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1. Introduction 

 

1.1 Definition – Distributed Systems 

 

• A distributed system is a system whose components are located on different networked 

computers, which communicate and coordinate their actions by passing messages to one 

another. 

• A distributed system is a collection of independent entities that cooperate to solve a 

problem that cannot be individually solved. 

• Autonomous processors communicating over a communication network 

 

Characteristics of Distributed Systems  
 

1. No common physical clock  -> “distribution” in the system and gives rise to the inherent 

asynchrony amongst the processors. 

 

2. No shared memory -> distributed system may still provide the abstraction of a 

common address space via the distributed shared memory abstraction. 

  
3. Geographical separation -> The geographically wider apart that the processors are, 

the more representative is the system of a distributed system network/cluster of workstations 

(NOW/COW) configuration connecting processors. The Google search engine is based on 

the NOW architecture. 

  
4. Autonomy and heterogeneity -> The processors are “loosely coupled” in that they 

have different speeds and each can be running a different operating system. 

 

1.2 Relation to computer system components 

 

Each computer has a memory-processing unit and the computers are connected by a 

communication network. Figure shows the relationships of the software components that run on 

each of the computers and use the local operating system and network protocol stack for 

functioning.  
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The distributed software is also termed as middleware. A distributed execution is the execution 

of processes across the distributed system to collaboratively achieve a common goal. An 

execution is also sometimes termed a computation or a run. 

A distributed system connects processors by a communication network. 

 
 Interaction of the software components at each process 

 
 

• The distributed system uses a layered architecture to break down the complexity of 

system design. The middleware is the distributed software that drives the distributed 

system, while providing transparency of heterogeneity at the platform level. 

• There are several standards such as Object Management Group’s (OMG) common object 

request broker architecture (CORBA) [36], and the remote procedure call (RPC) 

mechanism 

 

1.3 Motivation 

 

The motivation for using a distributed system is some or all of the following requirements: 
 

1. Inherently distributed computations  

The computation is inherently distributed  

Eg., money transfer in banking 

2. Resource sharing  

Resources such as peripherals, complete data sets in databases, special libraries, as well as data 

(variable/files) cannot be fully replicated at all the sites. Further, they cannot be placed at a single 

site. Therefore, such resources are typically distributed across the system.  

For example, distributed databases such as DB2 partition the data sets across several servers 
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3. Access to geographically remote data and resources  

 

In many scenarios, the data cannot be replicated at every site participating in the distributed 

execution because it may be too large or too sensitive to be replicated.  

For example, payroll data within a multinational corporation is both too large and too sensitive to 

be replicated at every branch office/site.  

  
4. Enhanced reliability  

A distributed system has the inherent potential to provide increased reliability because of the 

possibility of replicating resources and executions, as well as the reality that geographically 

distributed resources are not likely to crash/malfunction at the same time under normal 

circumstances. Reliability entails several aspects:  
a. availability, i.e., the resource should be accessible at all times; 
 
b. integrity, i.e., the value/state of the resource should be correct 

c. fault-tolerance, i.e., the ability to recover from system failures 

  
5. Increased performance/cost ratio  

By resource sharing and accessing geographically remote data and resources, the 

performance/cost ratio is increased.  
 

6. Scalability  

As the processors are usually connected by a wide-area network, adding more processors does 

not pose a direct bottleneck for the communication network. 

 

7. Modularity and incremental expandability  

 

Heterogeneous processors may be easily added into the system without affecting the 

performance, as long as those processors are running the same middleware algorithms. Similarly, 

existing processors may be easily replaced by other processors. 
 

1.4 Relation to parallel multiprocessor/multicomputer systems 

 

A parallel system may be broadly classified as belonging to one of three types: 

 

1. Multiprocessor system 

2. Multicomputer parallel system 

3. Array processors 

 

1.4.1 Characteristics of parallel systems 

 

1. A multiprocessor system is a parallel system in which the multiple processors have direct 

access to shared memory which forms a common address space.  



CS8603 – DISTRIBUTED SYSTEMS 

 

The architecture is shown in Figure (a). Such processors usually do not have a common clock.  
 

A multiprocessor system usually corresponds to a uniform  memory access (UMA) architecture 

in which the access latency, i.e., waiting time, to complete an access to any memory location 

from any processor is the same. The processors are in very close physical proximity and are 

connected by an interconnection network. Inter process communication across processors is 

traditionally through read and write operations on the shared memory, although the use of 

message-passing primitives such as those provided by 

 

Two standard architectures for parallel systems. (a) Uniform memory access (UMA) 

multiprocessor system. (b) Non-uniform memory access (NUMA) multiprocessor. In both 

architectures, the processors may locally cache data from memory. 

 

 
Figure : Interconnection networks for shared memory multiprocessor systems. (a) Omega 

network [4] for n = 8 processors P0–P7 and memory banks M0–M7. (b) Butterfly network [10] 

for n = 8 processors P0–P7 and memory banks M0–M7. 

 

Figure shows two popular interconnection networks – the Omega network and the Butterfly 

network, each of which is a multi-stage network formed of 2 ×2 switching elements. Each 2 ×2 

switch allows data on either of the two input wires to be switched to the upper or the lower 

output wire. 

• Each 2 × 2 switch is represented as a rectangle in the figure. Further-more, a n-input and 

n-output network uses log n stages and log n bits for addressing. 

• Omega interconnection function The Omega network which connects n processors to n 

memory units has n/2log2 n switching elements of size 2 × 2 arranged in log2 n stages. 
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Interconnection function: Output i of a stage connected to input j of next stage: 

 

• Consider any stage of switches. Informally, the upper (lower) input lines for each switch 

come in sequential order from the upper (lower) half of the switches in the earlier stage.  
• With respect to the Omega network in Figure(a), n = 8. Hence, for any stage, for the 

outputs i, where 0 ≤ i ≤ 3, the output i is connected to input 2i of the next stage. For 4 ≤ i 

≤ 7, the output i of any stage is connected to input 2i + 1 − n of the next stage. 

 
 
Omega routing function  

• The routing function from input line i to output line j considers only j and the stage 
number s, where s ∈ 0 log2n − 1. In a stage s switch, if the s + 1th MSB (most significant 
bit) of j is 0, the data is routed to the upper output wire, otherwise it is routed to the lower 
output wire. 

• The Butterfly and the Omega networks, the paths from the different inputs to any one 

output form a spanning tree. This implies that collisions will occur when data is destined 

to the same output line. However, the advantage is that data can be combined at the 

switches if the application semantics (e.g., summation of numbers) are known. 

 

2. Multicomputer parallel system 

A multicomputer parallel system is a parallel system in which the multiple processors do not 

have direct access to shared memory. The memory of the multiple processors may or may not 

form a common address space. Such computers usually do not have a common clock. 

 

Non-uniform memory access (NUMA) architecture 



CS8603 – DISTRIBUTED SYSTEMS 

 

 

Examples of parallel multicomputers are: the NYU Ultracomputer and the Sequent shared 

memory machines, the CM* Connection machine and processors configured in regular and 

symmetrical topologies such as an array or mesh, ring, torus, cube, and hypercube (message-

passing machines). 

 

(a) Wrap-around 2D-mesh, also known as torus. (b) Hypercube of dimension 4. 

 

 

 

Figure  (a) shows a wrap-around 4 × 4 mesh. For a k × k mesh which will contain k2 

processors, the maximum path length between any two processors is 2 k/2 − 1 . Routing can be 

done along the Manhattan grid. 

Figure (b) shows a four-dimensional hypercube. A k-dimensional hyper-cube has 2k 

processor-and-memory units. Each such unit is a node in the hypercube, and has a unique k-

bit label. 

Hamming distance 

• The processors are labelled such that the shortest path between any two processors is the 

Hamming distance (defined as the number of bit positions in which the two equal sized 

bit strings differ) between the processor labels. 

• Example Nodes 0101 and 1100 have a Hamming distance of 2. The shortest path between 

them has length 2. 

3. Array processors 

• Array processors  belong to a class of parallel computers that are physically co-located, are 

very tightly coupled, and have a common system clock (but may not share memory and 

communicate by passing data using messages).  

• Array processors and systolic arrays that perform tightly synchronized processing and data 

exchange in lock-step for applications such as DSP and image processing belong to this 

category.  

• These applications usually involve a large number of iterations on the data. This class of 

parallel systems has a very niche market. 
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1.4.2 Flynn’s Taxonomy 

 

Flynn identified four processing modes, based on whether the processors execute the same or 

different instruction streams at the same time, and whether or not the processors processed the 

same (identical) data at the same time. 

 

  

 
 

SISD: Single Instruction Stream Single Data Stream (traditional) 

This mode corresponds to the conventional processing in the von Neumann paradigm with a 

single CPU, and a single memory unit connected by a system bus. 

  
SIMD: Single Instruction Stream Multiple Data Stream 

This mode corresponds to the processing by multiple homogenous processors which execute in 

lock-step on different data items.  
o scientific applications, applications on large arrays  
o vector processors, systolic arrays, Pentium/SSE, DSP chips  

MISD: Multiple Instruction Stream Single Data Stream 

This mode corresponds to the execution of different operations in parallel on the same data. This 

is a specialized mode of operation with limited but niche applications  
• E.g., visualization  
MIMD: Multiple Instruction Stream Multiple Data Stream 

➢ In this mode, the various processors execute different code on different data. This is the 

mode of operation in distributed systems as well as in the vast majority of parallel systems.  

➢ There is no common clock among the system processors.  
Eg. Sun Ultra servers, multicomputer PCs, and IBM SP machines 

 

 

1.4.3 Coupling, parallelism, concurrency, and granularity 
 

 Coupling 

 

➢ The degree of coupling among a set of modules, whether hardware or software, is 

measured in terms of the interdependency and binding and/or homogeneity among the modules.  
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➢ When the degree of coupling is high (low), the modules are said to be tightly (loosely) 

coupled.  

➢ SIMD and MISD architectures generally tend to be tightly coupled because of the 

common clocking of the shared instruction stream or the shared data stream. 

➢ Various MIMD architectures in terms of coupling: 

 

• Tightly coupled multiprocessors (with UMA shared memory). These may be either 

switch-based 

• Tightly coupled multiprocessors (with NUMA shared memory or that communicate by 

message passing). 

• Loosely coupled multi computers (without shared memory) physically co-located. These 

may be bus-based 

• and the processors may be heterogeneous 

• Loosely coupled multi computers (without shared memory and without common clock) 

that are physically remote. 
  
Parallelism or speedup of a program on a specific system 

 

➢ This is a measure of the relative speedup of a specific program, on a given machine.  

➢ The speedup depends on the number of processors and the mapping of the code to the 

processors. 

➢ It is expressed as the ratio of the time T(1) with a single processor, to the time T(n)  with 

n processors. 

 

Parallelism within a parallel/distributed program 
➢  
➢ This is an aggregate measure of the percentage of time that all the proces-sors are 

executing CPU instructions productively, as opposed to waiting for communication (either via 

shared memory or message-passing) operations to complete.   
Concurrency of a program  
 

The parallelism/concurrency in a parallel/distributed program can be measured by the ratio of 

the number of local (non-communication and non-shared memory access) operations to the total 

number of operations, including the communication or shared memory access operations. 

Granularity of a program  
➢ The ratio of the amount of computation to the amount of communication within the 

parallel/distributed program is termed as granularity. 

➢ Programs with fine-grained parallelism are best suited for tightly coupled systems. Eg. 

SIMD and MISD architectures 

 

1.5 Message-passing vs. Shared Memory 
 
➢ Shared memory systems are those in which there is a (common) shared address space 
throughout the system.  
➢ Communication among processors takes place via shared data variables, and control 
variables for synchronization among the processors. 
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➢ Semaphores and monitors that were originally designed for shared memory uni 
processors and multiprocessors 
 

• The abstraction called shared memory is sometimes provided to simulate a shared address 

space. For a distributed system, this abstraction is called distributed shared memory. 

Implementing this abstraction has a certain cost but it simplifies the task of the 

application programmer. 

• The communication via message-passing can be simulated by communication via shared 

memory and vice-versa. Therefore, the two paradigms are equivalent. 

 

1.5.1. Emulating message-passing on a shared memory system (MP → SM)  
• Partition shared address space  
• Send/Receive emulated by writing/reading from special mailbox per pair of processes 

• A Pi–Pj message-passing can be emulated by a write by Pi to the mailbox and then a 
read by Pj from the mailbox. 

• The write and read operations need to be controlled using synchronization primitives 
to inform the receiver/sender after the data has been sent/received. 
  

1.5.2. Emulating shared memory on a message-passing system (SM → MP) 

• This involves the use of “send” and “receive” operations for “write” and “read” 
operations.  

• Model each shared object as a process  
• Write to shared object emulated by sending message to owner process for the object  
• Read from shared object emulated by sending query to owner of shared object 

• In a MIMD message-passing multicomputer system, each “processor” may be a tightly 

coupled multiprocessor system with shared memory. Within the multiprocessor system, 

the processors communicate via shared memory. Between two computers, the 

communication is by message passing. 
 
1.6 Primitives for distributed communication 
 
1.6.1. Blocking/non-blocking, synchronous/asynchronous primitives 

• A Send primitive has at least two parameters – the destination, and the buffer in the 

user space, containing the data to be sent.  

• Similarly, a Receive primitive has at least two parameters – the source from which the 

data is to be received (this could be a wildcard), and the user buffer into which the data is 

to be received. 

• There are two ways of sending data when the Send primitive is invoked – the buffered 

option and the unbuffered option. The buffered option which is the standard option copies 

the data from the user buffer to the kernel buffer. The data later gets copied from the 

kernel buffer onto the network. In the unbuffered option, the data gets copied directly 

from the user buffer onto the network.  

• For the Receive primitive, the buffered option is usually required because the data may 

already have arrived when the primitive is invoked, and needs a storage place in the 

kernel. 
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Synchronous primitive(send/receive)  
• Handshake between sender and receiver  
• Send completes when Receive completes  
• Receive completes when data copied into buffer  

 

Asynchronous primitive (send)  
• A Send primitive is said to be asynchronous if control returns back to the invoking 

process after the data item to be sent has been copied out of the user-specified buffer. 

 

Blocking primitive (send/receive) 
 

• A primitive is blocking if control returns to the invoking process after the processing 

for the primitive (whether in synchronous or asynchronous mode) completes.  
 

Nonblocking primitive (send/receive)  
• A primitive is non-blocking if control returns back to the invoking process 

immediately after invocation, even though the operation has not completed.  
• Send: even before data copied out of user buffer  
• Receive: even before data may have arrived from sender 

 

A non-blocking send primitive. When the Wait call returns, at least one of its parameters is 

posted.  
 
 

Send(X, destination, handlek) // handlek is a return parameter 

  

  

Wait(handle1, handle2, …, handlek, …, handlem) // Wait always blocks  
 

 

 Return parameter returns a system-generated handle  
➢ Use later to check for status of completion of call  
➢ Keep checking (loop or periodically) if handle has been posted  
➢ Issue Wait(handle1, handle2, : : :) call with list of handles  
➢ Wait call blocks until one of the stipulated handles is posted 
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Blocking/nonblocking; Synchronous/asynchronous; send/receive primities 

 
1.6.2. Processor synchrony 

 

➢ Processor synchrony indicates that all the processors execute in lock-step with their 

clocks synchronized. 

➢ It is used to ensure that no processor begins executing the next step of code until all the 

processors have completed executing the previous steps of code assigned to each of the 

processors. 

 

1.6.3. Libraries and standards 

 

• The message-passing interface (MPI) library and the PVM (parallel virtual machine) 

library 

• Commercial software is often written using the remote procedure calls (RPC) 

mechanism for example, Sun RPC, and distributed computing environ-ment (DCE) RPC 

• “Messaging” and “streaming” are two other mechanisms for communication, (RMI) 

and remote object invocation (ROI) 
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• CORBA (common object request broker architecture) and DCOM (distributed 

component object model) are two other standardized architectures with their own set of 

primitives 

 

1.7 Synchronous versus asynchronous executions 
 

An asynchronous execution is an execution in which 

• There is no processor synchrony and there is no bound on the drift rate 

of processor clocks,  

• Message delays (transmission + propagation times) are finite but 

unbounded, and  

• There is no upper bound on the time taken by a process to execute a 

step. 

 

An example of an asynchronous execution in a message-passing system. A timing diagram is 

used to illustrate the execution 

 
An example asynchronous execution with four processes P0 to P3 is shown in Figure. The 

arrows denote the messages; the tail and head of an arrow mark the send and receive event for 

that message, denoted by a circle and vertical line, respectively. Non-communication events, also 

termed as internal events, are shown by shaded circles. 

 

A synchronous execution is an execution in which  

(i) processors are synchronized and the clock drift rate between any two processors is 

bounded,  

(ii)message delivery (transmission + delivery) times are such that they occur in one logical 

step or round, and  

(iii) there is a known upper bound on the time taken by a process to execute a step. 

 

There is a hurdle to having a truly synchronous execution 

• It is practically difficult to build a completely synchronous system, and have the 

messages delivered within a bounded time.  
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• Therefore, this synchrony has to be simulated under the covers, and will inevitably 

involve delaying or blocking some processes for some time durations.  

• Thus, synchronous execution is an abstraction that needs to be provided to the programs.  

• When implementing this abstraction, observe that the fewer the steps or 

“synchronizations” of the processors, the lower the delays and costs.  

 

Virtual Synchrony 

• If processors are allowed to have an asynchronous execution for a period of time and then 

they synchronize, then the granularity of the synchrony is coarse. This is really a virtually 

synchronous execution, and the abstraction is sometimes termed as virtual synchrony.  

• Ideally, many programs want the processes to execute a series of instructions in rounds 

(also termed as steps or phases) asynchronously, with the requirement that after each 

round/step/phase, all the processes should be synchronized and all messages sent should 

be delivered.  

• This is the commonly understood notion of a synchronous execution. Within each 

round/phase/step, there may be a finite and bounded number of sequential sub-rounds (or 

sub-phases or sub-steps) that processes execute. Each sub-round is assumed to send at 

most one message per process; hence the message(s) sent will reach in a single message 

hop. 

 

An example of a synchronous execution in a message-passing system. All the messages sent in a 

round are received within that same round. 

 

In this system, there are four nodes P0 to P3. In each round, process Pi sends a message to P i+1 

mod 4 and P i−1 mod 4 and calculates some application-specific function on the received values. 

 

Synchronous execution in a message-passing system  

In any round/step/phase: (send j internal) (receive j internal) 
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 Sync vs async executions  
 Async execution  
➢ No processor synchrony, no bound on drift rate of clocks  
➢ Message delays  nite but unbounded  
➢ No bound on time for a step at a process  
 Sync execution  
➢ Processors are synchronized; clock drift rate bounded  
➢ Message delivery occurs in one logical step/round  
➢ Known upper bound on time to execute a step at a process 

 

 

 Difficult to build a truly synchronous system; can simulate this abstraction  

 Virtual synchrony:  
• async execution, processes synchronize as per application requirement;  
• execute in rounds/steps  

 Emulations:  
• Async program on sync system: trivial (A is special case of S)  
• Sync program on async system: tool called synchronizer  

 

System Emulations 

 

➢ The shared memory system could be emulated by a message-passing system, and vice-

versa 

➢ If system A can be emulated by system B, denoted A/B, and if a problem is not solvable 

in B, then it is also not solvable in A. Likewise, if a problem is solvable in A, it is also solvable 

in B. Hence, in a sense, all four classes are equivalent in terms of “computability” – what can 

and cannot be computed – in failure-free systems. 

Emulations among the principal system classes in a failure-free system. 

 

 
 
 
 Assumption: failure-free system  
 System A emulated by system B:  

• If not solvable in B, not solvable in A  
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• If solvable in A, solvable in B 

 

 

1.8 Design issues and challenges 
 

❖ Distributed systems challenges from a system perspective 

❖ Algorithmic challenges in distributed computing 

❖ Applications of distributed computing and newer challenges 
 
 

The categorization of design issues and challengesm as (i) having a greater component related to 

systems design and operating systems design, or (ii) having a greater component related to 

algorithm design, or (iii) emerging from recent technology advances and/or driven by new 

applications. 

 

1.8.1 Distributed systems challenges from a system perspective 

 
The following functions must be addressed when designing and building a distributed system: 
 
Communication mechanisms: E.g., Remote Procedure Call (RPC), remote object invocation 

(ROI), message-oriented vs. stream-oriented communication 
 
Processes: Code migration, process/thread management at clients and servers, design of 

software and mobile agents 
 
Naming: Easy to use identifiers needed to locate resources and processes transparently and 

scalable.  
Synchronization 

Mechanisms for synchronization or coordination among the processes are essential. Mutual 

exclusion is the classical example of synchronization  
Data storage and access 
 

• Schemes for data storage, search, and lookup should be fast and scalable across 
network  

• Revisit  file system design  
Consistency and replication  

• Replication for fast access, scalability, avoid bottlenecks  
• Require consistency management among replicas 

• Fault-tolerance: correct and efficient operation despite link, node, process failures 
 

Distributed systems security 
 

• Secure channels, access control, key management (key generation and key 
distribution), authorization, secure group management 

 
• Scalability and modularity of algorithms, data, services  Some experimental systems: 

Globe, Globus, Grid 
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API for communications, services: ease of use  
Transparency: hiding implementation policies from user 
 

• Access: hide di erences in data rep across systems, provide uniform operations to 
access resources  

• Location: locations of resources are transparent  
• Migration: relocate resources without renaming  
• Relocation: relocate resources as they are being accessed  
• Replication: hide replication from the users  
• Concurrency: mask the use of shared resources  
• Failure: reliable and fault-tolerant operation  

Scalability and modularity 

• Various techniques such as replication, caching and cache management, and 
asynchronous processing help to achieve scalability. 

 

1.8.2 Algorithmic challenges in distributed computing 
 
Useful execution models and frameworks: to reason with and design correct distributed 

programs  
• Interleaving model  
• Partial order model  
• Input/Output automata  
• Temporal Logic of Actions  

Dynamic distributed graph algorithms and routing algorithms  
• System topology: distributed graph, with only local neighborhood knowledge  
• Graph algorithms: building blocks for group communication, data dissemination, 

object location  
• Algorithms need to deal with dynamically changing graphs  
• Algorithm e ciency: also impacts resource consumption, latency, tra c, congestion 

Time and global state  
• The processes in the system are spread across three-dimensional physical space. 

Another dimension, time, has to be superimposed uniformly across space. 

• The challenges pertain to providing accurate physical time, and to providing a variant 

of time, called logical time  
• Logical time captures inter-process dependencies and tracks relative time progression  
• Global state observation: inherent distributed nature of system  
• Concurrency measures: concurrency depends on program logic, execution speeds 

within logical threads, communication speeds 

Synchronization/coordination mechanisms 
 

Some examples of problems requiring synchronization: 
 

• Physical clock synchronization: hardware drift needs correction  
• Leader election: select a distinguished process, due to inherent symmetry  
• Mutual exclusion: coordinate access to critical resources  
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• Distributed deadlock detection and resolution: need to observe global state; avoid 
duplicate detection, unnecessary aborts  

• Termination detection: global state of quiescence; no CPU processing and no in-transit 
messages  

• Garbage collection: Reclaim objects no longer pointed to by any process  
Group communication, multicast, and ordered message delivery 

• A group is a collection of processes that share a common context and collab-orate on a 

common task within an application domain.   
• Multiple joins, leaves, fails  
• Concurrent sends: semantics of delivery order  

Monitoring distributed events and predicates  
• Predicate: condition on global system state  
• An important paradigm for monitoring distributed events is that of event streaming, 

wherein streams of relevant events reported from different processes are examined 

collectively to detect predicates. 

Distributed program design and verification tools  

• Methodically designed and verifiably correct programs can greatly reduce the 

overhead of software design, debugging, and engineering. 

Debugging distributed programs 

• Debugging sequential programs is hard; debugging distributed programs is that much 

harder because of the concurrency in actions 

 

Data replication, consistency models, and caching  
• Fast, scalable access;  
• coordinate replica updates;  
• optimize replica placement  

World Wide Web design: caching, searching, scheduling  
• Global scale distributed system; end-users  
• Read-intensive; prefetching over caching  
• Object search and navigation are resource-intensive  
• User-perceived latency 

Distributed shared memory abstraction  
• Wait-free algorithm design: process completes execution, irrespective of  

o actions of other processes, i.e., n - 1 fault-resilience 

• Mutual exclusion  
• Bakery algorithm, semaphores, based on atomic hardware primitives, fast 

algorithms when contention-free access  
• Register constructions  
• Revisit assumptions about memory access   

Consistency models: 

• For multiple copies of a variable/object, varying degrees of consistency among the 

replicas can be allowed. 

• These represent a trade-off of coherence versus cost of implementation. 
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• Weaker models than strict consistency of uniprocessors  
Reliable and fault-tolerant distributed systems 
 
Consensus algorithms: processes reach agreement in spite of faults (under various fault models)  
 

Replication and replica management 

 

Replication (as in having backup servers) is a classical method of providing fault-tolerance. The 

triple modular redundancy (TMR) technique has long been used in software as well as hardware 

installations.  
• Voting and quorum systems  
• Distributed databases, commit: ACID properties  
• Self-stabilizing systems: "illegal" system state changes to "legal" state; requires built-

in redundancy  
• Check pointing and recovery algorithms: roll back and restart from earlier "saved" 

state 
• Failure detectors:  
• Difficult to distinguish a "slow" process/message from a failed process/ never sent 

message algorithms that "suspect" a process as having failed and converge on a 
determination of its up/down status 

 

Load balancing: to reduce latency, increase throughput, dynamically. E.g., server farms  
• Computation migration: relocate processes to redistribute workload  
• Data migration: move data, based on access patterns  
• Distributed scheduling: across processors 

 
Real-time scheduling: difficult without global view, network delays make task harder 

 

Performance modeling and analysis: Network latency to access resources must be reduced  
• Metrics: theoretical measures for algorithms, practical measures for systems  
• Measurement methodologies and tools 

 

1.8.3 Applications of distributed computing and newer challenges 
 
Mobile systems 
 

• Wireless communication: unit disk model; broadcast medium (MAC), power 
management etc.  

• CS perspective: routing, location management, channel allocation, localization and 
position estimation, mobility management  

• Base station model (cellular model)  
• Ad-hoc network model (rich in distributed graph theory problems) 

 
Sensor networks: Processor with electro-mechanical interface  Ubiquitous or pervasive 

computing  
• Processors embedded in and seamlessly pervading environment  



CS8603 – DISTRIBUTED SYSTEMS 

 

i 

• Wireless sensor and actuator mechanisms; self-organizing; network-centric, resource-
constrained  

• E.g., intelligent home, smart workplace 

• Peer-to-peer computing 
 

• No hierarchy; symmetric role; self-organizing; efficient object storage and lookup; 
scalable; dynamic reconfiguration 

• all processors are equal and play a symmetric role in the computation.  
Publish/subscribe, content distribution  

• Filtering information to extract that of interest  
Distributed agents 
 

• Processes that move and cooperate to perform specific tasks; coordination, controlling 
mobility, software design and interfaces  

Distributed data mining  
• Extract patterns/trends of interest  
• Data not available in a single repository 

Grid computing  
• Grid of shared computing resources; use idle CPU cycles  
• Issues: scheduling, QOS guarantees, security of machines and jobs  

Security  
• Confidentiality, authentication, availability in a distributed setting 

• Manage wireless, peer-to-peer, grid environments  
• Issues: e.g., Lack of trust, broadcast media, resource-constrained, lack of structure 

 

1.9 A Model of Distributed Computations 

1.9.1 A Distributed Program 

• A distributed program is composed of a set of n asynchronous processes, p1, p2, ..., pi , ..., pn. 

• The processes do not share a global memory and communicate solely by passing messages. 

• The processes do not share a global clock that is instantaneously accessible to these processes. 

• Process execution and message transfer are asynchronous. 

• Without loss of generality, we assume that each process is running on a different processor. 

• Let Cij denote the channel from process pi to process pj and let mij denote a message sent by 

pi to pj . 

• The message transmission delay is finite and unpredictable. 

1.10 A Model of Distributed Executions 

 

• The execution of a process consists of a sequential execution of its actions. 

• The actions are atomic and the actions of a process are modeled as three types of 

events, namely, internal events, message send events, and message receive events. 

• Let ex denote the x th event at process pi .  For a message m, let send (m) and rec (m) 
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denote its send and receive events, respectively. 

• The occurrence of events changes the states of respective processes and channels. An 

internal event changes the state of the process at which it occurs. A send event 

changes the state of the process that sends the message and the state of the channel on 

which the message is sent. A receive event changes the state of the process that receives 

the message and the state of the channel on which the message is received. The send 

and the receive events signify the flow of information between processes and establish 

causal dependency from the sender process to the receiver process. 

• A relation →msg that captures the causal dependency due to message exchange, is 

defined as follows. For every message m that is exchanged between two processes, we 

have    send (m) →msg rec (m). 

• Relation →msg defines causal dependencies between the pairs of corresponding send 

and receive events. 

• The evolution of a distributed execution is depicted by a space-time diagram. 

• A horizontal line represents the progress of the process; a dot indicates an event; a slant 

arrow indicates a message transfer. 

• Since we assume that an event execution is atomic (hence, indivisible and 

instantaneous), it is justified to denote it as a dot on a process line. 

• In the Figure, for process p1, the second event is a message send event, the third event is 

an internal event, and the fourth event is a message receive event. 

 

Figure : The space-time diagram of a distributed execution. 

 
Causal Precedence Relation 

• The execution of a distributed application results in a set of distributed events produced by 

the processes. 

• Let H=∪i hi denote the set of events executed in a distributed computation. 

• Define a binary relation → on the set H as follows that expresses causal dependencies 

between events in the distributed execution. 
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2 

 
The causal precedence relation induces an irreflexive partial order on the events of a distributed 

computation that is denoted as H=(H, →). 

• Note that the relation → is nothing but Lamport’s “happens before” relation. 

• For any two events ei and ej , if ei → ej , then event ej is directly or transitively dependent 

on event ei . (Graphically, it means that there exists a path consisting of message arrows and 

process-line segments (along increasing time) in the space-time diagram that starts at ei and 

ends at ej .) 

•  

• The relation → denotes flow of information in a distributed computation and ei → ej 

dictates that all the information available at ei is potentially accessible at ej . 

• For example, in Figure 2.1, event e2
6 has the knowledge of all other events shown in the 

figure. 

 

Note the following two rules: 

 
Concurrent Events 

 
Logical vs. Physical Concurrency 

• In a distributed computation, two events are logically concurrent if and only if they do not 

causally affect each other. 

• Physical concurrency, on the other hand, has a connotation that the events occur at the same 
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instant in physical time. 

• Two or more events may be logically concurrent even though they do not occur at the same 

instant in physical time. 

• However, if processor speed and message delays would have been different, the 

execution of these events could have very well coincided in physical time. 

• Whether a set of logically concurrent events coincide in the physical time or not, does not 

change the outcome of the computation. 

• Therefore, even though a set of logically concurrent events may not have occurred at the same 

instant in physical time, we can assume that these events occured at the same instant in 

physical time. 

 

1.11 Models of communication networks 

• There are several models of the service provided by communication networks, namely, FIFO, 

Non-FIFO, and causal ordering. 

• In the FIFO model, each channel acts as a first-in first-out message queue and thus, message 

ordering is preserved by a channel. 

• In the non-FIFO model, a channel acts like a set in which the sender process adds messages 

and the receiver process removes messages from it in a random order. 

• The “causal ordering” model is based on Lamport’s “happens before” relation. 

• A system that supports the causal ordering model satisfies the following property: 

CO: For any two messages mij and mkj ,if send (mij )→send (mkj ), then rec (mij ) → rec (mkj ). 

• This property ensures that causally related messages destined to the same destination are 

delivered in an order that is consistent with their causality relation. 

• Causally ordered delivery of messages implies FIFO message delivery. (Note that CO 

 FIFO  Non-FIFO.) 

• Causal ordering model considerably simplifies the design of distributed algorithms 

because it provides a built-in synchronization. 

1.12 Global State of a Distributed System 

“The global state of a distributed system is a collection of the local states of its components, 

namely, the processes and the communication channels.” 

• The state of a process is defined by the contents of processor registers, stacks, local 

memory, etc. and depends on the local context of the distributed application. 

• The state of channel is given by the set of messages in transit in the channel. 

• The occurrence of events changes the states of respective processes and channels. 

• An internal event changes the state of the process at which it occurs. 

• A send event changes the state of the process that sends the message and the state of the 

channel on which the message is sent. 

• A receive event changes the state of the process that or receives the message and the state 

of the channel on which the message is received. 
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A Consistent Global State 

• Even if the state of all the components is not recorded at the same instant, such a state will be 

meaningful provided every message that is recorded as received is also recorded as sent. 

• Basic idea is that a state should not violate causality – an effect should not be present 

without its cause. A message cannot be received if it was not sent. 

• Such states are called consistent global states and are meaningful global states. 

 
An Example 

Consider the distributed execution of Figure 
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1.13 Cuts of a Distributed Computation 

“In the space-time diagram of a distributed computation, a cut is a zigzag line joining one arbitrary 

point on each process line.” 

• A cut slices the space-time diagram, and thus the set of events in the distributed 

computation, into a PAST and a FUTURE. 

• The PAST contains all the events to the left of the cut and the FUTURE contains all the 

events to the right of the cut. 

• For a cut C , let PAST(C ) and FUTURE(C ) denote the set of events in the PAST and 

FUTURE of C , respectively. 

• Every cut corresponds to a global state and every global state can be graphically 

represented as a cut in the computation’s space-time diagram. 

• Cuts in a space-time diagram provide a powerful graphical aid in representing and 

reasoning about global states of a computation. 

Figure: Illustration of cuts in a distributed execution. 

 

• In a consistent cut, every message received in the PAST of the cut was sent in the PAST of 
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that cut. (In Figure, cut C2 is a consistent cut.) 

• All messages that cross the cut from the PAST to the FUTURE are in transit in the 

corresponding consistent global state. 

• A cut is inconsistent if a message crosses the cut from the FUTURE to the PAST. (In Figure, 

cut C1 is an inconsistent cut.) 

1.14 Past and Future Cones of an Event 

 

Past Cone of an Event 

• An event ej could have been affected only by all events ei such that ei → ej . 

• In this situtaion, all the information available at ei could be made accessible at ej . 

• All such events ei belong to the past of ej . 

Let Past(ej ) denote all events in the past of ej in a computation (H, →). Then, 

Past(ej ) = {ei |∀ei ∈ H, ei → ej }. 

 

Figure: Illustration of past and future cones. 

 

• Let Pasti (ej ) be the set of all those events of Past(ej ) that are on process pi . 

• Pasti (ej ) is a totally ordered set, ordered by the relation →i , whose maximal element is 

denoted by max (Pasti (ej )). 

• max (Pasti (ej )) is the latest event at process pi that affected event ej 

 

 
Future cone of an Event 
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1.15 Models of Process Communications 

 

• There are two of basic models process communications – synchronous and asynchronous. 

• The synchronous communication model is a blocking type where on a message send, the 

sender process blocks until the message has been received by the receiver process. The sender 

process resumes execution only after it learns that the receiver process has accepted the 

message. 

• Thus, the sender and the receiver processes must synchronize to exchange a message. On 

the other hand, asynchronous communication model is a non-blocking type where the sender 

and the receiver do not synchronize to exchange a message. 

• After having sent a message, the sender process does not wait for the message to be delivered 

to the receiver process. The message is buffered by the system and is delivered to the receiver 

process when it is ready to accept the message. Neither of the communication models is 

superior to the other. 

• Asynchronous communication provides higher parallelism because the sender process 

can execute while the message is in transit to the receiver. 

• However, A buffer overflow may occur if a process sends a large number of messages in 

a burst to another process. Thus, an implementation of asynchronous communication 

requires more complex buffer management. 

• In addition, due to higher degree of parallelism and non-determinism, it is much more 

difficult to design, verify, and implement distributed algorithms for asynchronous 

communications. 

• Synchronous communication is simpler to handle and implement. 

• However, due to frequent blocking, it is likely to have poor performance and is likely to be 

more prone to deadlocks. 

1.16 Logical Time 

Introduction 
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• The concept of causality between events is fundamental to the design and analysis of parallel 

and distributed computing and operating systems. 

• Usually causality is tracked using physical time. 

• In distributed systems, it is not possible to have a global physical time. 

• As asynchronous distributed computations make progress in spurts, the logical time is 

sufficient to capture the fundamental monotonicity property associated with causality in 

distributed systems. 

• This chapter discusses three ways to implement logical time - scalar time, vector time, and 

matrix time. 

• Causality among events in a distributed system is a powerful concept in reasoning, analyzing, 

and drawing inferences about a computation. 

• The knowledge of the causal precedence relation among the events of processes helps 

solve a variety of problems in distributed systems, such as distributed algorithms design, 

tracking of dependent events, knowledge about the progress of a computation, and 

concurrency measures. 

1.17 A Framework for a System of Logical Clocks 

1.17.1 Definition 

• A system of logical clocks consists of a time domain T and a logical clock C . 

Elements of T form a partially ordered set over a relation <. 

• Relation < is called the happened before or causal precedence. Intuitively, this 

relation is analogous to the earlier than relation provided by the physical time. 

• The logical clock C is a function that maps an event e in a distributed system to an 

element in the time domain T , denoted as C(e) and called the timestamp of e, and is 

defined as follows: 

C  :  H → T 

such that the following property is satisfied: 

for two events ei and ej , ei → ej =⇒ C(ei ) < C(ej ). 

This monotonicity property is called the clock consistency condition. When T and C 

satisfy the following condition, 

• for two events ei and ej , ei → ej ⇔ C(ei ) < C(ej ) 
the system of clocks is said to be strongly consistent. 

1.17.2 Implementing Logical Clocks 

• Implementation of logical clocks requires addressing two issues: data structures local to 

every process to represent logical time and a protocol to update the data structures to ensure 

the consistency condition. 

• Each process pi maintains data structures that allow it the following two capabilities: 

A local logical clock, denoted by lci , that helps process pi measure its own progress. 
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A logical global clock, denoted by gci , that is a representation of process pi ’s local view of 

the logical global time. Typically, lci is a part of gci . 

• The protocol ensures that a process’s logical clock, and thus its view of the global time, is 

managed consistently. The protocol consists of the following two rules: 

R1: This rule governs how the local logical clock is updated by a process when it executes an 

event. 

R2: This rule governs how a process updates its global logical clock to update its view of the 

global time and global progress. 

• Systems of logical clocks differ in their representation of logical time and also in the protocol 

to update the logical clocks. 

1.18 Scalar Time 

• The scalar time representation was proposed by Lamport in 1978 [9] as an attempt to 

totally order events in a distributed system. Time domain in this representation is the set 

of non-negative integers. 

• The logical local clock of a process pi and its local view of the global time are squashed into 

one integer variable Ci . 

• Rules R1 and R2 to update the clocks are as follows: 

R1: Before executing an event (send, receive, or internal), process pi executes the following: 
Ci := Ci + d (d > 0) In general, every time R1 is executed, d can have a different value; 
however, typically d is kept at 1. 

R2: Each message piggybacks the clock value of its sender at sending time. When a process pi 
receives a message with timestamp Cmsg , it executes the following actions: 

1. Ci := max (Ci , Cmsg ) 

2. Execute R1. 

3. Deliver the message. 

• Figure shows evolution of scalar time. 

Evolution of scalar time: 

Figure : The space-time diagram of a distributed execution. 

 

Basic Properties 

Consistency Property 

Scalar clocks satisfy the monotonicity and hence the consistency property: for two events ei and ej , 

ei → ej =⇒ C(ei ) < C(ej ). 

Total Ordering 
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• Scalar clocks can be used to totally order events in a distributed system. 

• The main problem in totally ordering events is that two or more events at different processes 

may have identical timestamp. 

• For example in Figure, the third event of process P1 and the second event of process P2 have 

identical scalar timestamp. 

• A tie-breaking mechanism is needed to order such events. A tie is broken as follows: 

• Process identifiers are linearly ordered and tie among events with identical scalar 

timestamp is broken on the basis of their process identifiers. 

• The lower the process identifier in the ranking, the higher the priority. 

• The timestamp of an event is denoted by a tuple (t, i ) where t is its time of occurrence and i 

is the identity of the process where it occurred. 

 
Event counting 

• If the increment value d is always 1, the scalar time has the following interesting 

property: if event e has a timestamp h, then h-1 represents the minimum logical duration, 

counted in units of events, required before producing the event e; 

• We call it the height of the event e. 

• In other words, h-1 events have been produced sequentially before the event e 

regardless of the processes that produced these events. 

For example, in Figure, five events precede event b on the longest causal path ending at b. 

No Strong Consistency 

 

• For example, in Figure, the third event of process P1 has smaller scalar timestamp than the 

third event of process P2. However, the former did not happen before the latter. 

• The reason that scalar clocks are not strongly consistent is that the logical local clock and 

logical global clock of a process are squashed into one, resulting in the loss causal 

dependency information among events at different processes. 

• For example, in Figure, when process P2 receives the first message from process P1, it 

updates its clock to 3, forgetting that the timestamp of the latest event at P1 on which it 

depends is 2. 

1.19 Vector Time 

 

• The system of vector clocks was developed independently by Fidge, Mattern and Schmuck. 

• In the system of vector clocks, the time domain is represented by a set of 

n-dimensional non-negative integer vectors. 

• Each process pi maintains a vector vti [1..n], where vti [i ] is the local logical clock of pi and 
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describes the logical time progress at process pi . 

vti [j] represents process pi ’s latest knowledge of process pj local time. 

If vti [j]=x , then process pi knows that local time at process pj has progressed till x . 

The entire vector vti constitutes pi ’s view of the global logical time and is used to timestamp 

events. 

• Process pi uses the following two rules R1 and R2 to update its clock: 

R1: Before executing an event, process pi updates its local logical time as follows: 
vti [i ] := vti [i ] + d (d > 0) 

R2: Each message m is piggybacked with the vector clock vt of the sender process at sending 
time. On the receipt of such a message (m,vt), process pi executes the following sequence of 
actions: 

1. Update its global logical time as follows: 

1 ≤ k ≤ n : vti [k ] := max (vti [k ], vt[k ]) 

2. Execute R1. 

3. Deliver the message m. 

The timestamp of an event is the value of the vector clock of its process when the event is executed. 

Figure shows an example of vector clocks progress with the increment value d=1. 

Initially, a vector clock is [0, 0, 0,........ , 0]. 

An Example of Vector Clocks 

 

Comparing Vector Timestamps 

The following relations are defined to compare two vector timestamps, vh 

and vk : 

 

 
 

If the process at which an event occurred is known, the test to compare two timestamps can be 

simplified as follows: If events x and y respectively occurred at processes pi and pj and are 

assigned timestamps vh and vk, respectively, then 
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Basic Properties of Vector Time 

Isomorphism 

• If events in a distributed system are time stamped using a system of vector clocks, we have 

the following property. 

• If two events x and y have timestamps vh and vk, respectively, then 

 

 x → y ⇔  vh < vk x ǁ y⇔ vh ǁ vk . 

• Thus, there is an isomorphism between the set of partially ordered events produced by a 

distributed computation and their vector timestamps 

Strong Consistency 

• The system of vector clocks is strongly consistent; thus, by examining the vector timestamp 

of two events, we can determine if the events are causally related. 

• However, Charron-Bost showed that the dimension of vector clocks cannot be less than 

n, the total number of processes in the distributed computation, for this property to hold. 

Event Counting 

• If d=1 (in rule R1), then the i th component of vector clock at process pi , vti [i ], denotes the 

number of events that have occurred at pi until that instant. 

• So, if an event e has timestamp vh,  

vh[j] denotes the number of events executed by process pj that causally precede e. 

Clearly, vh[j] – 1 represents the total number of events that causally precede e in the 

distributed computation. 

Applications 

• Distributed debugging,  

• Implementations of causal ordering,  

• Communication and causal distributed shared memory,  

• Establishment of global breakpoints  

• Determining the consistency of checkpoints in optimistic recovery 

Size of vector clocks 

A linear extension of a partial order E ≺ is a linear ordering of E that is consistent with the partial 

order, i.e., if two events are ordered in the partial order, they are also ordered in the linear order. 

A linear extension can be viewed as projecting all the events from the different processes on a 

single time axis. However, the linear order will necessarily introduce ordering between each pair 

of events, and some of these orderings are not in the partial order. 

Now consider an execution on processes P1 and P2 such that each sends a message to the other 

before receiving the other’s message. The two send events are concurrent, as are the two receive 

events. To determine the causality between the send events or between the receive events, it is not 

sufficient to use a single integer; a vector clock of size n = 2 is necessary. This execution exhibits 

the graphical property called a crown, wherein there are some messages m0 mn−1 such that 
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Send mi < Receive mi+1 mod n−1 for all i from 0 to n − 1. A crown of n messages has dimension 

n 

 

Dimension of a execution  For n = 4 processes, the dimension is 2. 

1.20 Physical Clock Synchronization: NTP 

Motivation 

In centralized systems, there is only single clock. A process gets the time by simply issuing a system 

call to the kernel. In distributed systems, there is no global clock or common memory. Each 

processor has its own internal clock and its own notion of time. These clocks can easily drift 

seconds per day, accumulating significant errors over time. Also, because different clocks tick at 

different rates, they may not remain always synchronized although they might be synchronized 

when they start. This clearly poses serious problems to applications that depend on a 

synchronized notion of time.  

For most applications and algorithms that run in a distributed system, we need to know time in 

one or more of the following contexts: 

• The time of the day at which an event happened on a specific machine in the network. 

• The time interval between two events that happened on different machines in the 

network. 

• The relative ordering of events that happened on different machines in the network. 

Unless the clocks in each machine have a common notion of time, time-based queries cannot 

be answered. Clock synchronization has a significant effect on many problems like secure 

systems, fault diagnosis and recovery, scheduled operations, database systems, and real-

world clock values. 

• Clock synchronization is the process of ensuring that physically distributed processors 

have a common notion of time. 

• Due to different clocks rates, the clocks at various sites may diverge with time and 

periodically a clock synchronization must be performed to correct this clock skew in 

distributed systems. 

• Clocks are synchronized to an accurate real-time standard like UTC (Universal 

Coordinated Time). 

Clocks that must not only be synchronized with each other but also have to adhere to physical time 

are termed physical clocks. 
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Clock Inaccuracies 

Physical clocks are synchronized to an accurate real-time standard like UTC (Universal 

Coordinated Time). 

However, due to the clock inaccuracy discussed above, a timer (clock) is said to be working within its 

specification if (where constant ρ is the maximum skew rate specified by the manufacturer.) 

 

Figure  illustrates the behavior of fast, slow, and perfect clocks with respect to UTC. 

 
Offset delay estimation method 

The Network Time Protocol (NTP) which is widely used for clock synchronization on the Internet 

uses the   Offset Delay Estimation method. 

The design of NTP involves a hierarchical tree of time servers. 

• The primary server at the root synchronizes with the UTC. 

• The next level contains secondary servers, which act as a backup to the primary 

server. 

• At the lowest level is the synchronization subnet which has the clients. 
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Clock offset and delay estimation: 

In practice, a source node cannot accurately estimate the local time on the target node due to varying 

message or network delays between the nodes. This protocol employs a common practice of 

performing several trials and chooses the trial with the minimum delay. 

Figure  shows how NTP timestamps are numbered and exchanged between peers A and B. 

Let T1, T2, T3, T4 be the values of the four most recent timestamps as shown. Assume clocks A and B 

are stable and running at the same speed. 

Offset and delay estimation. 

 

 

 

Each NTP message includes the latest three timestamps T1, T2 and T3, while T4 is determined upon 

arrival. Thus, both peers A and B can independently calculate delay and offset using a single 

bidirectional message stream as shown in Figure. 

 
 

PART A 

1. What Is Distributed system? 

• A distributed system is a system whose components are located on different networked computers, which 

communicate and coordinate their actions by passing messages to one another. 

• A distributed system is a collection of independent entities that cooperate to solve a problem that cannot be 

individually solved. 

• Autonomous processors communicating over a communication network 

 

2. Listout the Characteristics of Distributed Systems 
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• No common physical clock  -> “distribution” in the system and gives rise to the inherent asynchrony amongst 

the processors. 

• No shared memory -> distributed system may still provide the abstraction of a common address space 

via the distributed shared memory abstraction. 

• Geographical separation -> The geographically wider apart that the processors are, the more 

representative is the system of a distributed system network/cluster of workstations (NOW/COW) 

configuration connecting processors. The Google search engine is based on the NOW architecture. 

• Autonomy and heterogeneity -> The processors are “loosely coupled” in that they have different 

speeds and each can be running a different operating system. 

 

3. What is distributed execution. 

A distributed execution is the execution of processes across the distributed system to collaboratively achieve a 

common goal. An execution is also sometimes termed a computation or a run. 

 

4. Listout the motivation of distributed systems. 

8. Inherently distributed computations  

9. Resource sharing  

10. Access to geographically remote data and resources  

11. Enhanced reliability  

12. Increased performance/cost ratio  

 

5. List out two standard architectures for parallel systems. 

Two standard architectures for parallel systems. (a) Uniform memory access (UMA) multiprocessor system. 

(b) Non-uniform memory access (NUMA) multiprocessor. In both architectures, the processors may locally 

cache data from memory. 

 

6. What is multicomputer parallel system. 

A multicomputer parallel system is a parallel system in which the multiple processors do not have direct access 

to shared memory. The memory of the multiple processors may or may not form a common address space. 

Such computers usually do not have a common clock. 

 

7. What is Hamming distance 

• The processors are labelled such that the shortest path between any two processors is the Hamming distance 

(defined as the number of bit positions in which the two equal sized bit strings differ) between the processor 

labels. 

• Example Nodes 0101 and 1100 have a Hamming distance of 2. The shortest path between them has length 2. 

 

8. What is Array processors? 

Array processors belong to a class of parallel computers that are physically co-located, are very tightly 

coupled, and have a common system clock (but may not share memory and communicate by passing data using 

messages).  

• Array processors and systolic arrays that perform tightly synchronized processing and data exchange in 

lock-step for applications such as DSP and image processing belong to this category.  

 

9. Describe about flynns classification. 

Flynn identified four processing modes, based on whether the processors execute the same or different 

instruction streams at the same time, and whether or not the processors processed the same (identical) data at 

the same time. 

SISD: Single Instruction Stream Single Data Stream (traditional) 

SIMD: Single Instruction Stream Multiple Data Stream 

MISD: Multiple Instruction Stream Single Data Stream 

MIMD: Multiple Instruction Stream Multiple Data Stream 

 

10. Define Coupling 
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The degree of coupling among a set of modules, whether hardware or software, is measured in terms of the 

interdependency and binding and/or homogeneity among the modules.  

 

11. List out MIMD architectures in terms of coupling: 

 

• Tightly coupled multiprocessors (with UMA shared memory). These may be either switch-based 

• Tightly coupled multiprocessors (with NUMA shared memory or that communicate by message passing). 

• Loosely coupled multi computers (without shared memory) physically co-located. These may be bus-based and 

the processors may be heterogeneous 

• Loosely coupled multi computers (without shared memory and without common clock) that are physically 

remote. 

 

12. Define Concurrency of a program 

 

The parallelism/concurrency in a parallel/distributed program can be measured by the ratio of the number of 

local (non-communication and non-shared memory access) operations to the total number of operations, 

including the communication or shared memory access operations. 

 

13. Define granularity. 

• The ratio of the amount of computation to the amount of communication within the parallel/distributed 

program is termed as granularity. 

• Programs with fine-grained parallelism are best suited for tightly coupled systems. Eg. SIMD and MISD 

architectures 

 

14. Differentiate pararall systems and distributed systems. 

 
15. Identify some distributed applications in the scientific and commercial application areas. For each 

application, determine which of the motivating factors are important for building the application over a 

distributed system. 

• Scientific: Cosmology@Home 

a. Inherently distributed 

b. Resource sharing: CPU time 

• Commercial: HDFS 

a. Access 

b. Reliability 

c. Scalability 

d. Modularity and Expandability 

16. Explain why a Receive call cannot be asynchronous. 

Async is about copying out. But the Receive is about copying in user-buffer. After copying-in, we can continue 

the user code immediately. This is different from sending -- which takes OS-time and other time out of user-

code. 

17. What are the three aspects of reliability? Is it possible to order them in different ways in terms of 

importance, based on different applications’ requirements? Justify your answer by giving examples of 

different applications. 
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• Availability 

• Integrity 

• Fault-tolerance 

Yes. 

For banking service, fault-tolerance is of the top-most importance. 

But for web service, availability is the most important one. 

 

18. The emulations among the principal system classes in a failure-free system. 1. Which of these emulations 

are possible in a failure-prone system? Explain. 2. Which of these emulations are not possible in a failure-

prone system? Explain. 

1. Impossible 

• MP -> SM: If there is no previously sent messages, any read will cause error 

• S -> A: If the process is out of synchronization, there will be error 

2. Possible 

• SM -> MP 

• A -> S 

 

19. Listout Primitives for distributed communication 

• Nonblocking primitive  

• Blocking primitive 

• Asynchronous primitive  

• Synchronous primitive 

 

20. What is processor synchrony 

➢ Processor synchrony indicates that all the processors execute in lock-step with their clocks synchronized. 

➢ It is used to ensure that no processor begins executing the next step of code until all the processors have 

completed executing the previous steps of code assigned to each of the processors. 

 

21. Differentiate asynchronous execution and Synchronous execution. 

An asynchronous execution is an execution in which 

• There is no processor synchrony and there is no bound on the drift rate of processor 

clocks,  

• Message delays (transmission + propagation times) are finite but unbounded, and  

• There is no upper bound on the time taken by a process to execute a step. 

A synchronous execution is an execution in which  

(iv) processors are synchronized and the clock drift rate between any two processors is bounded,  

(v) message delivery (transmission + delivery) times are such that they occur in one logical step or round, and  

(vi) there is a known upper bound on the time taken by a process to execute a step. 

 

22. Define Virtual Synchrony 

• If processors are allowed to have an asynchronous execution for a period of time and then they synchronize, 

then the granularity of the synchrony is coarse. This is really a virtually synchronous execution, and the 

abstraction is sometimes termed as virtual synchrony.  

 

23. Define a Distributed Program 

• A distributed program is composed of a set of n asynchronous processes, p1, p2, ..., pi , ..., pn. 

• The processes do not share a global memory and communicate solely by passing messages. 

• The processes do not share a global clock that is instantaneously accessible to these processes. 

• Process execution and message transfer are asynchronous. 

 

24. Differentiate Shared memory and message passing 
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25. List out the models of communication networks 

• There are several models of the service provided by communication networks, namely, FIFO, Non-FIFO, and causal 

ordering. 

• In the FIFO model, each channel acts as a first-in first-out message queue and thus, message ordering is preserved 

by a channel. 

• In the non-FIFO model, a channel acts like a set in which the sender process adds messages and the receiver process 

removes messages from it in a random order. 

• The “causal ordering” model is based on Lamport’s “happens before” relation. 

 

26. Define global state of a distributed system 

• “The global state of a distributed system is a collection of the local states of its components, namely, the 

processes and the communication channels.” 

• The state of a process is defined by the contents of processor registers, stacks, local memory, etc. and depends 

on the local context of the distributed application. 

• The state of channel is given by the set of messages in transit in the channel. 

 

27. What is Consistent global state 

 
28. What is CUT 

“In the space-time diagram of a distributed computation, a cut is a zigzag line joining one arbitrary point on each 

process line.” 

• A cut slices the space-time diagram, and thus the set of events in the distributed computation, into a PAST and a 

FUTURE. 

• The PAST contains all the events to the left of the cut and the FUTURE contains all the events to the right of the 

cut. 

 

29. What is physical clocks? 

Coordinating physical clocks among several systems is possible, but it can never be exact. Indistributed 

systems, we must be willing to accept some drift away from the "real" time on each clock. A typical real-

time clock within a computer has a relative error of approxmiately 10-5. 

 

30. Define the following terms. 

Skew: Disagreement in the reading of two clocks  

Drift: Difference in the rate at which two clocks count the time   

Due to physical differences in crystals, plus heat, humidity, voltage, etc.  

Accumulated drift can lead to significant skew  

Clock drift rate: Difference in precision between a prefect reference clock and a physical clock  
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PART B 

 

1. Define distributed system. Listout the  characteristics of distributed systems. How 

to relate the computer system components in distributed environment. (1.1 & 1.2) 

2. Describe the motivations of implementing distributed systems. (1.3) 

3. Describe the parallel systems with examples. (1.4) 

4. Differentiate message passing and shared memory and how they emulate (1.5) 

5. Describe the primitives of distributed computing (1.6) 

6. Differentiate sync and async execution with example. (1.7) 

7. Explain the Design issues and challenges of distributed computing. (1.8) 

8. Discuss the model of distributed execution. (1.10) 

9. Explain global states with example. (1.12) 

10. What is cut and past, future cones of an event in distributed systems (1.13 &1.14) 

11. Explain Logical clocks with example.(1.16 &1.17) 

12. Discuss scalar time and its properties. (1.18) 

13. Discuss Vector time(1.19) 

14. Explain physical clock synchronization with example (1.20) 
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UNIT II -Message ordering and group communication 

Message ordering paradigms –Asynchronous execution with synchronous 

communication –Synchronous program order on an asynchronous system –Group 

communication – Causal order (CO) – Total order. Global state and snapshot recording 

algorithms: Introduction –System model and definitions –Snapshot algorithms for 

FIFO channels 

2.1 MESSAGE ORDERING PARADIGMS 

Notations 

We model the distributed system as a graph (N, L). The following notation is used to refer to 

messages and events: 

 

 When referring to a message without regard for the identity of the sender and receiver 
processes, we use mi. For message mi, its send and receive events are denoted as si and 
ri, respectively.  

 More generally, send and receive events are denoted simply as s and r. When the 

relationship between the message and its send and receive events is to be stressed, we 

also use M, send(M) , and receive(M) respectively.  

For any two events a and b, where each can be either a send event or a receive event, the 

notation a ∼ b denotes that a and b occur at the same process, i.e., a ∈ Ei and b ∈ Ei for some 

process i.  

The send and receive event pair for a message is said to be a pair of corresponding events. 

The send event corresponds to the receive event, and vice-versa. For a given execution E, let 

the set of all send–receive event pairs be denoted as T = {(s,r) ∈ Ei × Ej | s corresponds to r}.  

Message ordering paradigms 

The order of delivery of messages in a distributed system is an important aspect of system 

executions because it determines the messaging behavior that can be expected by the 

distributed program. 

Several orderings on messages have been defined:  

(i) non-FIFO,  

(ii) FIFO, 

(iii) causal order, and  

(iv) synchronous order. 
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2.1.1   Asynchronous and FIFO Executions 

Definition  (A-execution) : An asynchronous execution (or A-execution) is an 

execution  E≺ for which the causality relation is a partial order. 

 On any logical link between two nodes in the system, messages may be delivered in 

any order, not necessarily first-in first-out. Such executions are also known as non-

FIFO executions. , e.g., network layer IPv4 connectionless service 

 All physical links obey FIFO 

(a) A-execution that is not FIFO (b) A-execution that is FIFO 

 

2.1.2 FIFO executions 

Definition (FIFO executions) A FIFO execution is an A-execution in which, for all  (s, r)  

and  (s’, r’)∈ T, (s ∼ s’and r ∼ r’ and s ≺ s’ ) =>  r ≺ r’ . 

 Logical link inherently non-FIFO  

 Can assume connection-oriented service at transport layer, e.g., TCP  

 To implement FIFO over non-FIFO link: use < seq num, conn id > per message. 

Receiver uses buffer to order messages. 

Difference between Asynchronous and FIFO executions. 

 

2.1.3 Causal order (CO) 

A CO execution is an a execution in which, for all (s,r) and (s’ ,r’ ) ∈ T , (r ∼ r’ and s 

≺ s’ ) =⇒ r ≺ r’ 

 If send events s and s’ are related by causality ordering (not physical time 

ordering), their corresponding receive events r and r’ occur in the same order 

at all common destinations. 

 If s and s’ are not related by causality, then CO is vacuously satisfied. 
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Fig (6.2) (a) Violates CO as s1 ≺ s3; r 3 ≺ r 1 (b) Satisfies CO. (c) Satisfies CO. 

No send events related by causality. (d) Satisfies CO. 

Examples 

 Figure (a) shows an execution that violates CO because s1 ≺ s3 and at the common 

destination P1, we have r3 ≺ r1. 

 Figure (b) shows an execution that satisfies CO. Only s1 and s2 are related by causality 
but the destinations of the corresponding messages are different. 

 Figure (c) shows an execution that satisfies CO. No send events are related by 

causality. 

 Figure (d) shows an execution that satisfies CO. s2 and s1 are related by causality but 

the destinations of the corresponding messages are different. Similarly for s2 and s3. 
 
 

Definition: (Definition of causal order (CO) for implementations) If send(m1)≺ send(m2) 

then for each common destination d of messages m1 and m2, deliverd(m1)≺ deliverd(m
2) 

must be satisfied. 

 

Message arrival vs. Delivery 

 

To implement CO, we distinguish between the arrival of a message and its delivery.  

 A message m that arrives in the local OS buffer at Pi may have to be delayed until the 

messages that were sent to Pi causally before m was sent (the “overtaken” messages) 

have arrived and are processed by the application. The delayed message m is then given 

to the application for processing.  

 The event of an application processing an arrived message is referred to as a delivery 

event (instead of as a receive event) for emphasis. 

 No message overtaken by a chain of messages between the same (sender, receiver) pair. 

In Fig. (a), m1 overtaken by chain <m2, m3 > 

 CO degenerates to FIFO when m1, m2 sent by same process 

Listout the Uses of CO. 
Causal order is useful for applications requiring updates to shared data, implementing 

distributed shared memory, and fair resource allocation such as granting of requests for 

distributed mutual exclusion ,collaborative applications, event notification systems,  

distributed virtual environments 
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Other Characterizations of Causal Order 

(i) Definition (Message order (MO)) A MO execution is an execution in which, 

for all (s,r) and (s’,r’) ∈ T , s ≺ s’ ⇒ ¬(r’ ≺ r) 

Example Consider any message pair, say m1 and m3 in Figure (a). s1 ≺ s3 but ¬ r3 ≺ r1 is false. 

Hence, the execution does not satisfy MO. 

 

(ii) Another characterization of a CO execution in terms of the partial order E ≺ is 

known as the empty-interval (EI) property. 

 

Definition (Empty-interval execution) An execution E ≺ is an empty-interval (EI) 

execution if for each pair of events s r ∈ T, the open interval set x ∈ E s ≺ x ≺ r in the 

partial order is empty. 

 

 Example: Consider any message, say m2, in Figure (b). There does not exist any event 

x such that s2 ≺ x ≺ r2. This holds for all messages in the execution. Hence, the 

execution is EI. 

 For EI <s,r>  there exists some linear extension  <  such the corresp. interval {x ∈ E | s 

< x < r} is also empty.  (A linear extension of a partial order  E  ≺ is any total order  E  

<  such that each ordering relation of the partial order is preserved.) 

 An empty <s,r> interval in a linear extension implies s,r may be arbitrarily close; shown 

by vertical arrow in a timing diagram.  

 An execution E is CO iff for each M, there exists some space-time diagram in which 

that message can be drawn as a vertical arrow. 
 

(iii) Common Past and Future 

Another characterization of CO executions is in terms of the causal past/future of a send event 

and its corresponding receive event.  

An execution E ≺ is CO if and only if for each pair of events s r ∈ T and each event e ∈ E, 

• weak common past: e ≺ r =  ¬ s ≺ e ; 

• weak common future: s ≺ e =  ¬ e ≺ r . 
 

If the past of both the s and r events are identical (and analogously for the future), viz., e ≺ r 
=>  e ≺ s and s ≺ e =  r ≺ e, we get a subclass of CO executions, called synchronous 
executions. 
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2.1.4 Synchronous execution (SYNC) 

 

Definition  (Casuality in a synchronous execution) The synchronous causality relation 

on E is the smallest transitive relation that satisfies the following: 

 

We can now formally define a synchronous execution. 

Synchronous execution (or S-execution). 

 

Timestamping a synchronous execution. 

 

2.2. Asynchronous Execution with Synchronous Communication 

Will a program written for an asynchronous system (A-execution) run correctly if run with 

synchronous primitives? 
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A-execution deadlocks when using synchronous primitives 

An A-execution that is realizable under synchronous communication is a realizable with 

synchronous communication (RSC) execution. 

 

2.2.1 RSC (Realizable with synchronous communication) Executions 

Non-separated linear extension of (E, ≺) 

A linear extension of (E, ≺) such that for each pair (s,r) ∈ T , the interval { x ∈ E | s ≺ x 

≺ r } is empty. 

Exercise: Identify a non-separated and a separated linear extension in Figs 6.2(d) and 6.3(b) 

 

Defn : RSC execution An A-execution (E, ≺) is an RSC execution iff there exists a non-

separated linear extension of the partial order (E, ≺). 

 Checking for all linear extensions has exponential cost!  

 Practical test using the crown characterization 

Crown: Definition 

Let E be an execution. A crown of size k in E is a sequence si ri , i ∈ 0 k − 1 of pairs of 

corresponding send and receive events such that: s0 ≺ r1, s1 ≺ r2, , sk−2 ≺ rk−1, sk−1 ≺ r0. 
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Figure 6.5: Illustration of non-RSC A-executions and crowns. . 

(a) Crown of size 2. 

(b) Another crown of size 2. 

(c) Crown of size 3. 

 

 

 
 

Crown Test for RSC executions 

 

 
Crown criterion  

An A-computation is RSC, i.e., it can be realized on a system with synchronous 

communication, iff it contains no crown. 

 

Crown test complexity: O(|E|) (actually, # communication events) 

 

Timestamps for a RSC execution  

(E, ≺) is RSC iff there exists a mapping from E to T (scalar timestamps) such that  

 for any message M, T(s(M)) = T(r (M))  
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 for each (a, b) in (E × E) \ T , a ≺ b =⇒ T(a) < T(b) 

 

2.2.2 Hierarchy of Message Ordering Paradigms 

 

 

 An A-execution is RSC iff A is an S-execution.  

 RSC ⊂ CO ⊂ FIFO ⊂ A.  

 More restrictions on the possible message orderings in the smaller classes. The degree 

of concurrency is most in A, least in SYN C.  

 A program using synchronous communication easiest to develop and verify. A 

program using non-FIFO communication, resulting in an A-execution, hardest to 

design and verify.  

 

2.2.3 Simulations:  

Async Programs on Sync Systems 

 

RSC execution: schedule events as per a non-separated linear extension  

 adjacent (s,r) events sequentially  

 partial order of original A-execution unchanged  

If A-execution is not RSC:  

 partial order has to be changed; or  

 model each Ci,j by control process Pi,j and use sync communication (see Fig 6.8) 

 Enables decoupling of sender from receiver.  

 This implementation is expensive. 

 

 
 

Simulations: Synch Programs on Async Systems 

 

 Schedule msgs in the order in which they appear in S-program  

 partial order of S-execution unchanged  

 Communication on async system with async primitives  
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 When sync send is scheduled:  

o wait for ack before completion 

 

 

2.3 Sync Program Order on Async Systems 

Deterministic program: repeated runs produce same partial order  

 Deterministic receive ⇒ deterministic execution ⇒ (E ,≺) is fixed  

Nondeterminism (besides due to unpredictable message delays):  

 Receive call does not specify sender  

Multiple sends and receives enabled at a process; can be executed in interchangeable order 

Deadlock example of Fig 6.4 

 If event order at a process is permuted, no deadlock! 

How to schedule (nondeterministic) sync communication calls over async system? 

 Match send or receive with corresponding event  

Binary rendezvous (implementation using tokens) 

 Token for each enabled interaction 
 Schedule online, atomically, in a distributed manner 

 Crown-free scheduling (safety); also progress to be guaranteed  

 Fairness and efficiency in scheduling 

2.3.1 Rendezvous 

One form of group communication is called multiway rendezvous, which is a synchronous 

communication among an arbitrary number of asynchronous pro-cesses. All the processes 

involved “meet with each other,” i.e., communicate “synchronously” with each other at one 

time. The solutions to this problem are fairly complex, and we will not consider them further 

as this model of syn-chronous communication is not popular. The rendezvous between a pair 

of processes at a time, which is called binary rendezvous as opposed to the multiway 

rendezvous. 

Support for binary rendezvous communication was first provided by programming languages 

such as CSP and Ada. We consider here a subset of CSP. In these languages, the repetitive 

command (the ∗ operator) over the alternative command (the operator) on multiple guarded 

commands (each having the form Gi −→ CLi) is used, as follows: 

  ∗ [G1 −→ CL1 G2 −→ CL2 · · · Gk −→ CLk ] 

Each communication command may be a part of a guard Gi, and may also appear within the 
statement block CLi. A guard Gi is a boolean expression. If a guard Gi evaluates to true then 
CLi is said to be enabled, otherwise CLi is said to be disabled. A send command of local 
variable x to process Pk is denoted as “x ! Pk.” A receive from process Pk into local variable x 
is denoted as “Pk ? x.” Some typical observations about synchronous communication under 
binary rendezvous are as follows: 

 For the receive command, the sender must be specified. However, multiple recieve 

commands can exist. A type check on the data is implicitly performed.  

 Send and received commands may be individually disabled or enabled. A command is 

disabled if it is guarded and the guard evaluates to false. The guard would likely contain 

an expression on some local variables.  
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 Synchronous communication is implemented by scheduling messages under the covers 

using asynchronous communication. Scheduling involves pairing of matching send and 

receive commands that are both enabled. The communication events for the control 

messages under the covers do not alter the partial order of the execution. 
 

The concept underlying binary rendezvous, which provides synchronous communication, 

differs from the concept underlying the classification of synchronous send and receive 

primitives as blocking or non-blocking. Binary rendezvous explicitly assumes that multiple 

send and receives are enabled. Any send or receive event that can be “matched” with the 

corresponding receive or send event can be scheduled. This is dynamically scheduling the 

ordering of events and the partial order of the execution. 

2.3.2 Algorithm for binary rendezvous 

These algorithms typically share the following features 

• At each process, there is a set of tokens representing the current interactions 

that are enabled locally.  

• If multiple interactions are enabled, a process chooses one of them and tries 

to “synchronize” with the partner process. 

The problem reduces to one of scheduling messages satisfying the following constraints: 

 Schedule on-line, atomically, and in a distributed manner, i.e., the schedul-ing code at 

any process does not know the application code of other processes.  

 Schedule in a deadlock-free manner (i.e., crown-free), such that both the sender and 

receiver are enabled for a message when it is scheduled.  

 Schedule to satisfy the progress property (i.e., find a schedule within a bounded number 

of steps) in addition to the safety (i.e., correctness) property. 

 

 Additional features of a good algorithm are: (i) symmetry or some form of fairness, i.e., 

not favoring particular processes over others during scheduling, and (ii) efficiency, i.e., 

using as few messages as possible, and involving as low a time overhead as possible. 

We now outline a simple algorithm by Bagrodia that makes the following assumptions: 

1. Receive commands are forever enabled from all processes. 

 

2. A send command, once enabled, remains enabled until it completes, i.e., it is not 

possible that a send command gets disabled (by its guard getting falsified) before the 

send is executed. 

 

3. To prevent deadlock, process identifiers are used to introduce asymmetry to break 

potential crowns that arise. 

 

4. Each process attempts to schedule only one send event at any time. 

 

The algorithm illustrates how crown-free message scheduling is achieved on-line. 
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The message types used are: (i) M, (ii) ack(M), (iii) request(M), and (iv) permission(M). A 

process blocks when it knows that it can successfully synchronize the current message with the 

partner process. Each process maintains a queue that is processed in FIFO order only when the 

process is unblocked. When a process is blocked waiting for a particular message that it is 

currently synchronizing, any other message that arrives is queued up. 

 

Execution events in the synchronous execution are only the send of the message M and receive 

of the message M. The send and receive events for the other message types – ack(M), 

request(M), and permission(M) which are con-trol messages – are under the covers, and are 

not included in the synchronous execution. The messages request(M), ack(M), and 

permission(M) use M’s unique tag; the message M is not included in these messages. We use 

cap-ital SEND(M) and RECEIVE(M) to denote the primitives in the application execution, the 

lower case send and receive are used for the control messages. 

The algorithm to enforce synchronous order is given in Algorithm 6.1. The key rules to prevent 

cycles among the messages are summarized as follows and illustrated in Figure 6.9: 

 

To send to a lower priority process, messages M and ack(M) are involved in that order. The 

sender issues send(M) and blocks until ack(M) arrives. Thus, when sending to a lower 

priority process, the sender blocks waiting for the partner process to synchronize and send 

an acknowledgement.  

To send to a higher priority process, messages request(M), permission(M), and M are 

involved, in that order. The sender issues send(request(M)), does not block, and awaits 

permission. When permission(M) arrives, the sender issues send(M). 

 

Rules to prevent message cyles.  

(a) High priority process blocks.             (b) Low priority process does not block. 
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Figure:6.10  Scheduling messages with sync communication. 

 

 

Higher prio Pi blocks on lower prio Pj to avoid cyclic wait (whether or not it is the intended 

sender or receiver of msg being scheduled) 

 Before sending M to Pi , Pj requests permission in a nonblocking manner. 

1. If a message M from a higher priority process arrives, it is processed by a receive 

(assuming receives are always enabled) and ack(M ) is returned. Thus, a cyclic wait is 

prevented.  

2. Also, while waiting for this permission, if a request(M ) from a lower priority process 

arrives, a permission(M ) is returned and the process blocks until M actually arrives. 

 Note: receive(M0) gets permuted with the send(M) event 

6.4 Group communication 

A message broadcast is the sending of a message to all members in the distributed system. The 

notion of a system can be confined only to those sites/processes participating in the joint 

application. Refining the notion of broadcasting, there is multicasting wherein a message is 

sent to a certain subset, identified as a group, of the processes in the system. At the other 

extreme is unicasting, which is the familiar point-to-point message communication. 

 

Broadcast and multicast support can be provided by the network protocol stack using variants 

of the spanning tree. This is an efficient mechanism for distributing information. However, the 

hardware-assisted or network layer protocol assisted multicast cannot efficiently provide 

features such as the following: 

• Application-specific ordering semantics on the order of delivery of messages.  

• Adapting groups to dynamically changing membership. 
 

• Sending multicasts to an arbitrary set of processes at each send event.  

• Providing various fault-tolerance semantics. 
 

If a multicast algorithm requires the sender to be a part of the destination group, the multicast 

algorithm is said to be a closed group algorithm. If the sender of the multicast can be outside 
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the destination group, the multicast algorithm is said to be an open group algorithm. Open 

group algorithms are more general, and therefore more difficult to design and more expensive 

to implement, than closed group algorithms. Closed group algorithms cannot be used in several 

scenarios such as in a large system (e.g., on-line reservation or Internet banking systems) where 

client processes are short-lived and in large numbers. It is also worth noting that, for multicast 

algorithms, the number of groups may be potentially exponential, i.e., O(2n), and algorithms 

that have to explicitly track the groups can incur this high overhead. 

Two popular orders for the delivery of messages were proposed in the context of group 

communication: causal order and total order. 

6.5 Causal order (CO) 

Causal order has many applications such as updating replicated data, allo-cating requests in a 

fair manner, and synchronizing multimedia streams.  

The use of causal order in updating replicas of a data item in the system.  

Consider Figure 6.11(a), which shows two processes P1 and P2 that issue updates to the three 

replicas R1 d , R2 d , and R3 d of data item d. Message m creates a causality between send m1 

and send m2 . If P2 issues its update causally after P1 issued its update, then P2’s update should 

be seen by the replicas after they see P1’s update, in order to preserve the semantics 

 
Figure 6.11: (a) Updates to 3 replicas. (b) Causal order (CO) and total order violated. 

(c) Causal order violated. 

of the application. (In this case, CO is satisfied.) However, this may happen at some, all, or 
none of the replicas. Figure 6.11(b) shows that R1 sees P2’s update first, while R2 and R3 see 
P1’s update first. Here, CO is violated. Figure 6.11(c) shows that all replicas see P2’s update 
first. However, CO is still violated. If message m did not exist as shown, then the executions 
shown in Figure 6.11(b) and (c) would satisfy CO. 

The following two criteria must be met by a causal ordering protocol: 

 

• Safety In order to prevent causal order from being violated, a message M that arrives at a 

process may need to be buffered until all system wide messages sent in the causal past of the 

send M event to that same destination have already arrived.  

Therefore, we distinguish between the arrival of a message at a process (at which time it is 

placed in a local system buffer) and the event at which the message is given to the application 

process (when the protocol deems it safe to do so without violating causal order). The arrival 
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of a message is transparent to the application process. The delivery event corresponds to the 

receive event in the execution model. 

• Liveness A message that arrives at a process must eventually be delivered to the process. 

 

2.5.1 The Raynal–Schiper–Toueg algorithm (RST) 

 

 

2.5.2 Optimal KS Algorithm for CO: Principles 

Delivery Condition for correctness: 

Msg M that carries information “d ∈M.Dests”, where message M was sent to d in the causal 

past of Send(M*), is not delivered to d if M has not yet been delivered to d . 

Necessary and Sufficient Conditions for Optimality: 

An optimal CO algorithm stores in local message logs and propagates on messages, 

information of the form “d is a destination of M” about a message sent in the causal past, as 

long as and only as long as: 

(Propagation Constraint I) it is not known that the message M is delivered to d, and 

(Propagation Constraint II) it is not known that a message has been sent to d in the causal 

future of Send M , and hence it is not guaranteed using a reasoning based on transitivity that 

the message M will be delivered to d in CO. 

The Propagation Constraints also imply that if either (I) or (II) is false, the information 

“d ∈ M Dests” must not be stored or propagated, even to remember that (I) or (II) has 

been falsified.  
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Stated differently, the information “d ∈ Mi,a Dests” must be available in the causal future of 

event ei a, but: 

• not in the causal future of Deliverd  Mi a , and  

• not in the causal future of ek c, where d ∈ Mk, c Dests and there is no other message 
sent causally between Mi,a and Mk, c to the same destination d. 
 

In the causal future of Deliverd (Mi,a) , and Send(Mk,c), the information is redundant; elsewhere, 

it is necessary. Additionally, to maintain optimality, no other information should be stored, 

including information about what messages have been delivered.  

As information about what messages have been delivered (or are guaranteed to be delivered 

without violating causal order) is necessary for the Delivery Condition, this information is 

inferred using a set-operation based logic. 

 

The message M is sent by process i at event e to process d. The information “d ∈ M Dests”: 

• must exist at e1 and e2 because (I) and (II) are true; 
• must not exist at e3 because (I) is false; 
• must not exist at e4 e5 e6 because (II) is false; 
• must not exist at e7 e8 because (I) and (II) are false. 

 Information about messages (i) not known to be delivered and (ii) not guaranteed to be 

delivered in CO, is explicitly tracked by the algorithm using (source, timestamp, 

destination) information.  

 The information must be deleted as soon as either (i) or (ii) becomes false. The key 

problem in designing an optimal CO algorithm is to identify the events at which (i) or 

(ii) becomes false.  

 Information about messages already delivered and messages guaranteed to be delivered 

in CO is implicitly tracked without storing or propagating it, and is derived from the 

explicit information.  

 Such implicit information is used for determining when (i) or (ii) becomes false for the 

explicit information being stored or carried in messages. 
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Optimal KS Algorithm for CO: Code (1) 
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Optimal KS Algorithm for CO: Code (2) 

 

Information Pruning 
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Example 

 

2.6 Total Message Order 
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6.6.2  Three-phase Algorithm  

A distributed algorithm to implement total order and causal order of messages 

The three phases of the algorithm are first described from the viewpoint of the sender, and then 

from the viewpoint of the receiver.  

Sender  

Phase 1 In the first phase, a process multicasts (line 1b) the message M with a locally unique 

tag and the local timestamp to the group members.  

Phase 2 In the second phase, the sender process awaits a reply from all the group members 

who respond with a tentative proposal for a revised timestamp for that message M . The await 

call in line 1d is non-blocking, i.e., any other messages received in the meanwhile are 

processed. Once all expected replies are received, the process computes the maximum  

of the proposed timestamps for M , and uses the maximum as the final timestamp.  

Phase 3 In the third phase, the process multicasts the final timestamp to the group in line (1f). 

 

Receivers  

Phase 1 In the first phase, the receiver receives the message with a tentative/proposed 

timestamp. It updates the variable priority that tracks the highest proposed timestamp (line 2a), 

then revises the proposed timestamp to the priority, and places the message with its tag and the 

revised timestamp at the tail of the queue temp_Q (line 2b). In the queue, the entry is marked 

as undeliverable.  

Phase 2 In the second phase, the receiver sends the revised timestamp (and the tag) back to the 

sender (line 2c). The receiver then waits in a non-blocking manner for the final timestamp 

(correlated by the message tag).  

Phase 3 In the third phase, the final timestamp is received from the multicaster (line 3). The 

corresponding message entry in temp_Q is identified using the tag (line 3a), and is marked as 

deliverable (line 3b) after the revised timestamp is overwritten by the final timestamp (line 3c). 

The queue is then resorted using the timestamp field of the entries as the key (line 3c). As the 

queue is already sorted except for the modified entry for the message under consideration, that 

message entry has to be placed in its sorted position in the queue. If the message entry is at the 

head of the temp_Q, that entry, and all consecutive subsequent entries that are also marked as 

deliverable, are dequeued from temp_Q, and enqueued in deliver_Q in that order (the loop in 

lines 3d–3g). 
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Three-phase Algorithm Code 
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Example and Complexity 

 

Complexity:  

This algorithm uses three phases, and, to send a message to n− 1 processes, it uses 3(n− 1) 

messages and incurs a delay of three message hops. 

 

6.7 Global state and snapshot recording algorithms 

 

Introduction 

• Recording the global state of a distributed system on-the-fly is an important 

• paradigm. 

• The lack of globally shared memory, global clock and unpredictable message 

delays in a distributed system make this problem non-trivial. 

6.7.1 System model 
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Models of communication 

 

6.7.2 Consistent global state 

 

• In a consistent global state, every message that is recorded as received is also recorded 

as sent. Such a global state captures the notion of causality that a message cannot be 

received if it was not sent.  

• Consistent global states are meaningful global states and inconsistent global states are 

not meaningful in the sense that a distributed system can never be in an inconsistent 

state. 
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6.7.3 Interpretation in terms of cuts 

  

 

6.7.4 Issues in recording a global state 
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6.8 Snapshot algorithms for FIFO channels 

6.8.1 Chandy Lamport Algorithm 

 

 

The algorithm 
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Correctness and Complexity 

 

6.8.2 Properties of the recorded global state 

 

The recorded global state may not correspond to any of the global states that occurred during 

the computation. Consider two possible executions of the snapshot algorithm (shown in Figure 

4.3) for the money transfer example of Figure 4.2: 
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(Markers shown using dashed-and-dotted arrows.) Let site S1 initiate the algorithm just after 
t1. Site S1 records its local state (account A = $550) and sends a marker to site S2. The marker 

is received by site S2 after t4. When site S2 receives the marker, it records its local state 
(account B = $170), the state of channel C12 as $0, and sends a marker along channel C21. When 

site S1 receives this marker, it records the state of channel C21 as $80. The $800 amount in the 
system is conserved in the recorded global state, 
 

A = $550 B = $170 C12 = $0 C21 = $80 
 

(Markers shown using dotted arrows.) Let site S1 initiate the algorithm just after t0 and before 
sending the $50 for S2. Site S1 records its local state (account A = $600) and sends a marker 
to site S2. The marker is received by site S2 between t2 and t3. When site S2 receives the 
marker, it records its local state (account B = $120), the state of channel C12 as $0, and sends a 
marker along channel C21. When site S1 receives this marker, it records the state of channel 
C21 as $80. The $800 amount in the system is conserved in the recorded global state, 
 

A = $600 B = $120 C12 = $0 C21 = $80 
 

In both these possible runs of the algorithm, the recorded global states never occurred in the 

execution. This happens because a process can change its state asynchronously before the 

markers it sent are received by other sites and the other sites record their states. 

A physical interpretation of the collected global state is as follows: consider the two instants of 

recording of the local states in the banking example. If the cut formed by these instants is 

viewed as being an elastic band and if the elastic band is stretched so that it is vertical, then 

recorded states of all processes occur simultaneously at one physical instant, and the recorded 

global state occurs in the execution that is depicted in this modified space– time diagram. This 

is called the rubber-band criterion. 
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PART A  

1. Listout different types of message ordering. 

i) non-FIFO, (ii) FIFO,(iii) causal order, and  

(iv) synchronous order.  

2. What is An asynchronous execution 

An asynchronous execution (or A-execution) is an execution  E≺ for which the causality 

relation is a partial order. 

Difference between Asynchronous and FIFO executions. 

 

3. Distinguish between Message arrival vs. Delivery 

 

To implement CO, we distinguish between the arrival of a message and its delivery.  

 A message m that arrives in the local OS buffer at Pi may have to be delayed until the 

messages that were sent to Pi causally before m was sent (the “overtaken” messages) 

have arrived and are processed by the application. The delayed message m is then given 

to the application for processing.  

 The event of an application processing an arrived message is referred to as a delivery 

event (instead of as a receive event) for emphasis. 

 No message overtaken by a chain of messages between the same (sender, receiver) pair. 

In Fig. (a), m1 overtaken by chain <m2, m3 > 

 CO degenerates to FIFO when m1, m2 sent by same process 

4. List out Uses of CO. 

 Causal order is useful for applications requiring updates to shared data, 

implementing distributed shared memory, and fair resource allocation such as 

granting of requests for distributed mutual exclusion ,collaborative applications, 

event notification systems,  

 distributed virtual environments 

 

 

5. List out the Characterizations of Causal Order 
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(iv) Definition (Message order (MO)) A MO execution is an execution in which, 

for all (s,r) and (s’,r’) ∈ T , s ≺ s’ ⇒ ¬(r’ ≺ r) 

(v) Another characterization of a CO execution in terms of the partial order E ≺ is 

known as the empty-interval (EI) property. 

(vi) Common Past and Future 

Another characterization of CO executions is in terms of the causal past/future of a send event 

and its corresponding receive event.  

6. What are the conditions for Casuality in a synchronous execution? 

 (Casuality in a synchronous execution) The synchronous causality relation on E is the 

smallest transitive relation that satisfies the following: 

 

7. What is Timestamping a synchronous execution. 

 

8. What is RSC. 

RSC execution An A-execution (E, ≺) is an RSC execution iff there exists a non-

separated linear extension of the partial order (E, ≺). 

9. What is crown? 

Let E be an execution. A crown of size k in E is a sequence si ri , i ∈ 0 k − 1 of pairs of 

corresponding send and receive events such that: s0 ≺ r1, s1 ≺ r2, , sk−2 ≺ rk−1, sk−1 ≺ r0. 

10. What is binary rendezvous 

The rendezvous between a pair of processes at a time, which is called binary rendezvous 

as opposed to the multiway rendezvous. 

11. What is group communication. 

A message broadcast is the sending of a message to all members in the distributed system. 

The notion of a system can be confined only to those sites/processes participating in the joint 

application. Refining the notion of broadcasting, there is multicasting wherein a message is 

sent to a certain subset, identified as a group, of the processes in the system. 

12. List the two criteria for a causal ordering protocol: 
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• Safety In order to prevent causal order from being violated, a message M that arrives at a 

process may need to be buffered until all system wide messages sent in the causal past of the 

send M event to that same destination have already arrived. 

• Liveness A message that arrives at a process must eventually be delivered to the process. 

 

13. Discuss the Necessary and Sufficient Conditions for Optimality: 

An optimal CO algorithm stores in local message logs and propagates on messages, 

information of the form “d is a destination of M” about a message sent in the causal past, as 

long as and only as long as: 

(Propagation Constraint I) it is not known that the message M is delivered to d, and 

(Propagation Constraint II) it is not known that a message has been sent to d in the causal 

future of Send M , and hence it is not guaranteed using a reasoning based on transitivity that 

the message M will be delivered to d in CO. 

14. What is consistent global state. 

 

15. What are the Issues in recording a global state 

 

16. Listout the Properties of the recorded global state 
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PART B 

1. Explain Asynchronous execution with synchronous communication  

2. Discuss Synchronous program order on an asynchronous system  

3. Explain the Algorithm for binary rendezvous (or) Bagrodia’s Algorithm. 

4. Dicuss the Raynal–Schiper–Toueg algorithm (RST) (2.5.1) 

5. Explain group communication in detail. 

6. Explain Optimal KS Algorithm for CO: (2.5.2) 

7. Explain the  distributed algorithm to implement total order and causal order of 

messages (or) Three-phase Algorithm  

8. Explain Snapshot algorithms for FIFO channels or Chandy Lamport Algorithm 
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UNIT III - DISTRIBUTED MUTEX & DEADLOCK 

Distributed mutual exclusion algorithms: Introduction – Preliminaries – Lamport‘s algorithm –

Ricart-Agrawala algorithm – Maekawa‘s algorithm – Suzuki–Kasami‘s broadcast algorithm. 

Deadlock detection in distributed systems: Introduction – System model – Preliminaries –Models 

of deadlocks – Knapp‘s classification –Algorithms for the single resource model, the AND model 

and the OR model. 

DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS  

 

Mutual exclusion: Concurrent access of processes to a shared resource or data is executed in 

mutually exclusive manner.  

 Only one process is allowed to execute the critical section (CS) at any given time.  

 In a distributed system, shared variables (semaphores) or a local kernel cannot be used to 

implement mutual exclusion.  

 Message passing is the sole means for implementing distributed mutual exclusion. 

 Distributed mutual exclusion algorithms must deal with unpredictable message delays 

and incomplete knowledge of the system state. 

Three basic approaches for distributed mutual exclusion: 

 Token based approach  

 Non-token based approach  

 Quorum based approach 

 

3.1 INTRODUCTION 

Token-based approach: 

 A unique token is shared among the sites. 

 A site is allowed to enter its CS if it possesses the token. 

 Mutual exclusion is ensured because the token is unique. 

Non-token based approach: 

◮ Two or more successive rounds of messages are exchanged among the sites to determine 

which site will enter the CS next. 

Quorum based approach: 

◮ Each site requests permission to execute the CS from a subset of sites (called a 

quorum). 

◮ Any two quorums contain a common site. 

◮ This common site is responsible to make sure that only one request executes the CS 

at any time. 
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3.2 PRELIMINARIES 

3.2.1 System Model 

 The system consists of N sites, S1, S2, ..., SN . 

 We assume that a single process is running on each site. The process at site 

 Si is denoted by pi . 

 A site can be in one of the following three states: requesting the CS, executing the 

CS, or neither requesting nor executing the CS (i.e., idle). 

 In the ‘requesting the CS’ state, the site is blocked and can not make further 

requests for the CS. In the ‘idle’ state, the site is executing outside the CS. In 

token-based algorithms, a site can also be in a state where a site holding 

 the token is executing outside the CS (called the idle token state). 

 At any instant, a site may have several pending requests for CS. A site queues up 

these requests and serves them one at a time. 

 

3.2.2. Requirements of Mutual Exclusion Algorithms 

 Safety Property: At any instant, only one process can execute the critical section. 

 Liveness Property: This property states the absence of deadlock and starvation. 

Two or more sites should not endlessly wait for messages which will never arrive. 

 Fairness: Each process gets a fair chance to execute the CS. Fairness property 

generally means the CS execution requests are executed in the order of their arrival 

(time is determined by a logical clock) in the system. 

 

The first property is absolutely necessary and the other two properties are considered important in 

mutual exclusion algorithms. 

3.2.3. Performance Metrics 

The performance is generally measured by the following four metrics: 

 Message complexity: The number of messages required per CS execution by a site. 

 Synchronization delay: After a site leaves the CS, it is the time required and before the 

next site enters the CS (see Figure 1). 
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 Response time: The time interval a request waits for its CS execution to be over after 

its request messages have been sent out (see Figure 2). 

 

 System throughput: The rate at which the system executes requests for the CS. 

system throughput=1/(SD+E ) 

where SD is the synchronization delay and E is the average critical section execution time. 

A 

 
 Low and High Load Performance: 

 We often study the performance of mutual exclusion algorithms under two special loading 

conditions, viz., “low load” and “high load”. 

 The load is determined by the arrival rate of CS execution requests. 

 Under low load conditions, there is seldom more than one request for the critical section 

present in the system simultaneously. 

 Under heavy load conditions, there is always a pending request for critical section at a site. 

 

Best and worst case performance 

 Generally, mutual exclusion algorithms have best and worst cases for the performance 

metrics. In the best case, prevailing conditions are such that a performance metric attains 

the best possible value. For example, in most mutual exclusion algorithms the best value 

of the response time is a round-trip message delay plus the CS execution time, 2T + E.  

 Often for mutual exclusion algorithms, the best and worst cases coincide with low and high 

loads, respectively. For examples, the best and worst values of the response time are 

achieved when load is, respectively, low and high; in some mutual exclusion algorithms 

the best and the worse message traffic is generated at low and heavy load conditions, 

respectively. 
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3.3 LAMPORT’S ALGORITHM 

 

 Requests for CS are executed in the increasing order of timestamps and time is determined 

by logical clocks. 

 Every site Si keeps a queue, request queuei , which contains mutual exclusion requests 

ordered by their timestamps. 

 This algorithm requires communication channels to deliver messages the FIFO order. 

 

The Algorithm 

 

 Requesting the critical section: 

 When a site Si wants to enter the CS, it broadcasts a REQUEST(tsi , i ) message to 

all other sites and places the request on request queuei . ((tsi , i ) denotes the timestamp 

of the request.) 

 When a site Sj receives the REQUEST(tsi , i ) message from site Si ,places site Si ’s 

request on request queuej and it returns a timestamped REPLY message to Si . 

 Executing the critical section: Site Si enters the CS when the following two conditions 

hold: 

L1: Si has received a message with timestamp larger than (tsi , i ) from all other sites. 

L2: Si ’s request is at the top of request queuei . 

Releasing the critical section: 

 Site Si , upon exiting the CS, removes its request from the top of its request queue 

and broadcasts a timestamped RELEASE message to all other sites. 

 When a site Sj receives a RELEASE message from site Si , it removes Si ’s 

request from its request queue. 

When a site removes a request from its request queue, its own request may come at the top of 

the queue, enabling it to enter the CS. 

Correctness 

 

Theorem: Lamport’s algorithm achieves mutual exclusion.  

Proof: 

 Proof is by contradiction. Suppose two sites Si and Sj are executing the CS concurrently. 

For this to happen conditions L1 and L2 must hold at both the sites concurrently. 

 This implies that at some instant in time, say t, both Si and Sj have their own requests 

at the top of their request queues and condition L1 holds at them. Without loss of 

generality, assume that Si ’s request has smaller timestamp than the request of Sj . 

 m condition L1 and FIFO property of the communication channels, it is clear that at 

instant t the request of Si must be present in request queuej when Sj was executing its CS. 

This implies that Sj ’s own request is at the top of its own request queue when a smaller 

timestamp request, Si ’s request, is present in the request queuej – a contradiction! 
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Theorem: Lamport’s algorithm is fair.  

Proof: 

 The proof is by contradiction. Suppose a site Si ’s request has a smaller timestamp 

than the request of another site Sj and Sj is able to execute the CS before Si . 

 For Sj to execute the CS, it has to satisfy the conditions L1 and L2. This implies 

that at some instant in time say t, Sj has its own request at the top of its queue and 

it has also received a message with timestamp larger than the timestamp of its 

request from all other sites. 

 But request queue at a site is ordered by timestamp, and according to our assumption 

Si has lower timestamp. So Si ’s request must be placed ahead of the Sj ’s request in 

the request queuej . This is a contradiction! 

 

Performance 

 

 For each CS execution, Lamport’s algorithm requires (N − 1) REQUEST messages, (N 

− 1) REPLY messages, and (N − 1) RELEASE messages. Thus, Lamport’s algorithm 

requires 3(N − 1) messages per CS invocation. 

 Synchronization delay in the algorithm is T . 

 

 

An optimization 

 

 In Lamport’s algorithm,REPLY messages can be omitted in certain situations. For 

example, if site Sj receives a REQUEST message from site Si after it has sent its own 

REQUEST message with timestamp higher than the timestamp of site Si ’s request, then 

site Sj need not send a REPLY message to site Si . 

 This is because when site Si receives site Sj ’s request with timestamp higher than its 

own, it can conclude that site Sj does not have any smaller timestamp request which is 

still pending. 

 With this optimization, Lamport’s algorithm requires between 3(N − 1) and 2(N − 1) 

messages per CS execution. 

 

 

 

 

 

 

 

 

3.4 RICART-AGRAWALA ALGORITHM 
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 The Ricart-Agrawala algorithm assumes the communication channels are FIFO. The 

algorithm uses two types of messages: REQUEST and REPLY. 

 A process sends a REQUEST message to all other processes to request their permission 

to enter the critical section. A process sends a REPLY message to a process to give its 

permission to that process. 

 Processes use Lamport-style logical clocks to assign a timestamp to critical section requests 

and timestamps are used to decide the priority of requests. 

 Each process pi maintains the Request-Deferred array, RDi , the size of which is the same 

as the number of processes in the system. 

 Initially, ∀ i ∀ j : RDi [j]=0. Whenever pi defer the request sent by pj , it sets 

 RDi [j]=1 and after it has sent a REPLY message to pj , it sets RDi [j]=0. 

 

Description of the Algorithm 

 Requesting the critical section: 

(a) When a site Si wants to enter the CS, it broadcasts a timestamped REQUEST 

message to all other sites. 

(b) When site Sj receives a REQUEST message from site Si , it sends a REPLY 

message to site Si if site Sj is neither requesting nor executing the CS, or if the 

site Sj is requesting and Si ’s request’s timestamp is smaller than site Sj ’s own 

request’s timestamp. Otherwise, the reply is deferred and Sj sets RDj [i]=1 

Executing the critical section: 

(c) Site Si enters the CS after it has received a REPLY message from every site it 

sent a REQUEST message to. 

 

Releasing the critical section: 

 

(a) When site Si exits the CS, it sends all the deferred REPLY messages: ∀ j if RDi 

[j]=1, then send a REPLY message to Sj and set RDi [j]=0. 

Notes: 

 When a site receives a message, it updates its clock using the timestamp in the 

message. 

 When a site takes up a request for the CS for processing, it updates its local clock 

and assigns a timestamp to the request. 

 

Theorem: Ricart-Agrawala algorithm achieves mutual exclusion.  

Proof: 

 Proof is by contradiction. Suppose two sites Si and Sj ‘ are executing the CS 

concurrently and Si ’s request has higher priority than the request of Sj . 

 Clearly, Si received Sj ’s request after it has made its own request. 

 Thus, Sj can concurrently execute the CS with Si only if Si returns a REPLY to Sj 
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(in response to Sj ’s request) before Si exits the CS. 

 However, this is impossible because Sj ’s request has lower priority.Therefore, 

Ricart-Agrawala algorithm achieves mutual exclusion. 

Performance 

 For each CS execution, Ricart-Agrawala algorithm requires (N − 1) 

REQUEST messages and (N − 1) REPLY messages. 

 Thus, it requires 2(N − 1) messages per CS execution. 

Synchronization delay in the algorithm is T . 

 

3.5 MAEKAWA’S ALGORITHM 

 

 Conditions M1 and M2 are necessary for correctness; whereas conditions M3 and 

M4 provide other desirable features to the algorithm. 

 Condition M3 states that the size of the requests sets of all sites must be equal 

implying that all sites should have to do equal amount of work to invoke mutual 

exclusion. 

 Condition M4 enforces that exactly the same number of sites should request 

permission from any site implying that all sites have “equal responsibility” in 

granting permission to other sites. 

 

A site Si executes the following steps to execute the CS. 

 Requesting the critical section 

(a) A site Si requests access to the CS by sending REQUEST(i ) messages to all 

sites in its request set Ri . 

(b) When a site Sj receives the REQUEST(i ) message, it sends a REPLY(j ) message 

to Si provided it hasn’t sent a REPLY message to a site since its receipt of the last 

RELEASE message. Otherwise, it queues up the REQUEST(i ) for later 

consideration. 

Executing the critical section 

 

(c) Site Si executes the CS only after it has received a REPLY message from every 

site in Ri . 
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Releasing the critical section 

(a) After the execution of the CS is over, site Si sends a RELEASE(i ) message to 

every site in Ri . 

(b) When a site Sj receives a RELEASE(i ) message from site Si , it sends a REPLY 

message to the next site waiting in the queue and deletes that entry from the 

queue. If the queue is empty, then the site updates its state to reflect that it has not 

sent out any REPLY message since the receipt of the last RELEASE message. 

 

Correctness 

 

 
Performance 

 
3.5.1 Problem of Deadlocks 

 

 Maekawa’s algorithm can deadlock because a site is exclusively locked by other sites 

and requests are not prioritized by their timestamps. 

 Assume three sites Si , Sj , and Sk simultaneously invoke mutual exclusion. Suppose Ri 

∩ Rj = {Sij }, Rj ∩ Rk = {Sjk }, and Rk ∩ Ri = {Ski }. 

 Consider the following scenario: 

o   Sij  has been locked by Si  (forcing Sj  to wait at Sij ). 

o   Sjk has been locked by Sj (forcing Sk to wait at Sjk ). 

o   Ski has been locked by Sk (forcing Si to wait at Ski ). 

 This state represents a deadlock involving sites Si , Sj , and Sk . 

Handling Deadlocks 
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Maekawa’s algorithm handles deadlocks by requiring a site to yield a lock if the 

timestamp of its request is larger than the timestamp of some other request waiting for 

the same lock. 

 A site suspects a deadlock (and initiates message exchanges to resolve it) whenever 

a higher priority request arrives and waits at a site because the site has sent a REPLY 

message to a lower priority request. 

Deadlock handling requires three types of messages: 

FAILED: A FAILED message from site Si to site Sj indicates that Si can not grant Sj ’s 

request because it has currently granted permission to a site with a higher priority 

request. 

INQUIRE: An INQUIRE message from Si to Sj indicates that Si would like to find out 

from Sj if it has succeeded in locking all the sites in its request set. 

YIELD: A YIELD message from site Si to Sj indicates that Si is returning the permission 

to Sj (to yield to a higher priority request at Sj ). 

 

Maekawa’s algorithm handles deadlocks as follows: 

 When a REQUEST(ts, i ) from site Si blocks at site Sj because Sj has currently 

granted permission to site Sk , then Sj sends a FAILED(j ) message to Si if Si ’s 

request has lower priority. Otherwise, Sj sends an INQUIRE(j ) message to site Sk  

 In response to an INQUIRE(j ) message from site Sj , site Sk sends a YIELD(k ) 

message to Sj provided Sk has received a FAILED message from a site in its request 

set or if it sent a YIELD to any of these sites, but has not received a new GRANT 

from it. 

 In response to a YIELD(k ) message from site Sk , site Sj assumes as if it has been 

released by Sk , places the request of Sk at appropriate location in the request queue, 

and sends a GRANT(j ) to the top request’s site in the queue. Maekawa’s algorithm 

requires extra messages to handle deadlocks 

Maximum number of messages required per CS execution in this case is 5√ N. 

 

Token-based algorithms 

In token-based algorithms, a unique token is shared among the sites. A site is allowed to enter its 

CS if it possesses the token. A site holding the token can enter its CS repeatedly until it sends the 

token to some other site. Depending upon the way a site carries out the search for the token, there 

are numerous token-based algorithms. Next, we discuss two token-based mutual exclusion 

algorithms. 

First, token-based algorithms use sequence numbers instead of timestamps. Every request for the 

token contains a sequence number and the sequence numbers of sites advance independently. A 

site increments its sequence number counter every time it makes a request for the token. (A primary 

function of the sequence numbers is to distinguish between old and current requests.) Second, the 

correctness proof of token-based algorithms, that they enforce mutual exclusion, is trivial because 
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an algorithm guarantees mutual exclusion so long as a site holds the token during the execution of 

the CS. 

 

3.6 SUZUKI-KASAMI’S BROADCAST ALGORITHM 

 

 If a site wants to enter the CS and it does not have the token, it broadcasts a 

REQUEST message for the token to all other sites. 

 A site which possesses the token sends it to the requesting site upon the receipt of 

its REQUEST message. 

 If a site receives a REQUEST message when it is executing the CS, it sends the 

token only after it has completed the execution of the CS. 

 

This algorithm must efficiently address the following two design issues: 

(1) How to distinguish an outdated REQUEST message from a current 

REQUEST message: 

 Due to variable message delays, a site may receive a token request message after the 

corresponding request has been satisfied. 

 If a site can not determined if the request corresponding to a token request has 

been satisfied, it may dispatch the token to a site that does not need it. 

 This will not violate the correctness, however, this may seriously degrade the 

performance. 

(2) How to determine which site has an outstanding request for the CS: 

 After a site has finished the execution of the CS, it must determine what sites have 

an outstanding request for the CS so that the token can be dispatched to one of 

them. 
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The Algorithm 

 

Requesting the critical section 

 

(a) If requesting site Si does not have the token, then it increments its sequence 

number, RNi [i], and sends a REQUEST(i, sn) message to all other sites. (‘sn’ is 

the updated value of RNi [i].) 

(b) When a site Sj receives this message, it sets RNj [i] to max(RNj [i], 

sn). If Sj has the idle token, then it sends the token to Si if 

RNj [i]=LN[i]+1. 

Executing the critical section 

(c) Site Si executes the CS after it has received the token. 

 

Releasing the critical section  

Having finished the execution of the CS, site Si 

takes the following actions: 

(a) It sets LN[i] element of the token array equal to RNi [i]. 

(b) For every site Sj whose id is not in the token queue, it appends its id to the token 

queue if RNi [j]=LN[j]+1. 

(c) If the token queue is nonempty after the above update, Si deletes the top site id 

from the token queue and sends the token to the site indicated by the id. 

 

Correctness 

Mutual exclusion is guaranteed because there is only one token in the system and a site holds 

the token during the CS execution. 

Theorem: A requesting site enters the CS in finite time. Proof: 

 Token request messages of a site Si reach other sites in finite time. 

 Since one of these sites will have token in finite time, site Si ’s request will be 

placed in the token queue in finite time. 

 Since there can be at most N − 1 requests in front of this request in the token 

queue, site Si will get the token and execute the CS in finite time. 
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Performance 

 No message is needed and the synchronization delay is zero if a site holds the idle token at 

the time of its request. 

 If a site does not hold the token when it makes a request, the algorithm requires N messages 

to obtain the token. Synchronization delay in this algorithm is 0 or T . 

 

3.7 DEADLOCK DETECTION IN DISTRIBUTED SYSTEMS 

 Deadlocks is a fundamental problem in distributed systems. 

 A process may request resources in any order, which may not be known a 

priori and a process can request resource while holding others. 

 If the sequence of the allocations of resources to the processes is not 

controlled, deadlocks can occur. 

 A deadlock is a state where a set of processes request resources that are held by 

other processes in the set. 

 

3.8 SYSTEM MODEL 

 

o A distributed program is composed of a set of n asynchronous processes p1, 

p2, . . . , pi , . . . , pn that communicates by message passing over the 

communication network. 

o Without loss of generality we assume that each process is running on a 

different processor. 

o The processors do not share a common global memory and communicate 

solely by passing messages over the communication network. 

 

o There is no physical global clock in the system to which processes have 

instantaneous access. 

o The communication medium may deliver messages out of order, messages 

may be lost garbled or duplicated due to timeout and retransmission, 

processors may fail and communication links may go down. 

We make the following assumptions: 

 The systems have only reusable resources. 

 Processes are allowed to make only exclusive access to resources. 

 There is only one copy of each resource. 

3.8.1 Wait for Graph (WFG) 

 A process can be in two states: running or blocked. 

 In the running state (also called active state), a process has all the needed 

resources and is either executing or is ready for execution. 

 In the blocked state, a process is waiting to acquire some resource. 
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 The state of the system can be modeled by directed graph, called a wait for 

graph (WFG). 

 In a WFG , nodes are processes and there is a directed edge from node P1 

to mode P2 if P1 is blocked and is waiting for P2 to release some resource. 

 A system is deadlocked if and only if there exists a directed cycle or knot 

in the WFG. 

 Figure 1 shows a WFG, where process P11 of site 1 has an edge to process 

P21 of site 1 and P32 of site 2 is waiting for a resource which is currently 

held by process P21. 

 At the same time process P32 is waiting on process P33 to release a 

resource. 

 If P21 is waiting on process P11, then processes P11, P32 and P21 form a cycle 

and all the four processes are involved in a deadlock depending upon the 

request model. 

 

An Example of  WFG 

 
 

3.9 PRILIMINARIES 

 

3.9.1 Deadlock Handling Strategies 

 There are three strategies for handling deadlocks, viz., deadlock 

prevention, deadlock avoidance, and deadlock detection. 

 Handling of deadlock becomes highly complicated in distributed systems 

because no site has accurate knowledge of the current state of the system 

and because every inter-site communication involves a finite and 

unpredictable delay. 

 Deadlock prevention is commonly achieved either by having a process 

acquire all the needed resources simultaneously before it begins executing 

or by preempting a process which holds the needed resource. 
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 This approach is highly inefficient and impractical in distributed systems. 

 In deadlock avoidance approach to distributed systems, a resource is 

granted to a process if the resulting global system state is safe (note that 

a global state includes all the processes and resources of the distributed 

system). 

 However, due to several problems, deadlock avoidance is impractical in 

distributed systems. 

 Deadlock detection requires examination of the status of process-

resource interactions for presence of cyclic wait. 

 Deadlock detection in distributed systems seems to be the best approach 

to handle deadlocks in distributed systems. 

 

3.9.2 Issues in Deadlock Detection 

 Deadlock handling using the approach of deadlock detection entails addressing 

two basic issues: First, detection of existing deadlocks and second resolution of 

detected deadlocks. 

 

 Detection of deadlocks involves addressing two issues: Maintenance of the WFG and 

searching of the WFG for the presence of cycles (or knots). 

 

Correctness Criteria: A deadlock detection algorithm must satisfy the following two 

conditions: 

(i) Progress (No undetected deadlocks): 

 The algorithm must detect all existing deadlocks in finite time. 

 In other words, after all wait-for dependencies for a deadlock have formed, the 

algorithm should not wait for any more events to occur to detect the deadlock. 

(ii) Safety (No false deadlocks): 

 The algorithm should not report deadlocks which do not exist (called phantom or 

false deadlocks). 

 

Resolution of a Detected Deadlock 

 Deadlock resolution involves breaking existing wait-for dependencies between 

the processes to resolve the deadlock. 

 It involves rolling back one or more deadlocked processes and assigning their 

resources to blocked processes so that they can resume execution. 

 

 

 

 

3.10 MODELS OF DEADLOCKS 

Distributed systems allow several kinds of resource requests. 
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3.10.1 The Single Resource Model 

 In the single resource model, a process can have at most one outstanding request for 

only one unit of a resource. 

 Since the maximum out-degree of a node in a WFG for the single resource model can 

be 1, the presence of a cycle in the WFG shall indicate that there is a deadlock. 

 

3.10.2 AND Model 

 

 In the AND model, a process can request for more than one resource 

simultaneously and the request is satisfied only after all the requested resources are 

granted to the process. 

 The out degree of a node in the WFG for AND model can be more than 1. 

 The presence of a cycle in the WFG indicates a deadlock in the AND model. 

 Since in the single-resource model, a process can have at most one outstanding 

request, the AND model is more general than the single-resource model. 

 

Consider the example WFG described in the Figure 1. 

 P11 has two outstanding resource requests. In case of the AND model, P11shall 

become active from idle state only after both the resources are granted. 

 There is a cycle P11->P21->P24->P54->P11 which corresponds to a deadlock situation. 

 That is, a process may not be a part of a cycle, it can still be deadlocked. Consider 

process P44 in Figure 1. 

 It is not a part of any cycle but is still deadlocked as it is dependent on P24which 

is deadlocked. 

 

3.10.3 OR Model 

 

 In the OR model, a process can make a request for numerous resources 

simultaneously and the request is satisfied if any one of the requested resources is 

granted. 

 Presence of a cycle in the WFG of an OR model does not imply a deadlock in the 

OR model. 

 Consider example in Figure 1: If all nodes are OR nodes, then process P11 is not 

deadlocked because once process P33 releases its resources, P32 shall become active 

as one of its requests is satisfied. 

 After P32 finishes execution and releases its resources, process P11 can continue with 

its processing. 

 In the OR model, the presence of a knot indicates a deadlock. 

 

 

3.10.4 AND – OR Model 
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 A generalization of the previous two models (OR model and AND model) is the 

AND-OR model. 

 In the AND-OR model, a request may specify any combination of and and 

or in the resource request. 

 For example, in the AND-OR model, a request for multiple resources can be of the 

form x and (y or z). 

 To detect the presence of deadlocks in such a model, there is no familiar construct of 

graph theory using WFG. 

 Since a deadlock is a stable property, a deadlock in the AND-OR model can be 

detected by repeated application of the test for OR-model deadlock. 

 

 

3. 10.5     

 
 

3.10.6 Unrestricted model 

 

 In the unrestricted model, no assumptions are made regarding the underlying 

structure of resource requests. 

 Only one assumption that the deadlock is stable is made and hence it is the most 

general model. 

 This model helps separate concerns: Concerns about properties of the problem 

(stability and deadlock) are separated from underlying distributed systems 

computations (e.g., message passing versus synchronous communication). 

 

 

 

3.11 KNAPP’S CLASSIFICATION 
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Distributed deadlock detection algorithms can be divided into four classes: 

 Path-Pushing  

 Edge-Chasing 

 Diffusion Computation  

 Global State Detection. 

 

3.11.1 Path-Pushing Algorithms 

 In path-pushing algorithms, distributed deadlocks are detected by maintaining 

an explicit global WFG. 

 The basic idea is to build a global WFG for each site of the distributed system. 

 In this class of algorithms, at each site whenever deadlock computation is 

performed, it sends its local WFG to all the neighboring sites. 

 After the local data structure of each site is updated, this updated WFG is then 

passed along to other sites, and the procedure is repeated until some site has a 

sufficiently complete picture of the global state to announce deadlock or to 

establish that no deadlocks are present. 

 This feature of sending around the paths of global WFG has led to the term 

path-pushing algorithms. 

 

3.11.2 Edge-Chasing Algorithms 

 In an edge-chasing algorithm, the presence of a cycle in a distributed graph structure 

is be verified by propagating special messages called probes, along the edges of the 

graph. 

 These probe messages are different than the request and reply messages. 

 The formation of cycle can be deleted by a site if it receives the matching probe sent 

by it previously. 

 Whenever a process that is executing receives a probe message, it discards this 

message and continues. 

 Only blocked processes propagate probe messages along their outgoing edges. 

 Main advantage of edge-chasing algorithms is that probes are fixed size messages 

which is normally very short. 

 

3.11.3 Diffusing Computations Based Algorithms 

 In diffusion computation based distributed deadlock detection algorithms, 

deadlock detection computation is diffused through the WFG of the system. 

 These algorithms make use of echo algorithms to detect deadlocks. 

 This computation is superimposed on the underlying distributed computation. If this 

computation terminates, the initiator declares a deadlock. 

 To detect a deadlock, a process sends out query messages along all the outgoing 

edges in the WFG. 

 These queries are successively propagated (i.e., diffused) through the edges of the WFG. 



CS8603/DISTRIBUTED SYSTEMS 

 

   
 

 When a blocked process receives first query message for a particular deadlock 

detection initiation, it does not send a reply message until it has received a reply 

message for every query it sent. 

 For all subsequent queries for this deadlock detection initiation, it immediately 

sends back a reply message. 

 The initiator of a deadlock detection detects a deadlock when it receives reply for 

every query it had sent out. 

 

3.11.4 Global state detection based deadlock detection algorithms 

 

 Global state detection based deadlock detection algorithms exploit the following 

facts: 

 A consistent snapshot of a distributed system can be obtained without freezing the 

underlying computation and 

 If a stable property holds in the system before the snapshot collection is initiated, this 

property will still hold in the snapshot. 

 Therefore, distributed deadlocks can be detected by taking a snapshot of the system 

and examining it for the condition of a deadlock. 

 

3.12 MITCHELL AND MERRITT’S ALGORITHM FOR THE SINGLE-

RESOURCE MODEL 

 Belongs to the class of edge-chasing algorithms where probes are sent in opposite 

direction of the edges of WFG. 

 When a probe initiated by a process comes back to it, the process declares deadlock. 

 Only one process in a cycle detects the deadlock. This simplifies the deadlock 

resolution – this process can abort itself to resolve the deadlock. 

 

 Each node of the WFG has two local variables, called labels: 

 a private label, which is unique to the node at all times, though it is not 

constant, and 

 a public label, which can be read by other processes and which may not be 

unique. 

 Each process is represented as u/v where u and u are the public and private labels, 

respectively. 

 Initially, private and public labels are equal for each process. 

 A global WFG is maintained and it defines the entire state of the system. 

 

 

 The algorithm is defined by the four state transitions shown in Figure 2, where z = 

inc(u, v), and inc(u, v) yields a unique label greater than both u and v labels that are 

not shown do not change. 
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 Block creates an edge in the WFG. 

 Two messages are needed, one resource request and one message back to the blocked 

process to inform it of the public label of the process it is waiting for. 

 Activate denotes that a process has acquired the resource from the process it was 

waiting for. 

 Transmit propagates larger labels in the opposite direction of the edges by sending a 

probe message. 

 

The four possible state transitions 

 

 

 

 

 Whenever a process receives a probe which is less then its public label, then it 

simply ignores that probe. 

 Detect means that the probe with the private label of some process has returned 

to it, indicating a deadlock. 

 The above algorithm can be easily extended to include priorities where 

whenever a deadlock occurs, the lowest priority process gets aborted. 

 

Message Complexity: 

If we assume that a deadlock persists long enough to be detected, the worst-case 

complexity of the algorithm is s(s - 1)/2 Transmit steps, where s is the number of 

processes in the cycle. 



CS8603/DISTRIBUTED SYSTEMS 

 

   
 

 

3.13 CHANDY-MISRA-HAAS’S FOR AND MODEL 

 

 Chandy-Misra-Haas’s distributed deadlock detection algorithm for AND model 

is based on edge-chasing. 

 The algorithm uses a special message called probe, which is a triplet (i, j, k), denoting 

that it belongs to a deadlock detection initiated for process Pi and it is being sent by the 

home site of process Pj to the home site of process Pk . 

 A probe message travels along the edges of the global WFG graph, and a deadlock 

is detected when a probe message returns to the process that initiated it. 

 A process Pj is said to be dependent on another process Pk if there exists a 

sequence of processes Pj , Pi1, Pi2, ..., Pim, Pk such that each process except 

Pk in the sequence is blocked and each process, except the Pj , holds a 

resource for which the previous process in the sequence is waiting. 

 Process Pj is said to be locally dependent upon process Pk if Pj is 

dependent upon Pk and both the processes are on the same site. 

 Data Structures 

 Each process Pi maintains a boolean array, dependenti, where 

dependenti(j) is true only if Pi knows that Pj is dependent on it. 

 Initially, dependenti(j) is false for all i and j. 

 

Algorithm 

if Pi is locally dependent on itself 

then declare a deadlock 

else for all Pj and Pk such that 

(a) Pi is locally dependent upon Pj , and 

(b) Pj is waiting on Pk, and 

(c) Pj and Pk are on different sites, 

send a probe (i, j, k) to the home site of Pk 

 

On the receipt of a probe (i, j, k), the site takes 

the following actions: 

 

if 

 

(d) Pk is blocked, and 

(e) dependentk i  is false, and 

(f) Pk has not replied to all requests Pj , then 

 

begin 

 

dependentk i = true; if k = i 
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then declare that Pi is deadlocked else 

for all Pm and Pn such that 

 

(a ) Pk is locally dependent upon Pm, and  

(b ) Pm is waiting on Pn, and 

(c ) Pm and Pn are on different sites, send a 

probe (i, m, n) to the home site of Pn 

 

end. 

 

 A probe message is continuously circulated along the edges of the global WFG graph 

and a deadlock is detected when a probe message returns to its initiating process. 

Performance Analysis 

 One probe message (per deadlock detection initiation) is sent on every edge of the 

WFG which that two sites. 

 Thus, the algorithm exchanges at most m(n − 1)/2 messages to detect a deadlock that 

involves m processes 

 and that spans over n sites. 

 The size of messages is fixed and is very small (only 3 integer words). 

 Delay in detecting a deadlock is O(n). 

 

3.14 CHANDY-MISRA-HAAS DISTRIBUTED DEADLOCK DETECTION 

ALGORITHM FOR OR MODEL 

Chandy-Misra-Haas distributed deadlock detection algorithm for OR model is based on 

the approach of diffusion-computation. 

 A blocked process determines if it is deadlocked by initiating a diffusion 

computation. 

 Two types of messages are used in a diffusion computation: 

 query(i, j, k) and reply(i, j, k), denoting that they belong to a diffusion computation 

initiated by a process Pi and are being sent from process Pj to process Pk . 

 A blocked process initiates deadlock detection by sending query messages to all 

processes in its dependent set. 

 If an active process receives a query or reply message, it discards it. 

 When a blocked process Pk receives a query(i, j, k) message, it takes the following 

actions: 

 If this is the first query message received by Pk for the deadlock detection 

initiated by Pi (called the engaging query), then it propagates the query to all 

the processes in its dependent set and sets a local variable numk (i) to the 

number of query messages sent. 

 If this is not the engaging query, then Pk returns a reply message to it 

immediately provided Pk has been continuously blocked since it received the 

corresponding engaging query. Otherwise, it discards the query. 
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 Process Pk maintains a boolean variable waitk (i) that denotes the fact that it has been 

continuously blocked since it received the last engaging query from process Pi . 

 When a blocked process Pk receives a reply(i, j, k) message, it decrements numk (i) 

only if waitk (i) holds. 

 A process sends a reply message in response to an engaging query only after it has 

received a reply to every query message it had sent out for this engaging query. 

 The initiator process detects a deadlock when it receives reply messages to all the 

query messages it had sent out. 

 

 In practice, several diffusion computations may be initiated for a process (A diffusion 

computation is initiated every time the process gets blocked), but, at any time only 

one diffusion computation is current for any process. 

 However, messages for outdated diffusion computations may still be in transit. 

 The current diffusion computation can be distinguished from outdated ones by using 

sequence numbers. 

Performance Analysis 

For every deadlock detection, the algorithm exchanges e query messages and e reply 

messages, where e=n(n-1) is the number of edges. 

 

PART A 

1. Listout the basic approaches for distributed mutual exclusion: 

 Token based approach  

 Non-token based approach  
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 Quorum based approach 

2. What is Token-based approach: 

 A unique token is shared among the sites. 

 A site is allowed to enter its CS if it possesses the token. 

 Mutual exclusion is ensured because the token is unique. 

3. What is Non-token based approach: 

◮ Two or more successive rounds of messages are exchanged among the sites to determine 

which site will enter the CS next. 

4. What is the Quorum based approach: 

◮ Each site requests permission to execute the CS from a subset of sites (called a quorum). 

◮ Any two quorums contain a common site. 

◮ This common site is responsible to make sure that only one request executes the CS at 

any time. 

5. Listout the Requirements of Mutual Exclusion Algorithms 

 Safety Property: At any instant, only one process can execute the critical section. 

 Liveness Property: This property states the absence of deadlock and starvation. 

Two or more sites should not endlessly wait for messages which will never arrive. 

 Fairness: Each process gets a fair chance to execute the CS. Fairness property 

generally means the CS execution requests are executed in the order of their arrival 

(time is determined by a logical clock) in the system. 

6. What are the Performance Metrics 

The performance is generally measured by the following four metrics: 

 Message complexity: The number of messages required per CS execution by a site. 

 Synchronization delay: After a site leaves the CS, it is the time required and before the 

next site enters the CS 

 Response time: The time interval a request waits for its CS execution to be over after 

its request messages have been sent out (see Figure 2). 

 System throughput: The rate at which the system executes requests for the CS. 

 

7. Analyse the Performance of Lamport algorithm 

 

 For each CS execution, Lamport’s algorithm requires (N − 1) REQUEST messages, (N 

− 1) REPLY messages, and (N − 1) RELEASE messages. Thus, Lamport’s algorithm 

requires 3(N − 1) messages per CS invocation. 

 Synchronization delay in the algorithm is T . 

 

8. How to optimize lamport algorithm 
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 In Lamport’s algorithm,REPLY messages can be omitted in certain situations. For 

example, if site Sj receives a REQUEST message from site Si after it has sent its own 

REQUEST message with timestamp higher than the timestamp of site Si ’s request, then 

site Sj need not send a REPLY message to site Si . 

 This is because when site Si receives site Sj ’s request with timestamp higher than its 

own, it can conclude that site Sj does not have any smaller timestamp request which is 

still pending. 

 With this optimization, Lamport’s algorithm requires between 3(N − 1) and 2(N − 1) 

messages per CS execution. 

 

9. List out the conditions of Maekawa’s algorithm 

 

10. Analyse the performance of Maekawa’s algorithm 

 

11. How to handle Deadlock in Maekawa’s algorithm 

FAILED: A FAILED message from site Si to site Sj indicates that Si can not grant Sj ’s 

request because it has currently granted permission to a site with a higher priority 

request. 

INQUIRE: An INQUIRE message from Si to Sj indicates that Si would like to find out 

from Sj if it has succeeded in locking all the sites in its request set. 

YIELD: A YIELD message from site Si to Sj indicates that Si is returning the permission 

to Sj (to yield to a higher priority request at Sj ). 

12. How to distinguish an outdated REQUEST message from a current 

REQUEST message 
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13. How to determine which site has an outstanding request for the CS: 

 

14. Listout the Deadlock Handling Strategies 

 There are three strategies for handling deadlocks, viz., deadlock 

prevention, deadlock avoidance, and deadlock detection. 

15. What are the Issues in Deadlock Detection 

 Deadlock handling using the approach of deadlock detection entails addressing 

two basic issues: First, detection of existing deadlocks and second resolution of 

detected deadlocks. 

 

 Detection of deadlocks involves addressing two issues: Maintenance of the WFG and 

searching of the WFG for the presence of cycles (or knots). 

16. What is Resolution of a Detected Deadlock 

 Deadlock resolution involves breaking existing wait-for dependencies between 

the processes to resolve the deadlock. 

 It involves rolling back one or more deadlocked processes and assigning their 

resources to blocked processes so that they can resume execution. 

 

17. Distributed deadlock detection algorithms can be divided into four classes: 

 Path-Pushing  
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 Edge-Chasing 

 Diffusion Computation  

 Global State Detection. 

18. Analyse the Message Complexity of single resource model 

  

 If we assume that a deadlock persists long enough to be detected, the 

worst-case complexity of the algorithm is s(s - 1)/2 Transmit steps, where 

s is the number of processes in the cycle. 

 

PART B 

1. Explain the Lamport‘s algorithm. 

2. Discuss Ricart-Agrawala algorithm. 

3. Explain Maekawa‘s algorithm. 

4. Explain Suzuki–Kasami‘s broadcast algorithm.  

5. How to detect Deadlock in distributed systems. Explain the system model 

6. Discuss the Models of deadlocks  

7. Explain the Knapp‘s classification. 

8. Discuss the Algorithm for the single resource model.(MITCHELL AND MERRITT’S 

ALGORITHM 

9. Discuss the Algorithm the AND model . (CHANDY-MISRA-HAAS’S) 

10. Discuss the Algorithm OR model. (CHANDY-MISRA-HAAS) 
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UNIT IV RECOVERY & CONSENSUS  

Checkpointing and rollback recovery: Introduction – Background and definitions – Issues in 

failure recovery – Checkpoint-based recovery – Log-based rollback recovery – Coordinated 

checkpointing algorithm – Algorithm for asynchronous checkpointing and recovery. Consensus 

and agreement algorithms: Problem definition – Overview of results – Agreement in a failure – 

free system – Agreement in synchronous systems with failures. 

 

4.1 Introduction 

 

Rollback recovery treats a distributed system application as a collection of processes that 

communicate over a network. It achieves fault tolerance by periodically saving the state of a 

process during the failure-free execution, enabling it to restart from a saved state upon a failure to 

reduce the amount of lost work.  

 

The saved state is called a checkpoint, and the procedure of restarting from a previously 

checkpointed state is called rollback recovery. A checkpoint can be saved on either the stable 

storage or the volatile storage depending on the failure scenarios to be tolerated. 

 

 In a distributed system, if each participating process takes its checkpoints independently, 

then the system is susceptible to the domino effect. This approach is called independent 

or uncoordinated checkpointing.  

 It is obviously desirable to avoid the domino effect and therefore several techniques have 

been developed to prevent it. One such technique is coordinated check-pointing where 

processes coordinate their checkpoints to form a system-wide consistent state. In case of a 

process failure, the system state can be restored to such a consistent set of checkpoints, 

preventing the rollback propagation.  

 Alternatively, communication-induced checkpointing forces each process to take 

checkpoints based on information piggybacked on the application messages it receives 

from other processes. Checkpoints are taken such that a system-wide consistent state 

always exists on stable storage, thereby avoiding the domino effect. 

 

Log-based rollback recovery 

 The approaches discussed so far implement checkpoint-based rollback recovery, which 

relies only on checkpoints to achieve fault-tolerance. Log-based rollback recovery 

combines checkpointing with logging of non-deterministic events. Log-based rollback 

recovery relies on the piecewise deterministic (PWD) assumption, which postulates that 

all non-deterministic events that a process executes can be identified and that the 

information necessary to replay each event during recovery can be logged in the event’s 

determinant.  

 

 By logging and replaying the non-deterministic events in their exact original order, a 

process can deterministically recreate its pre-failure state even if this state has not been 

checkpointed. Log-based rollback recovery in general enables a system to recover beyond 

the most recent set of consistent checkpoints. It is therefore particularly attractive for 

applications that frequently interact with the outside world, which consists of input and 

output devices that cannot roll back. 
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Introduction 

• Rollback recovery protocols 

– restore the system back to a consistent state after a failure 

– achieve fault tolerance by periodically saving the state of a process during the failure-free 

execution 

– treats a distributed system application as a collection of processes that communicate over a 

network 

Checkpoints -> the saved states of a process 

Why is rollback recovery of distributed systems complicated? 

messages induce inter-process dependencies during failure-free operation 

Rollback propagation 

The dependencies may force some of the processes that did not fail to roll back. This 

phenomenon is called “domino effect” 

If each process takes its checkpoints independently, then the system cannot avoid the 

domino effect 

This scheme is called independent or uncoordinated checkpointing 

Techniques that avoid domino effect 

 Coordinated checkpointing rollback recovery 

processes coordinate their checkpoints to form a system-wide consistent state 

 Communication-induced checkpointing rollback recovery 

forces each process to take checkpoints based on information piggybacked on the 

application 

 Log-based rollback recovery 

combines checkpointing with logging of non-deterministic events relies on piecewise 

deterministic (PWD) assumption 

 

4.2 Background and definitions 

 

4.2.1 System model 

Distributed system consists of a fixed number of processes, P1, P2 PN , which communicate only 

through messages. Processes cooperate to execute a distributed application and interact with the 

outside world by receiving and sending input and output messages, respectively. Figure shows a 

system consisting of three processes and interactions with the outside world. 

Rollback-recovery protocols generally make assumptions about the reliability of the inter-process 

communication. Some protocols assume that the com-munication subsystem delivers messages 

reliably, in first-in-first-out (FIFO) order, while other protocols assume that the communication 

subsystem can 

4.2.2 A local checkpoint 

• In distributed systems, all processes save their local states at certain instants of time. This 

saved state is known as a local checkpoint. 

• A local checkpoint is a snapshot of the state of the process at a given instance and the event 

of recording the state of a process is called local checkpointing. 

• The contents of a checkpoint depend upon the application context and the checkpointing 

method being used. 
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Assumption 

A process stores all local checkpoints on the stable storage 

A process is able to roll back to any of its existing local checkpoints  ,𝑘 

The kth local checkpoint at process   is  𝐶𝑖,0 

A process 𝑃𝑖   takes a checkpoint 𝐶𝑖,0 before it starts execution 

 

4.2.3 Consistent system states 

 

A global state of a distributed system 

A global state of a distributed system is a collection of the individual states of all participating 

processes and the states of the communication channels.  

Consistent global state 

 

A consistent global state is one that may occur during a failure-free execution of a distributed 

computation. More precisely, a consistent system state is one in which a process’s state reflects a 

message receipt, then the state of the corresponding sender must reflect the sending of that 

message  

A global checkpoint 

a set of local checkpoints, one from each process 

A consistent global checkpoint 

a global checkpoint such that no message is sent by a process after taking its local point that is 

received by another process before taking its checkpoint 

Consistent states – examples 

 

 For instance, Figure shows two examples of global states. The state in Figure (a) is consistent 

and the state in Figure (b) is inconsistent. Note that the consistent state in Figure (a) shows 

message m1 to have been sent but not yet received, but that is alright. The state in Figure (a) is 

consistent because it represents a situation in which every message that has been received, there 

is a corresponding message send event.  

 The state in Figure (b) is inconsistent because process P2 is shown to have received m2 but the 

state of process P1 does not reflect having sent it. Such a state is impossible in any failure-free, 

correct computation. Inconsistent states occur because of failures. For instance, the situation 

shown in Figure (b) may occur if process P1 fails after sending message m2 to process P2 and 
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then restarts at the state shown in Figure (b). 

Thus, a local checkpoint is a snapshot of a local state of a process and a global checkpoint is a 

set of local checkpoints, one from each process. A consistent global checkpoint is a global 

checkpoint such that no message is sent by a process after taking its local checkpoint that is 

received by another process before taking its local checkpoint. The consistency of global 

checkpoints strongly depends on the flow of messages exchanged by processes and an arbitrary 

set of local checkpoints at processes may not form a consistent global checkpoint. 

 

The fundamental goal of any rollback-recovery protocol is to bring the system to a consistent state 

after a failure. The reconstructed consistent state is not necessarily one that occurred before the 

failure. It is sufficient that the reconstructed state be one that could have occurred before the failure 

in a failure-free execution, provided that it is consistent with the interactions that the system had 

with the outside world. 

 

4.3.4 Interactions with outside world 

 

A distributed application often interacts with the outside world to receive input data or 

deliver the outcome of a computation. If a failure occurs, the outside world cannot be expected 

to roll back. For example, a printer cannot roll back the effects of printing a character, and an 

automatic teller machine cannot recover the money that it dispensed to a customer. 

 

 A distributed system often interacts with the outside world to receive input data or 

deliver the outcome of a computation 

 Outside World Process (OWP) 

a special process that interacts with the rest of the system through message passing 

A common approach 

save each input message on the stable storage before allowing the application program to process 

it  

Symbol “||” 

An interaction with the outside world to deliver the outcome of  a computation 

 

4.2.5 Different types of messages 

 

i. In-transit message ->messages that have been sent but not yet received 

In Figure, the global state {C1 8 C2 9 C3 8 C4 8} shows that message m1 has been sent but not 

yet received. We call such a message an in-transit message. Message m2 is also an in-transit 

message. 

ii. Lost messages 

Messages whose send is not undone but receive is undone due to rollback are called lost 

messages. This type of messages occurs when the process rolls back to a checkpoint prior 

to reception of the message while the sender does not rollback beyond the send operation 

of the message. In Figure, message m1 is a lost message. 

iii. Delayed messages 

Messages whose receive is not recorded because the receiving process was either down or 

the message arrived after the rollback of the receiving process, are called delayed messages. 

For example, messages m2 and m5 in Figure  are delayed messages. 

iv. orphan messages 

Messages with receive recorded but message send not recorded are called orphan 
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messages. For example, a rollback might have undone the send of such messages, leaving 

the receive event intact at the receiving process. Orphan messages do not arise if 

processes roll back to a consistent global state. 

 

v. Duplicate messages 

 

Duplicate messages arise due to message logging and replaying during process recovery.  

 

For example, in Figure, message m4 was sent and received before the rollback. However, due to 

the rollback of process P4 to C4 8 and process P3 to C3 8, both send and receipt of message m4 are 

undone. When process P3 restarts from C3 8, it will resend message m4. Therefore, P4 should not 

replay message m4 from its log. If P4 replays message m4, then message m4 is called a duplicate 

message.   

Message m5 is an excellent example of a duplicate message. No matter what, the receiver of m5 

will receive a duplicate m5 message. 

Messages – example 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In-transit – 𝑚1, 𝑚2  

 Lost – 𝑚1  

 Delayed – 𝑚1, 𝑚5  

 Orphan – none  

 Duplicated – 𝑚4, 𝑚5 

 

4.3 Issues in failure recovery 

 

In a failure recovery, we must not only restore the system to a consistent state, but also 

appropriately handle messages that are left in an abnormal state due to the failure and recovery. 

The computation comprises of three processes Pi, Pj, and Pk, connected through a communication 

network. The processes communicate solely by exchanging messages over fault-free, FIFO 

communication channels. Processes Pi, Pj , and Pk have taken check-points {Ci 0, Ci 1}, {Cj 0, Cj 1, 
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Cj 2}, and {Ck 0, Ck 1}, respectively, and these processes have exchanged messages A to J as shown 

in Figure. 

 

 

 
 

• Checkpoints : {𝐶𝑖,0, 𝐶𝑖,1}, {𝐶𝑗,0, 𝐶𝑗,1, 𝐶𝑗,2}, and {𝐶𝑘,0, 𝐶𝑘,1, 𝐶𝑘,2} 

• Messages : A - J 

• The restored global consistent state : {𝐶𝑖,1, 𝐶𝑗,1, 𝐶𝑘,1} 

 

The rollback of process   to checkpoint 𝐶𝑖,1 created an orphan message H 

• Orphan message I is created due to the roll back of process Pj to checkpoint Cj 1 

• Messages C, D, E, and F are potentially problematic 

– Message C: a delayed message 

– Message D: a lost message since the send event for D is recorded in the 

restored state for process Pj , but the receive event has been undone at process Pi.  

- Lost messages can be handled by having processes keep a message log of all the sent 

messages 

Messages E, F: delayed orphan messages. After resuming execution from their checkpoints, 

processes will generate both of these messages 

 

4.4 Checkpoint-based recovery 

 

In the checkpoint-based recovery approach, the state of each process and the communication 

channel is check pointed frequently so that, upon a failure, the system can be restored to a 

globally consistent set of checkpoints. It does not rely on the PWD assumption, and so does not 

need to detect, log, or replay non-deterministic events. Checkpoint-based protocols are therefore 

less restrictive and simpler to implement than log-based rollback recovery. However, 

checkpoint-based rollback recovery does not guarantee that pre-failure execution can be 

deterministically regenerated after a rollback. There-fore, checkpoint-based rollback recovery 

may not be suitable for applications that require frequent interactions with the outside world.  
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Checkpoint-based rollback-recovery techniques can be classified into three categories:  

 uncoordi-nated checkpointing,  

 coordinated checkpointing, and  

 communication-induced checkpointing 

 

4.4.1 Uncoordinated Checkpointing 

Each process has autonomy in deciding when to take checkpoints 

• Advantages 

– The lower runtime overhead during normal execution 

• Disadvantages 

– Domino effect during a recovery 

– Recovery from a failure is slow because processes need to iterate to find a 

consistent set of checkpoints 

– Each process maintains multiple checkpoints and periodically invoke a 

garbage collection algorithm 

– Not suitable for application with frequent output commits 

• The processes record the dependencies among their checkpoints caused by 

message exchange during failure-free operation 

 

Direct dependency tracking technique 

Let Ci x be the xth checkpoint of process Pi, where i is the process i.d. and x is the checkpoint 

index (we assume each process Pi starts its execution with an initial checkpoint Ci 0). Let Ii x 

denote the checkpoint interval or simply interval between checkpoints Ci x−1 and Ci x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 When a failure occurs, the recovering process initiates rollback by broad-casting a 

dependency request message to collect all the dependency information maintained by each 
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process. When a process receives this message, it stops its execution and replies with the 

dependency information saved on the stable storage as well as with the dependency 

information, if any, which is associated with its current state.  

 The initiator then calculates the recovery line based on the global dependency information 

and broadcasts a rollback request message containing the recovery line. Upon receiving 

this message, a process whose current state belongs to the recovery line simply resumes 

execution; otherwise, it rolls back to an earlier checkpoint as indicated by the recovery line. 

 

4.4.2 Coordinated checkpointing 

 In coordinated checkpointing, processes orchestrate their checkpointing activ-ities so that 

all local checkpoints form a consistent global state. Coordinated checkpointing simplifies 

recovery and is not susceptible to the domino effect, since every process always restarts 

from its most recent checkpoint.  

 Also, coordinated checkpointing requires each process to maintain only one checkpoint on 

the stable storage, reducing the storage overhead and eliminating the need for garbage 

collection. The main disadvantage of this method is that large latency is involved in 

committing output, as a global checkpoint is needed before a message is sent to the OWP. 

Also, delays and overhead are involved everytime a new global checkpoint is taken. 

 If perfectly synchronized clocks were available at processes, the following simple method 

can be used for checkpointing: all processes agree at what instants of time they will take 

checkpoints, and the clocks at processes trigger the local checkpointing actions at all 

processes. Since perfectly synchronized clocks are not available, the following approaches 

are used to guarantee checkpoint consistency: either the sending of messages is blocked 

for the duration of the protocol, or checkpoint indices are piggybacked to avoid blocking. 

 

Blocking Checkpointing 

 

 A straightforward approach to coordinated checkpointing is to block commu-nications 

while the checkpointing protocol executes. After a process takes a local checkpoint, to 

prevent orphan messages, it remains blocked until the entire checkpointing activity is 

complete.  

 The coordinator takes a checkpoint and broadcasts a request message to all processes, 

asking them to take a checkpoint. When a process receives this message, it stops its 

execution, flushes all the communication channels, takes a tentative checkpoint, and sends 

an acknowledgment message back to the coordinator. After the coordinator receives 

acknowledgments from all processes, it broadcasts a commit message that completes the 

two-phase checkpointing protocol.  

 After receiving the commit message, a process removes the old permanent checkpoint and 

atomically makes the tentative checkpoint permanent and then resumes its execution and 

exchange of messages with other processes. A problem with this approach is that the 

computation is blocked during the checkpointing and therefore, non-blocking 

checkpointing schemes are preferable. 

 

 

– After a process takes a local checkpoint, to prevent orphan messages, it 

remains blocked until the entire checkpointing activity is complete 
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– Disadvantages 

• the computation is blocked during the checkpointing 

 

Non-blocking Checkpointing 

 

In this approach the processes need not stop their execution while taking checkpoints. A 

fundamental problem in coordinated checkpointing is to pre-vent a process from receiving 

application messages that could make the checkpoint inconsistent.  

Consider the example in Figure (a): message m is sent by P0 after receiving a checkpoint request 

from the checkpoint coordinator. Assume m reaches P1 before the checkpoint request. This sit-

uation results in an inconsistent checkpoint since checkpoint c1 x shows the receipt of message m 

from P0, while checkpoint c0 x does not show m being sent from P0. 

 

If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint 

message on each channel by a checkpoint request, forcing each process to take a checkpoint 

before receiving the first post-checkpoint message, as illustrated in Figure 13.6(b).  

 

 
Non-blocking coordinated checkpointing: (a) checkpoint inconsistency; (b) a solution with 

FIFO channels 

 

• The processes need not stop their execution while taking checkpoints 

• A fundamental problem in coordinated check pointing is to prevent a process from 

receiving application messages that could make the checkpoint inconsistent. 

 

 

• Example (a) : checkpoint inconsistency 

 

message m is sent by P0 after receiving a checkpoint request from the checkpoint coordinator. 

Assume m reaches P1 before the checkpoint request. This situation results in an inconsistent 

checkpoint since checkpoint c1 x shows the receipt of message m from P0, while checkpoint c0 x 

does not show m being sent from P0. 
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• Example (b) : a solution with FIFO channels 

If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint message 

on each channel by a checkpoint request, forcing each process to take a checkpoint before 

receiving the first post-checkpoint message 

 

4.4.3 Impossibility of min-process non-blocking checkpointing 

 

A min-process, non-blocking checkpointing algorithm is one that forces only a minimum number 

of processes to take a new checkpoint, and at the same time it does not force any process to suspend 

its computation. Clearly, such checkpointing algorithms will be very attractive. Cao and Singhal 

showed that it is impossible to design a min-process, non-blocking checkpointing algorithm. 

 

The following type of min-process checkpointing algorithms are possible. The algorithm consists 

of two phases.  

 During the first phase,  the checkpoint initiator identifies all processes with which it has 

communicated since the last checkpoint and sends them a request. Upon receiving the 

request, each process in turn identifies all processes it has communicated with since the 

last checkpoint and sends them a request, and so on, until no more processes can be 

identified.  

 During the second phase, all processes identified in the first phase take a checkpoint. The 

result is a consistent checkpoint that involves only the participating processes. In this 

protocol, after a process takes a checkpoint, it cannot send any message until the second 

phase terminates successfully, although receiving a message after the checkpoint has been 

taken is allowable. 

 

Based on a concept called “Z-dependency,” Cao and Singhal proved that there does not exist a 

non-blocking algorithm that will allow a minimum number of processes to take their checkpoints. 

Here we give only a sketch of the proof and readers are referred to the original source for a detailed 

proof. 

 

Z-dependency is defined as follows: if a process Pp sends a message to process Pq during its ith 

checkpoint interval and process Pq receives the message during its jth checkpoint interval, then Pq 

Z-depends on Pp during Pp’s ith checkpoint interval and Pq ’s jth checkpoint interval, denoted by 

Pp →
i
j Pq . If Pp →

i
j Pq and Pq → j k Pr , then Pr transitively Z-depends depends on Pp during Pr ’s 

kth checkpoint interval and Pp’s ith checkpoint interval, and this is denoted as Pp ∗ →i
k Pr . 

 

A min process algorithm is one that satisfies the following condition: when a process Pp initiates 

a new checkpoint and takes checkpoint Cp i, a process Pq takes a checkpoint Cq j associated with 

Cp i if and only if Pq ∗ →j −1
i−1 Pp. In a min-process non-blocking algorithm, process Pp initiates a 

new checkpoint and takes a checkpoint Cp i and if a process Pr sends a message m to Pq after it 

takes a new checkpoint associated with Cp i, then Pq takes a checkpoint Cq i before processing m if 

and only if Pq ∗ → j −1
i−1 Pp. According to the min-process definition, Pq takes checkpoint Cq j if 

and only if Pq ∗ →j−1
i−1 Pp, but Pq should take Cq i before processing m. If it takes Cq j after 

processing m, m becomes an orphan. Therefore, when a process receives a message m, it must 

know if the initiator of a new checkpoint transitively Z-depends on it during the previous 

checkpoint interval. But it has been proved that there is not enough information at the receiver of 
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a message to decide whether the initiator of a new checkpoint transitively Z-depends on the 

receiver. Therefore, no min-process, non-blocking algorithm exists. 

 

4.4.4 Communication-induced Checkpointing 

 

Communication-induced checkpointing is another way to avoid the domino effect, while 

allowing processes to take some of their checkpoints inde-pendently. Processes may be forced to 

take additional checkpoints (over and above their autonomous checkpoints), and thus process 

independence is constrained to guarantee the eventual progress of the recovery line. 

Communication-induced checkpointing reduces or completely eliminates the useless 

checkpoints. 

• Two types of checkpoints 

– autonomous and forced checkpoints 

• Communication-induced checkpointing piggybacks protocol- related 

information on each application message 

• The receiver of each application message uses the piggybacked information to 

determine if it has to take a forced checkpoint to advance the global recovery line 

• The forced checkpoint must be taken before the application may process the 

contents of the message 

• In contrast with coordinated checkpointing, no special coordination messages are 

exchanged 

• Two types of communication-induced checkpointing 

– (i) model-based checkpointing and  

– (ii) index-based checkpointing. 

 

Model-based checkpointing 

 

 Model-based checkpointing prevents patterns of communications and check-points that 

could result in inconsistent states among the existing checkpoints. \ 

 A process detects the potential for inconsistent checkpoints and independently forces local 

checkpoints to prevent the formation of undesirable patterns.  

 A forced checkpoint is generally used to prevent the undesirable patterns from occurring. 

No control messages are exchanged among the processes during normal operation. All 

information necessary to execute the protocol is piggy-backed on application messages. 

The decision to take a forced checkpoint is done locally using the information available. 

 

Index-based checkpointing 

 

 Index-based communication-induced checkpointing assigns monotonically increasing 

indexes to checkpoints, such that the checkpoints having the same index at different 

processes form a consistent state.  

 Inconsistency between checkpoints of the same index can be avoided in a lazy fashion if 

indexes are piggybacked on application messages to help receivers decide when they 

should take a forced a checkpoint. 
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4.5 Log-based rollback recovery 

• A log-based rollback recovery makes use of deterministic  and 

nondeterministic events in a computation. 

 

4.5.1 Deterministic and Non-deterministic events 

– Non-deterministic events can be the receipt of a message from another 

process or an event internal to the process 

– a message send event is not a non-deterministic event. 

The execution of process P0 is a sequence of four deterministic intervals. The first one starts with 

the creation of the process, while the remaining three start with the receipt of messages m0, m3, 

and m7, respectively. Send event of message m2 is uniquely determined by the initial state of P0 

and by the receipt of message m0, and is therefore not a non-deterministic event. 

– Log-based rollback recovery assumes that all non-deterministic events can 

be identified and their corresponding determinants can be logged into the stable storage 

– During failure-free operation, each process logs the determinants of  all 

non-deterministic events that it observes onto the stable storage 

 
 

No-orphans consistency condition 

• Let e be a non-deterministic event that occurs at process p 

Depend(e) -> the set of processes that are affected by a non-deterministic event e. This set 

consists of p, and any process whose state depends on the event e according to Lamport’s 

happened before relation 

Log(e) ->  the set of processes that have logged a copy of e’s determinant in their volatile memory 

Stable(e) -> a predicate that is true if e’s determinant is logged on the stable storage 

• always-no-orphans condition 

∀ (e) :￢Stable(e) ⇒ Depend(e) ⊆ Log(e) 

 

4.5.2 Pessimistic Logging 

 

Pessimistic logging protocols assume that a failure can occur after any non-deterministic 

event in the computation 

• However, in reality failures are rare 

synchronous logging 

 

∀ e: ￢Stable(e) ⇒ |Depend(e)| = 0 
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– if an event has not been logged on the stable storage, then no process ca n 

depend on it. 

– stronger than the always-no-orphans condition 

 

 
 

Suppose processes P1 and P2 fail as shown, restart from checkpoints B and C, and roll forward 

using their determinant logs to deliver again the same sequence of messages as in the pre-failure 

execution. This guarantees that P1 and P2 will repeat exactly their pre-failure execution and re-

send the same messages. Hence, once the recovery is complete, both processes will be consistent 

with the state of P0 that includes the receipt of message m7 from P1. In a pessimistic logging system, 

the observable state of each process is always recoverable. 

 

 

4.5.3 Optimistic Logging 

 

 In optimistic logging protocols, processes log determinants asynchronously to the stable 

storage . These protocols optimistically assume that logging will be complete before a 

failure occurs. Determinants are kept in a volatile log, and are periodically flushed to the 

stable storage. Thus, optimistic logging does not require the application to block waiting 

for the determinants to be written to the stable storage, and therefore incurs much less 

overhead during failure-free execution.  

 However, the price paid is more complicated recovery, garbage collection, and slower 

output commit. If a process fails, the determinants in its volatile log are lost, and the state 

intervals that were started by the non-deterministic events corresponding to these 

determinants cannot be recovered. 

 Furthermore, if the failed process sent a message during any of the state intervals that 

cannot be recovered, the receiver of the message becomes an orphan process and must roll 

back to undo the effects of receiving the message. 

 

To  perform rollbacks correctly, optimistic logging protocols track causal dependencies 

during failure free execution 

• Optimistic logging protocols require a non-trivial garbage collect ion scheme 
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• Pessimistic protocols need only keep the most recent checkpoint of each process, 

whereas optimistic protocols may need to keep multiple checkpoints for each process 

 

4.5.4 Causal Logging 

 

Combines the advantages of both pessimistic and optimistic logging at the expense of a more 

complex recovery protocol. Like optimistic logging, it does not require synchronous access to the 

stable storage except during output commit. Like pessimistic logging, it allows each process to 

commit output independently and never creates orphans, thus isolating processes from the effects 

of failures at other processes. Moreover, causal logging limits the rollback of any failed process to 

the most recent checkpoint on the stable storage, thus minimizing the storage overhead and the 

amount of lost work.  

 

• Make sure that the always-no-orphans property holds 

• Each process maintains information about all the events that have causally affected its 

state 

 
 

 

 

4.6 Koo-Toueg coordinated checkpointing algorithm 
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• A coordinated checkpointing and recovery technique that takes a consistent set 

of checkpointing and avoids domino effect and livelock problems during the recovery 

 

• Includes 2 parts: the checkpointing algorithm and the recovery algorithm 

 

4.6.1 Checkpointing algorithm 

– Assumptions: FIFO channel, end-to-end protocols, communication 

failures do not partition the network, single process initiation, no process fails during the 

execution of the algorithm 

 

Two kinds of checkpoints: permanent and tentative 

• Permanent checkpoint: local checkpoint, part of a consistent global checkpoint 

• Tentative checkpoint: temporary checkpoint, become permanent checkpoint when the 

algorithm terminates successfully 

 

Checkpointing algorithm 

2 phases 

• The initiating process takes a tentative checkpoint and requests all other processes to take 

tentative checkpoints. Every process can not send messages after taking tentative checkpoint. 

All processes will finally have the single same decision: do or discard 

• All processes will receive the final decision from initiating process and act accordingly 

Correctness: for 2 reasons 

• Either all or none of the processes take permanent checkpoint 

• No process sends message after taking permanent checkpoint 

Optimization: maybe not all of the processes need to take checkpoints (if not change since the 

last checkpoint) 

The rollback recovery algorithm 

 

• Restore the system state to a consistent state after a failure with assumptions: single 

initiator, checkpoint and rollback recovery algorithms are not invoked concurrently 

 

Example of checkpoints taken unnecessarily 

 

2 phases 
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First phase 

An initiating process Pi sends a message to all other processes to check if they all are willing to 
restart from their previous checkpoints. A process may reply “no” to a restart request due to any 

reason (e.g., it is already participating in a checkpoint or recovery process initiated by some other 
process). If Pi learns that all processes are willing to restart from their previous checkpoints, Pi 

decides that all processes should roll back to their previous checkpoints. Otherwise, Pi aborts the 
rollback attempt and it may attempt a recovery at a later time. 

Second phase 

Pi propagates its decision to all the processes. On receiving Pi’s decision, a process acts 
accordingly. 

During the execution of the recovery algorithm, a process cannot send messages related to the 

underlying computation while it is waiting for Pi’s decision. 

Correctness 

 

All processes restart from an appropriate state because, if they decide to restart, they resume 

execution from a consistent state (the checkpointing algorithm takes a consistent set of 

checkpoints). 

 

An optimization 

The above recovery protocol causes all processes to roll back irrespective of whether a process 

needs to roll back or not. Consider the example shown in Figure. In the event of failure of process 

X, the above protocol will require processes X, Y, and Z to restart from checkpoints x2, y2, and z2, 

respectively. However, note that process Z need not roll back because there has been no interaction 

between process Z and the other two processes since the last checkpoint at Z. 

 

4.7 Juang-Venkatesan algorithm for asynchronous checkpointing and recovery 

• Assumptions: communication channels are reliable, delivery messages in FIFO 

order, infinite buffers, message transmission delay is arbitrary but finite 

• Underlying computation/application is event-driven: process P is at state s, 

receives message m, processes the message, moves to state s’ and send messages out. So the 

triplet (s, m, msgs_sent) represents the state of P 

Two type of log storage are maintained: 

– Volatile log: short time to access but lost if processor crash. Move to 

stable log periodically. 

– Stable log: longer time to access but remained if crashed 

 

Asynchronous checkpointing: 

• After executing an event, the triplet is recorded without any synchronization with other 

processes. 

• Local checkpoint consist of set of records, first are stored in volatile log, then moved to 

stable log. 

Recovery algorithm 

Notation and data structure 
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The following notation and data structure are used by the algorithm: 

• RCVDi←j CkPti represents the number of messages received by processor pi from 

processor pj , from the beginning of the computation until the checkpoint CkPt i. 

 

• SENTi→j CkPti represents the number of messages sent by processor pi to processor 

pj , from the beginning of the computation until the checkpoint CkPt i. 

Idea: 

 From the set of checkpoints, find a set of consistent checkpoints 

 Doing that based on the number of messages sent and received 

Example 

 

 

Procedure RollBack_Recovery:  

processor pi executes the following: 

STEP (a) 

 

if processor pi is recovering after a failure then CkPti = latest event 

logged in the stable storage 

else 

 

CkPti = latest event that took place in pi {The latest event at pi can be either in stable or 

in volatile storage.} 

 

end if 

 

STEP (b) 

 

for k = 1 to N {N is the number of processors in the system} do for each 

neighboring processor pj do 

 

compute SENTi→j  CkPti 

 

send a ROLLBACK i SENTi→j CkPti message to pj end for 

 

for every ROLLBACK j c  message received from a neighbor j do 
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if RCVDi←j  CkPti  > c {Implies the presence of orphan messages} 

then 

find the latest event e such that RCVDi←j e = c {Such an event e may be in the 

volatile storage or stable storage.} 

 

CkPti  = e 

end if 

 

end for 

 

end for{for k} 

 

 

4.7 Consensus and Agreement 

 

4.7.1 Assumptions 

Assumptions underlying our study of agreement algorithms: 

 

Failure models Among the n processes in the system, at most f  processes can be faulty. A faulty 

process can behave in any manner allowed by the failure model assumed. 

 

Synchronous/asynchronous communication If a failure-prone process chooses to send a message 

to process Pi but fails, then Pi cannot detect the non-arrival of the message in an asynchronous 

system because this scenario is indistinguishable from the scenario in which the message takes a 

very long time in transit. 

• Network connectivity The system has full logical connectivity, i.e., each process can 

communicate with any other by direct message passing. 

 

• Sender identification A process that receives a message always knows the identity of the 

sender process. This assumption is important – because even with Byzantine behavior, even 

though the payload of the message can contain fictitious data sent by a malicious sender, the 

underlying network layer protocols can reveal the true identity of the sender process. 

• Channel reliability The channels are reliable, and only the processes may fail (under one of 

various failure models). This is a simplifying assumption in our study. As we will see even 

with this simplifying assumption, the agreement problem is either unsolvable, or solvable in 

a complex manner. 

 

• Authenticated vs. non-authenticated messages In our study, we will be dealing only with 

unauthenticated messages. With unauthenticated mes-sages, when a faulty process relays a 

message to other processes, (i) it can forge the message and claim that it was received from 

another process, and (ii) it can also tamper with the contents of a received message before 

relaying it. An unauthenticated message is also called an oral message or an unsigned 

message. 

 

• Agreement variable The agreement variable may be boolean or multi-valued, and need not 

be an integer. When studying some of the more complex algorithms, we will use a boolean 

variable. This simplifying assumption does not affect the results for other data types, but 

helps in the abstraction while presenting the algorithms. 
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4.7.2 Problem Specifications 

The Byzantine agreement and other problems 

Byzantine Agreement (single source has an initial value)  

Agreement:All non-faulty processes must agree on the same value. 

Validity:If the source process is non-faulty, then the agreed upon value by all the non-faulty 

processes must be the same as the initial value of the source. 

Termination:Each non-faulty process must eventually decide on a value. 

 

Consensus Problem (all processes have an initial value) 

Agreement:All non-faulty processes must agree on the same (single) value. 

Validity:If all the non-faulty processes have the same initial value, then the agreed upon value by 

all the non-faulty processes must be that same value. 

Termination:Each non-faulty process must eventually decide on a value. 

 

Interactive Consistency (all processes have an initial value) 

Agreement:All non-faulty processes must agree on the same array of values A[v1 . . . vn]. 

Validity:If process i is non-faulty and its initial value is vi , then all non-faulty processes agree 

on vi as the i th element of the array A. If process j is faulty, then the non-faulty processes can 

agree on any value for A[j ]. 

Termination:Each non-faulty process must eventually decide on the array A. These problems are 

equivalent to one another! Show using reductions. 

4.8 Overview of Results 

 

Failure 

mode 

Synchronous system 

(message-passing and shared memory) 

Asynchronous system 

(message-passing and shared memory) 

No 

failure 

agreement attainable; 

common knowledge also attainable 

agreement attainable; 

concurrent common knowledge attainable 

Crash 

failure 

agreement attainable 

f < n processes Ω(f + 1) rounds 

agreement not attainable 

Byzantine 

failure 

agreement attainable 

f ≤ |(n − 1)/3∫ Byzantine processes 

Ω(f + 1) rounds 

agreement not attainable 

Table:Overview of results on agreement. f denotes number of failure-prone processes. n 

is the total number of processes. 
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Agreement in a failure-free system (synchronous or asynchronous) 

 

In a failure-free system, consensus can be attained in a straightforward manner 

Some Solvable Variants of the Consensus Problem in Async Systems 

 

Solvable 

Variants 

Failure model and 

overhead 

Definition 

Reliable 

broadcast 

crash failures, n > f 

(MP) 

Validity, Agreement, Integrity 

conditions 

k-set 

consensus 

crash failures. f < k < n. 

(MP and SM) 

size of the set of values agreed 

upon must be less than k 

s-

agreement 

crash failures 

n ≥ 5f + 1 (MP) 

values agreed upon are 

within s of each other 

Renaming up to f fail-stop 

processes, 

n ≥ 2f + 1 (MP) 

Crash failures f ≤ n − 

1 (SM) 

select a unique name from 

a set of names 

Table:Some solvable variants of the agreement problem in asynchronous system. The overhead 

bounds are for the given algorithms, and not necessarily tight bounds for the problem 

 

Solvable Variants of the Consensus Problem in Async Systems 

 

 
 

14.9 Agreement in a failure-free system  

 

14.9.1 Agreement in (message-passing) synchronous systems with failures 

 

14.9.1.1. Consensus Algorithm for Crash Failures (MP, synchronous) 

 Up to f (< n) crash failures possible. 

 In f + 1 rounds, at least one round has no failures. 

 Now justify: agreement, validity, termination conditions are satisfied. 

 Complexity: O(f + 1)n2 messages 

 f + 1 is lower bound on number of rounds 
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Upper Bound on Byzantine Processes (sync) 

 
 

Taking simple majority decision does not help because loyal commander Pa cannot distinguish 

between the possible scenarios (a) and (b); hence does not know which action to take. 

 
4.9.2 Byzantine agreement tree algorithm: exponential (synchronous system) 

Recursive formulation 

 In the first round, the commander Pc  sends its value to the other three lieutenants, as 

shown by dotted arrows. 

 In the second round, each lieutenant relays to the other two lieutenants, the value it 

received from the commander in the first round. At the end of the second round, a 

lieutenant takes the majority of the values it received (i) directly from the commander in 

the first round, and (ii) from the other two lieutenants in the second round.  

 The majority gives a correct estimate of the commander’s value. 
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Consensus Solvable when f = 1, n = 4 

 
 There is no ambiguity at any loyal commander, when taking majority decision 

 Majority decision is over 2nd round messages, and 1st round message received directly 

from commander-in-chief process. 

 

Byzantine Generals (recursive formulation), (sync, msg-passing) 
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Relationship between # Messages and Rounds 

 

 
Relationships between messages and rounds in the Oral Messages algorithm for Byzantine 

agreement.  

Complexity: f + 1 rounds, exponential amount of space, and (n − 1) + (n − 1)(n − 2) + . . . + (n − 

1)(n − 2)..(n − f − 1)messages 
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Bzantine Generals (iterative formulation), Sync, Msg-passing 

 

 
Tree Data Structure for Agreement Problem (Byzantine Generals) 
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4.9.3 Exponential Algorithm: An example 

 

 
 

Impact of a Loyal and of a Disloyal Commander 
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The effects of a loyal or a disloyal commander in a system with n = 14 and f = 4. The subsystems 

that need to tolerate k and k − 1 traitors are shown for two cases. (a) Loyal commander. 

(b) No assumptions about commander. 

 

(a) the commander who invokes Oral Msg(x) is loyal, so all the loyal processes have the same 

estimate. Although the subsystem of 3x processes has x malicious processes, all the loyal 

processes have the same view to begin with. Even if this case repeats for each nested invocation 

of Oral Msg, even after x rounds, among the processes, the loyal processes are in a simple 

majority, so the majority function works in having them maintain the same common view of the 

loyal commander’s value.  

(b) the commander who invokes Oral Msg(x) may be malicious and can send conflicting values 

to the loyal processes. The subsystem of 3x processes has x − 1 malicious processes, but all the 

loyal processes do not have the same view to begin with. 

 

4.9.4 The Phase King Algorithm 

 

Operation 

Each phase has a unique ”phase king” derived, say, from PID. Each phase has 

two rounds: 

in 1st round, each process sends its estimate to all other processes. 

in 2nd round, the ”Phase king” process arrives at an estimate based on the values it 

received in 1st round, and broadcasts its new estimate to all others. 
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(f + 1) phases, (f + 1)[(n − 1)(n + 1)] messages, and can tolerate up to 

f < |n/4| malicious processes 

 

Correctness Argument 

Among f + 1 phases, at least one phase k where phase-king is non-malicious. 

In phase k, all non-malicious processes Pi and Pj will have same estimate of consensus 

value as Pk does. 

1 Pi and Pj use their own majority values (Hint: =⇒ Pi ’s mult > n/2 + f ) 

2 Pi uses its majority value; Pj uses phase-king’s tie-breaker value. (Hint: Pi ”s 

mult > n/2 + f , Pj ’s mult > n/2 for same value) 

3 Pi and Pj use the phase-king’s tie-breaker value. (Hint: In the phase in which 

Pk is non-malicious, it sends same value to Pi and Pj ) 

In all 3 cases, argue that Pi and Pj end up with same value as estimate 

If all non-malicious processes have the value x at the start of a phase, they will continue 

to have x as the consensus value at the end of the phase. 
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UNIT V P2P & DISTRIBUTED SHARED MEMORY 

Peer-to-peer computing and overlay graphs: Introduction – Data indexing and overlays – 

Chord – Content addressable networks – Tapestry. Distributed shared memory: Abstraction 

and advantages – Memory consistency models –Shared memory Mutual Exclusion 

 

5.1 Peer-to-peer Computing and Overlay Graphs 

 

Characteristics 

 

 Peer-to-peer (P2P) network systems use an application-level organization of the 

network overlay for flexibly sharing resources (e.g., files and multimedia 

documents) stored across network-wide computers.  

 All nodes are equal; communication directly between peers (no client-server) Allow 

location of arbitrary objects; no DNS servers required 

 Large combined storage, CPU power, other resources, without scalability costs 

 Dynamic insertion and deletion of nodes, as well as of resources, at low cost 

 

Features Performance 

self-organizing large combined storage, CPU power, and 

resources 

distributed control fast search for machines and data objects 

role symmetry for nodes scalable 

anonymity efficient management of churn 

naming mechanism selection of geographically close servers 

security, authentication, 

trust 

redundancy in storage and paths 

Table:Desirable characteristics and performance features of P2P systems. 

 

5.1.1. Napster 

 

 One of the earliest popular P2P systems, Napster [25], used a server-mediated central 

index architecture organized around clusters of servers that store direct indices of the 

files in the system. 

 Central server maintains a table with the following information of each registered client: 

(i) the client’s address (IP) and port, and offered bandwidth, and (ii) information about 

the files that the client can allow to share. 

1. A client connects to a meta-server that assigns a lightly-loaded server. 

2. The client connects to the assigned server and forwards its query and identity. 

3. The server responds to the client with information about the users connected to it 

and the files they are sharing. 

4. On receiving the response from the server, the client chooses one of the users from 

whom to download a desired file. The address to enable the P2P connection 

between the client and the selected user is provided by the server to the client. 

Users are generally anonymous to each other. The directory serves to provide the mapping 

from a particular host that contains the required content, to the IP address needed to download 

from it. 
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5.1.2 Application layer overlays 

 A core mechanism in P2P networks is searching for data, and this mechanism depends on 

how (i) the data, and (ii) the network, are organized. Search algorithms for P2P networks 

tend to be data-centric, as opposed to the host-centric algorithms for traditional networks.  

 P2P search uses the P2P overlay, which is a logical graph among the peers that is used for 

the object search and object storage and management algorithms. Note that above the P2P 

over-lay is the application layer overlay, where communication between peers is point-to-

pont (representing a logical all-to-all connectivity) once a connection is established.  
 The P2P overlay can be structured (e.g., hypercubes, meshes, butterfly networks, de Bruijn 

graphs) or unstructured 

 

Structured and Unstructured Overlays 

 

 Search for data and placement of data depends on P2P overlay (which can be thought 

of as being below the application level overlay) 

 Search is data-centric, not host-centric Structured P2P 

overlays: 

o ) E.g., hypercube, mesh, de Bruijn graphs 

o ) rigid organizational principles for object storage and object search 

 Unstructured P2P overlays: 

o ) Loose guidelines for object search and storage 

o ) Search mechanisms are ad-hoc, variants of flooding and random walk 

 Object storage and search strategies are intricately linked to the overlay structure as 

well as to the data organization mechanisms. 

 

5.2 Data indexing 

 

The data in a P2P network is identified by using indexing. Data indexing allows the physical data 

independence from the applications. Indexing mechanisms can be classified as being centralized, 

local, or distributed 

 Centralized indexing, e.g., versions of Napster, DNS 

 Distributed indexing. Indexes to data scattered across peers. Access data through 

mechanisms such as Distributed Hash Tables (DHT). These differ in hash mapping, 

search algorithms, diameter for lookup, fault tolerance, churn resilience. 

 Local indexing. Each peer indexes only the local objects. Remote objects need to 

be searched for. Typical DHT uses flat key space. Used commonly in unstructured 

overlays (E.g., Gnutella) along with flooding search or random walk search. 

 

An alternate way to classify indexing mechanisms is as being a semantic index mechanism or 

a semantic-free index mechanism.  

 Semantic indexing - human readable, e.g., filename, keyword, database key. Supports 

keyword searches, range searches, approximate searches. 

 Semantic-free indexing. Not human readable. Corresponds to index obtained by use of 

hash function. 
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Simple Distributed Hash Table scheme 

 

Native node identifier  Object/ file 

(address) space   value space 

 
 

Mappings from node address space and object space in a simple DHT. 

 Highly deterministic placement of files/data allows fast lookup. 

But file insertions/deletions under churn incurs some cost. 

 Attribute search, range search, keyword search etc. not possible. 

 

5.2.1 Distributed indexing 

Structured overlays 

 

 The P2P network topology has a definite structure, and the placement of files or data in this 

network is highly deterministic as per some algorithmic mapping. (The placement of files can 

sometimes be “loose,” as in some earlier P2P systems like Freenet, where “hints” are used.) 

 The objective of such a deterministic mapping is to allow a very fast and deterministic lookup 

to satisfy queries for the data. These systems are termed as lookup systems and typically use 

a hash table interface for the mapping. 

 

Unstructured overlays 

  
 The P2P network topology does not have any particular controlled structure, nor is there any 

control over where files/data is placed. Each peer typically indexes only its local data objects, 

hence, local indexing is used.  

 Node joins and departures are easy – the local overlay is simply adjusted. File placement is 

not governed by the topology. Search for a file may entail high message overhead and high 

delays. However, complex queries are supported because the search criteria can be arbitrary. 

 Although the P2P network topology does not have any controlled structure, some topologies 

naturally emerge. 

 Power law random graph (PLRG) This is a random graph where the node degrees 

follow the power law. Here, if the nodes are ranked in terms of their degree, then the 

ith node has c/i neighbors, where c is a constant. 

 Normal random graph This is a normal random graph where the nodes typically have 

a uniform degree. 

 

Structured vs. unstructured overlays 
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Unstructured Overlays: Properties 

 

 Semantic indexing possible =⇒ keyword, range, attribute-based queries Easily 

accommodate high churn 

 Efficient when data is replicated in network Good if user 

satisfied with ”best-effort” search 

 Network is not so large as to cause high delays in search  

 

Gnutella features 

 A joiner connects to some standard nodes from Gnutella directory 

 Ping used to discover other hosts; allows new host to announce itself 

 Pong in response to Ping ; Pong contains IP, port #, max data size for download 

 Query msgs used for flooding search; contains required parameters 

 QueryHit are responses. If data is found, this message contains the IP, port #, file size, 

download rate, etc. Path used is reverse path of Query 

 

5.3 Chord 

 

The Chord protocol,  uses a flat key space to associate the mapping between network 

nodes and data objects/files/values. The node address as well as the data 

object/file/value is mapped to a logical identifier in the common key space using a 

consistent hash function. 

 When a node joins or leaves the network of n nodes, only 1/n keys have to moved. 

 The Chord key space is flat, thus giving applications flexibility in map-ping their 

files/data to keys. Chord supports a single operation, lookup x , which maps a given 

key x to a network node. Specifically, Chord stores a file/object/value at the node to 

which the file/object/value’s key maps. 

 Two steps involved. 
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 ) Map the object value to its key 

 ) Map the key to the node in the native address space using lookup 

 Common address space is a m-bit identifier (2m addresses), and this space is arranged 

on a logical ring mod (2m). 

 A key k gets assigned to the first node such that the node identifier equals or is greater 

than the key identifier k in the logical space address. 

 

 
5.3.1 Chord: Simple Lookup 

 

 A simple key lookup algorithm that requires each node to store only 1 entry in its routing 

table works as follows.  

 Each node tracks its successor on the ring, in the variable successor; a query for key x 

is forwarded to the successors of nodes until it reaches the first node such that that 

node’s identifier y is greater than the key x, modulo 2m. 

 

 The result, which includes the IP address of the node with key y, is returned to the 

querying node along the reverse of the path that was followed by the query. 

 

 This mechanism requires O(1) local space but O(n) hops. 

 

 

 

 

 

 

 

 

 

5.3.2 Chord: Scalable Lookup 
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Chord 

 
 

 

Scalable Lookup - Example 
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5.3.3 Chord: Managing Churn 

The code to manage dynamic node joins, departures, and failures is given in Algorithm  

Node joins 

 To create a new ring, a node i executes Create_New_Ring which creates a ring with the 

singleton node.  

 To join a ring that contains some node j, node i invokes Join_Ring j . Node j locates i’s 

successor on the logical ring and informs i of its successor. 

 Before i can participate in the P2P exchanges, several actions need to happen: i’s successor 

needs to update its predecessor entry to i, i’s predecessor needs to revise its successor field 

to i, i needs to identify its predecessor, the finger table at i needs to be built, and the finger 

tables of all nodes need to be updated to account for i’s presence.  

 This is achieved by procedures Stabilize , Fix_Fingers , and Check_Predecessor that are 

periodically invoked by each node. 

 

 

 

 

 

 

 

 

 

 

 

Algorithm  Managing churn in Chord. Code shown is for node 
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Figure illustrates the main steps of the joining process. A recent joiner node i that has 

executed Join_Ring · gets integrated into the ring by the following sequence: 

 

 

 
 

 How are node departures handled? or node failures? 

 For a Chord network with n nodes, each node is responsible for at most (1 + s) 

K/n keys, with “high probability”, where K is the total number of 

keys. Using consistent hashing, s can be shown to be bounded by O(log n). 

 The search for a successor in Locate Successor in a Chord network with n 

nodes requires time complexity O(log n) with high probability. 

 The size of the finger table is log (n) ≤ m. The 

average lookup time is 1/2 log (n). 
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5.4 Content Addressable Network (CAN) 

 

 An indexing mechanism that maps objects to locations in CAN 

 object-location in P2P networks, large-scale storage management, wide-area 

name resolution services that decouple name resolution and the naming scheme 

 Efficient, scalable addition of and location of objects using 

location-independent names or keys. 

 3 basic operations: insertion, search, deletion of (key, value) pairs 

 d -dimensional logical Cartesian space organized as a d -torus logical topology, i.e.. d 

-dimensional mesh with wraparound. 

 Space partitioned dynamically among nodes, i.e., node i has space r (i ). For 

object v , its key r (v ) is mapped to a point ˙p in the space. (v, key (v )) tuple 

stored at node which is the present owner containing the point ˙p. 

 Analogously to retrieve object v. 

 

 3 components of CAN 

) Set up CAN virtual coordinate space, partition among nodes 

) Routing in virtual coordinate space to locate the node that is assigned the 

region corresponding to ṗ 

) Maintain the CAN in spite of node departures and failures 

 

5.4.1 CAN Initialization 

 

 Each CAN has a unique DNS name that maps to the IP address of a few bootstrap 

nodes. Bootstrap node: tracks a partial list of the nodes that it believes are currently 

in the CAN. 

 A joiner node queries a bootstrap node via a DNS lookup. Bootstrap node replies 

with the IP addresses of some randomly chosen nodes that it believes are in the 

CAN. 

 The joiner chooses a random point ˙p in the coordinate space. The joiner sends a 

request  to one of the nodes in the CAN, of which it learnt in Step 2, asking to be 

assigned a region containing ˙p. The recipient of the request routes the request to 

the owner old owner (˙p) of the region containing ˙p, using CAN routing algorithm.  

 The old owner (˙p) node splits its region in half and assigns one half to the joiner. 

The region splitting is done using an a priori ordering of all the dimensions. This 

also helps to methodically merge regions, if necessary. The (k, v ) tuples for which 

the key k now maps to the zone to be transferred to the joiner, are also transferred 

to the joiner. 

 The joiner learns the IP addresses of its neighbours from old owner (˙p). The 

neighbors are old owner (˙p) and a subset of the neighbours of old owner (˙p). old 

owner (˙p) also updates its set of neighbours. The new joiner as well as old owner 

(˙p) inform their neighbours of the changes to the space allocation, In fact, each 

node has to send an immediate update of its assigned region, followed by periodic 

HEARTBEAT refresh messages, to all its neighbours. 
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When a node joins a CAN, only the neighbouring nodes in the coordinate space are required 

to participate. The overhead is thus of the order of the number of neighbours, which is O(d ) 

and independent of n. 

 

5.4.2 CAN routing 

 CAN routing uses the straight-line path from the source to the destination in the logical 

Euclidean space.  

 This routing is realized as follows. Each node maintains a routing table that tracks its 

neighbor nodes in the log-ical coordinate space. In d-dimensional space, nodes x and y 

are neigh-bors if the coordinate ranges of their regions overlap in d − 1 dimensions, and 

abut in one dimension. 

 

 
 The routing table at each node tracks the IP address and the virtual coor-dinate region of 

each neighbor. To locate value v, its key k v is mapped to a point p- whose coordinates 

are used in the message header.  

 Knowing the neighbors’ region coordinates, each node follows simple greedy routing by 

forwarding the message to that neighbor having coordinates that are closest to the 

destination’s coordinates 

 

5.4.3 CAN Maintainence 

 

 Voluntary departure: Hand over region and (key, value) tuples to a neighbor. 

Neighbor choice: formation of a convex region after merger of regions 

 Otherwise, neighbor with smallest volume. However, regions are not merged and 

neighbor handles both regions until background reassignment protocol is run. 

 Node failure detected when periodic HEARTBEAT message not received by 

neighbors. They then run a TAKEOVER protocol to decide which neighbor will 

own dead node’s region. This protocol favors region with smallest volume. 

 Despite TAKEOVER protocol, the (key, value) tuples remain lost until 

background region reassignment protocol is run. 

 Background reassignment protocol: for 1-1 load balancing, restore 1-1 node to 

region assignment, and prevent fragmentation. 
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5.4.4 CAN Optimizations 

Improve per-hop latency, path length, fault tolerance, availability, and load balancing. 

These techniques typically demonstrate a trade-off. 

 Multiple dimensions. As the path length is O(d · n1/d ), increasing the number of 

dimensions decreases the path length and increases routing fault tolerance at the 

expense of larger state space per node. 

 Multiple realities or coordinate spaces. The same node will store different (k, v ) 

tuples belonging to the region assigned to it in each reality, and will also have a 

different neighbour set. The data contents (k, v ) get replicated, leading to higher 

availability. Furthermore, the multiple copies of each (k, v ) tuple offer a choice. 

 Routing fault tolerance also improves. 

 Use delay metric instead of Cartesian metric for routing 

 Overloading coordinate regions by having multiple nodes assigned to each 

region. Path length and latency can reduce, fault tolerance improves, per-hop 

latency decreases. 

 Use multiple hash functions. Equivalent to using multiple realities. 

Topologically sensitive overlay. This can greatly reduce per-hop latency. 

 

CAN Complexity: O(d ) for a joiner. O(d/4 log (n)) for routing.  

Node departure O(d 2). 

 

5.5 Tapestry 

 

 The Tapestry P2P overlay network provides efficient scalable location-independent routing 

to locate objects distributed across the Tapestry nodes 

 Nodes and objects are assigned IDs from common space via a distributed hashing. 

 Hashed node ids are termed VIDs or vid . Hashed object identifiers are termed GUIDs or 

OG . 

 ID space typically has m = 160 bits, and is expressed in hexadecimal. 

 If a node v exists such that vid = OG exists, then that v become the root. If such a v does 

not exist, then another unique node sharing the largest common prefix with OG is chosen 

to be the surrogate root. 

 The object OG is stored at the root, or the root has a direct pointer to the object. 
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 To access object O, reach the root (real or surrogate) using prefix routing Prefix routing 

to select the next hop is done by increasing the prefix match of the next hop’s VID with 

the destination OGR . Thus, a message destined for 

OGR = 62C 35 could be routed along nodes with VIDs 6****, then 62***, 

then 62C**, then 62C3*, and then to 62C35 

 

5.5.1 Tapestry - Routing Table 

 

 Let M = 2m. The routing table at node vid contains b · logb M entries, organized in 

 logbM levels i = 1 . . . logbM. Each entry is of the form (wid , IP address). 

 Each entry denotes some “neighbour” node VIDs with a (i − 1)-digit prefix match 

with vid – thus, the entry’s wid matches vid in the (i − 1)-digit prefix. Further, in 

level i , for each digit j in the chosen base (e.g., 0, 1, . . . E, F when b = 16), there is an 

entry for which the i th digit position is j . 

 For each forward pointer, there is a backward pointer. 

 
Some example links at node with identifier ”7C25”. Three links each of levels 1 through 4 

are labeled. 

 

5.5.2 Tapestry: Routing 

 

 The j th entry in level i may not exist because no node meets the criterion. This is 

a hole in the routing table. 

 Surrogate routing can be used to route around holes. If the j th entry in level i should 

be chosen but is missing, route to the next non-empty entry in level i , using 

wraparound if needed. All the levels from 1 to logb 2
m need to be considered in 

routing, thus requiring logb 2
m hops. 
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An example of routing from FAB11 to 62C35. The numbers on the arrows show the level of the 

routing table 

5.5.3 Tapestry: Routing Algorithm 

  

 

 Surrogate routing leads to a unique root. 

 For each vid , the routing algorithm identifies a unique spanning tree rooted at vid . 

 

 
 

5.5.4 Tapestry: Object Publication and Object Search 

 

 The unique spanning tree used to route to vid is used to publish and locate an object 

whose unique root identifier OGR is vid . 

 A server S that stores object O having GUID OG and root OGR periodically publishes the 

object by routing a publish message from S towards OGR . 

 At each hop and including the root node OGR , the publish message creates a pointer to the 

object 

 This is the directory info and is maintained in soft-state. 

 To search for an object O with GUID OG , a client sends a query destined for the root 

OGR . 
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o ) Along the logb 2
m hops, if a node finds a pointer to the object residing on 

server S , the node redirects the query directly to S . 

o ) Otherwise, it forwards the query towards the root OGR which is 

guaranteed to have the pointer for the location mapping. 

 A query gets redirected directly to the object as soon as the query path overlaps the publish 

path towards the same root 

 

 
 

An example showing publishing of object with identifier 72EA1 at two replicas 1F329 and 

C2B40. A query for the object from 094ED will find the object pointer at 7FAB1. A query 

from 7826C will find the object pointer at 72F11. A query from BCF35 will find the object 

pointer at 729CC. 

 

5.5.5 Tapestry: Node    Insertions 

 

 

 For any node Y on the path between a publisher of object O and the root 

 GOR , node Y should have a pointer to O. 

 Nodes which have a hole in their routing table should be notified if the insertion 

of node X can fill that hole. 

 If X becomes the new root of existing objects, references to those objects should 

now lead to X . 

 The routing table for node X must be constructed. 

 The nodes near X should include X in their routing tables to perform more efficient 

routing. 

 

The main steps in node insertion are as follows: 

 

1. Node X uses some gateway node into the Tapestry network to route a message to itself. This 

leads to its “surrogate,” i.e., the root node with identifier closest to that of itself (which is 
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ting: 

· · 

ting) 

Xid). The surrogate Z identifies the length of the longest common prefix that Zid shares with 

Xid.  

2. Node Z initiates a MULTICAST-CONVERGECAST on behalf of X by essentially creating 

a logical spanning tree as follows. Acting as a root,  

Z contacts all the j nodes, for all j ∈ 0 1 b − 1 (tree level 1). These are the nodes with prefix 
followed by digit j. Each such (level 1) node Z1 contacts all the prefix Z1 + 1 j nodes, for all 
j ∈ 0 1 b − 1 (tree level 2). This continues up to level logb2

m − and completes the 
MULTICAST. The nodes at this level are the leaves 

 

5.5.6 Tapestry: Node Deletions and Failures 

 

Node deletion 

 Node A informs the nodes to which it has (routing) backpointers. It also provides 

them with replacement entries for each level from its routing table. This is to 

prevent holes in their routing tables. (The notified neighbours can periodically run 

the nearest neighbour algorithm to fine-tune their tables.) 

 The servers to which A has object pointers are also notified. The notified servers 

send object republish messages. 

 During the above steps, node A routes messages to objects rooted at itself to their 

new roots. On completion of the above steps, node A informs the nodes reachable 

via its backpointers and forward pointers that it is leaving, and then leaves. 

Node failures: Repair the object location pointers, routing tables and mesh, using the redundancy 

in the Tapestry routing network. Refer to the book for the algorithms 

 

Complexity 

 

 A search for an object expected to take (logb2
m) hops. However, the routing tables 

are optimized to identify nearest neighbour hops (as per the space metric). Thus, 

the latency for each hop is expected to be small, compared to that for CAN and 

Chord protocols. 

 The size of the routing table at each node is c b logb2
m, where c is the constant 

that limits the size of the neighbour set that is maintained for fault-tolerance. 

The larger the Tapestry network, the more efficient is the performance. Hence, better if different 

applications share the same overlay. 

 

5.6 Distributed Shared Memory 

 

5.6.1 Distributed Shared Memory Abstractions 

 

Distributed shared memory (DSM) is an abstraction provided to the programmer of a distributed 

system. It gives the impression of a single monolithic memory, as in traditional von Neumann 

architecture. Programmers access the data across the network using only read and write primitives, 

as they would in a uniprocessor system. Programmers do not have to deal with send and receive 

communication primitives and the ensuing complexity of dealing explicitly with synchronization 

and consistency in the message-passing model. 
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 communicate with Read/Write ops in shared virtual space No Send and Receive 

primitives to be used by application 

o ) Under covers, Send and Receive used by DSM manager 

 Locking is too restrictive; need concurrent access 

 With replica management, problem of consistency arises! 

 

 
 

5.6.2 Advantages/Disadvantages of DSM 

Advantages: 

Shields programmer from Send/Receive primitives 

Single address space; simplifies passing-by-reference and passing complex data structures 

Exploit locality-of-reference when a block is moved 

DSM uses simpler software interfaces, and cheaper off-the-shelf hardware. Hence cheaper 

than dedicated multiprocessor systems 

No memory access bottleneck, as no single bus Large virtual 

memory space 

 DSM programs portable as they use common DSM programming interface Disadvantages: 

 Programmers need to understand consistency models, to write correct programs 

 DSM implementations use async message-passing, and hence cannot be more efficient 

than msg-passing implementations 

 By yielding control to DSM manager software, programmers cannot use their own msg-

passing solutions. 

 

5.6.3 Issues in Implementing DSM Software 

 

 Semantics for concurrent access must be clearly specified 

Semantics – replication? partial? full? read-only? write-only? 

Locations for replication (for optimization) 

 If not full replication, determine location of nearest data for access Reduce 

delays, # msgs to implement the semantics of concurrent access 

 Data is replicated or cached Remote 

access by HW or SW 

 Caching/replication controlled by HW or SW 

 DSM controlled by memory management SW, OS, language run-time system 
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5.6.4 Comparison of Early DSM Systems 

 

 

Type of DSM Examples Managem

ent 

Caching Remote 

access 

single-bus 

multiprocessor 

Firefly, 

Sequent 

by MMU hardware 

control 

by 

hardware 

switched 

multiprocessor 

Alewife, 

Dash 

by MMU hardware 

control 

by 

hardware 

NUMA system Butterfly, 

CM* 

by OS software 

control 

by 

hardware 

Page-based 

DSM 

Ivy, 

Mirage 

by OS software 

control 

by 

software 

Shared variable 

DSM 

Midway, 

Munin 

by 

language 

runtime 

system 

software 

control 

by 

software 

Shared object 

DSM 

Linda, 

Orca 

by 

language 

runtime 

system 

software 

control 

by 

software 

 

5.7 Memory consistency models 

The memory consistency model defines the set of allowable memory access orderings. 

Memory Coherence 

Memory coherence is the ability of the system to execute memory operations correctly. 

 si memory operations by Pi 

 (s1 + s2 + . . . sn)!/(s1!s2! . . . sn!) possible interleavings 

 Memory coherence model defines which interleavings are permitted Traditionally, Read 

returns the value written by the most recent Write ”Most recent” Write is ambiguous 

with replicas and concurrent accesses 

DSM consistency model is a contract between DSM system and application programmer 

 

 
   Sequential invocations and responses in a DSM system, without any pipelining 

 

5.7.1 Strict Consistency/Linearizability/Atomic Consistency 
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Strict consistency 

 

The strictest model, corresponding to the notion of correctness on the tradi-tional Von Neumann 

architecture or the uniprocessor machine, requires that any Read to a location (variable) should 

return the value written by the most recent Write to that location (variable).  

Two salient features of such a system are the following: (i) a common global time axis is 

implicitly available in a uniprocessor system; (ii) each write is immediately visible to all 

processes. 

1.  A Read should return the most recent value written, per a global time axis. For operations 

that overlap per the global time axis, the following must hold. 

   2 All operations appear to be atomic and sequentially executed. 

   3 All processors see the same order of events, equivalent to the global time ordering of non-

overlapping events. 

 

 
Sequential invocations and responses to each Read or Write operation. 

 

Strict Consistency / Linearizability: Examples 

Linearlzability: Implementation 

 

 Simulating global time axis is expensive. 

 Assume full replication, and total order broadcast support. 

 



  UNIT 5                                                                                                                                                         CS8603 – DISTRIBUTED SYSTEMS     

 
       
 
 

ting) 

 

 

 

Linearizability: Implementation 

 

When a Read in simulated at other processes, there is a no-op. Why do Reads  

participate in total order broadcasts? 

Reads need to be serialized w.r.t. other Reads and all Write operations. See counter-

example where Reads do not participate in total order broadcast. 

 
5.7.2 Sequential Consistency 

 

Linearizability or strict/atomic consistency is difficult to implement because the absence of a 

global time reference in a distributed system necessitates that the time reference has to be 

simulated. This is very expensive. Programmers can deal with weaker models. The first weaker 

model, that of sequential con-sistency (SC) was proposed by Lamport and uses logical time 

reference instead of the global time reference. 

 The result of any execution is the same as if all operations of the processors were 

executed in some sequential order. 

 The operations of each individual processor appear in this sequence in the local 

program order. 
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Any interleaving of the operations from the different processors is possible. But all processors 

must see the same interleaving. Even if two operations from different processors (on the same or 

different variables) do not overlap in a global time scale, they may appear in reverse order in the 

common sequential order seen by all. See examples used for linearizability 

 

Only Writes participate in total order BCs. Reads do not because: 

 all consecutive operations by the same processor are ordered in that same order (no 

pipelining), and 

 Read operations by different processors are independent of each other; to be 

ordered only with respect to the Write operations. 

 

Direct simplification of the LIN algorithm. Reads executed atomically. Not so 

for Writes. Suitable for Read-intensive programs. 

 

Sequential Consistency using Local Read Algorithm 

 

 
 

Sequential Consistency using Local Write Algorithm 
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5.7.3 Causal Consistency 

 

In SC, all Write ops should be seen in common order. 

For causal consistency, only causally  

related Writes should be seen in common P1  

order. 
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5.7.4 Pipelined RAM or Processor Consistency 

 

PRAM memory 

 Only Write ops issued by the same processor are seen by others in the 

order they  were issued, but Writes from different processors may be 

seen by other processors in different orders. 

 

 PRAM can be implemented by FIFO broadcast? PRAM memory can 

exhibit counter-intuitive behavior, see below. 

 
 

5.7.5 Slow Memory 

The next weaker consistency model is that of slow memory]. This model represents a location-

relative weakening of the PRAM model. In this model, only all Write operations issued by the 
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same processor and to the same memory location must be observed in the same order by all the 

processors. 

 

 
5.7.6 Hierarchy of Consistency Models 

 
 

Synchronization-based Consistency Models: Weak Consistency 

Consistency conditions apply only to special  

synchronization” instructions, e.g., 

 

 

barrier synchronization 

Non-sync statements may be executed in any order by various processors. 

E.g.,weak consistency, release consistency, entry consistency 

 

Weak consistency: 

All Writes are propagated to other processes, and all Writes done elsewhere 

are brought locally, at a sync instruction. 

 

 Accesses to sync variables are sequentially consistent 

 Access to sync variable is not permitted unless all Writes elsewhere have completed 

 No data access is allowed until all previous synchronization variable accesses have 
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been performed 

Drawback: cannot tell whether beginning access to shared variables (enter CS), or finished 

access to shared variables (exit CS). 

 

Synchronization based Consistency Models:  
Release Consistency and Entry Consistency 

Two types of synchronization Variables: Acquire and Release 

 

Release Consistency 

Acquire indicates CS is to be entered. Hence all Writes from other processors should be 

locally reflected at this instruction 

Release indicates access to CS is being completed. Hence, all Updates made locally 

should be propagated to the replicas at other processors. 

Acquire and Release can be defined on a subset of the variables. 

If no CS semantics are used, then Acquire and Release act as barrier synchronization 

variables. 

Lazy release consistency: propagate updates on-demand, not the PRAM way. 

 

Entry Consistency 

Each ordinary shared variable is associated with a synchronization variable (e.g., lock, 

barrier) 

For Acquire /Release on a synchronization variable, access to only those ordinary variables 

guarded by the synchronization variables is performed. 

 

5.8 Shared Memory Mutual Exclusion: Bakery Algorithm  

 

5.8.1 Lamport’s bakery algorithm 

 Lamport proposed the classical bakery algorithm for n-process mutual exclusion in shared 

memory systems [18]. The algorithm is so called because it mimics the actions that 

customers follow in a bakery store. A process wanting to enter the critical section picks a 

token number that is one greater than the elements in the array choosing 1 n .  

 Processes enter the critical section in the increasing order of the token numbers. In case of 

concurrent accesses to choosing by multiple processes, the processes may have the same 

token number. In this case, a unique lexicographic order is defined on the tuple token pid 

, and this dictates the order in which processes enter the critical section. The algorithm for 

process i is given in Algorithm. 

 The algorithm can be shown to satisfy the three requirements of the critical section 

problem: (i) mutual exclusion, (ii) bounded waiting, and (iii) progress. 
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− − − 

 
 

Mutual exclusion 

) Role of line (1e)? Wait for others’ timestamp choice to stabilize ... 

) Role of line (1f)? Wait for higher priority (lex. lower timestamp) process to 

enter CS 

 

Bounded waiting: Pi can be overtaken by other processes at most once (each) 

Progress: lexicographic order is a total order; process with lowest timestamp in lines 

(1d)-(1g) enters CS 

 

Space complexity: lower bound of n registers Time complexity: (n) time for  

Bakery algorithm 

 

 

 

 

 

 

 

5.8.2 Lamport’s WRWR mechanism and fast mutual exclusion 

 

Lamport’s fast mutex algorithm takes O(1) time in the absence of contention. However it 

compromises on bounded waiting. Uses W (x ) - R(y ) - W (y )-  R(x ) sequence necessary and 

sufficient to check for contention, and safely enter  CS 

 

Lamport’s Fast Mutual Exclusion Algorithm 
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Shared Memory: Fast Mutual Exclusion Algorithm 

 

Need for a boolean vector of size n: For Pi, there needs to be a trace of its identity 

and that it had written to the mutex variables. Other processes need to know who (and  

when) leaves the CS. Hence need for a boolean array b[1..n]. 

 

 
Examine all possible race conditions in algorithm code to analyze the algorithm. 

 

5.8.3 Hardware Support for Mutual Exclusion 

Hardware support can allow for special instructions that perform two or more 

operations atomically. 

Test&Set and Swap are each executed atomically!! 

 

Definitions of synchronization operations Test&Set and  Swap. 
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Mutual Exclusion using Swap 

 

 
 

 

 

 

Mutual Exclusion using Test&Set, with Bounded Waiting 
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Code shown is for process Pi, 1 ≤ i ≤ n. 
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PART A 

UNIT 4 

1. Define rollback recovery. 

Rollback recovery treats a distributed system application as a collection of processes that 

communicate over a network. It achieves fault tolerance by periodically saving the state of a 

process during the failure-free execution, enabling it to restart from a saved state upon a failure 

to reduce the amount of lost work.  

 

2. What is domino effect 

The program may have to roll back past more than one local checkpoint to achieve a consistent 

global state. In the worst case, the program has to roll all the way back to the beginning. This 

extended roll back is called the ``domino effect''. 

 

3. What are the Techniques that avoid domino effect? 

– Coordinated checkpointing rollback recovery 

processes coordinate their checkpoints to form a system-wide consistent state 

– Communication-induced checkpointing rollback recovery 

forces each process to take checkpoints based on information piggybacked on the application 

– Log-based rollback recovery 

combines checkpointing with logging of non-deterministic events 

relies on piecewise deterministic (PWD) assumption 

 

4. Describe local check pointing? 

 In distributed systems, all processes save their local states at certain instants of time. This 

saved state is known as a local checkpoint. 

 A local checkpoint is a snapshot of the state of the process at a given instance and the 

event of recording the state of a process is called local checkpointing. 

 The contents of a checkpoint depend upon the application context and the checkpointing 

method being used. 

 

5. What is meant by “outside world process (OWP).”? 

 A distributed system often interacts with the outside world  to receive input data or 
deliver the outcome of a computation 

 Outside World Process (OWP) 

a special process that interacts with the rest of the system through message passing 

 

6. What is a global state and Consistent global state of a distributed system 
Global state: 

a collection of the individual states of all participating processes and the states of the 

communication channels 

Consistent global state 

a global state that may occur during a  failure-free execution of  distribution of distributed 

computation 
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if a process‟s state reflects a message receipt, then the state of the corresponding sender must 

reflect the sending of the  message 

7. What is global checkpoint and  consistent global checkpoint? 

A global checkpoint 

a set of local checkpoints, one from each process 

A consistent global checkpoint 

a global checkpoint such that no message is sent by a process after taking its local point that is 

received by another process before taking its checkpoint 

 

8. Formulate the different types of messages. 
 In-transit message 
o messages that have been sent but not yet received 

 Lost messages 
o messages whose „send‟ is done but „receive‟ is undone due to rollback 

 Delayed messages 
o messages whose „receive‟ is not recorded because the receiving process was 

either down or the message arrived after rollback 

 Orphan messages 
o messages with „receive‟ recorded but message „send‟ not recorded 

o do not arise if processes roll back to a consistent global state 

 Duplicate messages 
o arise due to message logging and replaying during process recovery 

 

9. Compare Coordinated with uncoordinated checkpointing. 
If each process takes its checkpoints independently, then the system can not avoid the 

domino effect 

 this scheme is called independent or uncoordinated checkpointing 

 Coordinated checkpointing rollback recovery 

processes coordinate their checkpoints to form a system-wide consistent state 

 

10. Disadvantages of uncoordinated checkpointing 
Domino effect during a recovery 

Recovery from a failure is slow because processes need to iterate to find a consistent set of 

checkpoints 

Each process maintains multiple checkpoints and periodically invoke a garbage collection 

algorithm 

Not suitable for application with frequent output commits 

 

11. Compare blocking with non blocking checkpointing. 

• Blocking Checkpointing 

– After a process takes a local checkpoint, to prevent orphan messages, it 

remains blocked until the entire checkpointing activity is complete 

– Disadvantages 
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the computation is blocked during the checkpointing 

• Non-blocking Checkpointing 

– The processes need not stop their execution while taking checkpoints 

– A fundamental problem in coordinated checkpointing is to prevent a process from 

receiving application messages that could make the checkpoint inconsistent. 

 

12. What is pessimistic logging protocol. 

• Pessimistic logging protocols assume that a failure can occur after any non-deterministic 
event in the computation 

 

13. What is Z-dependency. 
Z-dependency is defined as follows: if a process Pp sends a message to process Pq during its ith 

checkpoint interval and process Pq receives the message during its jth checkpoint interval, then 

Pq Z-depends on Pp during Pp’s ith checkpoint interval and Pq ’s jth checkpoint interval, denoted 

by Pp →
i
j Pq . If Pp →

i
j Pq and Pq → j k Pr , then Pr transitively Z-depends depends on Pp during Pr 

’s kth checkpoint interval and Pp’s ith checkpoint interval, and this is denoted as Pp ∗→
i
k Pr . 

 

14. Two types of communication-induced checkpointing 

model-based checkpointing and index-based checkpointing. 

Model-based checkpointing 

Model-based checkpointing prevents patterns of communications and check-points that could 

result in inconsistent states among the existing checkpoints. 

Index-based checkpointing 

Index-based communication-induced checkpointing assigns monotonically increasing indexes to 

checkpoints, such that the checkpoints having the same index at different processes form a 

consistent state. 

 

15.What is causal logging 

Combines the advantages of both pessimistic and optimistic logging at the expense of a more 

complex recovery protocol. Like optimistic logging, it does not require synchronous access to 

the stable storage except during output commit. Like pessimistic logging, it allows each process 

to commit output independently and never creates orphans, thus isolating processes from the 

effects of failures at other processes 

 

16. Solvable Variants of the Consensus Problem in Async Systems 
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17. What is agreement variable? 

Agreement variable The agreement variable may be boolean or multi-valued, and need not be an 

integer. When studying some of the more complex algorithms, we will use a boolean variable. 

This simplifying assumption does not affect the results for other data types, but helps in the 

abstraction while presenting the algorithms. 

 

18. Problem Specifications of Consensus Problem. 

Consensus Problem (all processes have an initial value) 

Agreement:All non-faulty processes must agree on the same (single) value. 

Validity:If all the non-faulty processes have the same initial value, then the agreed upon value by 

all the non-faulty processes must be that same value. 

Termination:Each non-faulty process must eventually decide on a value. 

 

PART B  

 

1. What is rollback? and explain the several types of messages for rollback. (13) 

2. Examine briefly about global states with examples. (13) 

3. Describe the issues involved in a failure recovery with the help of a distributed computation. (13) 

4. Elaborate the various checkpoint-based rollback-recovery techniques.(13) 

5. Describe the pessimistic logging , optimistic logging and casual logging.(13) 

6. What are min-process check pointing algorithms? Explain it detail.(7) 

7. Examine Deterministic and non-deterministic events. (6) 

8. Summarize the koo–toueg coordinated check pointing algorithm.(7) 

9. Explain the rollback recovery algorithm. (6) 

10. Demonstrate in detail about the juang–venkatesan algorithm for asynchronous check pointing and 

recovery.(13) 
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11. Discuss in detail about some assumptions underlying the study of agreement algorithms. (13) 

12. What is byzantine agreement problem? Explain the two popular flavours of the byzantine agreement 

problem. 

13. Develop an overview of the results and lower bounds on solving the consensus problem under different 
assumptions. 

14. Explain agreement in (message-passing) synchronous systems with failures.(13) 

15. Give byzantine agreement tree algorithm and illustrate with an example. (13) 

16. Analyze on phase-king algorithm for consensus.(13) 

PART C 

17. Design a system model of distributed system consisting of four processes and explain the interactions with 

the outside world.(15) 

18. Explain with examples of consistent and inconsistent states of a distributed system.(15) 

19. Consider the following simple check pointing algorithm. A process takes a local checkpoint right after 
sending a message. Create that the last checkpoint at all processes will always be 

20. consistent. What are the trade-offs with this method?(15) 

21. Give and analyse a rigorous proof of the impossibility of a min- process, non blocking check pointing 
algorithm.(15) 

 

 

 

UNIT 5 

1. Desirable characteristics and performance features of P2P systems. 

Features Performance 

  

Self-organizing 

Large combined storage, CPU power, 

and resources 

Distributed control Fast search for machines and data objects 

Role symmetry for 

nodes Scalable 

Anonymity Efficient management of churn 

Naming mechanism Selection of geographically close servers 

Security, 

authentication, trust Redundancy in storage and paths 
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2. What is Centralized indexing 

• Centralized indexing entails the use of one or a few central servers to store references (indexes) 

to the data on many peers. The DNS lookup as well as the lookup by some early P2P networks 

such as Napster used a central directory lookup. 

 

3. What is distributed indexing  

• Distributed indexing involves the indexes to the objects at various peers being scattered across 

other peers throughout the P2P network. In order to access the indexes, a structure is used in the 

P2P overlay to access the indexes. Distributed indexing is the most challenging of the indexing 

schemes, and many novel mechanisms have been proposed, most notably the distributed hash 

table (DHT). Various DHT schemes differ in the hash mapping, search algorithms, diameter for 

lookup, search diameter, fault-tolerance, and resilience to churn. 

 

4. What is local indexing 

• Local indexing requires each peer to index only the local data objects and remote objects need to 

be searched for. This form of indexing is typically used in unstructured overlays in conjunction 

with flooding search or random walk search. Gnutella uses local indexing. 

 

5. List out the advantages of unstructured overlays if certain conditions are satisfied: 

• Unstructured overlays are efficient when there is some degree of data replication in the network.  

• Users are satisfied with a best-effort search. 
 

• The network is not so large as to lead to scalability problems during the search process. 
 

6. What is Gnlutella 

Gnutella uses a fully decentralized architecture [16, 17]. In Gnutella logical overlays, nodes index 

only their local content. The acutal overlay topology can be arbitrary as nodes join and leave 

randomly. A node joins the Gnutella network by forming a connection to some nodes found in 

standard Gnutella directory-like databases. 

 

 

7. Listout message types used by Gnutella: 

• Ping messages are used to discover hosts, and allow a new host to announce itself.  

• Pong messages are the responses to Pings. The Pong messages indicate the port and (IP) address 

of the responder, and some information about the amount of data (the number and size of files) 

that node can make available.  

• Query messages. The search strategy used is flooding. Query messages contain a search string 

and the minimum download speed required of the potential responder, and are flooded in the 

network.  

• QueryHit messages are sent as responses if a node receiving a Query detects a local match in 

response to a query. A QueryHit contains the port and address (IP), speed, the number of files 
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found, and related information. The path traced by a Query is recorded in the message, so the 

QueryHit follows the same path in reverse. 

 

8. What is  Guided versus unguided search  

In unguided or blind search, there is no history of earlier searches, and hence, each search is 

inherently independent. In guided search, nodes store some history of past searches to aid future 

searches. Various mechanisms for caching hints to guide and narrow down future searches are 

used. In this chapter, we focus on unguided searches in the context of unstructured overlays. 

9. What is random walkers. 

A query is randomly forwarded by a node when it is received. Random walk greatly reduces the 

message overhead but it increases the search latency. Hence, k random walkers can be used. To 

terminate the k random walkers, a “checking-cum-TTL” strategy is effective. 

 

10. Define simple key lookup algorithm. 

A simple key lookup algorithm that requires each node to store only 1 entry in its routing table 

works as follows. Each node tracks its successor on the ring, in the variable successor; a query 

for key x is forwarded to the successors of nodes until it reaches the first node such that that 

node’s identifier y is greater than the key x, modulo 2m 

  

11. What is CAN. 

A content-addressible network (CAN) is essentially an indexing mechanism that maps objects to 

their locations in the network. The CAN project originated from the observation that the 

bottleneck to designing a scalable P2P network is this indexing mechanism. An efficient and 

scalable CAN is useful not only for object location in P2P networks, but also for large-scale 

storage management systems and wide-area name resolution services that decouple name 

resolution and the naming scheme. 

 

12. Distributed shared memory (DSM) is an abstraction provided to the programmer of a 

distributed system. It gives the impression of a single monolithic memory, as in traditional 

von Neumann architecture. Program-mers access the data across the network using only 

read and write primitives, as they would in a uniprocessor system. 

 

13. What is Sequential consistency . 
 

• The result of any execution is the same as if all operations of the processors were executed in 

some sequential order.  

• The operations of each individual processor appear in this sequence in the local program order. 

 

14. Define The causality relation for shared memory systems . 
 

• Local order At a processor, the serial order of the events defines the local causal 

order. 
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• Inter-process order A Write operation causally precedes a Read oper-ation issued by 

another processor if the Read returns a value written by the Write. 

• Transitive closure The transitive closure of the above two relations defines the 

(global) causal order. 

 

PART B 

 

   

Explain the structured overlays and unstructured overlays in distributed indexing. (13) 

i) What is meant by napster legacy? Explain.(7) 

Give a brief account on Indexing mechanisms. (6 

Examine the chord protocol with simple key lookup algorithm.(13) 

Illustrate in detail about A scalable object location algorithm in chord.(13) 

Discuss on managing churn in chord.(13) 

Describe briefly about the following: 

i) Content-Addressable Network (CAN) initialization (6) 
ii) CAN routing (7). 

Point out tapestry P2P overlay network and its routing with an example. (13) 

Discuss the CAN maintenance and CAN optimizations. (13) 

State about the consistency models: entry consistency, weak consistency, and release 

consistency.(13) 

Summarize in detail how node insertion and node deletion are applied in tapestry. (13) 

i) Illustrate the advantages and disadvantages of DSM.(6) 

ii) Point out the main issues in designing a DSM system (7) 

Examine how to implement linearizability (LIN) using total order broadcasts.(13) 

Analyse how to implement Sequential consistency in a distributed system.(13) 

Describe lamport’s bakery algorithm lamport’s WRWR mechanism and fast mutual exclusion. (13) 

PART C 

User ‘A’ in delhi wishes to send a file for printing to user ‘B’ in florida, whose system is connected to a 

printer; while user ‘C’ from tokyo wants to save a video file in the hard disk of user ‘D’ in london. 

Analyze and discuss the required peer-to-peer network architecture.(15) 

Evaluate a formal proof to justify the correctness of algorithm that implements sequential consistency 

using local read operations.(15) 

Develop a detailed implementation of causal consistency, and provide a correctness argument for 

your implementation.(15) 
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