be used to hide information. A program unit, in this case a class, can be built  

with a well-defined public interface that proclaims its services (available methods) to client  

classes. The implementation of the services is private. Clients who use the services are unaware  

of implementation details. As long as the interface is unchanged, making changes to the  

implementation should not affect the client classes. A tester of object-oriented code would  

therefore conclude  that only the class with implementation changes to its methods needs to be  

retested. Client classes using unchanged interfaces need not be retested. In an object-oriented  

system, if a developer changes a class implementation that class needs to be retested as well as  

all the classes that depend on it. If a superclass, for example, is changed, then it is necessary to  

retest all of its subclasses. In addition, when a new subclass is added (or modified), we must also  

retest the methods inherited from each of its ancestor superclasses. The new (or changed)  

subclass introduces an unexpected form of dependency because there now exists a new context  

for the inherited components.  

Issue 4: The Retesting of Classes—II  

Classes are usually a part of a class hierarchy where there are existing inheritance relationships. 

Subclasses inherit methods from their superclasses. Very often a tester may assume that once a 

method in a superclass has been tested, it does not need retested in a subclass that inherits it.  

However, in some cases the method is used in a different context by the subclass and will need to be 

retested.  In addition, there may be an overriding of methods where a subclass may replace an 

inherited method with a locally defined method. Not only will the new locally defined method have 

to be retested, but designing a new set of test cases may be necessary. This is because the two 

methods (inherited and new) may be structurally different. The antiextentionality axiom as 

discussed in Chapter 5 expresses this need .  

 

The following is an example of such as case using the shape class in Figure 6.4. Suppose the  

shape superclass has a subclass, triangle, and triangle has a subclass, equilateral triangle. Also  

suppose that the method display in shape needs to call the method color for its operation.  

Equilateral triangle could have a local definition for the method display. That method could in  

turn use a local definition for color which has been defined in triangle. This local definition of  

the color method in triangle has been tested to work with the inherited display method in shape,  

but not with the locally defined display in equilateral triangle. This is a new context that must be  

retested. A set of new test cases should be developed. The tester must carefully examine all the 

relationships between members of a class to detect such occurrences.  
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3.6 The test harness  

In addition to developing the test cases, supporting code must be developed to exercise each unit  

and  to  connect  it  to  the  outside  world.  Since  the  tester  is  considering  a  stand-alone  

function/procedure/class, rather than a complete system, code will be needed to call the target  

unit, and also to represent modules that are called by the target unit. This code called the test  

harness, is developed especially for test and is in addition to the code that composes the system  

under development. The role is of the test harness is shown in Figure 6.5 and it is defined as  

follows:  
 

The auxiliary code developed to support testing of units and components is called a test 

harness. The harness consists of drivers that call the target code and stubs that represent 

modules it calls.  
 
 

The development of drivers and stubs requires testing resources. The drivers and stubs must be  
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tested themselves to insure they are working properly and that they are reusable for subsequent 
releases of the software. Drivers and stubs can be developed at several levels of functionality. For 
example, a driver could have the following options and combinations of options:  

 

(i) call the target unit;  

(ii) do 1, and pass inputs parameters from a table; 

(iii) do 1, 2, and display parameters;  
(iv) do 1, 2, 3 and display results (output parameters).  

 

The stubs could also exhibit different levels of functionality. For example a 

stub could:  

(i) display a message that it has been called by the target unit;  

(ii) do 1, and display any input parameters passed from the target unit; 

(iii) do 1, 2, and pass back a result from a table;  

(iv) do 1, 2, 3, and display result from table.  

Drivers and stubs as shown in Figure 6.5 are developed as procedures and functions for  

traditional imperative-language based systems. For object-oriented systems, developing drivers  

and stubs often means the design and implementation of special classes to perform the required  

testing tasks. The test harness itself may be a hierarchy of classes. For example, in Figure 6.5 the  

driver for a procedural system may be designed as a single procedure or main module to call the  

unit under test; however, in an object-oriented system it may consist of several test classes to  

emulate all the classes that call for services in the class under test. Researchers such as  

Rangaraajan and Chen have developed tools that generate test cases using several different  

approaches, and classes of test harness objects to test object-oriented code .  

The test planner must realize that, the higher the degree of functionally for the harness, the more  

resources it will require to design, implement, and test. Developers/testers will have to decide  

depending on the nature of the code under test, just how complex the test harness needs to be. 

Test harnesses for individual classes tend to be more complex than those needed for individual 

procedures and functions since the items being tested are more complex and there are more 

interactions to consider.  
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3.7 Running the unit tests and recording results  

Unit tests can begin when (i) the units becomes available from the developers (an estimation of  

availability is part of the test plan), (ii) the test cases have been designed and reviewed, and (iii)  

the test harness, and any other supplemental supporting tools, are available. The testers then  

proceed to run the tests and record results. Chapter 7 will describe documents called test logs that  

can be used to record the results of specific tests. The status of the test efforts for a unit, and a  

summary of the test results, could be recorded in a simple format such as shown in Table 6.1.  

These forms can be included in the test summary report, and are of value at the weekly status  

meetings that are often used to monitor test progress. It is very important for the tester at any  

level of testing to carefully record, review, and check test results. The tester must determine from  

the results whether the unit has passed or failed the test. If the test is failed, the nature of the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

problem should be recorded in what is sometimes called a test incident report (see Chapter 7). 

Differences from expected behavior should be described in detail. This gives clues to the 

developers to help them locate any faults. During testing the tester may determine that additional 

tests are required.  For example, a tester may observe that a particular coverage goal has not been 

achieved. The test set will have to be augmented and the test plan documents should reflect these 

changes. When a unit fails a test there may be several reasons for the failure. The most likely 

reason for the failure is a fault in the unit implementation (the code). Other likely causes that 

need to be carefully investigated by the tester are the following:  

 

• a fault in the test case specification (the input or the output was not specified correctly);  

• a fault in test procedure execution (the test should be rerun);  

• a fault in the test environment (perhaps a database was not set up properly);  

• a fault in the unit design (the code correctly adheres to the design specification, but the latter is 

incorrect).  
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The causes of the failure should be recorded in a test summary report, which is a summary of 

testing activities for all the units covered by the unit test plan.  

 

Ideally, when a unit has been completely tested and finally passes all of the required tests it is 

ready for integration. Under some circumstances  unit may be given a conditional acceptance for 

integration test. This may occur when the unit fails some tests, but the impact of the failure is not 

significant with respect to its ability to function in a subsystem, and the availability of a unit is 

critical for integration test to proceed on schedule. This a risky procedure and testers should 

evaluate the risks involved. Units with a conditional pass must eventually be repaired. When 

testing of the units is complete, a test summary report should be prepared. This is a valuable 

document for the groups responsible for integration and system tests. It is also a valuable 

component of the project history. Its value lies in the useful data it provides for test process 

improvement and defect prevention. Finally, the tester should insure that the test cases, test 

procedures, and test harnesses are preserved for future reuse.  

 

3.8  Integration tests  

Integration test for procedural code has two major goals:  

(i) to detect defects that occur on the interfaces of units;  

(ii) to assemble the individual units into working subsystems and finally a complete system that is 

ready for system test.  

 

In unit test the testers attempt to detect defects that are related to the functionality and structure of 
the unit. There is some simple testing of unit interfaces when the units interact with drivers and 

stubs. However, the interfaces are more adequately tested during integration test when each unit is 

finally connected to a full and working implementation of  those units it calls, and those that call it. 

As a consequence of this assembly or integration process, software subsystems and finally a 
completed system is put together during the integration test. The completed system is then ready 

for system testing.  

 

With a few minor exceptions, integration test should only be performed on units that have been  

reviewed and have successfully passed unit testing. A tester might believe erroneously that since  

a unit has already been tested during a unit test with a driver and stubs, it does not need to be  

retested in combination with other units during integration test. However, a unit tested in  

isolation may not have been tested adequately for the situation where it is combined with other  

modules. This is also a consequences of one of the testing axioms found in Chapter 4 called  

anticomposition.  

Integration testing works best as an iterative process in proceduraloriented system. One unit at a  

time is integrated into a set of previously integrated modules which have passed a set of  

integration tests. The interfaces and functionally of the new unit in combination with the  

previously integrated units is tested. When a subsystem is built from units integrated in this  

stepwise  manner,  then  performance,  security,  and  stress  tests  can  be  performed  on  this  

subsystem.  
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Integrating one unit at a time helps the testers in several ways. It keeps the number of new  

interfaces to be examined small, so tests can focus on these interfaces only. Experienced testers  

know that many defects occur at module interfaces. Another advantage is that the massive  

failures that often occur when multiple units are integrated at once is avoided. This approach also  

helps the developers; it allows defect search and repair to be confined to a small known number  

of components and interfaces. Independent subsystems can be integrated in parallel as long as  

the required units are available. The integration process in object-oriented systems is driven by  

assembly of the classes into cooperating groups. The cooperating groups of classes are tested as a  

whole and then combined into higher-level groups. Usually the simpler groups are tested first,  

and then combined to form higher-level groups until the system is assembled.  

 

3.9 Designing integration tests  

Integration tests for procedural software can be designed using a black or white box approach.  

Both are recommended. Some unit tests can be reused. Since many errors occur at module  

interfaces, test designers need to focus on exercising all input/output parameter pairs, and all  

calling relationships. The tester needs to insure the parameters are of the correct type and in the  

correct order. The author has had the personal experience  of spending many hours trying to  

locate a fault that was due to an incorrect ordering of parameters in the calling routine. The tester  

must also  insure that once the parameters are passed to a routine they are used correctly. For  

example, in Figure 6.9, Procedure_b is being integrated with Procedure_a. Procedure_a calls  

Procedure_b with two input parameters in3, in4. Procedure_b uses those parameters and then  

returns a value for the output parameter out1. Terms such as lhs and rhs could be any variable  

or expression. The reader should interpret the use of the variables in the broadest sense. The  

parameters could be involved in a number of def and/or use data flow patterns. The actual usage  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

patterns of the parameters  must be checked at integration time. Data flow-based (def-use paths)  

and control flow (branch coverage) test data generation methods are useful here to insure that the  
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input parameters, in3, in4, are used properly in Procedure_b. Again data flow methods (def-use 

pairs) could also be used to check that the proper sequence of data flow operations is being 

carried out to generate the correct value for out1 that flows back to Procedure_a.  

Black box tests are useful in this example for checking the behavior of the pair of procedures.  

For this example test input values for the input parameters in1 and in2 should be provided, and  

the outcome in out2 should be examined for correctness. For conventional systems, input/output  

parameters and calling relationships will appear in a structure chart built during detailed design.  

Testers must insure that test cases are designed so that all modules in the structure chart are  

called at least once, and all called modules are called by every caller. The reader can visualize  

these as coverage criteria for integration test. Coverage requirements for the internal logic of  

each of the integrated units should be achieved during unit tests. Some black box tests used for  

module integration may be reusable from unit testing. However, when units are integrated and  

subsystems are to be tested as a whole, new tests will have to be designed to cover their  

functionality and adherence to performance and other requirements (see example above).  

Sources for development of black box or functional tests at the integration level are the  

requirements documents and the user manual. Testers need to work with requirements analysts to  

insure that the requirements are testable, accurate, and complete. Black box tests should be  

developed to insure proper functionally and ability to handle subsystem stress. For example, in a  

transaction-based subsystem the testers want to determine the limits in number of transactions  

that can be handled. The tester also wants to observe subsystem actions when excessive amounts  

of transactions are generated. Performance issues such as the time requirements for a transaction  

should also be subjected to test. These will be repeated when the software is assembled as a  

whole and is undergoing system test.  

Integration testing of clusters of classes also involves building test harnesses which in this case  

are special classes of objects built especially  for testing. Whereas in class testing we evaluated  

intraclass method interactions, at the cluster level we test interclass method interaction as well.  

We want to insure that messages are being passed properly to interfacing objects, object state  

transitions are correct when specific events occur, and that the clusters are performing their  

required functions. Unlike procedural-oriented systems, integration for object-oriented systems  

usually does not occur one unit at a time. A group of cooperating classes is selected for test as a  

cluster. In their object-oriented testing framework the method is the entity selected for unit test.  

The methods and the classes they belong to are connected into clusters of classes that are  

represented by a directed graph that has two special types of entities.These are method-message  

paths, and atomic systems functions that represent input port events. A method-message path is  

described as a sequence of method executions linked by messages. An atomic system function is  

an input port event (start event) followed by a set of method messages paths and terminated by  

an output port event (system response).Murphy et al. define clusters as classes that are closely  

coupled and work together to provide a unified behavior [5]. Some examples of clusters are  

groups of classes that produce a report, or monitor and control a device.Scenarios of operation  

from the design document associated with a cluster are used to develop test cases. Murphy and  

his co-authors have developed a tool that can be used for class and cluster testing.  
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3.10 Integration test planning 

Integration test must be planned. Planning can begin when high-level design is complete so that  

the system architecture is defined. Other documents relevant to integration test planning are the  

requirements  document,  the  user  manual,  and  usage  scenarios.  These  documents  contain  

structure  charts,  state  charts,  data  dictionaries,  cross-reference  tables,  module  interface  

descriptions, data flow descriptions, messages and event  descriptions, all necessary to plan  

integration tests. The strategy for integration should be defined. For procedural-oriented system  

the order of integration of the units of the units should be defined. This depends on the strategy  

selected.  Consider  the  fact  that  the  testing  objectives  are  to  assemble  components  into  

subsystems and to demonstrate that the subsystem functions properly with the integration test  

cases. For object-oriented systems a working definition of a cluster or similar construct must be  

described, and relevant test cases must be specified. In addition, testing resources and schedules  

for integration should be included in the test plan.The plan includes the following items:  

(i) clusters this cluster is dependent on;  

(ii) a natural language description of the functionality of the cluster to be tested; 

(iii) list of classes in the cluster;  

(iv) a set of cluster test cases.  

As stated earlier in this section, one of the goals of integration test is to build working  

subsystems, and then combine these into the system as a whole. When planning for integration  

test the planner selects subsystems to build based upon the requirements and user needs. Very  

often subsystems selected for integration are prioritized. Those that represent key features,  

critical features, and/or user-oriented functions may be given the  highest priority. Developers  

may want to show clients that certain key subsystems have been assembled and are minimally  

functional.  

 

3.11 System test - The different types  

When integration tests are completed, a software system has been assembled and its major  

subsystems have been tested. At this point the developers/ testers begin to test it as a whole.  

System test planning should begin  at the requirements phase with the development of a master  

test plan and requirements-based (black box) tests. System test planning is a complicated task.  

There ar e many components of the plan that need to be prepared  such as test approaches, costs,  

schedules, test cases, and test procedures. All of these are examined and discussed in Chapter 7.  

 

System testing itself requires a large amount of resources. The goal is to ensure that the system  

performs according to its requirements. System  test evaluates both functional behavior and  

quality requirements such as reliability, usability, performance and security. This phase of testing  

is especially useful for detecting external hardware and software interface defects, for example,  

those causing race conditions, deadlocks, problems with interrupts and exception handling, and  

ineffective memory usage. After system test the software will be turned over to users for  

evaluation during acceptance test or alpha/beta test. The organization will want to be sure that  

the quality of the software has been measured and evaluated before users/clients are invited to  

use the system. In fact system test serves as a good rehearsal scenario for acceptance test.  
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Because system test often requires many resources, special laboratory equipment, and long test 

times, it is usually performed by a team of testers. The best scenario is for the team to be part of an 

independent testing group. The team must do their best to find any weak areas in the software; 

therefore, it is best that no developers are directly involved. There are several types of system 

tests as shown on Figure 6.10. The types are as follows:  

 

• Functional testing  

• Performance testing  
• Stress testing  

• Configuration testing  

• Security testing  

• Recovery testing  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F u n c t i o n a l T e s t i n g  

 

System functional tests have a great deal of overlap with acceptance tests. Very often the same  

test sets can apply to both. Both are demonstrations of the system‘s functionality. Functional  

tests at the system level are used to ensure that the behavior of the system adheres to the  

requirements specification. All functional requirements for the system must be achievable by the  

system. For example, if a personal finance system is required to allow users to set up accounts,  

add, modify, and delete entries in the accounts, and print reports, the function-based system and  

acceptance tests must ensure that the system can perform these tasks. Clients and users will  

expect this at acceptance test time. Functional tests are black box in nature. The focus is on the  

inputs and proper outputs for each function. Improper and illegal inputs must also be handled by  

the system. System behavior under the latter circumstances tests must be observed. All functions  

must be tested.  In fact, the tests should focus on the following goals.  

• All types or classes of legal inputs must be accepted by the software.  
• All classes of illegal inputs must be rejected (however, the system should remain available).  
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• All possible classes of system output must exercised and examined.  

• All effective system states and state transitions must be exercised and examined.  

• All functions must be exercised.  

 

P e r f o r m a n c e T e s t i n g  

An  examination  of  a  requirements  document  shows  that  there  are  two  major  types  of 

requirements:  
 

1. Functional requirements. Users describe what functions the software should perform. We test  
for compliance of these requirements at the system level with the functional-based system tests.  

2. Quality requirements. There are nonfunctional in nature but describe quality levels expected  

for the software. One example of a quality requirement is performance level. The users may have  

objectives for the software system in terms of memory use, response time, throughput, and  

delays. The goal of system performance tests is to see if the software meets the performance  

requirements. Testers also learn from performance test  whether there are any hardware or  

software factors that impact on the system‘s performance. Performance testing allows testers to  

tune the system; that is, to optimize the allocation of system resources. For example, testers may  

find that they need to reallocate memory pools, or to modify the priority level of certain system  

operations. Testers may also be able to project the system‘s future performance levels. This is  

useful for planning subsequent releases.  

 

Performance objectives must be articulated clearly by the users/clients in the requirements  

documents, and be stated clearly in the system test plan. The objectives must be quantified. For  

example, a requirement that the system return a response to a query in ―a reasonable amount of  

time‖ is not an acceptable requirement; the time requirement must be specified in quantitative  

way. Results of performance tests are quantifiable. At the end of the tests the tester will know,  

for example, the number of CPU cycles used, the actual response time in seconds (minutes, etc.),  

he actual number of transactions processed per time period. These can be evaluated with respect  

to requirements objectives.  

S t r e s s T e s t i n g  

 

When a system is tested with a load that causes it to allocate its resources in maximum amounts,  

this is called stress testing. For example, if an  operating system is required to handle 10  

interrupts/second and the load causes 20 interrupts/second, the system is being stressed. The goal  

of stress test is to try to break the system; find the circumstances under which it will crash. This  

is sometimes called ―breaking the system.‖ An everyday analogy can be found in the case where  

a suitcase being tested for strength and endurance is stomped on by a multiton elephant!  

Stress testing is important because it can reveal defects in real-time and other types of systems,  

as well as weak areas where poor design could cause unavailability of service. For example,  

system prioritization orders may not be correct, transaction processing may be poorly designed  

and waste memory space, and timing sequences may not be appropriate for the required tasks.  

This is particularly important for real-time systems where unpredictable events may occur  

resulting in input loads that exceed those described in the requirements documents. Stress testing  
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often uncovers race conditions, deadlocks, depletion of resources in unusual or unplanned 

patterns, and upsets in normal operation of the software system.  

 

System limits and threshold values are exercised. Hardware and software interactions are  

stretched to the limit. All of these conditions are likely to reveal defects and design flaws which  

may not be revealed under normal testing conditions.  Stress testing is supported by many of the  

resources used for performance test as shown in Figure 6.11. This includes the load generator.  

The testers set the load generator parameters so that load levels cause stress to the system. For  

example, in our example of a telecommunication system, the arrival rate of calls, the length of  

the calls, the number of misdials, as well as other system parameters should all be at stress levels.  

As in the case of performance test, special equipment and laboratory space may be needed for  

the stress tests. Examples are hardware or software probes and event loggers. The tests may need  

to run for several days. Planners must insure resources are available for the long time periods  

required. The reader should note that stress tests should also be conducted at the integration, and  

if applicable at the unit level, to detect stress-related defects as early as possible in the testing  

process. This is especially critical in cases where redesign is needed.  

 

Stress testing is important from the user/client point of view. When system operate correctly 

under conditions of stress then clients have confidence that the software can perform as required. 
Beizer suggests that  devices used for monitoring stress situations provide users/clients with 

visible and tangible evidence that the system is being stressed.  

 

C o n f i g u r a t i o n T e s t i n g  

Typical software systems interact with hardware devices such as disc drives, tape drives, and  

printers. Many software systems also interact with multiple CPUs, some of which are redundant.  

Software that controls realtime processes, or embedded software also interfaces with devices, but  

these are very specialized hardware items such as missile launchers, and nuclear power device  

sensors.  In  many  cases,  users  require  that  devices  be  interchangeable,  removable,  or  

reconfigurable. For example, a printer  of type X should be substitutable for a printer of type Y,  

CPU A should be removable from a system composed of several other CPUs, sensor A should be  

replaceable with sensor B. Very often the software will have a set of commands, or menus, that  

allows   users   to   make   these   configuration   changes.   Configuration   testing   allows  

developers/testers to evaluate system performance and availability when hardware exchanges  

and reconfigurations occur. Configuration testing also requires many resources including the  

multiple hardware devices used for the tests. If a system does not have specific requirements for  

device configuration changes then large-scale configuration testing is not essential.  

 

According to Beizer configuration testing has the following objectives:  
• Show that all the configuration changing commands and menus work  properly.  

• Show that all interchangeable devices are really interchangeable, and that they each enter the 

proper states for the specified conditions.  

• Show that the systems‘ performance level is maintained when devices are interchanged, or 

when they fail.  
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Several types of operations should be performed during configuration test. Some sample 

operations for testers are:  

(i) rotate and permutate the positions of devices to ensure physical/ logical device permutations  

work for each device (e.g., if there are two printers A and B, exchange their positions);  

(ii) induce malfunctions in each device, to see if the system properly handles the malfunction;  

(iii) induce multiple device malfunctions to see how the system reacts. These operations will  

help to reveal problems (defects) relating to hardware/software interactions when hardware  

exchanges, and reconfigurations occur. Testers observe the consequences of these operations and  

determine whether the system can recover gracefully particularly in the case of a malfunction.  

 

S e c u r i t y T e s t i n g  

Designing and testing software systems to insure that they are safe and secure is a big issue 

facing software developers and test specialists. Recently, safety and security issues have taken on 

additional importance due to the proliferation of commercial applications for use on the Internet. If 

Internet users believe that their personal information is not secure and is available to those with 

intent to do harm, the future of e-commerce is in peril! Security testing evaluates system 

characteristics that relate to the availability, integrity, and confidentially of system data and 

services. Users/clients should be encouraged to make sure their security needs are clearly known at 

requirements time, so that security issues can be addressed by designers and testers. Computer 

software and data can be compromised by:  

(i) criminals intent on doing damage, stealing data and information, causing denial of service, 

invading privacy;  

(ii) errors on the part of honest developers/maintainers who modify, destroy, or compromise data 
because of misinformation, misunderstandings,and/or lack of knowledge.  

 

Both criminal behavior and errors that do damage can be perpetuated by those inside and outside of 

an organization. Attacks can be random or systematic. Damage can be done through various means 

such as:  
(i) viruses;  

(ii) trojan horses;  

(iii) trap doors;  

(iv) illicit channels.  

The effects of security breaches could be extensive and can cause:  

(i) loss of information;  

(ii) corruption of information; 

(iii) misinformation;  

(iv) privacy violations;  
(v) denial of service.  
 

Physical, psychological, and economic harm to persons or property can result from security  

breaches. Developers try to ensure the security of their systems through use of protection  

mechanisms such as passwords, encryption, virus checkers, and the detection and elimination of  

trap doors. Developers should realize that protection from unwanted entry and other security- 
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oriented matters must be addressed at design time. A simple case in point relates to the 

characteristics of a password. Designers need answers to the following: What is the minimum 

and maximum allowed length for the password? Can it be pure alphabetical or must it be a 

mixture of alphabetical and other characters? Can it be a dictionary word? Is the password 

permanent, or does it expire periodically? Users can specify their needs in this area in the 

requirements document. A password checker can enforce any rules the designers deem necessary to 

meet security requirements.  
 

Password checking and examples of other areas to focus on during security testing are described  
below.  
 

Password Checking—Test the password checker to insure that users will select a password that 

meets  the  conditions  described  in  the  password  checker  specification.  Equivalence  class 

partitioning and boundary value analysis based on the rules and conditions that specify a valid 

password can be used to design the tests.  

 

Legal and Illegal Entry with Passwords—Test for legal and illegal system/data access via legal 

and illegal passwords.  

Password Expiration—If it is decided that passwords will expire after a certain time period, tests 

should be designed to insure the expiration period is properly supported and that users can enter a 

new and appropriate password.  

 

Encryption—Design test cases to evaluate the correctness of both encryption and decryption  

algorithms for systems where data/messages are encoded. 

Browsing—Evaluate browsing privileges to insure that unauthorized browsing does not occur. 

Testers should attempt to browse illegally and observe system responses. They should determine what 

types of private information can be inferred by both legal and illegal browsing.  

Trap Doors—Identify any unprotected entries into the system that may allow access through  

unexpected channels (trap doors). Design tests that attempt to gain illegal entry and observe  

results. Testers will need the support of designers and developers for this task. In many cases an  

external ―tiger team‖ as described below is hired to attempt such a break into the system.  

Viruses—Design tests to insure that system virus checkers prevent or curtail entry of viruses into the 

system. Testers may attempt to infect the system with various viruses and observe the system 

response. If a virus does penetrate the system, testers will want to determine what has been 

damaged and to what extent.  

Even with the backing of the best intents of the designers, developers/ testers can never be sure  

that a software system is totally secure even after extensive security testing. If security is an  

especially important issue, as in the case of network software, then the best approach if resources  

permit, is to hire a so-called ―tiger team‖ which is an outside group of penetration experts who  

attempt to breach the system security. Although a testing group in the organization can be  
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involved in testing for security breaches, the tiger team can attack the problem from a different  

point of view. Before the tiger team starts its work the system should be thoroughly tested at all  

levels. The testing team should also try to identify any trap  doors and other vulnerable points.  

Even with the use of a tiger team there is never any guarantee that the software is totally secure.  

 

R e c o v e r y T e s t i n g  

Recovery testing subjects a system to losses of resources in order to determine if it can recover  

properly from these losses. This type of testing is especially important for transaction systems,  

for example, on-line banking software. A test scenario might be to emulate loss of a device  

during a transaction. Tests would determine if the system could return to a wellknown state, and  

that no transactions have been compromised. Systems with automated recovery are designed for  

this purpose. They usually have multiple CPUs and/or multiple instances of devices, and  

mechanisms to detect the failure of a device. They also have a so-called ―checkpoint‖ system that  

meticulously records transactions and system states periodically so that these are preserved in  

case of failure. This information allows the system to return to a known state after the failure.  

The recovery testers must ensure that the device monitoring system and the checkpoint software  

are working properly.  

Beizer advises that testers focus on the following areas during recovery  testing :  

1. Restart. The current system state and transaction states are discarded.The most recent  

checkpoint record is retrieved and the system initialized to the states in the checkpoint record.  

Testers must insure that all transactions have been reconstructed correctly and that all devices are  

in the proper state. The system should then be able to begin to process new transactions.  

2. Switchover. The ability of the system to switch to a new processor must be tested. Switchover is the 

result of a command or a detection of a faulty processor by a monitor. In each of these testing 

situations all transactions and processes must be carefully examined to detect:  
(i) loss of transactions;  

(ii) merging of transactions;  
(iii) incorrect transactions;  

(iv) an unnecessary duplication of a transaction.  

 

A good way to expose such problems is to perform recovery testing under a stressful load. 
Transaction inaccuracies and system crashes are likely to occur with the result that defects and 
design flaws will be revealed.  

 

3.12 Regression testing  

 

Regression testing is not a level of testing, but it is the retesting of software that occurs when  
changes are made to ensure that the new version of the software has retained the capabilities of  

the old version and that no new defects have been introduced due to the changes. Regression  

testing can occur at any level of test, for example, when unit tests are run the unit may pass a  
number of these tests until one of the tests does reveal a defect.  The unit is repaired and then  

retested with all the old test cases to ensure that the changes have not affected its functionality.  

Regression tests are especially important when multiple software releases are developed. Users  
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want new capabilities in the latest releases, but still expect the older capabilities to remain in  

place. This is where regression testing plays a role. Test cases, test procedures, and other test- 

related items from previous releases should be available so that these tests can be run with the  

new versions of the software. Automated testing tools support testers with this very time- 

consuming task.  

 

3.12 Alpha, beta and acceptance tests.  

 

In the various testing activities that have been described so far, users have played a supporting  

role for the most part. They have been involved in requirements analysis and reviews, and have  

played a role in test planning. This is especially true for acceptance test planning if the software  

is being custom made for an organization. The clients along with test planners design the actual  

test cases that will be run during acceptance test. Users/clients may also have participated in  

prototype evaluation, usage profile development, and in the various stages of usability testing.  

After the software has passed all the system tests and defect repairs have been made, the users  

take a more active role in the testing process. Developers/testers must keep in mind that the  

software is being developed to satisfy the users requirements, and no matter how elegant its  

design it will not be accepted by the users unless it helps them to achieve their goals as specified  

in the requirements. Alpha, beta, and acceptance tests allow users to evaluate the software in  

terms of their expectations and goals.  
 

When software is being developed for a specific client, acceptance tests are carried out after 

system testing. The acceptance tests must be planned carefully with input from the client/users. 

Acceptance test cases are based on requirements. The user manual is an additional source for test 

cases. System test cases may be reused. The software must run under real-world conditions on 

operational hardware and software. The software-under-test should be stressed. For continuous 

systems the software should be run at least through a 25-hour test cycle. Conditions should be 

typical for a working day. Typical inputs and illegal inputs should be used and all major 

functions should be exercised. If the entire suite of tests cannot be run for any reason, then the 

full set of tests needs to be rerun from the start.  

 

Acceptance tests are a very important milestone for the developers.  At this time the clients will 

determine if the software meets their requirements. Contractual obligations can be satisfied if the 

client is satisfied with the software. Development organizations will often receive their final 
payment when acceptance tests have been passed.  

 

Acceptance tests must be rehearsed by the developers/testers. There should be no signs of  

unprofessional behavior or lack of preparation. Clients do not appreciate surprises. Clients  

should be received in the development organization as respected guests. They should be provided  

with documents and other material to help them participate in the acceptance testing process, and  

to evaluate the results. After acceptance testing the client will point out to the developers which  

requirement have/have not been satisfied. Some requirements may be deleted, modified, or  

added due to changing needs. If the client has been involved in prototype evaluations then the  

changes may be less extensive. If the client is satisfied that the software is usable and reliable,  

and they give their approval, then the next step is to install the system at the client‘s site. If the  
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client‘s site conditions are different from that of the developers, the developers must set up the  

system so that it can interface with client software and hardware. Retesting may have to be done  

to insure that the software works as required in the client‘s environment. This is called  

installationtest.  

If the software has been developed for the mass market (shrinkwrapped software), then testing it  

for individual clients/users is not practical or even possible in most cases. Very often this type of  

software undergoes two stages of acceptance test. The first is called alpha test. This test takes  

place at the developer‘s site. A cross-section of potential users and members of the developer‘s  

organization are invited to use the software. Developers observe the users and note problems.  

Beta test sends the software to a cross-section of users who install it and use it under realworld  

working conditions. The users send records of problems with the software to the development  

organization where the defects are repaired sometimes in time for the current release.  

Unit III  

Part-A Questions  

1.  List the types of testing and its need.  

2.  What are the goals of unit testing?  

3.  Define: Integration testing.  

4.  Define:test harness.  

5.  Define:System testing.List the types of System testing.  

6.  Give an note on:alpha, beta, acceptance testing  

 

Part-B Questions  

1.  Explain elaborately about the various types of system testing.  

2.  Discuss the importance of following:  

 

 

(i) Security Testing (ii) Alpha Testing 

(iii) Beta Testing (iv) Acceptance testing 
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UNIT IV TEST MANAGEMENT  

 

4.1 Introductory concepts  

This chapter focuses on preparing the reader to address two fundamental maturity goals at level 2  

of the TMM: (i) developing organizational goals/ policies relating to testing and debugging, and  

(ii) test planning. These maturity goals are managerial in nature. They are essential to support  

testing as a managed process. According to R. Thayer, a managed process is one that is planned,  

monitored, directed, staffed, and organized . At TMM level 2 the planning component of a  

managed process is instituted. At TMM levels 3 and 4 the remaining managerial components are  

integrated into the process. By instituting all of the managerial components described by Thayer  

in an incremental manner, an organization is able to establish the high-quality testing process  

described at higher levels of the TMM. The test specialist has a key role in developing and  

implementing these managerial components. In this chapter concepts and tools are introduced to  

build test management skills, thus supporting the reader in his/her development as a test  

specialist. The development, documentation, and institutionalization of goals and related policies  

is important to an organization. The goals/policies may be business-related, technical, or political  

in nature. They are the basis for decision making; therefore setting goals and policies requires the  

participation and support of upper management. Technical staff and other interested parties also  

participate in goal and policy development. Simple examples of the three types of goals  

mentioned are shown below.  

1. Business goal: to increase market share 10% in the next 2 years in the area of financial 

software.  

2. Technical goal: to reduce defects by 2% per year over the next 3 years.  

3. Business/technical goal: to reduce hotline calls by 5% over the next 2 years.  

4. Political goal: to increase the number of women and minorities in high management positions by 
15% in the next 3 years.  
 

Planning is guided by policy, supports goal achievement, and is a vital part of all engineering  

activities. In the software domain, plans to achieve goals associated with a specific project are  

usually developed by a project manager. In the testing domain, test plans support achieving  

testing goals for a project, and are either developed by the project manager as part of the overall  

project plan, or by a test or quality specialist in conjunction with the project planner. Test  

planning requires the planner to articulate the testing goals for a given project, to select tools and  

techniques needed to achieve the goals, and to estimate time and resources needed for testing 

tasks so that testing is effective, on time, within budget, and consistent with project goals.  
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4.2 Testing and debugging goals and policies  

A goal can be described as (i) a statement of intent, or (ii) a statement of a accomplishment 

that an individual or an organization wants to achieve.  

A goal statement relates to an area where an individual, group, or organization wants to make 

improvements. Goals project future states of an organization, a group, or an individual. In an 

organization there is often a hierarchy of goals. At the top level are general organizational goals. 

There are intermediate-level goals that may be associated with a particular organizational 

functional unit. Individual projects have specific goals. These usually reflect organizational 

goals. There are personal-level goals as well. Each individual in an organization has a set of 

goals for self-improvement so that he or she can more effectively contribute to the project, 

functional unit, and organization as a whole.  

Goal statements can express expectations in quantitative terms or be more general in nature. For the 

testing goals below, goals 1 and 2 express what is to be achieved in a more quantitative 

manner than goals 3 and 4.  

1. One-hundred percent of testing activities are planned.  

2. The degree of automation for regression testing is increased from 50% to 80% over the next 3  

years.  

3. Testing activities are performed by a dedicated testing group.  

4. Testing group members have at least a bachelor-level degree and have taken a formal course in 
software testing.  
 

In general, quantitative goals are more useful. These are measurable goals, and give an 

organization, group, or individual the means to evaluate progress toward achieving the goal. In the 

testing domain, goal statements should provide a high-level vision of what testing is to 

accomplish in the organization with respect to quality of process and product. In addition to 

general testing goal statements, lower-level goal statements should be developed for all levels of 

testing. Goals for the education and training of testing personnel should also be included with 

testing goal statements. Test plans should express testing goals for each project. These reflect 

overall organizational testing goals as well as specific goals for the project.  

The TMM itself is built on a hierarchy of high-level testing maturity goals and subgoals which 

support the growth of an effective software testing process and promote high software quality. 

TheTMMcan be used by decision-makers in an organization to develop both long- and shortterm 

testing goals based on the TMM goal hierarchy.  

A policy can be defined as a high-level statement of principle or course of action that is 

used to govern a set of activities in an organization.  
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Because a policy provides the vision and framework for decision making, it is important to have  

the policy formally adopted by the organization, documented, and available for all interested  

parties. An intraorganizational web site is suggested as a location for policy statements. This  

would allow for updates and visibility within the organization. A policy statement should be  

formulated by a team or task force consisting of upper management, executive personnel, and  

technical staff. In the case of testing, a testing policy statement is used to guide the course of  

testing activities and test process evolution. It should be agreed upon as workable by all  

concerned.  

Testing policy statements reflect, integrate, and support achievement of testing goals. These 

goals in turn often target increasing software quality and improving customer satisfaction. Test 

policies also provide high-level guidance as to how testing is to be done in the organization, how its 

effectiveness will be evaluated, who will be responsible, and what choices of resources are 

possible. They should be explicit enough to guide decisions on all important testing issues, for 

example, how to test, what to test, and who will test. Policies are not written in stone, and as an 

organization grows in maturity its policies will change  and mature. The task force should 

establish documented procedures for policy change. A brief outline of a sample testing policy 

statement appropriate for a TMM level 2 organization follows.  

 

T e s t i n g P o l i c y : O r g a n i z a t i o n X  

Our organization, the X Corporation, realizes that testing is an important component of the  

software development process and has a high impact on software quality and the degree of  

customer satisfaction. To ensure that our testing process is effective and that our software  

products meet the client‘s requirements we have developed and adopted the following testing  

policy statement.  

 

1. Delivering software of the highest quality is our company goal. The presence of defects has a 

negative impact on software quality. Defects affect the correctness, reliability, and usability of a 

software product, thus rendering it unsatisfactory to the client. We define a testing activity as a set 

of tasks whose purpose is to reveal functional and quality- related defects in a software 

deliverable. Testing activities include traditional execution of the developing software, as well as 

reviews of the software deliverables produced at all stages of the life cycle. The aggregation of all 

testing activities performed in a systematic manner supported by organizational policies, 

procedures, and standards constitutes the testing process.  
 

2. A set of testing standards must be available to all interested parties on an intraorganizational web 
site. The standards contain descriptions of all test-related documents, prescribed templates, and the 

methods, tools, and procedures to be used for testing. The standards  must specify the types of 

projects that each of these items is to be associated with.  

 

3. In our organization the following apply to all software development/ maintenance projects:  
 

• Execution-based tests must be performed at several levels such as unit , integration, system, and 
acceptance tests as appropriate for each software product.  
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• Systematic approaches to test design must be employed that include application of both white and 

black box testing methods.  

• Reviews of all major product deliverables such as requirements and design documents, code, and 

test plans are required.  

• Testing must be planned for all projects. Plans must be developed for all levels of executionbased 

testing as well as for reviews of deliverables.  

Test plan templates must be included in organizational standards documents and implemented 
online. A test plan for a project must be compatible with the project plan for that project. Test 

plans must be approved by the project manager and technical staff. Acceptance test plans must also 

be approved by the client.  

 

• Testing activities must be monitored using measurements and milestones to ensure that they are 

proceeding according to plan.  

• Testing activities must be integrated into the software life cycle and carried out in parallel with other 

development activities. The extended modified V-model as shown in the testing standards document 

has been adopted to support this goal.  
• Defects uncovered during each test must be classified and recorded.  

• There must be a training program to ensure that the best testing practices are employed by the 
testing staff.  
 

4. Because testing is an activity that requires special training and an impartial view of the 

software, it must be carried out by an independent testing group. Communication lines must be 

established to support cooperation between testers and developers to ensure that the software is 
reliable, safe, and meets client requirements.  

 

5. Testing must be supported by tools, and, test-related measurements must be collected and used to 

evaluate and improve the testing process and the software product.  

6. Resources must be provided for continuos test process improvement.  

 

7.  Clients/developer/tester  communication  is  important,  and  clients  must  be  involved  in 
acceptance test planning, operational profile development, and usage testing when applicable to the 

project. Clients must sign off on the acceptance test plan and give approval for all changes in the 

acceptance test plan.  

 

8. A permanent committee consisting of managerial and technical staff must be appointed to be  

responsible for distribution and maintenance of organizational test policy statements. Whatever  

the nature of the test policy statement, it should have strong support and continual commitment  

from management. After the policy statement has been developed, approved, and distributed, a  

subset of the task force should be appointed to permanently oversee policy implementation and  

change.  
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D e b u g g i n g P o l i c y : O r g a n i z a t i o n X  

 

Our organization, the X Corporation, is committed to delivering highquality software to our  

customers. Effective testing and debugging processes are essential to support this goal. It is our  

policy to separate testing and debugging, and we consider them as two separate processes. Each  

has different psychologies, goals, and requirements. The resources, training, and tools needed are  

different for both. To support the separation of these two processes we have developed  

individual testing and debugging policies. Our debugging policy is founded on our quality goal  

to remove all defects from our software that impact on our customers‘ ability to use our software  

effectively, safely, and economically. To achieve this goal we have developed the following  

debugging policy statement.  

1. Testing and debugging are two separate processes. Testing is the process used to detect  

(reveal) defects. Debugging is the process dedicated to locating the defects, repairing the code,  

and retesting the software.  Defects are anomalies that impact on software functionality as well  

as on quality attributes such as performance, security, ease of use, correctness, and reliability.  

2. Since debugging is a timely activity, all project schedules must allow for adequate time to 

make repairs, and retest the repaired software.  
 

3. Debugging tools, and the training necessary to use the tools, must be available to developers to 
support debugging activities and tasks.  

 

4. Developers/testers and SQA staff must define and document a set of defect classes and defect 

severity levels. These must be must be available to all interested parties on an intraorganizational web 

site, and applied to all projects.  

5. When failures are observed during testing or in operational software they are documented. A  

problem, or test incident, report is completed by the developer/tester at testing time and by the  

users when a failure/ problem is observed in operational software. The problem report is  

forwarded to the development group. Both testers/developers and SQA staff must communicate  

and work with users to gain an understanding of the problem. A fix report must be completed by  

the developer when the defect is repaired and code retested. Standard problem and fix report  

forms must be available to all interested parties on an intraorganizational web site, and applied to  

all projects.  

7. All defects identified for each project must be cataloged according to class and severity level and 

stored as a part of the project history.  

8. Measurement such as total number of defects, total number of defects/ KLOC, and time to repair 

a defect are saved for each project.  

9. A permanent committee consisting of managerial and technical staff must be appointed to be 

responsible for distribution and maintenance of organizational debugging policy statements.  
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4.3 Test planning  

 

A plan can be defined in the following way.  

 

A plan is a document that provides a framework or approach for achieving a set of goals.  

In the software domain, plans can be strictly business oriented, for example, long-term plans to  

support the economic growth of an organization, or they can be more technical in nature, for  

example, a plan to develop a specific software product. Test plans tend to be more technically  

oriented. However, a software project plan that may contain a test plan as well will often refer to  

business goals. In this chapter we focus on planning for execution-based software testing  

(validation testing).  

Test planning is an essential practice for any organization that wishes to develop a test process  

that is repeatable and manageable. Pursuing the maturity goals embedded in the TMM structure  

is not a necessary precondition for initiating a test-planning process. However, a test process  

improvement effort does provide a good framework for adopting this  essential practice. Test  

planning should begin early in the software life cycle, although for many organizations whose  

test processes are immature this practice is not yet in place. Models such as the V-model, or the  

Extended/ Modified V-model (Figure 1.5), help to support test planning activities that begin in  

the requirements phase, and continue on into successive software development phases [2,3].  

In order to meet a set of goals, a plan describes what specific tasks must be accomplished, who is 

responsible for each task, what tools, procedures, and techniques must be used, how much time and 

effort is needed, and what resources are essential. A plan also contains milestones.  

Milestones are tangible events that are expected to occur at a certain time in the project’s 

lifetime. Managers use them to determine project status.  

Tracking the actual occurrence of the milestone events allows a manager to determine if the 

project is progressing as planned. Finally, a plan should assess the risks involved in carrying out the 

project. Test plans for software projects are very complex and detailed documents. The planner 
usually includes the following essential high-level items.  

 

1. Overall test objectives. As testers, why are we testing, what is to be achieved by the tests, and what 

are the risks associated with testing this product?  

2. What to test (scope of the tests). What items, features, procedures, functions, objects, clusters, and 

subsystems will be tested?  

 

3. Who will test. Who are the personnel responsible for the tests?  

4. How to test. What strategies, methods, hardware, software tools, and techniques are going to be 

applied? What test documents and deliverable should be produced?  

 

5. When to test. What are the schedules for tests? What items need to be available?  
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6. When to stop testing. It is not economically feasible or practical to plan to test until all defects 

have been revealed. This is a goal that testers can never be sure they have reached. Because of 

budgets, scheduling, and customer deadlines, specific conditions must be outlined in the test plan that 

allow testers/managers to decide when testing is considered to be complete.  

Test plans can be organized in several ways depending on organizational policy. There is often a  

hierarchy of plans that includes several levels of quality assurance and test plans. The complexity  

of the hierarchy depends on the type, size, risk-proneness, and the mission/safety criticality of  

software system being developed. All of the quality and testing plans should also be coordinated  

with the overall software project plan. A sample plan hierarchy is shown in Figure 7.1. At the top  

of the plan hierarchy there may be a software quality assurance plan. This plan gives an  

overview of all verification and validation activities for the project, as well as details related to  

other quality issues such as audits, standards, configuration control, and supplier control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Below that in the plan hierarchy there may be a master test plan that  includes an overall  

description of all execution-based testing for the software system. A master verification plan for  

reviews inspections/ walkthroughs would also fit in at this level. The master test plan itself may  

be a component of the overall project plan or exist as a separate  document. Depending on  

organizational policy, another level of the hierarchy could contain a separate test plan for unit,  

integration, system, and acceptance tests. In some organizations these are part of the master test  

plan. The level-based plans give a more detailed view of testing appropriate to that level. The  

IEEE Software Engineering Standards Collection has useful descriptions for many of these plans  

and other test and quality-related documents such as verification and validation plans.  

 

The  persons  responsible  for  developing  test  plans  depend  on  the  type    of  plan  under  

development. Usually staff from one or more groups cooperates in test plan development. For  

example, the master test plan for execution-based testing may be developed by the project  

manager, especially if there is no separate testing group. It can also be developed by a tester or  

software quality assurance manager, but always requires cooperation and input from the project  

manager. It is essential that development and testing activities be coordinated to allow the project  

to progress smoothly. The type and organization of the test plan, the test plan hierarchy, and who  
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is responsible for development should be specified in organizational standards or software 

quality assurance documents.  

 

The remainder of this chapter focuses on the development of a general- purpose execution-based  
test plan that will be referred to as a ―test plan.‖ The description of the test plan contents is based  

on a discussion of recommended test plan components appearing in the IEEE Standard for  

Software  Test  Documentation:  IEEE/ANSI  Std 829-1983  .  This  standard  also  contains  

examples of other test-related documents described  in this chapter. The reader should note that the 

IEEE test plan description serves as a guideline to test planners. The actual templates and 

documents developed by test planners should be tailored to meet organizational needs and 
conform to organizational goals and policies.  

 

4.4 Test plan components  

This section of the text will discuss the basic test plan components as described in IEEE Std 829- 

1983 [5]. They are shown in Figure 7.2. These components should appear in the master test plan  

and in each of the levelbased test plans (unit, integration, etc.) with the appropriate amount of  

detail. The reader should note that some items in a test plan may appear in other related  

documents, for example, the project plan. References to such documents should be included in  

the test plan, or a copy of the appropriate section of the document should be attached to the test  

plan.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 . Test Plan I d e n t i f i e r  

 

Each test plan should have a unique identifier so that it can be associated with a specific project  

and become a part of the project history. The project history and all project-related items should  

be stored in a project database or come under the control of a configuration management system.  

Organizational standards should describe the format for the test plan identifier and how to  

specify versions, since the test plan, like all other software items, is not written in stone and is  
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subject to change. A mention was made of a configuration management system. This is a tool 

that supports change management. It is essential for any software project and allows for orderly 

change control. If a configuration management system is used, the test plan identifier can serve to 

identify it as a configuration item .  

 

2 . Introduction  

In this section the test planner gives an overall description of the project, the software system  

being developed or maintained, and the soft ware items and/or features to be tested. It is useful to  

include a high-level description of testing goals and the testing approaches  to be  used.  

References to related or supporting documents should also be included in this section, for  

example, organizational policies and standards documents, the project plan, quality assurance  

plan, and software configuration plan. If test plans are developed as multilevel documents, that  

is, separate documents for unit, integration, system, and acceptance test, then each plan must  

reference the next higher level plan for consistency and compatibility reasons.  

 

3 . Items to Be Tested  

 

This is a listing of the entities to be tested and should include names, identifiers, and  

version/revision numbers for each entity. The items listed could include procedures, classes,  

modules, libraries, subsystems, and systems. References to the appropriate documents where  

these items and their behaviors are described such as requirements and design documents, and  

the user manual should be included in this component of the test plan. These references support  

the tester with traceability tasks. The focus of traceability tasks is to ensure that each requirement  

has been covered with an appropriate number of test cases. In this test plan component also refer  

to the transmittal media where the items are stored if appropriate; for example, on disk, CD, tape.  

The test planner should also include items that will not be included in the test effort.  

 

4 . Features to Be Tested  

In this component of the test plan the tester gives another view of the entities to be tested by  

describing them in terms of the features they encompass. Chapter 3 has this definition for a  

feature.  
 

Features may be described as distinguishing characteristics of a software component or  
system.  

They are closely related to the way we describe software in terms of its functional and quality 

requirements . Example features relate to performance,reliability, portability, and functionality 

requirements for thesoftware being tested. Features that will not be tested should be identified and 

reasons for their exclusion from test should be included.  

 

5 . Approach  

This section of the test plan provides broad coverage of the issues to be addressed when testing  
the target software. Testing activities are described. The level of descriptive detail should be  
sufficient so that the major testing tasks and task durations can be identified. More details will  
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appear in the accompanying test design specifications.  The planner should also include for each 

feature or combination of features, the approach that will be taken to ensure that each is 

adequately tested. Tools and techniques necessary for the tests should be included.  

 

6 . Item Pass/Fail Criteria  

Given a test item and a test case, the tester must have a set of criteria to decide on whether the  

test has been passed or failed upon execution. The master test plan should provide a general  

description of these criteria. In the test design specification section more specific details are  

given for each item or group of items under test with that specification. A definition for the term  

―failure‖ was given in Chapter 2. Another way of describing the term is to state that a failure  

occurs when the actual output produced by the software does not agree with what was expected,  

under the conditions specified by the test. The differences in output behavior (the failure) are  

caused by one or more defects. The impact of the defect can be expressed using an approach  

based on establishing severity levels. Using this approach, scales are used to rate failures/defects  

with respect to their impact on the customer/user (note their previous use for stop-test decision  

making in the preceding section). For example, on a scale with values from 1 to 4, a level 4  

defect/failure may have a minimal impact on the customer/user, but one at level 1 will make the  

system unusable.  

7 . Suspension and Resumption Criteria  

In this section of the test plan, criteria to suspend and resume testing are  described. In the 

simplest of cases testing is suspended at the end of a working day and resumed the following 

morning. For some test items this condition may not apply and additional details need to be 

provided by the test planner. The test plan should also specify conditions to suspend testing 

based on the effects or criticality level of the failures/defects observed.  Conditions for resuming the 

test after there has been a suspension should also be specified. For some test items 

resumption may require certain tests to be repeated.  

 

8 . Test Deliverables  

Execution-based testing has a set of deliverables that includes the test plan  along with its 

associated test design specifications, test procedures, and test cases. The latter describe the actual test 

inputs and expected outputs. Deliverables may also include other documents that result from testing 

such as test logs, test transmittal reports, test incident reports, and a test summary report. These 

documents are described in subsequent sections of this chapter. Preparing and storing these 

documents requires considerable resources. Each organization should decide which of these 

documents is required for a given project.  

Another test deliverable is the test harness. This is supplementary code that is written specifically to 

support the test efforts, for example, module drivers and stubs. Drivers and stubs are necessary for unit 

and integration test. Very often these amount to a substantial amount of code. They should be 

well designed and stored for reuse in testing subsequent releases of the software. Other support code, 

for example, testing tools that will be developed especially for this project, should also be described in 

this section of the test plan.  
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9 . Testing Tasks  
 

In this section the test planner should identify all testing-related tasks and their dependencies. 
Using a Work Breakdown Structure (WBS) is useful here.  

 

A Work Breakdown Structure is a hierarchical or treelike representation of all the tasks 

that are required to complete a project.  

High-level tasks sit at the top of the hierarchical task tree. Leaves are detailed tasks sometimes 

called work packages that can be done by 1-2 people in a short time period, typically 3-5 days. The 

WBS is used by project managers for defining the tasks and work packages needed for project 

planning. The test planner can use the same hierarchical task  model but focus only on defining 

testing tasks. Rakos gives a good description of the WBS and other models and tools useful for 

both project and test management .  

 

10. The Testing Environment  

 

Here the test planner describes the software and hardware needs for the testing effort. For 

example, any special equipment or hardware needed such as emulators, telecommunication 

equipment, or other devices should be noted. The planner must also indicate any laboratory space 

containing the equipment that needs to be reserved. The planner also needs to specify any special 

software needs such as coverage tools, databases, and test data generators. Security requirements for 

the testing environment may also need to be described.  

 

11. Responsibilities  

The staff who will be responsible for test-related tasks should be identified. This includes 

personnel who will be:  

• transmitting the software-under-test;  

• developing test design specifications, and test cases;  

• executing the tests and recording results;  

• tracking and monitoring the test efforts;  
• checking results;  

• interacting with developers;  

• managing and providing equipment;  

• developing the test harnesses;  

• interacting with the users/customers.  

This group may include developers, testers, software quality assurance staff, systems analysts, and 

customers/users.  
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12. Staffing and Training Needs  

 

The test planner should describe the staff and the skill levels needed to carry out test-related 

responsibilities such as those listed in the section above. Any special training required to perform a 

task should be noted.  

 

13. Scheduling  

Task durations should be established and recorded with the aid of a task networking tool. Test 

milestones should be established, recorded, and scheduled. These milestones usually appear in the 

project plan as well as the test plan. They are necessary for tracking testing efforts to ensure that 

actual testing is proceeding as planned. Schedules for use of staff, tools, equipment, and 

laboratory space should also be specified. A tester will find that PERT and Gantt charts are very 

useful tools for these assignments.  

 

14. Risks and Contingencies  

Every testing effort has risks associated with it. Testing software with a high degree of criticality,  

complexity, or a tight delivery deadline all impose risks that may have negative impacts on  

project goals. These risks should be: (i) identified, (ii) evaluated in terms of their probability of  

occurrence, (iii) prioritized, and (iv) contingency plans should be developed that can be activated  

if the risk occurs.  

 

An example of a risk-related test scenario is as follows. A test planner, lets say Mary Jones, has made 

assumptions about the availability of the software under test. A particular date was selected to transmit 

the test item to the testers based on completion date information for that item in the project plan. 

Ms. Jones has identified a risk: she realizes that the item may not be delivered on time to the 

testers. This delay may occur for several reasons. For example, the item is complex and/or the 

developers are inexperienced and/or the item implements a new algorithm and/or it needs redesign. 

Due to these conditions there is a high probability that this risk could occur. A contingency plan 

should be in place if this risk occurs. For example, Ms. Jones could build some flexibility in resource 

allocations into the test plan so that testers and equipment can operate beyond normal working 

hours. Or an additional group of testers could  be made available to work with the original group 

when the software is ready to test. In this way the schedule for testing can continue as planned, and 

deadlines can be met.  

It is important for the test planner to identify test-related risks, analyze them in terms of their 

probability of occurrence, and be ready with a contingency plan when any high-priority riskrelated 

event occurs. Experienced planners realize the importance of risk management.  

 

15. Testing Costs  

The IEEE standard for test plan documentation does not include a separate cost component in its  

specification of a test plan. This is the usual case for many test plans since very often test costs  

are allocated in the overall project management plan. The project manager in consultation with  

developers and testers estimates the costs of testing. If the test plan is an independent document  

prepared by the testing group and has a cost component, the test planner will need tools and  

techniques to help estimate test costs. Test costs that should included in the plan are:  

118  



 
 

  
 
 

• costs of planning and designing the tests;  

• costs of acquiring the hardware and software necessary for the tests 

(includes development of the test harnesses);  
• costs to support the test environment;  

• costs of executing the tests;  

• costs of recording and analyzing test results;  

• tear-down costs to restore the environment.  

Other costs related to testing that may be spread among several projects  are the costs of training the 

testers and the costs of maintaining the test database. Costs for reviews should appear in a separate 

review plan.  
 

When estimating testing costs, the test planner should consider organizational, project, and staff 
characteristics that impact on the cost of testing. Several key characteristics that we will call ―test cost 
impact items‖ are briefly described below.  
 

The nature of the organization; its testing maturity level, and general maturity. This will  

determine the degree of test planning, the types of testing methods applied, the types of tests that  

are designed and implemented, the quality of the staff, the nature of the testing tasks, the  

availability of testing tools, and the ability to manage the testing effort. It will also determine the  

degree of support given to the testers by the project manager and upper management.  

 

The nature of the software product being developed. The tester must understand the nature of the 

system to be tested. For example, is it a real time, embedded, mission-critical system, or a business 

application? In general, the testing scope for a business application will be smaller than one for a 

mission or safely critical system, since in case of the latter there is a strong possibility that software 

defects and/or poor software quality could result in loss of life or property. Mission- and 

safety-critical software systems usually require extensive unit and integration tests as well as many 

types of system tests (refer to Chapter 6). The level of reliability required for these systems is 

usually much higher than for ordinary applications.  
 

For these reasons, the number of test cases, test procedures, and test scripts will most likely be 
higher for this type of software as compared to an average application. Tool and resource needs will 
be greater as well.  

 

The scope of the test requirements. This includes the types of tests required, integration, 

performance, reliability, usability, etc. This characteristic directly relates to the nature of the 

software product. As described above, mission/safety-critical systems, and real-time embedded 

systems usually require more extensive system tests for functionality, reliability, performance, 

configuration, and stress than a simple application. These test requirements will impact on the 

number of tests and test procedures required, the quantity and complexity of the testing tasks, and 

the hardware and software needs for testing.  
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The level of tester ability. The education, training, and experience levels of the testers will impact on 

their ability to design, develop, execute, and analyze test results in a timely and effective 

manner. It will also impact of the types of testing tasks they are able to carry out.  

Knowledge of the project problem domain. It is not always possible for testers to have detailed 

knowledge of the problem domain of the software they are testing. If the level of knowledge is poor, 

outside experts or consultants may need to be hired to assist with the testing efforts, thus impacting 

on costs.  

The level of tool support. Testing tools can assist with designing, and executing tests, as well as 

collecting and analyzing test data. Automated support for these tasks could have a positive 

impact on the productivity of the testers; thus it has the potential to reduce test costs. Tools and 

hardware environments are necessary to drive certain types of system tests, and if the product 

requires these types of tests, the cost should be folded in.  

Training requirements. State-of-the-art tools and techniques do help improve tester productivity  

but often training is required for testers so that they have the capability to use these tools and  

techniques properly and effectively. Depending on the organization, these training efforts may be  

included in the costs of testing. These costs, as well as tool costs, could be spread over several  

projects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Project planners have cost estimation models, for example, the COCOMO model, which they use to 

estimate overall project costs. At this time models of this type have not been designed 

specifically for test cost estimation.  

 

4.5 Test plan attachments  

The previous components of the test plan were principally managerial in nature: tasks, schedules,  

risks, and so on. A general discussion of technical issues such as test designs and test cases for  

the items under test appears in Section 5 of the test plan, ‗‗Approach.‘‘ The reader may be  

puzzled as to where in the test plan are the details needed for organizing and executing the tests.  
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For example, what are the required inputs, outputs, and procedural steps for each test; where will 

the tests be stored for each item or feature; will it be tested using a black box, white box, or 

functional  approach?  The  following  components  of  the  test  plan  contain  this  detailed 

information. These documents are generally attached to the test plan.  

 

 

 

 

 

 

 

 

 

 

 

 

T e s t D e s i g n S p e c i f i c a t i o n s  

The IEEE standard for software test documentation describes a test design specification as a test  

deliverable that specifies the requirements of the test approach . It is used to identity the features  

covered by this design and associated tests for the features. The test design specification also has  

links to the associated test cases and test procedures needed to test the features, and also  

describes in detail pass/fail criteria for the features. The test design specification helps to  

organize the tests and provides the connection to the actual test inputs/outputs and test steps.  

 

To develop test design specifications many documents such  as the  requirements, design  

documents, and user manual are useful. For requirements-based test, developing a requirements  

traceability matrix is valuable. This helps to insure all requirements are covered by tests, and  

connects the requirements to the tests. Examples of entries in such a matrix are shown in Table  

7.3. Tools called requirements tracers can help to automate traceability tasks . These will be 

described in Chapter 14. A test design specification should have the following components 

according to the IEEE standard . They are listed in the order in which the IEEE recommends they 

appear in the document. The test planner should be sure to list any related documents that may also 

contain some of this material.  

 

Test Design Specification Identifier  
Give each test design specification a unique identifier and a reference to its associated test plan.  

 

Features to Be Tested  

Test items, features, and combination of features covered by this test design specification are  

listed. References to the items in the requirements and/or design document should be included.  

Approach Refinements  

In the test plan a general description of the approach to be used to test each item was described.  

In this document the necessary details are added. For example, the specific test techniques to be  
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used to generate test cases are described, and the rational is given for the choices. The test  

planner also describes how test results will be analyzed. For example, will an automated  

comparator be used to compare actual and expected results? The relationships among the  

associated  test  cases  are  discussed.  This  includes  any  shared  constraints  and  procedural  

requirements.  

 

Test Case Identification  

Each test design specification is associated with a set of test cases and a set of set procedures.  

The test cases contain input/output information, and the test procedures contain the steps  
necessary to execute the tests. A test case may be associated with more than one test design  

specification.  

 

Pass/Fail Criteria  

In this section the specific criteria to be used for determining whether the item has passed/failed a 
test is given.  

 

 

T e s t C a s e S p e c i f i c a t i o n s  

This series of documents attached to the test plan defines the test cases required to execute the  

test items named in the associated test design specification. There are several components in this  

document. IEEE standards require the components to appear in the order shown here, and  

references should be provided if some of the contents of the test case specification appear in  

other documents .  

 

Much attention should be placed on developing a quality set of test case specifications. Strategies 

and techniques, as described in Chapters 4 and 5 of this text, should be applied to accomplish this 

task. Each test case must be specified correctly so that time is not wasted in analyzing the results 

of an erroneous test. In addition, the development of test software and test documentation represent 

a considerable investment of resources for an organization. They should be considered 

organizational assets and stored in a test repository. Ideally, the test-related deliverables may be 

recovered from the test repository and reused by different groups for testing and regression 

testing in subsequent releases of a particular product or for related products. Careful design and 

referencing to the appropriate test design specification is important to support testing in the 

current project and for reuse in future projects.  

 

Test Case Specification Identifier  
Each test case specification should be assigned a unique identifier.  
 

Test Items  

This component names the test items and features to be tested by this test case specification. 
References to related documents that describe the items and features, and how they are used 
should be listed: for example the requirements, and design documents, the user manual.  
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Input Specifications  

This component of the test design specification contains the actual inputs needed to execute the  
test. Inputs may be described as specific values, or as file names, tables, databases, parameters  

passed by the operating system,and so on. Any special relationships between the inputs should be  

identified.  

 

Output Specifications  

All outputs expected from the test should be identified. If an output is to be a specific value it 

should be stated. If the output is a specific feature such as a level of performance it also should be  

stated.  The  output  specifications  are  necessary  to  determine  whether  the  item  has 
passed/failed the test.  

 

Special Environmental Needs  

Any specific hardware and specific hardware configurations needed to execute this test case  

should be identified. Special software required to execute the test such as compilers, simulators,  

and test coverage tools should be described, as well as needed laboratory space and equipment.  

 

 

Special Procedural Requirements  

Describe any special conditions or constraints that apply to the test procedures associated with this 

test.  

Intercase Dependencies  

In this section the test planner should describe any relationships between this test case and  

others, and the nature of the relationship. The test case identifiers of all related tests should be  

given.  

 

T e s t P r o c e d u r e S p e c i f i c a t i o n s  

A procedure in general is a sequence of steps required to carry out a specific task.  

 

In this attachment to the test plan the planner specifies the steps required to execute a set of test 

cases. Another way of describing the test procedure specification is that it specifies the steps 

necessary to analyze a software item in order to evaluate a set of features. The test procedure 

specification has several subcomponents that the IEEE recommends being included in the order 

shown below. As noted previously, reference to documents where parts of these components are 

described must be provided.  

Test Procedure Specification Identifier  

Each test procedure specification should be assigned a unique identifier.  

 

Purpose  
Describe the purpose of this test procedure and reference any test cases it executes.  
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Specific Requirements  

List any special requirements for this procedure, like software, hardware, and special training.  

Procedure Steps  

Here the actual steps of the procedure are described. Include methods, documents for recording 

(logging) results, and recording incidents. These will have associations with the test logs and test 

incident reports that result from a test run. A test incident report is only required when an 

unexpected output is observed. Steps include [5]:  

(i) setup: to prepare for execution of the procedure;  

(ii) start: to begin execution of the procedure;  

(iii) proceed: to continue the execution of the procedure;  

(iv) measure: to describe how test measurements related to outputs will be made;  
(v) shut down: to describe actions needed to suspend the test when unexpected events occur;  

(vi) restart: to describe restart points and actions needed to restart the procedure from these  

points;  

(vii) stop: to describe actions needed to bring the procedure to an orderly halt; 

(viii) wrap up: to describe actions necessary to restore the environment;  

(ix) contingencies: plans for handling anomalous events if they occur during execution of this 

procedure.  

 

4.6 Locating test items  

Suppose a tester is ready to run tests on an item on the date described in the test plan. She needs  

to be able to locate the item and have knowledge of its current status. This is the function of the  

Test Item Transmittal Report. This document is not a component of the test plan, but is necessary  

to locate and track the  items that are submitted for test. Each Test Item Transmittal Report has a  

unique identifier. It should contain the following information for each item that is tracked.  

 

(i) version/revision number of the item;  
(ii) location of the item;  

(iii) persons responsible for the item (e.g., the developer);  

(iv) references to item documentation and the test plan it is related to;  

(v) status of the item;  

(vi) approvals—space for signatures of staff who approve the transmittal.  

 

4.7 Reporting test results  

The test plan and its attachments are test-related documents that are prepared prior to test 
execution. There are additional documents related to testing that are prepared during and after 

execution of the tests. The IEEE Standard for Software Test Documentation describes the 

following documents .  
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Test Log  

The test log should be prepared by the person executing the tests. It is a diary of the events that 

take place during the test. It supports the concept of a test as a repeatable experiment [14]. In the 

experimental world of engineers and scientists detailed logs are kept when carrying out 

experimental work. Software engineers and testing specialists must follow this example to allow 

others to duplicate their work.  

 

The test log is invaluable for use in defect repair. It gives the developer a snapshot of the events 

associated with a failure. The test log, in combination  with the test incident report which should be 

generated in case of anomalous behavior, gives valuable clues to the developer whose task  

it is to locate the source of the problem. The combination of documents helps to prevent 

incorrect decisions based on incomplete or erroneous test results that often lead to repeated, but 

ineffective, test-patch-test cycles.  

Retest that follows defect repair is also supported by the test log. In addition, the test log is 

valuable for (i) regression testing that takes place in the development of future releases of a 

software product, and (ii) circumstances where code from a reuse library is to be reused. In all 

these cases it is important that the exact conditions of a test run are clearly documented so that it can 

be repeated with accuracy.  

 

 

Test Log Identifier  

Each test log should have a unique identifier.  

Description  

In the description section the tester should identify the items being tested, their version/revision 

number, and their associated Test Item/Transmittal Report. The environment in which the test is 

conducted should be described including hardware and operating system details.  

Activity and Event Entries  

The tester should provide dates and names of test log authors for each event and activity. This 

section should also contain:  

1. Execution description: Provide a test procedure identifier and also the names and functions of 

personnel involved in the test.  

2. Procedure results: For each execution, record the results and the location of the output. Also 

report pass/fail status.  

3. Environmental information: Provide any environmental conditions specific to this test.  

4. Anomalous events: Any events occurring before/after an unexpected event should be recorded. If a 

tester is unable to start or compete a test procedure, details relating to these happenings should 

be recorded (e.g., a power failure or operating system crash).  

5. Incident report identifiers: Record the identifiers of incident reports generated while the test is 

being executed.  
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Test Incident Report  

The tester should record in a test incident report (sometimes called a  problem report) any event 
that occurs during the execution of the tests that is unexpected, unexplainable, and that requires a 

follow-up investigation. The IEEE Standard for Software Test Documentation recommends  

the following sections in the report:  

1. Test Incident Report identifier: to uniquely identify this report.  

2. Summary: to identify the test items involved, the test procedures, test cases, and test log 

associated with this report.  

3. Incident description: this should describe time and date, testers, observers, environment,  

inputs, expected outputs, actual outputs, anomalies, procedure step, environment, and attempts to  

repeat. Any other information useful for the developers who will repair the code should be  

included.  
4. Impact: what impact will this incident have on the testing effort, the test plans, the test 
procedures, and the test cases? A severity rating should be inserted here.  

 

Test Summary Report  

 

This report is prepared when testing is complete. It is a summary of the results of the testing 

efforts. It also becomes a part of the project‘s historical database and provides a basis for lessons 

learned as applied to future projects. When a project postmortem is conducted, the Test 

Summary Report can help  managers,  testers, developers,  and SQA staff to evaluate the 

effectiveness  of  the  testing  efforts.  The  IEEE  test  documentation  standard  describes  the 

following sections for the Test Summary Report :  

1. Test Summary Report identifier: to uniquely identify this report.  
 

2. Variances: these are descriptions of any variances of the test items from their original design.  
Deviations and reasons for the deviation from the test plan, test procedures, and test designs are  
discussed.  
 

3. Comprehensiveness assessment: the document author discusses the comprehensiveness of the  

test effort as compared to test objectives and test completeness criteria as described in the test  

plan. Any features or combination of features that were not as fully tested as was planned should  
be identified.  

 

4. Summary of results: the document author summarizes the testing results. All resolved 

incidents and their solutions should be described. Unresolved incidents should be recorded.  

5. Evaluation: in this section the author evaluates each test item based on test results. Did it 

pass/fail the tests? If it failed, what was the level of severity of the failure?  

 

6. Summary of activities: all testing activities and events are summarized.  
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Resource consumption, actual task durations, and hardware and software tool usage should be 

recorded.  
 

7. Approvals: the names of all persons who are needed to approve this document are listed with 
space for signatures and dates.  
 

Figure 7.4 shows the relationships between all the test-related documents  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.8 The role of three groups in test planning and policy development  

Recall that in theTMMframework three groups were identified as critical players in the testing  

process. They all work together toward the evolution of a quality testing process. These groups  

were managers, developers/ testers, and users/clients. In TMM terminology they are called the  

three critical views (CV). Each group views the testing process from a  different perspective that  

is related to their particular goals, needs, and requirements. The manager‘s view involves  

commitment and support for those activities and tasks related to improving testing process  

quality. The developer/tester‘s view encompasses the technical activities and tasks that when  

applied, constitute best testing practices. The user/client view is defined as a cooperating or  

supporting view. The developers/testers work with client/user groups on quality-related activities  

and tasks that concern user-oriented needs. The focus is on soliciting client/user support,  

consensus, and participation in activities such as requirements analysis, usability testing, and  

acceptance test planning.  
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Developers have an important role in the development of testing goals and policies. (Recall that at 

TMM level 2 there is no requirement for a  dedicated testing group.) They serve as members of the 

goal/policy development teams. As representatives of the technical staff they must ensure  

that the policies reflect best testing practices, are implementable, receive management support, and 

support among technical personnel. The activities, tasks, and responsibilities for the 

developers/testers include:  

 

• Working with management to develop testing and debugging policies and goals.  

• Participating in the teams that oversee policy compliance and change management.  

• Familiarizing themselves with the approved set of testing/debugging goals and policies, 

keeping up-to-date with revisions, and making suggestions for changes when appropriate.  

• When developing test plans, setting testing goals for each project at each level of test that 

reflect organizational testing goals and policies.  
• Carrying out testing activities that are in compliance with organizational policies.  

Users and clients play an indirect role in the formation of an organization‘s testing goals and 

polices   since   these   goals   and   policies   reflect   the   organizations   efforts   to   ensure 

customer/client/user satisfaction. Feedback from these groups and from the marketplace in 

general has an influence on the nature of organizational testing goals and policies. Successful 

organizations are sensitive to customer/client/user needs. Their  policies reflect their desire to 

insure that their software products meet the customer‘s requirements. This allows them to 

maintain, and eventually increase, their market share of business.  

 

Upper management supports this goal by:  
• Establishing an organizationwide test planning committee with funding.  

Ensuring that the testing policy statement and quality standards support test planning with 

commitment of resources, tools, templates, and training.  

• Ensuring that the testing policy statement contains a formal mechanism for user input to the test 

planning process, especially for acceptance and usability testing.  
• Ensuring that all projects are in compliance with the test planning policy.  
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• Ensuring that all developers/testers complete all the necessary posttest documents such as test logs 

and test incident reports.  

 

Project managers support the test planning maturity goal by preparing the test plans for each  

 

4.9 Process and the engineering disciplines  

What we are now witnessing is the evolution of software development from a craft to an  

engineering discipline. Computer science students are now being introduced to the fundamentals  

of software engineering. As the field matures, they will be able to obtain a degree and be  

certified in the area of software engineering As members of this emerging profession we must  

realize that one of our major focuses as engineers is on designing, implementing, managing, and  

improving the processes related to software development. Testing is such a process. If you are a  

member of a TMM level 1 organization, there is a great opportunity for you become involved in  

process issues. You can serve as the change agent, using your education in the area of testing to  

form a process group or to join an existing one. You can initiate the implementation of a defined  

testing process by working with management and users/clients toward achievement of the  

technical and managerial-oriented maturity goals at TMM level 2. Minimally you can set an  

example on a personal level by planning your own testing activities. If the project manager  

receives effective personal test plans from each developer or test specialist, then the quality of  

the overall test plan will be improved. You can also encourage management in your organization  

to develop testing goals and policies, you can participate in the committees involved, and you  

can help to develop test planning standards that can be applied organizationwide. Finally, you  

can become proficient in, and consistently apply, black and white box testing techniques, and  

promote testing at the unit, integration, and system levels. You need to demonstrate the positive  

impact of these practices on software quality, encourage their adaptation in the organization, and  

mentor your colleagues, helping them to appreciate, master, and apply these practices.  

 

4.10 Introducing the test specialist  

 

By supporting a test group an organization acquires leadership in areas that relate to testing and 
quality issues. For example, there will be staff with the necessary skills and motivation to be 
responsible for:  

 

• maintenance and application of test policies;  

• development and application of test-related standards;  
• participating in requirements, design, and code reviews;  

• test planning;  

• test design;  

• test execution;  

• test measurement;  
• test monitoring (tasks, schedules, and costs);  

• defect tracking, and maintaining the defect repository;  

• acquisition of test tools and equipment;  

• identifying and applying new testing techniques, tools, and methodologies;  
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• mentoring and training of new test personnel;  

• test reporting.  

 

The staff members of such a group are called test specialists or test engineers.  

 

4.11 Skills needed by a test specialist  

Given the nature of technical and managerial responsibilities assigned to the tester that are listed in 
Section 8.0, many managerial and personal skills are necessary for success in the area of work. On the 
personal and managerial level a test specialist must have:  

 

• organizational, and planning skills;  

• the ability to keep track of, and pay attention to, details;  

• the determination to discover and solve problems;  
• the ability to work with others and be able to resolve conflicts;  

• the ability to mentor and train others;  

• the ability to work with users and clients;  

• strong written and oral communication skills;  

• the ability to work in a variety of environments;  
• the ability to think creatively  
 

The first three skills are necessary because testing is detail and problem oriented. In addition,  

testing involves policymaking, a knowledge of  different types of application areas, planning,  

and the ability to organize and monitor information, tasks, and people. Testing also requires inter  

actions with many  other engineering professionals such as project managers, developers,  

analysts, process personal, and software quality assurance staff. Test professionals often interact  

with clients to prepare certain types of tests, for example acceptance tests. Testers also have to  

prepare test-related documents and make presentations. Training and mentoring of new hires to  

the testing group is also a part of the tester‘s job. In addition, test specialists must be creative,  

imaginative, and experimentoriented.  

 

They need to be able to visualize the many ways that a software item should be tested, and make 

hypotheses about the different types of defects that could occur and the different ways the 

software could fail. On the technical level testers need to have:  

• an education that includes an understanding of general software engineering principles, 

practices, and methodologies;  

• strong coding skills and an understanding of code structure and behavior;  

• a good understanding of testing principles and practices;  
• a good understanding of basic testing strategies, methods, and techniques;  

• the ability and experience to plan, design, and execute test cases and test procedures on 

multiple levels (unit, integration, etc.);  

• a knowledge of process issues;  

• knowledge of how networks, databases, and operating systems are organized and how they  
work;  

130  



 
 

  
 

• a knowledge of configuration management;  

• a knowledge of test-related documents and the role each documents plays in the testing process;  

• the ability to define, collect, and analyze test-related measurements;  

• the ability, training, and motivation to work with testing tools and equipment;  
• a knowledge of quality issues.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to carry out testing tasks testers need to have knowledge of how requirements, 

specifications, and designs are developed and how different methodologies can be applied. They 

should understand how errors and defects are introduced into the software artifacts even at early 

stages of the life cycle. Testers should have strong programming backgrounds to help them 

visualize how code works, how it behaves, and the possible defects it could contain. They also need 

coding experience to support the development of the test harnesses which often involve a 

considerable coding effort in themselves.  

Testers must have a knowledge of both white and black box techniques and methods and the 

ability to use them to design test cases. Organizations need to realize that this knowledge is a 

necessary prerequisite for tool use and test automation. Testers need to understand the need for 

multilevel tests and approaches used for testing at each level.  

 

4.12 Building a testing group  

 

It was mentioned that organizing, staffing, and directing were major activities required to  
manage a project and a process.These apply to managing the testing process as well. Staffing  
activities include filling positions, assimilating new personnel, education and training, and staff  
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evaluation. Directing includes providing leadership, building teams, facilitating communication,  

motivating personnel, resolving conflicts, and delegating authority. Organizing includes selecting  

organizational structures, creating positions, defining responsibilities, and delegating authority.  

Hiring staff for the testing group, organizing the testing staff members into teams, motivating the  

team members, and integrating the team into the overall organizational structure are organizing,  

staffing, and directing activities your organization will need to perform to build a managed  

testing process.  

 

Establishing a specialized testing group is a major decision for an organization. The steps in the  

process are summarized in Figure 8.2. To initiate the process, upper management must support  

the decision to establish a test group and commit resources to the group. Decisions must be made  

on how the testing group will be organized, what career paths are available, and how the group  

fits into the organizational structure (see Section 8.3). When hiring staff to fill test specialist  

positions, management should have a clear idea of the educational and skill levels required for  

each testing position and develop formal job descriptions to fill the test group slots. When the job  

description has been approved and distributed, the interviewing process takes place. Interviews  

should be structured and of a problem-solving nature. The interviewer should prepare an  

extensive list of questions to determine the interviewee‘s technical background as well as his or  

her personal skills and motivation. Zawacki has developed a general guide for selecting technical  

staff members that can be used by test managers . Dustin describes the kinds of questions that an  

interviewer should ask when selecting a test specialist [2]. When the team has been selected and  

is up and working on projects, the team manager is responsible for keeping the test team  

positions filled (there are always attrition problems). He must continually  evaluate team member  

performance. Bartol and Martin have written a paper that contains guidelines for evaluation of  

employees that can be applied to any type of team and organization .They describe four  

categories for employees based on their performance: (i) retain, (ii) likely  to retain, (iii) likely to  

release, (iv) and release. For each category, appropriate actions need to be taken by the manager  

to help employee and employer.  
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Structure of test group  

It is important for a software organization to have an independent testing group. The group  

should have a formalized position in the organizational hierarchy. A reporting structure should  

be established and resources allocated to the group. will eventually need to upgrade their testing  

function to the best case scenario which is a permanent centralized group of dedicated testers  

with the skills described earlier in this chapter. This group is solely responsible for testing work.  

The group members are assigned to projects throughout the organization where they do their  

testing work. When the project is completed they return to the test organization for reassignment.  

They report to a test manager or test director, not a project manager. In such an organization  

testers are viewed as assets. They have defined career paths to follow which contributes to long- 

term job satisfaction. Since they can be assigned to a project at its initiation, they can give testing  

support throughout the software life cycle. Because of the permanent nature of the test  

organization there is a test infrastructure that endures. There is a test knowledge base of test  

processes, test procedures, test tools, and test histories (lessons learned). Dedicated staff is  
responsible for maintaining a test case and test harness library.  
 

A test organization is expensive, it is a strategic commitment. Given the complex nature of the 

software being built, and its impact on society, organizations must realize that a test organization is 

necessary and that it has many benefits. By investing in a test organization a company has 

access to a group of specialists who have the responsibilities and motivation  to:  

• maintain testing policy statements;  

• plan the testing efforts;  

• monitor and track testing efforts so that they are on time and within budget;  

• measure process and product attributes;  
• provide management with independent product and process quality information;  

• design and execute tests with no duplication of effort;  

• automate testing;  

• participate in reviews to insure quality; are meet.  

The duties of the team members may vary in individual organizations. The following gives a brief 

description of the duties for each tester that are common to most organizations.  

 

The Test Manager  

In most organizations with a testing function, the test manager (or test director) is the central 
person concerned with all aspects of testing and quality issues. The test manager is usually 

responsible for test policy making, customer interaction, test planning, test documentation, 

controlling and monitoring of tests, training, test tool acquisition, participation in inspections and 

walkthroughs, reviewing test work, the test repository, and staffing issues such as hiring, firing, and 
evaluation of the test team members. He or she is also the liaison with upper management, project 

management, and the quality assurance and marketing staffs.  

 

The Test Lead  

The test lead assists the test manager and works with a team of test engineers on individual  

projects. He or she may be responsible for duties such as test planning, staff supervision, and  
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status reporting. The test lead also participates in test design, test execution and reporting, 

technical reviews, customer interaction, and tool training.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Test Engineer  

The test engineers design, develop, and execute tests, develop test harnesses, and set up test 

laboratories and environments. They also give input to test planning and support maintenance of the 

test and defect repositories.  

The Junior Test Engineer  

The junior test engineers are usually new hires. They gain experience by participating in test 

design, test execution, and test harness development. They may also be asked to review user 

manuals and user help facilities defect and maintain the test and defect repositories.  
 

 

Unit IV  

 
Part-A Questions  

 

1.  What are the goals of testing and degugging?  

2.  List the Skills needed by a test specialist.  

3.  Give the hierarchy of test plans.  

4.  Define:Test group.  

Part-B Questions  

1.  Explain the steps in forming a test group .  

2.  Explain in brief about test cost impact items.  

3.  Explain elaborately about the basic test plan components as described in IEEE 829-1983.  

4.  Explain the Testing and debugging goals and policies.  
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UNIT V CONTROLLING AND MONITORING 

5.1 Defining terms 

 

Project monitoring (or tracking) refers to the activities and tasks managers engage in to 

periodically check the status of each project. Reports are prepared that compare the actual 

work done to the work that was planned.  

Monitoring requires a set of tools, forms, techniques, and measures. A precondition for 

monitoring a project is the existence of a project plan.  

Project controlling consists of developing and applying a set of corrective actions to get a 

project on track when monitoring shows a deviation from what was planned.  

If monitoring results show deviations from the plan have occurred, controlling mechanisms must be 

put into place to direct the project back on its proper track. Controlling a project is an 

important activity which is done to ensure that the project goals will be achieved occurring to the 

plan. Many managerial experts group the two activities into one called ―controlling‖.  

Thayer partitions what he calls ―project controlling‖ into six major tasks. The following is a 

modified description of the tasks suggested by Thayer. The description has been augmented by the 

author to include supplemental tasks that provide additional support for the controlling and 

monitoring functions.  

1. Develop standards of performance. These set the stage for defining goals that will be achieved when 

project tasks are correctly accomplished.  

2. Plan each project. The plan must contain measurable goals, milestones, deliverables, and  
well-defined budgets and schedules that take into consideration project types, conditions, and  
constraints.  

3. Establish a monitoring and reporting system. In the monitoring and reporting system 

description the organization must describe the measures to be used, how/when they will be 

collected, what questions they will answer, who will receive the measurement reports, and how these 

will be used to control the project. Each project plan must describe the monitoring and reporting 

mechanisms that will be applied to it. If status meetings are required, then their frequency, 

attendees, and resulting documents must be described.  

4. Measure and analyze results. Measurements for monitoring and controlling must be collected, 

organized, and analyzed. They are then used to compare the actual achievements with standards, 

goals, and plans.  

5. Initiate corrective actions for projects that are off track. These actions may require changes in the 

project requirements and the project plan.  

6.  Reward  and  discipline.  Reward  those  staff  who  have  shown  themselves  to  be  good 

performers, and discipline, retrain, relocate those that have consistently performed poorly.  

7. Document the monitoring and controlling mechanisms. All the methods, forms, measures, and tools 
that are used in the monitoring and controlling process must be documented in organization standards 
and be described in policy statements.  

8. Utilize a configuration management system. A configuration management system is needed to 

manage versions, releases, and revisions of documents, code, plans, and reports.  
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It was Thayer‘s intent that these activities and actions be applied to monitor and control software 

development projects. However, these activities/ actions can be applied to monitor and control 

testing efforts as well.  

5.2 Measurements and milestones for controlling and monitoring  

 

All processes should have measurements (metrics) associated with them. The measurements help to 

answer questions about status and quality of the process, as well as the products that result from its 

implementation. Measurements in the testing domain can help to track test progress, evaluate the 

quality of the software product, manage risks, classify and prevent defects, evaluate test effectiveness, 

and determine when to stop testing. Level 4 of the TMM calls for a formal test measurement 

program. However, to establish a baseline process, to put a monitoring program into place, and to 

evaluate improvement efforts, an organization needs to  define, collect, and use measurements starting 

at the lower levels of the TMM.  

To begin the collection of meaningful measurements each organization should answer the 

following questions:  

• Which measures should we collect?  

• What is their purpose (what kinds of questions can they answer)?  
• Who will collect them?  

• Which forms and tools will be used to collect the data?  

• Who will analyze the data?  

• Who to have access to reports?  

When  these  question  have  been  addressed,  an  organization  can  start  to  collect  simple 

measurements beginning at TMM level 1 and continue to add measurements as their test process 

evolves to support test process evaluation and improvement and process and product quality 

growth. In this chapter we are mainly concerned with monitoring and controlling of the testing 

process as defined in Section 9.0, so we will confine ourselves to discussing measurements that are 

useful for this purpose. Chapter 11 will provide an in-depth discussion of how to develop a full-

scale measurement program applicable to testing. Readers will learn how measurements support 

test process improvement and product quality goals.  
 

The following sections describe a collection of measurements that support monitoring of test  
over time. Each measurement is shown in italics to highlight it. It is recommended that  
measurements followed by  an asterisk (*) be collected by  all organizations, even those  

atTMMlevel 1. The reader should note that it is not suggested that all of the measurements listed  

be collected by an organization. TheTMMlevel, and the testing goals that an organization is  

targeting, affect the appropriateness of these measures. As a simple example, if a certain degree  

of branch coverage is not a testing objective for a organization at this time, then this type of  

measurement is not relevant. However, the organization should strive to include such goals in  

their test polices and plans in the future. Readers familiar with software metrics concepts should  

note that most of the measures listed in this chapter are mainly process measures; a few are  

product measures. Other categories for the measures listed here are (i) explicit, those that are  

measured directly from the process or product itself, and (ii) derived, those that are a result of the  
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combination of explicit and/or other derived measures. Note that the ratios described are derived 

measures.  

 

Now we will address the question of how a testing process can be monitored for each project. A 
test manager needs to start with a test plan. What the manager wants to measure and evaluate is the 

actual work that was done and compare it to work that was planned. To help support this goal, 
the test plan must contain testing milestones as described in Chapter 7.  

 

Milestones are tangible events that are expected to occur at a certain time in the project’s 

lifetime. Managers use them to determine project status.  

Test milestones can be used to monitor the progress of the testing efforts associated with a  

software project. They serve as guideposts or goals that need to be meet. A test manger uses  
current testing effort data to determine how close the testing team is to achieving the milestone  

of interest. Milestones usually appear in the scheduling component of the test plan (see Chapter  

7). Each level of testing will have its own specific milestones. Some examples of testing 

milestones are:  

• completion of the master test plan;  

• completion of branch coverage for all units (unit test);  
• implementation and testing of test harnesses for needed integration of major subsystems;  

• execution of all planned system tests;  

• completion of the test summary report.  

Each of these events will be scheduled for completion during a certain time period in the test plan. 

Usually a group of test team members is responsible for achieving the milestone on time and within 

budget. Note that the determination of whether a milestone has been reached depends on availability 

of measurement data. For example, to make the above milestones useful and meaningful testers 

would need to have measurements in place such as:  

• degree of branch coverage accomplished so far;  

• number of planned system tests currently available;  
• number of executed system tests at this date.  

Test planners need to be sure that milestones selected are meaningful for the project, and that  

completion conditions for milestone tasks are not too ambiguous. For example, a milestone that  

states ―unit test is completed when all the units are ready for integration‖ is too vague to use for  

monitoring progress. How can a test manager evaluate the condition, ―ready‖? Because of this  

ambiguous completion condition, a test manager will have difficulty determining whether the  

milestone has been reached. During the monitoring process measurements are collected that  

relates to the status of testing tasks (as described in the test plan), and milestones. Graphs using  

test process data are developed to show trends over a selected time period. The time period can  

be days, weeks, or months depending on the activity being monitored. The graphs can be in  
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the form of a bar graph as shown in Figure 9.1 which illustrates trends for test execution over a  

6-week period. They can also be presented in the form of x,y plots where the y-axis would be the  

number of tests and the x-axis would be the weeks elapsed from the start of the testing process  

for the project. These graphs, based on current measurements, are presented at the weekly status  

meetings and/or at milestone reviews that are used to discuss progress. At the status meetings,  

project and test leaders present up-to-date measurements, graphs and plots showing the status of  

testing efforts.  

 

Testing milestones met/not met and problems that have occurred are discussed. Test logs, test 

incident reports, and other test-related documents may be examined as needed. Managers will 

have questions about the progress of the test effort. Mostly, they will want to know if testing is 

proceeding according to schedules and budgets, and if not, what are the barriers. Some of the 

typical questions a manager might ask at a status meeting are:  

Have all the test cases been developed that were planned for this date?  
• What percent of the requirements/features have been tested so far?  

• How far have we proceeded on achieving coverage goals: Are we ahead or behind what we 

scheduled?  

• How many defects/KLOC have been detected at this time?Howmany repaired? How many are of 

high severity?  
• What is the earned value so far? Is it close to what was planned (see Section 9.1.3)?  

• How many available test cases have been executed? How many of these were passed?  

• How much of the allocated testing budget has been spent so far? Is it more or less than we 

estimated?  

• How productive is tester X? How many test cases has she developed? How many has she run? Was 
she over, or under, the planned amount?  

The measurement data collected helps to answer these questions.  In fact, links between  

measurements and question are described in the Goals/ Questions/Metrics (GQM) paradigm  

reported by Basili [2]. In the case of testing, a major goal is to monitor and control testing efforts  

(a maturity goal at TMM level 3). An organizational team (developers/testers, SQA staff,  

project/test managers) constructs a set of likely questions that test/project managers are likely to  

ask in order to monitor and control the testing process. The sample set of questions previously  
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described is a good starting point. Finally, the team needs to identify a set of measurements that  

can help to answer these questions. A sample set of measures is provided in the following  

sections. Any organizational team can use them as a starting point for selecting measures that  

help  to  answer  testrelated  monitoring  and  controlling  questions.  Four  key  items  are  

recommended to test managers for monitoring and controlling the test efforts for a project. These  

are:  

(i) testing status;  

(ii) tester productivity; 

(iii) testing costs;  
(iv) errors, faults, and failures.  

In the next sections we will examine the measurements required to track these items. Keep in 

mind that for most of these measurements the test planner should specify a planned value for the 

measure in the test plan. During test the actual value will be measured during a specific time 

period, and the two then compared.  

 

M e a s u r e m e n t s f o r M o n i t o r i n g T e s t i n g S t a t u s  

Monitoring testing status means identifying the current state of the testing process. The manager 
needs to determine if the testing tasks are being  completed on time and within budget. Given the 

current state of the testing effort some of the questions under consideration by a project or test 

manager would be the following:  

• Which tasks are on time?  

• Which have been completed earlier then scheduled, and by how much?  

• Which are behind schedule, and by how much?  
• Have the scheduled milestones for this date been meet?  

• Which milestones are behind schedule, and by how much?  

The following set of measures will help to answer these questions. The test status measures are 

partitioned into four categories as shown in Figure 9.2. A test plan must be in place that 

describes, for example, planned coverage goals, the number of planned test cases, the number of 

requirements to be tested, and so on, to allow the manager to compare actual measured values to those 

expected for a given time period.  

 

1. Coverage Measures  

As test efforts progress, the test manager will want to determine how much coverage has been  

actually achieved during execution of the tests, and how does it compare to planned coverage.  
Depending on coverage goals for white box testing, a combination of the following are  

recommended.  

Degree of statement, branch, data flow, basis path, etc., coverage (planned, actual)* 
Tools can support the gathering of this data. Testers can also use ratios such as:  

Actual degree of coverage/planned degree of coverage to monitor coverage to date. For 

black box coverage the following measures can be useful:  

Number of requirements or features to be tested*  

Number of equivalence classes identified  

Number of equivalence classes actually covered  
Number or degree of requirements or features actually covered*  
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Testers can also set up ratios during testing such as:  

Number of features actually covered/total number of features*  

This will give indication of the work completed to this date and the work that still needs to be  

done.  

 

Test Case Development  

The following measures are useful to monitor the progress of test case development, and can be 

applied to all levels of testing. Note that some are explicit and some are derived. The number of 

estimated test cases described in the master test plan is:  
Number of planned test cases  

The number of test cases that are complete and are ready for execution is:  

Number of available test cases  

In many cases new test cases may have to be developed in addition to those that are planned. For 

example, when coverage goals are not meet by the current tests, additional tests will have to be 

designed. If mutation testing is used, then results of this type of testing may require additional tests 

to kill the mutants. Changes in requirements could add new test cases to those that were planned. 

The measure relevant here is:  

Number of unplanned test cases  

In place of, or in addition to, test cases, a measure of the number planned, available, and 
unplanned test procedures is often used by many organizations to monitor test status.  

 

Test Execution  

As testers carry out test executions, the test manager will want to determine if the execution 
process is going occurring to plan. This next group of measures is appropriate.  
Number of available test cases executed*  

Number of available tests cases executed and passed*  

Number of unplanned test cases executed  

Number of unplanned test cases executed and passed.  

For a new release where there is going to be regression testing then these are useful:  
Number of planned regression tests executed  

Number of planned regression tests executed and passed  

Testers can also set up ratios to help with monitoring test execution. For example:  

Number of available test cases executed/number of available test cases  

Number of available test cases executed/number of available test cases executed and passed  
These would be derived measures.  

 

Test Harness Development  

It is important for the test manager to monitor the progress of the development of the test harness 
code needed for unit and integration test so that these progress in a timely manner according to the 
test schedule. Some useful measurements are:  

Lines of Code (LOC) for the test harnesses (planned, available)*  

Size is a measure that is usually applied by managers to help estimate the amount of effort  

needed to develop a software system. Size is measured in many different ways, for example,  

lines of code, function points, and feature points. Whatever the size measure an organization uses  
to measure its code, it can be also be applied to measure the size of the test harness, and to  
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estimate the effort required to develop it. We use lines of code in the measurements listed above as 

it is the most common size metric and can be easily applied to estimating the size of a test 

harness. Ratios such as:  

Available LOC for the test harness code/planned LOC for the test harnesses are useful to 
monitor the test harness development effort over time.  
 

M e a s u r e m e n t s t o M o n i t o r T e s t e r P r o d u c t i v i t y  

 

Managers have an interest in learning about the productivity of their staff, and how it changes as the 

project progresses. Measuring productivity in the software development domain is a difficult task 

since developers are involved in many activities, many of which are complex, and not all are readily 

measured. In the past the measure LOC/hour has been used to evaluate productivity for developers. 

But since most developers engage in a variety of activities, the use of this measure for 

productivity is often not credible. Productivity measures for testers have been sparsely 

reported. The following represent some useful and basic measures to collect for support in test 

planning and monitoring the activities of testers throughout the project. They can help a test 

manger  learn  how  a  tester  distributes  his  time  over  various  testing  activities.  For  each 

developer/tester, where relevant, we measure both planned and actual:  

Time spent in test planning  

Time spent in test case design*  

Time spent in test execution*  

Time spent in test reporting  

Number of test cases developed*  

Number of test cases executed*  
Productivity for a tester could be estimated by a combination of:  

Number of test cases developed/unit time*  

Number of tests executed/unit time*  

Number of LOC test harness developed/unit time*  

Number of defects detected in testing/unit time  

The last item could be viewed as an indication of testing efficiency. This measure could be 

partitioned for defects found/hour in each of the testing phases to enable a manager to evaluate the 

efficiency of defect detection for each tester in each of these activities. For example:  
Number of defects detected in unit test/hour  

Number of defects detected in integration test/hour, etc.  

The relative effectiveness of a tester in each of these testing activities could be determined by using 

ratios of these measurements. Marks suggests as a tester productivity measure [3]:  
Number of test cases produced/week  

All of the above could be monitored over the duration of the testing effort for each tester. 
Managers should use these values with caution because a good measure of testing productivity has 
yet to be identified. Two other comments about these measures are:  

1. Testers perform a variety of tasks in addition to designing and running test cases and 

developing test harnesses. Other activities such as test planning, completing documents, working on 

quality and process issues also consume their time, and those must be taken into account when 

productivity is being considered.  
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2. Testers should be aware that measurements are being gathered based on their work, and they 

should know what the measurements will be used for. This is one of the cardinal issues in 

implementing a measurement program. All involved parties must understand the purpose of 

collecting the data and its ultimate use.  

 

M e a s u r e m e n t s f o r M o n i t o r i n g T e s t i n g C o s t s  

Besides tracking project schedules, recall that managers also monitor costs to see if they are  

being held within budget. One good technique that project managers use for budget and resource  

monitoring is called earned value tracking. This technique can also be applied to monitor the use  

of resources in testing. Test planners must first estimate the total number of hours or budget  

dollar amount to be devoted to testing. Each testing task is then assigned a value based on its  

estimated percentage of the total time or budgeted dollars. This gives a relative value to each  

testing task, with respect to the entire testing effort. That value is credited only when the task is  

completed. For example, if the testing effort is estimated to require 200 hours, a 20-hour testing  

task is given a value of 20/200*100 or 10%. When that task is completed it contributes 10% to  

the cumulative earned value of the total testing effort. Partially completed tasks are not given any  

credit. Earned values are usual presented in a tabular format or as a graph. An example will be  

given in the next section of this chapter. The graphs and tables are useful to present at weekly  

test status meetings.  

To calculate planned earned values we need the following measurement data:  

Total estimated time or budget for the overall testing effort 

Estimated time or budget for each testing task  

Earned values can be calculated separately for each level of testing. This would facilitate 
monitoring the budget/resource usage for each individual  testing phase (unit, integration, etc.). We 
want to compare the above measures to:  

Actual cost/time for each testing task*  

We also want to calculate:  

Earned value for testing tasks to date  

and compare that to the planned earned value for a specific date. Section 9.2 shows an earned 

value tracking form and contains a discussion of how to apply earned values to test tracking. 

Other measures useful for monitoring costs such as the number of planned/actual test procedures 

(test cases) are also useful for tracking costs if the planner has a good handle on the relationship 

between these numbers and costs (see Chapter 7).  
Finally, the ratio of:  

Estimated costs for testing/Actual costs for testing can be applied to a series of releases or related 

projects to evaluate and  promote more accurate test cost estimation and higher test cost 

effectiveness through test process improvement.  

 

M e a s u r e m e n t s f o r M o n i t o r i n g E r r o r s , F a u l t s , a n d F a i l u r e s  
Monitoring errors, faults, and failures is very useful for:  

• evaluating product quality;  

• evaluating testing effectiveness; making stop-test decisions;  

• defect casual analysis;  
• defect prevention;  
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• test process improvement;  

• development process improvement.  

Test logs, test incident reports, and problem reports provide test managers with some of the raw  

data for this type of tracking. Test managers  usually want to track defects discovered as the  

testing process continues over time to address the second and third items above. The other items  

are useful to SQA staff, process engineers, and project managers. At higher levels of the TMM  

where defect data has been carefully stored and classified, mangers can use past defect records  

from similar projects or past releases to compare the current project defect discovery rate with  

those of the past. This is useful information for a stop-test decision (see Section 9.3). To  

strengthen the value of defect/failure information, defects should be classified by type, and  

severity levels should be established depending on the impact of the defect/failure on the user. If  

a failure makes a system inoperable it has a higher level of severity than one that is just  

annoying.  A  example  of  a  severity  level  rating  hierarchy  is  shown  in  Figure 9.3.  

Some useful measures for defect tracking are:  

Total number of incident reports (for a unit, subsystem, system)*  

Number of incident reports resolved/unresolved (for all levels of test)* 

Number of defects found of each given type*  

Number of defects causing failures of severity level greater than  X found (where X is an 
appropriate integer value)  

Number of defects/KLOC (This is called the defect volume. The division by KLOC normalizes the 

defect count)*  

Number of failures*  

Number of failures over severity level Y (where Y is an appropriate integer value) 
Number of defects repaired*  

Estimated number of defects (from historical data)  

Other failure-related data that are useful for tracking product reliability will be discussed in later 

chapters.  

 

M o n i t o r i n g T e s t E f f e c t i v e n e s s  

To complete the discussion of test controlling and monitoring and the role of test measurements  

we need to address what is called test effectiveness. Test effectiveness measurements will allow  

managers to determine if test resources have been used wisely and productively to remove  

defects and evaluate product quality. Test effectiveness evaluations allow managers to learn  

which testing activities are or are not productive. For those areas that need improvement,  

responsible staff should be assigned to implement and monitor the changes. At higher levels of  

the TMM members of a process improvement group can play this role. The goal is to make  

process changes that result in improvements to the weak areas. There are several different views  

of test effectiveness. One of these views is based on use of the number of defects detected. For  

example, we can say that our testing process was effective if we have successfully revealed all  

defects that have a major impact on the users. We can make such an evaluation in several ways,  

both before and after release.  
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1. Before release. Compare the numbers of defects found in testing for this software product to the 
number expected from historical data. The ratio is:  

Number of defects found during test/number of defects estimated  

This will give some measure of how well we have done in testing the current software as  

compared to previous similar products. Did we find more or fewer errors given the test resources  
and time period? This is not the best measure of effectiveness since we can never be sure that the  

current release contains the same types and distribution of defects as the historical example.  

2. After release. Continue to collect defect data after the software has been released in the field. In 

this case the users will prepare problem reports that can be monitored. Marks suggests we use 

measures such as ―field fault density‖ as a measure of test effectiveness. This is equal to:  

Number of defects found/thousand lines of new and changed code.  

This measure is applied to new releases of the software. 

Another measure suggested is a ratio of:  
Pre-ship fault density/Post-ship fault density .  

This ratio, sometimes called the ―defect removal efficiency,‖ gives an indication of how many  

defects remain in the software when it is released. As the testing process becomes more  

effective, the number of predelivery defects found should increase and postdelivery defects  

found should fall. The value of the postship fault density (number of faults/KLOC) is calculated  

from the problem reports returned to the development organization, so testers need to wait until  

after shipment to calculate this ratio. Testers must examine the problem reports in detail when  

using the data.  

There may be duplicate reports especially if the software is released to several customers. Some 

problem reports are due to misunderstandings; others may be requests for changes not covered in the 

requirements. All of these should be eliminated from the count. Other measurements for test 

effectiveness have been proposed. For example,:  
Number of defects detected in a given test phase/total number of defects found in testing.  

For example, if unit test revealed 35 defects and the entire testing effort revealed 100 defects,  

then it could be said that unit testing was 35% effective. If this same software was sent out to the  

customer and 25 additional defects were detected, then the effectiveness of unit test would then  

be 25/125, or 20%. Testers can also use this measure to evaluate test effectiveness in terms of the  

severity of the failures caused by the defects. In the unit test example, perhaps it was only 20%  

effective in finding defects that caused severe failures. The fault seeding technique as described  

in Section 9.3 could also be applied to evaluate test effectiveness. If you know the number of  

seeded faults injected and the number of seeded faults you have already found, you can use the  

ratio to estimate how effective you have been in using your test resources to date. Another useful  

measure, called the ―detect removal leverage (DRL)‖ described in Chapter 10 as a review  

measurement, can be applied to measure the relative effectiveness of: reviews versus test phases,  

and test phases with respect to one another. The DRL sets up ratios of defects found. The ratio  

denominator is the base line for comparison. For example, one can compare:  

DRL (integration/unit test) _ Number of defects found integration test 
Number of defects found in unit test  

Section 10.7 gives more details on the application of this metric. The costs of each testing phase 

relative to its defect detecting ability can be expressed as:  

Number of defects detected in testing phase X 

Costs of testing in testing phase X  
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Instead of actual dollar amounts, tester hours, or any other indicator of test resource units could  

also be used in the denominator. These ratios could calculated for all test phases to compare their  

relative effectiveness. Comparisons could lead to test process changes and improvements. An  

additional approach to measuring testing effectiveness is described by Chernak [8]. The main  

objectives of Chernak‘s research are (i) to show how to determine if a set of test cases (a test  

suite) is sufficiently effective in revealing defects, and (ii) to show how effectiveness measures  

can lead to process changes and improvements. The effectiveness metric called the TCE is  

defined as follows:  

Number of defects found by the test cases  
TCE _Total number of defects _ 100  

The total number of defects in this equation is the sum of the defects found by the test cases, plus the 

defects found by what Chernak calls side effects. Side effect are based on so-called ―testescapes.‖ 

These are software defects that a test suite does not detect but are found by chance in  

the testing cycle.  

Test escapes occur because of deficiencies in the testing process. They are identified when  

testers find defects by executing some steps or conditions that are not described in a test case  

specification. This happens by accident or because the tester gets a new idea while performing  

the assigned testing tasks. Under these conditions a tester may find additional defects which are  

the test-escapes. These need to be recorded, and a casual analysis needs to be done to develop  

corrective actions. The use of Chernak‘s metric depends on finding and recording these types of  

defects. Not all types of projects are candidates for this type of analysis. From his experience,  

Chernak suggests that client-server business applications may be appropriate projects. He also  

suggests that a baseline value be selected for the TCE and be assigned for each project.  

When the TCE value is at or above the baseline then the conclusion is that the test cases have  

been effective for this test cycle, and the testers can have some confidence that the product will  

satisfy the uses needs. All test case escapes, especially in the case of a TCE below the specified  

baseline, should be studied using Pareto analysis and Fishbone diagram techniques (described in  

Chapter 13), so that test design can be improved, and test process deficiencies be removed.  

Chernak illustrates his method with a case study (a client-server application) using the baseline  

TCE to evaluate test effectiveness and make test process improvements. When the TCE in the  

study was found to be below the baseline value (_ 75 for this case), the organization analyzed all  

the test-escapes, classified them by cause, and built a Pareto diagram to describe the distribution  

of causes.  

 

Incomplete test design and incomplete functional specifications were found to be the main  

causes of test-escapes. The test group then addressed these process issues, adding both reviews to  

their process and sets of more ―negative‖ test cases to improve the defect-detecting ability of  

their test suites.The TMM level number determined for an organization is also a metric that can  

be used to monitor the testing process. It can be viewed as a high-level measure of test process  

effectiveness, proficiency, and overall maturity. A mature, testing process is one that is effective.  

The TMM level number that results from a TMM assessment is a measurement that gives an  

organization information about the state of its testing process. A lower score on theTMMlevel  

number scale indicates a less mature, less proficient, less effective testing process state then a  
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higher-level score. The usefulness of the TMM level number as a measurement of testing process 

strength, proficiency, and effectiveness is derived not only from its relative value on the TMM 

maturity scale, but also from the process profile that accompanies the level number showing 

strong and weak testing areas. In addition, the maturity goals hierarchy give structure and 

direction to improvement efforts so that the test process can become more effective.  

 

 

5.3 Status meetings -Reports and control issues  

Roughly forty measurements have been listed here that are useful for monitoring testing efforts.  

Organizations should decide which are of the most value in terms of their current TMM level,  

and the monitoring and controlling goals they want to achieve. The measurement selection  

process should begin with these goals, and compilation of a set of questions most likely to be  

asked  by  management  relating  to  monitoring  and  controlling  of  the  test  process.  The  

measurements that are selected should help to answer the questions (see brief discussion of the  

Goal/Question/Metric paradigm in Section 9.1). A sample set of questions is provided at the  

beginning of this chapter. Measurement-related data, and other useful  test-related information  

such as test documents and problem reports, should be collected and organized by the testing  

staff. The test manager can then use these items for presentation and discussion at the periodic  

meetings used for project monitoring and controlling. These are called project status meetings.  

Test-specific status meetings can also serve to monitor testing efforts, to report test progress, and  

to identify any test-related problems. Testers can meet separately and use test measurement data  

and related documents to specifically discuss test status. Following this meeting they can then  

participate in the overall project status meeting, or they can attend the project meetings as an  

integral part of the project team and present and discuss test-oriented status data at that time.  

Each organization should decide how to organize and partition the meetings. Some deciding  

factors may be the size of the test and development teams, the nature of the project, and the  

scope of the testing effort. Another type of project-monitoring meeting is the milestone meeting  

that occurs when a milestone has been met. A milestone meeting is an important event; it is a  

mechanism for the project team to communicate with upper management and in some cases  

user/client groups. Major testing milestones should also precipitate such meetings to discuss  

accomplishments and problems that have occurred in meeting each test milestone, and to review  

activities for the next milestone phase. Testing staff, project managers, SQA staff, and upper  

managers should attend. In some cases process improvement group and client attendance is also  

useful.  

Milestone meetings have a definite order of occurrence; they are held when each milestone is 

completed. How often the regular statues meetings are held depends on the type of project and the 

urgency to discuss issues. Rakos recommends a weekly schedule as best for small- to 

medium-sized projects . Typical test milestone meeting attendees are shown in Figure 9.4. It is 

important that all test-related information be available at the meeting, for example, measurement 

data, test designs, test logs, test incident reports, and the test plan itself.  

 

Status meetings usually result in some type of status report published  by the project manager  

that is distributed to upper management. Testmanagers should produce similar reports to inform  
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management of test progress. Rakos recommends that the reports be brief and contain the 

following items :  

• Activities and accomplishments during the reporting period. All tasks that were attended to 
should be listed, as well as which are complete. The latter can be credited with earned value 
amounts. Progress made since the last reporting period should also be described.  

• Problems encountered since the last meeting period. The report should include a discussion of the 

types of new problems that have occurred, their probable causes, and how they impact on the 

project.Problem solutions should be described.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Problems solved. At previous reporting periods problems were reported that have now been 

solved. Those should be listed, as well as the solutions and the impact on the project.  

• Outstanding problems. These have been reported previously, but have not been solved to date. 

Report on any progress.  

• Current project (testing) state versus plan. This is where graphs using process measurement data 

play an important role. Examples will be described below. These plots show the current state of the 

project (testing) and trends over time.  

• Expenses versus budget. Plots and graphs are used to show budgeted versus actual expenses. 

Earned value charts and plots are especially useful here.  

• Plans for the next time period. List all the  activities planned for the next time period as well as the 

milestones.  

Preparing and examining graphs and plots using the measurement data we have discussed helps  

managers to see trends over time as the test effort progresses. They can be prepared for  

presentation at meetings and included in the status report. An example bar graph for monitoring  

purposes is shown in Figure 9.1. The bar graph shows the numbers for tests that were planned,  

available, executed, and passed during the first 6 weeks of the testing effort. Note the trends. The  

number of tests executed and the number passed has gone up over the 6 weeks, The number  

passed is approaching the number executed. The graph indicates to the manager that the number  

of executed tests is approaching the number of tests available, and that the number of tests  

passed is also approaching the number available, but not quite as quickly. All are approaching  

the number planned. If one extrapolates, the numbers should eventually converge at some point  

in time. The bar graph, or a plot, allows the manager to identify the time frame in which this will  
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occur. Managers can also compare the number of test cases executed each week with the amount 

that were planned for execution.  

 

Figure 9.5 shows another graph based on defect data. The total number of faults found is plotted  

against weeks of testing effort. In this plot the number tapers off after several weeks of testing.  

The number of defects repaired is also plotted. It lags behind defect detection since the code  

must be returned to the developers who locate the defects and repair the code. In many cases this  

be a very time-consuming process. Managers can also include on a plot such as Figure 9.5 the  

expected rate of defect detection using data from similar past projects. However, even if the past  

data are typical there is no guarantee that the current software will behave in a similar way. Other  

ways of estimating the number of potential defects use rules of thumb (heuristics) such as ―0.5- 

1% of the total lines of code‖ [8]. These are at best guesses, and give managers a way to estimate  

the number of defects remaining in the code, and as a consequence how long the testing effort  

needs to continue. However, this heuristic gives no indication of the severity level of the defects.  

Hetzel gives additional examples of the types of plots that are useful for monitoring testing  

efforts [9]. These include plots of number of requirements tested versus weeks of effort and the  

number of statements not yet exercised over time. Other graphs especially useful for monitoring  

testing costs are those that plot staff hours versus time, both actual and planned. Earned value  

tables and graphs are also useful. Table 9.1 is an example [4].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the earned value table shown in Table 9.1 has two parti tions, one for planned values  

and one for actual values. Each testing task should be listed, as well as its estimated hours for  

completion. The total hours for all the tasks is determined and the estimated earned value for  

each task is then calculated based on its estimated percentage of the total time as described  

previously. This gives a relative value to each testing task with respect to the entire testing effort.  

The estimated earned values are accumulated in the next column. When the testing effort is in  

progress, the date and actual earned value for each task is listed, as well as the actual  

accumulated earned values. In status report graphs, earned value is usually plotted against time,  

and on the same graph budgeted expenses and actual expenses may also be plotted against time  

for comparison. Although actual expenses may be more than budget, if earned value is higher  

than expected, then progress may be considered satisfactory [4,5]. The agenda for a status  
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meeting on testing includes a discussion of the work in progress since the last meeting period. 

Measurement data is presented, graphs are produced, and progress is evaluated. Test logs and 

incident reports may be examined to get a handle on the problems occurring.  

 

If there are problem    areas    that need    attention, they are discussed 

 

 

 

 

 

 

 

 

 

and solutions are suggested to get the testing effort back on track (control it). Problems currently  

occurring may be closely associated with risks identified by the test manager through the risk  

analysis done in test planning. Recall that part of the planner‘s job is identify and prioritize risks,  

and to develop contingency plans to handle the risk-prone events if they occur. If the test  

manager has done a careful job, these contingency plans may be applied to the problem at hand.  

Suggested and agreed-upon solutions should appear in the status report. The corrective actions  

should be put in place, their effect on testing monitored, and their success/failure discussed at the  

next status meeting. As testing progresses, status meeting attendees have to make decisions about  

whether to stop testing or to continue on with the testing efforts, perhaps developing additional  

tests as part of the continuation process. They need to evaluate the status of the current testing  

efforts as compared to the expected state specified in the test plan. In order to make a decision  

about whether testing is complete the test team should refer to the stoptest criteria included in the  

test plan (see the next section for a discussion on stop-test criteria). If they decide that the stop- 

test criteria have been met, then the final status report for testing, the test summary report, should  

be prepared. This is a summary of the testing efforts, and becomes a part of the project‘s  

historical database. At project postmortems the test summary report can be used to discuss  

successes and failures that occurred during testing. It is a good source for test lessons learned for  

each project.  

 

5.3 Criteria for test completion  

In the test plan the test manager describes the items to be tested, test cases, tools needed,  

scheduled activities, and assigned responsibilities. As the testing effort progresses many factors  

impact on planned testing schedules and tasks in both positive and negative ways. For example,  

although a certain number of test cases were specified, additional tests may be required. This  

may be due to changes in requirements, failure to achieve  coverage goals, and unexpected high  

numbers of defects in critical modules. Other unplanned events that impact on test schedules are,  

for example, laboratories that were supposed to be available are not (perhaps because of  

equipment failures) or testers who were assigned responsibilities are absent (perhaps because of  
illness or assignments to other higherpriority projects). Given these events and uncertainties, test  
progress does not often follow plan. Tester managers and staff should do their best to take  
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actions to get the testing effort on track. In any event, whether progress is smooth or bumpy, at  

some point every project and test manager has to make the decision on when to stop testing.  

Since it is not possible to determine with certainty that all defects have been identified, the  

decision to stop testing always carries risks. If we stop testing now, we do save resources and are  

able to deliver the software to our clients. However, there may be remaining defects that will  

cause catastrophic failures, so if we stop now we will not find them. As a consequence, clients  

may be unhappy with our software and may not want to do business with us in the future. Even  

worse there is the risk that they may take legal action against us for damages. On the other hand,  

if we continue to test, perhaps there are no defects that cause failures of a high severity level.  

Therefore, we are wasting resources and risking our position in the market place. Part of the task  

of monitoring and controlling the testing effort is making this decision about when testing is  

complete under conditions of uncertainly and risk. Managers should not have to use guesswork  

to make this critical decision. The test plan should have a set of quantifiable stop-test criteria to  

support decision making. The weakest stop test decision criterion is to stop testing when the  

project runs out of time and resources. TMM level 1 organizations often  operate this way and  

risk client dissatisfaction for many projects. TMM level 2 organizations plan for testing and  

include stop-test criteria in the test plan. They have very basic measurements in place to support  

management when they need to make this decision. Shown in Figure 9.6 and described below are  

five stop-test criteria that are based on a more quantitative approach. No one criteria is  

recommended. In fact, managers should use a combination of criteria and cross-checking for  

better results. The stop-test criteria are as follows.  

1 . A l l the Planned Tests That Were Developed Have Been Executed and Passed.  

This may be the weakest criterion. It does not take into account the actual dynamics of the testing 

effort, for example, the types of defects found and their level of severity. Clues from analysis of 

the test cases and defects found may indicate that there are more defects in the code that the 

planned test cases have not uncovered. These may be ignored by the testers  if this stop-test 

criteria is used in isolation.  

2 . A l l Specified Coverage Goals Have Been Met.  

An organization can stop testing when it meets its coverage goals as specified in the test plan.  
For example, using white box coverage goals we can say that we have completed unit test when  

we have reached 100% branch coverage for all units. Using another coverage category, we can  

say we have completed system testing when all the requirements have been covered by our tests.  

The graphs prepared for the weekly status meetings can be applied here to show progress and to  
extrapolate to a completion date. The graphs will show the growth of degree of coverage over the  

time.  

3 . The Detection of a Specific Number of Defects Has Been Accomplished.  

This approach requires defect data from past releases or similar projects. The defect distribution  

and total defects is known for these projects, and is applied to make estimates of the number and  

types of defects for the current project. Using this type of data is very risky, since it assumes the  

current software will be built, tested, and behave like the past projects. This is not always true.  

Many projects and their development environments are not as similar as believed, and making  
 
 
 
 
 

151  



 
 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

this assumption could  be disastrous. Therefore, using this stop-criterion on its own carries high  

risks.  

4 . The Rates of Defect Detection for a Certain Time Period Have Fallen Below a Specified  

Level.  

The manager can use graphs that plot the number of defects detected per unit time. A graph such  

as Figure 9.5, augmented with the severity level of the defects found, is useful. When the rate of  

detection of defects of a severity rating under some specified threshold value falls below that rate  

threshold, testing can be stopped. For example, a stop-test criterion could be stated as: ―We stop  

testing when we find 5 defects or less, with impact equal to, or below severity level 3, per week.‖  

Selecting a defect detection rate threshold can be based on data from past projects.  
5 . Fault Seeding Ratios Are Favorable.  

Fault (defect) seeding is an interesting technique first proposed by Mills [10]. The technique is 

based on intentionally inserting a known set of defects into a program. This provides support for a 

stop-test decision. It is assumed that the inserted set of defects are typical defects; that is, they  

are of the same type, occur at the same frequency, and have the same impact as the actual defects in the 

code. One way of selecting such a set of defects is to use historical defect data from past releases or 

similar projects.  

The technique works as follow. Several members of the test team insert (or seed) the code under  

test with a known set of defects. The other members of the team test the code to try to reveal as  

many of the defects as possible. The number of undetected seeded defects gives an indication  

of the number of total defects remaining in the code (seeded plus actual). A ratio can be set up as  

follows:  
Detected seeded defects = Detected actual defects  

Total seeded defects Total actual defects 

 

Using this ratio we can say, for example, if the code was seeded with 100 defects and 50 have been 
found by the test team, it is likely that 50% of the actual defects still remain and the testing effort 

should continue.When all the seeded defects are found the manager has some confidence that the 

test efforts have been completed.  
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5.4 SCM  

 

Software systems are constantly undergoing change during development and maintenance. By 

software systems we include all software artifacts such as requirements and design documents, test 

plans, user manuals, code, and test cases. Different versions, variations, builds, and releases exist 

for these artifacts. Organizations need staff, tools, and techniques to help them track and manage  

these  artifacts  and  changes  to  the  artifacts  that  occur  during  development  and 

maintenance. The Capability Maturity Model includes configuration management as a Key 

Process Area at level 2. This is an indication of its fundamental role in support of repeatable, 

controlled, and managed processes. To control and monitor the  testing process, testers and test 

mangers also need access to configuration management tools and staff.  

There are four major activities associated with configuration management. These are:  

 

1 . Identification of the Configuration Items  

The items that will be under configuration control must be selected, and the relationships  

between them must be formalized. An example relationship is ―part-of‖ which is relevant to  

composite items. Relationships are often expressed in a module interconnection language (MIL).  

Figure 9.7 shows four configuration items, a design specification, a test specification, an object  

code module, and source code module as they could exist in a configuration management system  

(CMS) repository (see item 2 below for a brief description of a CMS). The arrows indicate links  

or relationships between them. Note in this example that the configuration management system is  

aware that these four items are related only to one another and not to other versions of these  

items in the repository.  

In addition to identification of configuration items, procedures for establishment of baseline 

versions for each item must be in place.  

 

Baselines are formally reviewed and agreed upon versions of software artifacts, from which  

all changes are measured. They serve as the basis for further development and can be  

changed only through formal change procedures. Baselines plus approved changes from  

those baselines constitute the correct configuration identification for the item. [11].  

 

2 . Change Control  

There are two aspects of change control—one is tool-based, the other team-based. The team  

involved is called a configuration control board. This group oversees changes in the software  

system. The members of the board should be selected from SQA staff, test specialists,  

developers, and analysts. It is this team that oversees, gives approval for, and follows up on  

changes. They develop change procedures and the formats for change  request forms. To make a  

change, a change request form must be prepared by the requester and submitted to the board. It  

then reviews and approves/ disapproves. Only approved changes can take place. The board also  

participates in configuration reporting and audits as described further on in this section.  
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In addition to  the configuration  control board,  control of configuration items requires a  

configuration management system (CMS) that will 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

store the configuration items in a repository (or project database) and maintain control and access  

to those items. The CMS will manage the versions and variations of the items. It will keep track  

of the items and their relationships with one another. For example, developers and testers need to  

know which set of test cases is associated with which design item, and which version of object  

code is associated with which version of source code? The CMS will provide the information  

needed to answer these questions by supporting relationships as shown in Figure 9.7. It also  

supports baseline versions for each configuration item, and it only allows designated engineers to  

make changes to a configuration item after formal approval by the change control board. The  

software engineer must check-  out the item undergoing change from the CMS. A copy of it is  

made in her work station. When the changes are complete, and they are reviewed, the new  

version is ―checked in‖ to the CMS, and the version control  mechanism in the CMS creates the  

newest version in its repository. Relationships to existing configuration items are updated.  

TheCMScontrols change-making by ensuring that an engineer has the proper access rights to the  

configuration item. It also synchronizes the change-making process so that parallel changes  

made by different software engineers do not overwrite each other. The CMS also allows software  

engineers to create builds of the system consisting of different versions and variations of object  

and source code.  

 

3. Configuration status reporting  

These reports help to monitor changes made to configuration items. They contain a history of all the 

changes and change information for each configuration item. Each time an approved change is made 

to a configuration item, a configuration status report entry is made. These reports are kept in the 

CMS database and can be accessed by project personnel so that all can be aware of changes that are 

made. The reports can answer questions such as:  
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• who made the change;  

• what was the reason for the change;  

• what is the date of the change;  
• what is affected by the change.  

Reports for configuration items can be disturbed to project members and discussed at status 

meetings.  

 

4. Configuration audits  

After changes are made to a configuration item, how do software engineers follow up to ensure the 

changes have been done properly? One way to do this through a technical review, another through 

a configuration audit. The audit is usually conducted by the SQA group or members of the 

configuration control board. They focuses on issues that are not covered in a technical review. 

A checklist of items to cover can serve as the agenda for the audit. For each configuration 

item the audit should cover the following:  

(i) Compliance with software engineering standards. For example, for the source code modules, have 

the standards for indentation, white space, and comments been followed?  

(ii) The configuration change procedure. Has it been followed correctly?  

(iii) Related configuration items. Have they been updated?  

(iv) Reviews. Has the configuration item been reviewed?  

 

Why is configuration management of interest to testers? Configuration management will ensure  

that test plans and other test-related documents are being prepared, updated, and maintained  

properly. To support these objectives, Ayer has suggested a test documentation checklist to be  

used for configuration audits to verify the accuracy and completeness of test documentation [12].  

Configuration management also allows the tester to determine if the proper tests are associated  

with the proper source code, requirements, and design document versions, and that the correct  

version of the item is being tested. It also tells testers who is responsible for a given item, if any  

changes have been made to it, and if it has been reviewed before it is scheduled for test.  

 

5.5 Review program  

 

A review is a group meeting whose purpose is to evaluate a software artifact or a set 

of software artifacts.  
The general goals for the reviewers are to:  

• identify problem components or components in the software artifact that need improvement;  

• identify components of the software artifact that do not need improvement;  

• identify specific errors or defects in the software artifact (defect detection);  
• ensure that the artifact conforms to organizational standards.  
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Other review goals are informational, communicational, and educational, whereby review  

participants learn about the contents of the developing software artifacts to help them understand  

the role of their own work and to plan for future stages of development. Reviews often represent  

project milestones and support the establishment of a baseline for a software artifact. Thus, they  

also have a role in project management, project monitoring, and control. Review data can also  

have an influence on test planning. The types and quantity of defects found during review can  

help test planners select effective classes of tests, and may also have an influence testing goals.  

In some cases clients/users attend the review meetings and give feedback to the development  

team, so reviews are also a means for client communication. To summarize, the many benefits of  

a review program are:  

• higher-quality software;  

• increased productivity (shorter rework time);  

• closer adherence to project schedules (improved process control);  
• increased awareness of quality issues;  teaching tool for junior staff;  

• opportunity to identify reusable software artifacts;  

• reduced maintenance costs;  

• higher customer satisfaction;  

• more effective test planning;  
• a more professional attitude on the part of the development staff.  
 

Not all test educators, practitioners, and researchers consider technical reviews to be a testing  

activity. Some prefer to consider them in a special category called verification testing; others  

believe they should be associated with software quality assurance activities. The author, as well  

as many others, for example, Hetzel [2], hold the position that testing activities should cover both  

validation and verification, and include both static and dynamic analyses. The TMM structure  

supports this view. If one adheres to this broader view of testing, then the author argues the  

following:  

(i) Reviews as a verification and static analysis technique should be considered a testing activity. (ii) 
Testers should be involved in review activities.  

Also, if you consider the following:  

(i) a software system is more than the code; it is a set of related artifacts;  
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(ii) these artifacts may contain defects or problem areas that should be reworked, or removed;  

and  

(iii) quality-related attributes of these artifacts should be evaluated;  

then the technical review is one of the most important tools we can use to accomplish these  

goals. In addition, reviews are the means for testing these artifacts early in the software life  

cycle. It gives us an early focus on quality issues, helps us to build quality into the system from  

the beginning, and, allows us to detect and eliminate errors/defects early in the software life  

cycle as close as possible to their point of origin. If we detect defects early in the life cycle, then:  
• they are easier to detect;  

• they are less costly to repair;  

• overall rework time is reduced;  

• productivity is improved;  

• they have less impact on the customer.  

Use of the review as a tool for increasing software quality and developer productivity began in  

the 1970s. Fagen  and Myers  wrote pioneering papers that described the review process and its  

benefits. This chapter will discuss two types of technical reviews, inspections, and walkthroughs.  

It will show you how they are run, who should attend, what the typical activities and outputs are, and 

what are the benefits. Having a review program requires a commitment of organizational time and 

resources. It is the author‘s goal to convince you of the benefits of reviews, their important role 

in the testing process, their cost effectiveness as a quality tool, and why you as a tester should be 

involved in the review process.  

 

5.6 Types of Reviews  

Reviews can be formal or informal. They can be technical or managerial. Managerial reviews  

usually focus on project management and project status. The role of project status meetings is  

discussed in Chapter 9. In this chapter we will focus on technical reviews. These are used to:  
• verify that a software artifact meets its specification;  
• to detect defects; and  

• check for compliance to standards.  

Readers may not realize that informal technical reviews take place very frequently. For example,  

each time one software engineer asks another to evaluate a piece of work whether in the office, at  

lunch, or over a beer, a review takes place. By review it is meant that one or more peers  have  

inspected/evaluated a software artifact. The colleague requesting the review receives feedback  

about one or more attributes of the reviewed software artifact. Informal reviews are an important  

way for colleagues to communicate and get peer input with respect to their work. There are two  

major types of technical reviews—inspections and walkthroughs— which are more formal in  

nature and occur in a meeting-like setting. Formal reviews require written reports that summarize  

findings, and in the case of one type of review called an inspection, a statement of responsibility  

for the results by the reviewers is also required. The two most widely used types of reviews will  

be described in the next several paragraphs.  
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I n s p e c t i o n s a s a T y p e o f T e c h n i c a l R e v i e w 

Inspections are a type of review that is formal in nature and requires prereview preparation on  

the part of the review team. Several steps are involved in the inspection process as outlined in  

Figure 10.2. The responsibility for initiating and carrying through the steps belongs to the  

inspection leader (or moderator) who is usually a member of the technical staff or the software  

quality assurance team. Myers suggests that the inspection leader be a member of a group from  

an unrelated project to preserve objectivity [4]. The inspection leader plans for the inspection,  

sets the date, invites the participants, distributes the required documents, runs the inspection  

meeting, appoints a recorder to record results, and monitors the followup period after the review.  

The key item that the inspection leader prepares is the checklist of items that serves as the  

agenda for the review. The checklist varies with the software artifact being inspected (examples  

are provided later in this chapter). It contains items that inspection participants should focus their  

attention on, check, and evaluate. The inspection participants address each item on the checklist.  

The recorder records any discrepancies, misunderstandings, errors, and ambiguities; in general,  

any problems associated with an item. The completed checklist is part of the review summary  

document. The inspection process begins when inspection preconditions are met as specified in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the inspection policies, procedures, and plans. The inspection leader announces the inspection 

meeting and distributes the items to be inspected, the checklist, and any other auxiliary material to 

the participants usually a day or two before the scheduled meeting. Participants must do their 

homework and study the items and the checklist. Apersonal preinspection should be performed 

carefully by each team member [3,5].  

 

Errors, problems, and items for discussion should be noted by each individual for each item on  

the list. When the actual meeting takes place the document under review is presented by a reader,  

and is discussed as it read. Attention is paid to issues related to quality, adherence to standards,  

testability, traceability, and satisfaction of the users/clients requirements. All the items on the  

checklist are addressed by the group as a whole, and the problems are recorded. Inspection  
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metrics are also recorded (see Section 10.7). The recorder documents all the findings and the 

measurements.  

When the inspection meeting has been completed (all agenda items  covered) the inspectors are  

usually asked to sign a written document that is sometimes called a summary report that will be  

described in Section 10.4.6. The inspection process requires a formal follow-up process. Rework  

sessions should be scheduled as needed and monitored to ensure that all problems identified at  

the inspection meeting have been addressed and resolved. This is the responsibility of the  

inspection leader. Only when all problems have been resolved and the item is either reinspected  

by the group or the moderator (this is specified in the summary report) is the inspection process  

completed.  

 

W a l k t h r o u g h s a s a T y p e o f T e c h n i c a l R e v i e w  

 

Walkthroughs are a type of technical review where the producer of the reviewed material serves  

as the review leader and actually guides the progression  of the review [6]. Walkthroughs have  

traditionally  been  applied  to  design  and  code.  In  the  case  of  detailed  design  or  code  

walkthroughs, test inputs may be selected and review participants then literally walk through the  

design or code with the set of inputs in a line-by-line manner. The reader can compare this  

process to a manual execution of the code. The whole group ―plays computer‖ to step through an  

execution lead by a reader or presenter. This is a good opportunity to ―pretest‖ the design or  

code. If the presenter gives a skilled presentation of the material, the walkthrough participants  

are able to build a comprehensive mental (internal) model of the detailed design or code and are  

able to both evaluate its quality and detect defects. Walkthroughs may be used for material other  

than code, for example, data descriptions, reference manuals, or even specifications [6].  

Some researchers and practitioners believe walkthroughs are efficient because the preparer leads  

the meeting and is very familiar with the item under review. Because of these conditions a larger  

amount of material can be processed by the group. However, many of the steps that are  

mandatory for an inspection are not mandatory for a walkthrough. Comparing inspections and  

walkthroughs one can eliminate the checklist and the  preparation step (this may prove to be a  

disadvantage to the review team) for the walkthrough. In addition, for the walkthrough there  

usually no mandatory requirement for a formal review report and a defect list. There is also no  

formal  requirement  for  a  follow-up  step.  In  some  cases  the  walkthrough  is  used  as  a  

preinspection tool to familiarize the team with the code or any other item to be reviewed.  

There are other types of technical reviews, for  example, the roundrobin review where there is a  

cycling through the review team members so that everyone gets to participate in an equal  

manner. For example, in some forms of the round-robin review everyone would have the  

opportunity to play the role of leader. In another instance, every reviewer in a code walkthrough  

would lead the group in inspecting a specific line or a section of the code [6]. In this way  

inexperienced or more reluctant reviewers have a chance to learn more about the review process.  

In subsequent sections of this chapter the general term review will be used in the main to  

represent the inspection process, which is the review type most formal in nature. Where specific  

details are relevant for other types of reviews, such as round-robin or walkthroughs, these will be  

mentioned in the discussion.  
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5.7 Components of review plans  

Reviews are development and maintenance activities that require time and resources. They 

should be planned so that there is a place for them in the project schedule. An organization 

should develop a review plan template that can be applied to all software projects. The template 

should specify the following items for inclusion in the review plan.  
• review goals;  

• items being reviewed;  

• preconditions for the review;  

• roles, team size, participants;  

• training requirements;  
• review steps;  

checklists and other related documents to be disturbed to participants;  

• time requirements;  

• the nature of the review log and summary report;  

• rework and follow-up.  
We will now explore each of these items in more detail.  
 

R e v i e w G o a l s  

As in the test plan or any other type of plan, the review planner should specify the goals to be 

accomplished by the review. Some general review goals have been stated in Section 9.0 and 

include (i) identification of problem components or components in the software artifact that need 

improvement, (ii) identification of specific errors or defects in the software artifact, (iii) ensuring that 

the artifact conforms to organizational standards, and (iv) communication to the staff about the 

nature of the product being developed. Additional goals might be to establish traceability with 

other project documents, and familiarization with the item being reviewed. Goals for 

inspections and walkthroughs are usually different; those of walkthroughs are more limited in 

scope and are usually confined to identification of defects.  

 

P r e c o n d i t i o n s a n d I t e m s t o B e R e v i e w e d  

Given the principal goals of a technical review—early defect detection, identification of problem 
areas, and familiarization with software artifacts— many software items are candidates for 
review. In many organizations the items selected for review include:  

• requirements documents;  

• design documents;  

• code;  
• test plans (for the multiple levels);  

• user manuals;training manuals;  

• standards documents.  

Note that many of these items represent a deliverable of a major life cycle phase. In fact, many  
represent project milestones and the review serves as a progress marker for project progress.  
Before each of these items are reviewed certain preconditions usually have to be met. For  
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example, before a code review is held, the code may have to undergo a successful compile. The 

preconditions need to be described in the review policy statement and specified in the review 

plan for an item. General preconditions for a review are:  

(i) the review of an item(s) is a required activity in the project plan.  (Unplanned reviews are also  

possible at the request of management, SQA or software engineers. Review policy statements 

should include the conditions for holding an unplanned review.)  

(ii) a statement of objectives for the review has been developed;  

(iii) the individuals responsible for developing the reviewed item indicate readiness for the  
review;  

(iv) the review leader believes that the item to be reviewed is sufficiently complete for the review to 

be useful [8].  

 

The review planner must also keep in mind that a given item to be reviewed may be too large  

and complex for a single review meeting. The smart planner partitions the review item into  

components that are of a size and complexity that allows them to be reviewed in 1-2 hours. This  

is the time range in which most reviewers have maximum effectiveness. For example, the design  

document for a procedure-oriented system may be reviewed in parts that encompass:  

(i) the overall architectural design;  

(ii) data items and module interface design; 

(iii) component design.  

If the architectural design is complex and/or the number of components is large, then multiple  

design review sessions should be scheduled for each. The project plan should have time allocated  

for this.  

R o l e s , P a r t i c i p a n t s , T e a m S i z e , a n d T i m e R e q u i r e m e n t s  

Two major roles that need filling for a successful review are (i) a leader or moderator, and (ii) a  

recorder. These are shown in Figure 10.3. Some of the responsibilities of the moderator have  

been described. These include  planning the reviews, managing the review meeting, and issuing  

the review report. Because of these responsibilities the moderator plays an important role; the  

success of the review depends on the experience and expertise of the moderator. Reviewing a  

software item is a tedious process and requires great attention to details. The moderator needs to  

be sure that all are prepared for the review and that the review meeting stays on track. Reviewers  

often tire and become less effective at detecting errors if the review time period is too long and  

the item is too complex for a single review meeting. The moderator/planner must ensure that a  

time period is selected that is appropriate for the size and complexity of the item under review.  

There is no set value for a review time period, but a rule of thumb advises that a review session  

should not be longer than 2 hours [3]. Review sessions can be scheduled over 2-hour time  

periods separated by breaks. The time allocated for a review should be adequate enough to  

ensure that the material under review can be adequately covered.  
 

The review recorder has the responsibility for documenting defects, and recording review  
findings and recommendations, Other roles may include a reader who reads or presents the item  
under review. Readers are usually the authors or preparers of the item under review. The author(  
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s) is responsible for per forming any rework on the reviewed item. In a walkthrough type of  

review, the author may serve as the moderator, but this is not true for an inspection. All  

reviewers should be trained in the review process. The size of the review team will vary  

depending type, size, and complexity of the item under review. Again, as with time, there is no  

fixed size for a review team. In most cases a size between 3 and 7 is a rule of thumb, but that  

depends on the items under review and the experience level of the review team. Of special  

importance is the experience of the review moderator who is responsible for ensuring the  

material is covered, the review meeting stays on track, and review outputs are produced. The  

minimal team size of 3 ensures that the review will be public [6].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Organizational policies guide selection of review team members.  Membership may vary with  

the type of review. As shown in Figure 10.4 the review team can consist of software quality  

assurance staff members, testers, and developers (analysts, designers, programmers). In some  

cases the size of the review team will be increased to include a specialist in a particular area  

related to the reviewed item; in other cases ―outsiders‖ may be invited to a review to get a more  

unbiased evaluation of the item. These outside members may include users/clients. Users/clients  

should certainly be present at requirements, user manual, and acceptance test plan reviews. Some  

recommend that users also be present at design and even code reviews. Organizational policy  

should refer to this issue, keeping in mind the limited technical knowledge of most users/clients.  
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In many cases it is wise to invite review team members from groups that were involved in the  

preceding and succeeding phases of the life cycle  document being reviewed. These participants  

could be considered to be outsiders. For example, if a design document is under review, it would  

be useful to invite a requirements team representative and a coding team member to be a review  

participant since correctness, consistency, implementability, and traceability are important issues  

for this review. In addition, these attendees can offer insights and perspectives that differ from  

the group members that were involved in preparing the current document under review. It is the  

author‘s option that testers take part in all major milestone reviews to ensure:  

• effective test planning;  
• traceability between tests, requirements, design and code elements;  

• discussion, and support of testability issues;  

• support for software product quality issues;  

• the collection and storage of review defect data;  

• support for adequate testing of ―trouble-prone‖ areas.  

Testers need to especially interact with designers on the issue of testability. A more testable 

design is the goal. For example, in an object-oriented  system a tester may request during a 

design review that additional methods be included in a class to display its state variables. In this case 

and others, it may appear on the surface that this type of design is more expensive to develop 

and implement. However, consider that in the long run if the software is more testable there will be 

two major positive effects:  
(i) the testing effort is likely to be decreased, thus lowering expenses, and  

(ii) the software is likely to be of higher quality, thus increasing customer satisfaction.  

 

R e v i e w P r o c e d u r e s  

For each type of review that an organization wishes to implement, there should be a set of  

standardized steps that define the given review procedure. For example, the steps for an  

inspection are shown in Figure 10.2. These are initiation, preparation, inspection meeting,  

reporting results, and rework and follow-up. For each step in the procedure the activities and  

tasks for all the reviewer participants should be defined. The review plan should refer to the  
standardized procedures where applicable. 

R e v i e w T r a i n i n g  

Review participants need training to be effective. Responsibility for reviewer training classes  

usually belongs to the internal technical training staff. Alternatively, an organization may decide  
to send its review trainees  to external training courses run by commercial institutions. Review  

participants, and especially those who will be review leaders, need the training. Test specialists  
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should also receive review training. Suggested topics for a training program are shown in Figure  

10.5 and described below. Some of the topics can be covered very briefly since it is assumed that the 

reviewers (expect for possible users/clients) are all technically proficient.  

 

1 . Review of Process Concepts.  

Reviewers should understand basic process concepts, the value of process improvement, and the 

role of reviews as a product and process improvement tool.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 . Review of Quality Issues.  

Reviewers should be made familiar with quality attributes such as correctness, testability,  

maintainability, usability, security, portability, and so on, and how can these be evaluated in a  

review.  

3 . Review of Organizational Standards for Software A r t i f a c t s .  

Reviewers should be familiar with organizational standards for software artifacts. For example, 

what items must be included in a software document; what is the correct order and degree of 

coverage of topics expected; what types of notations are permitted. Good sources for this 

material are IEEE standards and guides [1,9,10].  

4 . Understanding the Material to Be Reviewed.  

Concepts of understanding and how to build mental models during comprehension  of code and  

software-related documents should be covered. A critical issue is how fast a reviewed document  

should be read/checked by an individual and by the group as a whole. This applies to  

requirements,design, test plans and other documents, as well as source code. A rate of 5-10  

pages/hour or 125-150 LOC/hour for a review group has been quoted as favorable [7]. Reading  

rates that are too slow will make review meetings ineffective with respect to the number of  

defects found per unit time. Readings that are too fast will allow defects and problems to go  

undetected.  
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5 . Defect and Problem Types.  

Review trainees need to become aware of the most frequently occurring types of problems or 

errors that are likely to occur during development. They need to be aware what their causes are, 

how they are transformed into defects, and where they are likely to show up in the individual 

deliverables. The trainees should become familiar with the defect type categories, severity levels, and 

numbers and types of defects found in past deliverables of similar systems. Review trainees should 

also be made aware of certain indicators or clues that a certain type of defect or problem has 

occurred [3]. The definitions of defects categories, and maintenance of a defect data base are the 

responsibilities of the testers and SQA staff.  

6 . Communication and Meeting Management S k i l l s .  

These topics are especially important for review leaders. It is their responsibility to communicate  

with the review team, the preparers of the reviewed document, management, and in some cases  

clients/user group members. Review leaders need to have strong oral and written communication  

skills and also learn how to conduct a review meeting. During a review meeting there are  

interactions and expression of opinion from a group of technically qualified people who often  

want to be heard. The review leader must ensure that all are prepared, that the meeting stays on  

track, that all get a chance to express their opinions, that the proper page/code document  

checking rate is achieved, and that results are recorded. Review leaders also must trained so that  

they can ensure that authors of the document or artifact being reviewed are not under the  

impression that they themselves are being evaluated. The review leader  needs to uphold the  

organizational view that the purpose of the review is to support the authors in improving the  

quality of the item they have developed. Policy statements to this effect need to be written and  

explained to review trainees, especially those who will be review leaders.  

Skills in conflict resolution are very useful, since very often reviewers will have strong opinions and 

arguments can dominate a review session unless there is intervention by the leader. There are also 

issues of power and control over deliverables and aspects of deliverables and other hidden  

agenda that surface  during a review meeting that must be handled by the review leader. In this 

case people and management skills are necessary, and sometime these cannot be taught. They 

come through experience.  

7 . Review Documentation and Record Keeping.  

Review leaders need to learn how to prepare checklists, agendas, and logs for review meetings.  

Examples will be provided for some of these documents later in this chapter. Other examples can  

be found in Freedman and Weinberg [6], Myers [11], and Kit [12]. Checklists for inspections  

should be appropriate for the item being inspected. Checklists in general should focus on the  

following issues:  

• most frequent errors;  

• completeness of the document;  

• correctness of the document;  
• adherence to standards.  
 

8 . Special Instructions.  

During review training there may be some topics that need to be covered with the review  

participants. For example, there may be interfaces with hardware that involve the reviewed item,  

and reviewers may need some additional background discussion to be able to evaluate those 

interfaces. 
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9 . Practice Review Sessions.  

Review trainees should participate in practice review sessions. There are very instructive and 

essential. One option is for instructors to use existing documents that have been reviewed in the past 

and have the trainees do a practice review of these documents. Results can be compared to those of 

experienced reviewers, and useful lessons can be learned from problems identified by the trainees 

and those that were not. Instructors can discuss so-called ―false positives‖ which are not true defects 

but are identified as such. Trainees can also attend review sessions with experienced reviewers 

as observers, to learn review lessons.  
 
In general, training material for review trainees should have adequate examples, graphics, and  
homework exercises. Instructors should be provided with the media equipment needed to  
properly carry out instruction. Material can be of the self-paced type, or for group course work.  

 

R e v i e w C h e c k l i s t s  

Inspections formally require the use of a checklist of items that serves as the focal point for  

review examinations and discussions on both the individual and group levels. As a precondition  

for checklist development an organization should identify the typical types of defects made in  

past projects, develop a classification scheme for those defects, and decide on impact or severity  

categories for the defects. If no such defect data is available, staff members need to search the  

literature, industrial reports, or the organizational archives to retrieve this type of information.  

Checklists are very important for inspectors. They provide structure and an agenda for the review  

meeting. They guide the review activities, identify focus areas for discussion and evaluation,  

ensure all relevant items are covered, and help to frame review record keeping and measurement.  

Reviews are really a two-step process: (i) reviews by individuals, and (ii) reviews by the group.  

The checklist plays its important role in both steps. The first step involves the individual  

reviewer and the review material. Prior to the review meeting each individual must be provided  

with the materials to review and the checklist of items. It is his responsibility to do his homework  

and individually inspect that document using the checklist as a guide, and to document any  

problems he encounters.  

 

When they attend the group meeting which is the second review step, each reviewer should bring  

his or her individual list of defect/problems, and as each item on the checklist is discussed they  

should comment. Finally, the reviewers need to come to a consensus on what needs to be fixed  

and what remains unchanged. Each item that undergoes a review requires a different checklist  

that addresses the special issues associated with quality evaluation for that item. However each  

checklist should have components similar to those shown in Table 10.1. The first column lists all  

the defect types or potential problem areas that may occur in the item under review. Sources for  

these defect types are usually data from past projects. Abbreviations for detect/ problem types  

can be developed to simplify the checklist forms. Status refers to coverage during the review  

meeting—has the item been discussed? If so, a check mark is placed in the column. Major or  

minor are the two severity or impact levels shown here. Each organization needs to decide on the  

severity levels that work for them. Using this simple severity scale, a defect or problem that is  
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classified as major has a large impact on product quality; it can cause failure or deviation from 

specification. A minor problem has a small impact on these; in general, it would affect a 

nonfunctional aspect of the software. The letters M, I, and S indicate whether a checklist item is 

missing (M), incorrect (I), or superfluous (S).  

In this section we will look at several sample checklists. These are shown in Tables 10.2-10.5.  

One example is the general checklist shown in Table 10.2, which is applicable to almost all  

software documents. The checklist is used is to ensure that all documents are complete, correct,  

consistent, clear, and concise. Table 10.2 only shows the problem/defect types component  

(column) for simplicity‘s sake. All the components as found in Table 10.1 should be present on  

each checklist form. That also holds true for the checklists illustrated in Tables 10.3-10.5. The  

recorder is responsible for completing the group copy of the checklist form during the review  

meeting (as opposed to the individual checklist form completed during review preparation by  

each individual reviewer). The recorder should also keep track of each defect and where in the  

document it occurs (line, page, etc.). The group checklist can appear on a wallboard so that all  

can see what has been entered. Each individual should bring to the review meeting his or her  

own version of the checklist completed prior to the review meeting.In addition to using the  

widely applicable problem/defect types shown in Table 10.2 each item undergoing review has  
 
 
 
 
 
 
 
 
 

specific attributes that  should be addressed on a checklist form. Some examples will be given in  
the following pages of checklist items appropriate for reviewing different types of software  
artifacts.  

 

Requirements Reviews  

In addition to covering the items on the general document checklist as shown in Table 10.2, the 

following items should be included in the checklist for a requirements review.  

• completeness (have all functional and quality requirements described in the problem statement been 

included?);  
• correctness (do the requirements reflect the user‘s needs? are they stated without error?);  

• consistency (do any requirements contradict each other?);  

• clarity (it is very important to identify and clarify any ambiguous requirements);  

• relevance (is the requirement pertinent to the problem area? Requirements should not be 

superfluous);  

• redundancy (a requirement may be repeated; if it is a duplicate it should be combined with an 

equivalent one);  
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• testability (can each requirement be covered successfully with one or more test cases? can tests 

determine if the requirement has been satisfied?);feasibility (are requirements implementable given 

the conditions underwhich the project will progress?).  

Users/clients or their representatives should be present at a requirements review to ensure that the 

requirements truly reflect their needs, and that the requirements are expressed clearly and 

completely. It is also very important for testers to be present at the requirements review. One of  

their major responsibilities it to ensure that the requirements are testable. Very often the master or 

early versions of the system and acceptance test plans are included in the requirements review. Here 

the reviewers/testers can use a traceability matrix to ensure that each requirement can be covered 

by one or more tests. If requirements are not clear, proposing test cases can be of help in focusing 

attention on these areas, quantifying imprecise requirements, and providing general information to 

help resolve problems.  

Although not on the list above, requirements reviews should also ensure that the requirements are 
free of design detail. Requirements focus on what the system should do, not on how to 
implement it.  

 

Design Reviews  

Designs are often reviewed in one or more stages. It is useful to review the high level  

architectural design at first and later review the detailed design. At each level of design it is  

important to check that the design is consistent with the requirements and that it covers all the  

requirements. Again the general checklist is applicable with respect to clarity, completeness,  

correctness and so on. Some specific items that should be checked for at a design review are:  

• a description of the design technique used;  
• an explanation of the design notation used;  

• evaluation of design alternatives (it is important to establish that design alternatives have been 

evaluated, and to determine why this particular approach was selected);  

• quality of the high-level architectural model (all modules and their relationships should be 
defined; this includes newly developed modules, revised modules, COTS components, and any 
other reused modules; module coupling and cohesion should be evaluated.);  

• description of module interfaces;  

• quality of the user interface;  

• quality of the user help facilities;  

• identification of execution criteria and operational sequences;  
• clear description of interfaces between this system and other software and hardware systems;  

•  coverage  of  all  functional  requirements  by  design  elements;  coverage  of  al l  quality 

requirements,  for  example,  ease  of  use,  portability,  maintainability,  security,  readability, 

adaptability, performance requirements (storage, response time) by design elements;  

• reusability of design components;  

• testability (how will the modules, and their interfaces be tested? How will they be integrated and 

tested as a complete system?).  
For reviewing detailed design the following focus areas should also be revisited:  

• encapsulation, information hiding and inheritance;  

• module cohesion and coupling;  
• quality of module interface description;  

• module reuse.  
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Both levels of design reviews should cover testability issues as described above. In addition,  

measures that are now available such as module complexity, which gives an indication of testing  

effort, can be used to estimate the extent of the testing effort. Reviewers should also check  

traceability from tests to design elements and to requirements. Some organizations may re- 

examine system and integration test plans in the context of the design elements under review.  

Preliminary unit test plans can also be examined along with the design documents to ensure  

traceability, consistency, and complete coverage. Other issues to be discussed include language  

issues and the appropriateness of the proposed language to implement the design.  

 

Code Reviews  

Code reviews are useful tools for detecting defects and for evaluating code quality. Some  

organizations require a clean compile as a precondition for a code review. The argument is that it  

is more effective to use an automated tool to identify syntax errors than to use human experts to  

perform this task. Other organizations will argue that a clean compile makes rediligent in  

checking for defects since they will assume the compiler has detected many of them.  

Code review checklists can have both general and language-specific components. The general  

code review checklist can be used to review code written in any programming language. There  

are common quality features that should be checked no matter what implementation language is  

selected. Table 10.3 shows a list of items that should be included in a general code checklist.  

The general checklist is followed by a sample checklist that can be used for a code review for  

programs written in the C programming language. The problem/defect types are shown in Table  

10.4. When developing your own checklist documents be sure to include the other columns as 

shown in Table 10.1. The reader should note that since the languagespecific checklist addresses 

programming-language-specific issues, a different checklist is required for each language used in the 

organization.  

 

Test Plan Reviews  

Test plans are also items that can be reviewed. Some organizations will review them along with  

other related documents. For example, a master test plan and an acceptance test plan could be  

reviewed with the requirements document, the integration and system test plans reviewed with  

the design documents, and unit test plans reviewed with detailed design documents [2]. Other  

organizations, for example, those that use the Extended/ Modified V-model, may have separate  

review meetings for each of the test plans. In Chapter 7 the components of a test plan were  

discussed, and the review should insure that all these components are present and that they are  

correct, clear, and complete. The general document checklist can be applied to test plans, and a  

more specific checklist can be developed for test-specific issues. An example test plan checklist  

is shown in Table 10.4. The test plan checklist is applicable to all levels of test plans.  

Other testing products such as test design specifications, test procedures, and test cases can also be 

reviewed. These reviews can be held in conjunction with reviews of other test-related items or other 

software items.  
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5.8 Reporting review results. 

 

Several information-rich items result from technical reviews. These items are listed below. The 
items can be bundled together in a single report or distributed over several distinct reports. 

Review polices should indicate the formats of the reports required. The review reports should 

contain the following information.  

1. For inspections—the group checklist with all items covered and comments relating to each  

item.  

2. For inspections—a status, or summary, report (described below) signed by all participants.  

3. A list of defects found, and classified by type and frequency. Each defect should be 
crossreferenced to the line, pages, or figure in the reviewed document where it occurs.  

4. Review metric data (see Section 10.7 for a discussion).  

The inspection report on the reviewed item is a document signed by all the reviewers. It may  

contain a summary of defects and problems  found and a list of review attendees, and some  

review measures such as the time period for the review and the total number of major/minor  
defects.  

The reviewers are responsible for the quality of the information in the written report [6]. There are 

several status options available to the review participants on this report. These are:  
 

1. Accept: The reviewed item is accepted in its present form or with minor rework required that does 
not need further verification.  

2. Conditional accept: The reviewed item needs rework and will be accepted after the moderator has 

checked and verified the rework.  

3. Reinspect: Considerable rework must be done to the reviewed item.  

The inspection needs to be repeated when the rework is done. Before signing their name to such a 

inspection report reviewers need to be sure that all checklist items have been addressed, all defects 

recorded, and all quality issues discussed. This is important for several reasons.  Very often when a 

document has passed an inspection it is viewed as a baseline item for configuration management, and 

any changes from this baseline item need approval from the configuration management board. In 

addition, the successful passing of a review usually indicates a project milestone has been passed, a 

certain level of quality has been achieved, and the project has made progress toward meeting its 

objectives. A milestone meeting is usually held, and clients are notified of the completion of the 

milestone.  

If the software item is given a conditional accept or a reinspect, a follow-up period occurs where  

the authors must address all the items on the problem/defect list. The moderator reviews the  

rework in the case of a conditional accept. Another inspection meeting is required to reverify the  

items in the case of a ―reinspect‖ decision. For an inspection type of review, one completeness or  

exit criterion requires that all identified problems be resolved. Other criteria may be required by  

the organization. In addition to the summary report, other outputs of an inspection include a  

defect report and an inspection report. These reports are vital for collecting and organizing  

review measurement data. The defect report contains a description of the defects, the defect type,  

severity level, and the location of each defect. On the report the defects can be organized so that  

their type and occurrence rate is easy to determine. IEEE standards suggest that the inspection  

report contain vital data such as [8]:  
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(i) number of participants in the review; 

(ii) the duration of the meeting;  

(iii) size of the item being reviewed (usually LOC or number of pages); 

(iv) total preparation time for the inspection team;  
(v) status of the reviewed item;  

(vi) estimate of rework effort and the estimated date for completion of the rework.  

This data will help an organization to evaluate the effectiveness of the review process and to 

make improvements.The IEEE has recommendations for defect classes [8]. The classes are based on 

the reviewed software items‘ conformance to:  
• standards;  

• capability;  

• procedures;  

• interface;  

• description.  

A defect class may describe an item as missing, incorrect, or superfluous as shown in Table 10.1. Other 

defect classes could describe an item as ambiguous or inconsistent [8]. Defects should also be ranked in 

severity, for example:  

(i) major (these would cause the software to fail or deviate from its specification); (ii) 

minor (affects nonfunctional aspects of the software).  

A ranking scale for defects can be developed in conjunction with a failure severity scale as 

described in Section 9.1.4.  

A walkthrough review is considered complete when the entire document has been covered or 

walked through, all defects and suggestions for improvement have been recorded, and the 

walkthrough report has been completed. The walkthrough report lists all the defects and 

deficiencies, and contains data such as [8]:  

• the walkthrough team members;  

• the name of the item being examined;  

• the walkthrough objectives;  
• list of defects and deficiencies;  

• recommendations on how to dispose of, or resolve the deficiencies.  

 

Note that the walkthrough report/completion criteria are not as formal as those for an inspection.  

There is no requirement for a signed status report, and no required follow-up for resolution of  

deficiencies, although that could be recommended in the walkthrough report.A final important  

item to note: The purpose of a review is to evaluate a software artifact, not the developer or  

author of the artifact. Reviews should not be used to evaluate the performance of a software  

analyst, developer, designer, or tester [3]. This important point should be well established in the  

review policy. It is essential to adhere to this policy for the review process to work. If authors of  

software artifacts believe they are being evaluated as individuals, the objective and impartial  

nature of the review will change, and its effectiveness in revealing problems will be minimized .  
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Unit V  

 
Part-A Questions  
 

 

1.  What is project monitoring?  

2.  List the  benefits of review program.  

3.  List the function of conducting status meeting.  

4.  Define Monitoring.  

5.  List the four major activities associated with configuration management.  

 

 

Part-B Questions  

 

1.  Write a summary about the following types of reviews.  

2.   Write a note on five stop test criteria based on quantitative approach.  

3.   What is software configuration management ? 

Explain the four major activities  

 associated with configuration management.  

4.  Explain the functions of monitoring and controlling management.  

5.  Give a note on: Components of review plans & Reporting review results.  
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