

PRATHYUSHA
ENGINEERING COLLEGE

Poonamallee – Tiruvallur Road, Chennai – 602025.

CS8491

Computer Architecture

(Anna University – 2017 Regulation)

Prepared by

Ms.R.Kannamma,

AP in CSE, PEC

UNIT – I

UNIT I BASIC STRUCTURE OF A COMPUTER SYSTEM 9

Functional Units – Basic Operational Concepts – Performance – Instructions: Language of the Computer – Operations,

Operands – Instruction representation – Logical operations –decision making – MIPS Addressing.

COMPONENTS OF A COMPUTER SYSTEM

BASIC STRUCTURE OF COMPUTER

COMPUTER

A Computer is a machine which accepts input information in the digitized form, processes the input according to

a set of stored instructions and gives an output in a form understandable by user.

PROGRAM AND DATA

The set of stored instructions according which input are processed by computer are called programs and input and

output information is called data.

TYPES OF COMPUTER

Computers are classified according to size, cost, power of the processor, and type of usage. Personal computers are most

common computers and Super computers are most powerful computers.

Some of types of computer are

➢ Personal computers

➢ Notebook computers

➢ Workstations

➢ Enterprise systems and Servers

➢ Mainframes

➢ Supercomputers

I. HARDWARE PARTS OF THE COMPUTER SYSTEM:

A computer consists of five functionally independent main parts

1. Input

2. Output

3. ALU

4. Control Unit
5. Memory

The operation of a computer can be summarized as follows

✓ The computer accepts programs and the data through an input and stores them in the memory.

✓ The stored data are processed by the arithmetic and logic unit under program control.

✓ The processed data is delivered through the output unit.

✓ All above activities are directed by control unit

Input unit

➢ The computer accepts coded information through input unit. The input can be from human operators,

electromechanical devices such as keyboards or from other computer over communication lines.

➢ Examples of input devices are

✓ Keyboard, joysticks, trackballs and mouse are used as graphic input devices in conjunction with display.

✓ Microphones can be used to capture audio input.

Keyboard

• It is a common input device.

• Whenever a key is pressed, the corresponding letter or digit is automatically translated into its corresponding

binary code and transmitted over cable to the memory of the computer.

Output unit

• The function of output unit is to produce processed result to the outside world in human understandable form.

• Examples of output devices are Printer, Graphical display.

Arithmetic and logic unit

 Arithmetic and logic unit (ALU) and control unit together form a processor.

Actual execution of most computer operations takes place in arithmetic and logic unit of the processor.

Example:

 Suppose two numbers located in the memory are to be added. They are brought into the processor, and the actual

addition is carried out by the ALU.

Registers:

➢ Registers are high speed storage elements available in the processor.

➢ Each register can store one word of data.

➢ When operands are brought into the processor for any operation, they are stored in the registers.

➢ Accessing data from register is faster than that of the memory.

Control unit Control unit coordinates the operation of memory, arithmetic and logic unit, input unit, and output unit.

Control unit sends control signals to other units and senses their states.

Central processor unit(CPU) : Also called processor. The active part of the computer, which contains the datapath and

control and which adds numbers, tests numbers, signals I/O devices to activate, and so on.

Datapath: The component of the processor that performs arithmetic operations.

Memory unit

The storage area in which programs are kept when they are running and that contains the data needed by the running

programs. Memory is classified into primary and secondary storage.

Primary storage

➢ It also called main memory.

➢ It operates at high speed and it is expensive.

➢ It is Volatile memory (which loses its data when the power is turned off)

➢ It is directly accessed by CPU to store and retrieve information.

➢ It is made up of large number of semiconductor storage cells, each capable of storing one bit of information.

➢ Programs must reside in the primary memory during execution.

➢ RAM:

✓ It stands for random access memory. Memory in which any location can be reached in a short and fixed

amount of time by specifying its address is called random-access memory.

➢ Two types are static DRAM (SRAM) and Dynamic RAM(DRAM).

➢ The memory is where the programs are kept when they are running; it also contains the data needed by

the running programs. The memory is built from DRAM chips. DRAM stands for dynamic random

access memory.

➢ static random access memory (SRAM) Also memory built as an integrated circuit, but faster and less

dense than DRAM
➢ Cache Memory

✓ They are small and fast RAM units.

✓ They are tightly coupled with the processor.

✓ They are often contained on the same integrated circuits(IC) chip to achieve high performance.

Secondary memory

➢ It is slow in speed.

➢ It is cheaper than primary memory.

➢ Its capacity is high.

➢ It is used to store information that is not accessed frequently.

➢ Various secondary devices are magnetic tapes and disks, optical disks (CD-ROMs), floppy etc.

MEMORY ORGANIZATION

The memory is organized as collection of words. Each word is referred by an address 0 to M

BIT (BINARY DIGIT):The memory contain large number of storage cells, each capable of storing 0 or 1 is called a BIT

WORD: cells are grouped together in a fixed size called word. This facilitates reading and writing the content of one

word (n bits) in single basic operation instead of reading and writing one bit for each operation. Each word is associated

with a distinct address that identifies word location. A given word is accessed by specifying its address.

Wordlength :The number of bits in each word is called as Wordlength

Addresses:These are the numbers that identified each location / word in memory

Byte: 8 Bits of memory is called Byte

Byte Addressable:

The memory is said to be byte addressable if every byte has separate address.Modern Processors use Byte addressing

Byte addressing within a word is represented in two ways

i. Big Endian Addressing

ii. Little Endian Addressing

Big-endian Arrangement Little-endian Arrangement

 Word address Byte address Word address Byte address

II. Software:

Software can be divided into two categories. 1. System software and 2. Application software.

System software: System software are the program that runs and control the hardware units of the

system. System software gets installed when the operating system is installed on the computer. It

includes programs for compiler, linker and loader etc.

Application software: Application software runs over the system software. These software are

installed according to the requirements of the user. Example: C, C++, Java, Ms-word etc.

0 0 1 2 3

4 4 5 6 7

 .

.

.

2k-4 2k-4 2k-3 2k-2 2k-1

0 3 2 1 0

4 7 6 5 4

 .

.

.

2k-4 2k-1 2k-2 2k-3 2k-4

Compiler: A Program that translates high-level language statements into assembly language statements. It takes entire

program as input. The program need not be compiled everytime. The errors are displayed after the entire program is

checked.

Interpreter: It takes single instruction as input. Everytime high level languages are converted in to Low level language.

The errors are displayed after every instruction interpreted.

Assembler: A program that translates a symbolic version of instructions(Assembly language program) into the binary

version.

Assembly language: A symbolic representation of machine instructions. Instructions arewritten using Mnemonics.

Machine language: A binary representation of machine instructions.

High level Programming Language: A portable language such as C, C++, Java or Visual Basicthat is composed of

words and algebraic notation that can be translated by a compiler into assembly language.

For example:

TECHNOLOGY USED IN COMPUTER

 The technology that have been used in computers are changing constantly over time and it is given below.

▪ Vacuum Tubeis the electronic component used in Ist generation computer. An electronic

component that consists of a hollow glass tube about 5 to 10 cm long from which as much air hasbeen

removed as possible and which uses an electron beam to transfer data.

▪ Transistor is the semiconductor device used in IInd generation computer. It is an on/off switch

controlled by an electric signal. This will reduce the physical size and power dissipation of the computer

and increase the performance.

▪ Integrated Circuit(IC)combined dozens to hundreds of transistors into a single chip. This will further

reduce the physical size, power dissipation and increase the performance.

▪ Very large scale integrated (VLSI) circuit:A device containing hundreds of thousands

to millions of transistors.

▪ Ultra large-scale integration (ULSI) is the process of integrating or embedding millions of transistors

on a single silicon semiconductor microchip.

Moore’s Law: The number of transistors is a chip is doubled in every 18 to 24 months.

▪ Growth of DRAM capacity

 Moore’s law resulted from a prediction of such growth in IC capacity

made by Gordon Moore, one of the founders of Intel during the 1960s.

 The growth of Dram capacity quadrupled for every 3 years from 1977 to 1995 and in recent

years the rate of increase has slowdown and approximately doubling every 2 or 3 years.

 Year - Chip Size

1977 - 16 K

1980 - 64 K

1983 - 256 K

1986 - 1 M

1989 - 4M

1992 - 16 M

1996 - 64 M

1998 - 128 M

2000 - 256 M

2004 - 512 M

2007 - 1 Gbit

▪ Growth of Transistor in processors.

 Year - Processor - No of Transistor

 1978 - 8086 - 20,000

 1982 - 80286 - 100,000

 1985 - 80386 - 200,000

 1989 - 80486 - 1000,000

 1993 - Pentium - 5 x 106
 2001 - Pentium IV - 20 x 106
 2005 - Core 2 dual - 200 x 106

POWER WALL

Both clock rate and power increased rapidly fordecades, and then flattened off recently.

For CMOS, the primary source of energy consumption is so-called dynamic energy—that is, energy that is consumed

when transistors switch states from 0 to 1 and vice versa. The dynamic energy depends on the capacitive loading of each

transistor and the voltage applied:

The increase in clock rate and power of eight generations of Intel microprocessors over 30 years.

The dynamic energy depends on the capacitive loading of each transistor and the voltage applied

The energy of a single transition is then

The dynamic power dissipation depends on the capacitive loading of each transistor, the voltage applied and the frequency

that the transistor is switched.

 Power = Capacitive Load x Voltage2 x Frequency switched.

 Frequency switched is a function of the clock rate. The capacitive load per transistor is a function of both the

number of transistors connected to an output (called the fanout) and the technology, which determines the capacitance of

both wires and transistors.

The above figure shows how could clock rates grow by a factor of 1000 while power grew by only a factor of 30?

Energy and thus power can be reduced by lowering the voltage, which occurred with each new generation of

technology, and power is a function of the voltage squared. Typically, the voltage was reduced about15% per generation.

In 20 years, voltages have gone from 5 V to 1 V, which is whythe increase in power is only 30 times.

PERFORMANCE MEASURE

 Performance of a computer can be measured by speed with which it can execute the program. Response time and

Throughput are the two factors to measure the performance.

 Response time Also called execution time. The total time required for the computer to complete a task, including

disk accesses, memory accesses, I/O activities, operating system overhead, CPU execution time, and so on.

 Throughput Also called bandwidth. Another measure of performance, it is the number of tasks completed per

unit time.

Speed of the computer is affected by

➢ Hardware design

➢ Machine language instruction of the computer.

➢ Compiler, which translates high-level language into machine language.

For best performance, it is necessary to design hardware, machine instruction set and compiler in a coordinated way.

I. RELATIVE PERFORMANCE

II. CPU PERFORMANCE AND ITS FACTOR

EXAMPLE

IMPROVING PERFORMANCE

III. INSTRUCTION PERFORMANCE

EXAMPLE:

Suppose we have two implementations of the same instruction set architecture. Computer A has a clock cycle time of 250

ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same

program. Which computer is faster for this program and by how much?

The Classic CPU Performance Equation:

Example:

Solution:

number of instruction classes.

PERFORMANCE MEASUREMENT

 The computer community adopted the idea of measuring computer performance using benchmark programs. To

make comparisons possible, standardized programs must be used. The performance measure is the time it takes a

computer to execute a given benchmark.

 A nonprofit organization called System Performance Evaluation Corporation (SPEC) measures the performance

of the system.

The SPEC rating is computed as follows

Running time on the reference computer

 SPEC rating = --

Running time on the computer under test

Let SPECi be the rating for program i in the suite. The overall SPEC rating for the computer is given by

 SPEC rating = () n
1

i

n

1i SPEC =

 where n is the number of programs in the suite

INSTRUCTION IN MIPS

OPERATION AND OPERANDS IN MIPS

Based on operations the MIPS instructions are classified into five groups/Instructions types

1. Arithmetic instruction

2. Logical Instructions

3. Data transfer Instructions

4. Conditional Branch Instructions

5. Unconditional Jump Instructions

1. Arithmetic instructions(R-Type)

These Instructions will perform arithmetic operations with register only.

 Examples: add for addition of two registers

 Sub for subtraction

 addi for adding a constant

Arithmetic Instructions

Instruction Example Meaning Comments

add add $s1,$s2,$s3 $s1=$s2+$s3 Three register operands

subtract sub $s1,$s2,$s3 $s1=$s2 - $s3 Three register operands

add immediate addi $s1,$s2,20 $s1=$s2 + 20 Used to add constants

Example 1:

 C code for the following instruction:

 f = (g + h) - (i + j);

➢ f, …, j in $s0, …, $s4

• Compiled MIPS code:

add $t0, $s1, $s2

add $t1, $s3, $s4

sub $s0, $t0, $t1

2. Logical Instructions (LOGICAL OPERATIONS)

These Instruction will perform logic operations and shift operations with register only.

Shift Instruction moves all the bits in a word to the left or right, filling the emptied bits with 0s. The

shamt field in the R-format. It stands for shift amount and is used in shift instructions.

Logical Instructions

Instruction Example Meaning Comments

and and $s1 =$s2 & $s3
Three register operands; bit-by-bit

$s1,$s2,$s3 AND

or or $s1,$s2,$s3 $s1 =$s2 | $s3 Three register operands; bit-by-bit OR

not nor $s1,$s2,$s3
$s1 = ~($s2 |

$s3)

Three register,operands; bit-by-bit

NOR

and immediate andi $s1,$s2,20 $s1 =$s2 & $20 Bit-by-bit AND register with constant

or immediate ori $s1,$s2,20 $s1 =$s2 | $20 Bit-by-bit OR register with constant

shift left logical sll $s1,$s2,10 $s1 =$s2 << 10 Shift left by constant

shift right

logical
sr l $s1,$s2,10 $s1 =$s2 >> 10

Shift right lo by constant

Example

AND

• Useful to mask bits in a word

• Select some bits, clear others to 0 and $t0, $t1, $t2

OR

• Used to include bit in a word

➢ Set some bits to 1, leave others unchanged or $t0, $t1, $t2

NOT

• Useful to invert bits in a word
➢ Change 0 to 1, and 1 to 0

SHIFT LEFT LOGICAL

sll $s1,$s2,4 # reg $t2 = reg $s0 << 4 bits

Before Execution

For example, if register $s0=9

0000 0000 0000 00000 000 0000 0000 0000 1001two= 9ten

The instruction to shift left by 4 was executed, the new value would look like this:

After Execution

0000 0000 0000 0000 0000 0000 0000 1001 0000two= 144ten

SHIFT RIGHT LOGICAL

Srl $s1,$s2,1 # reg $t2 = reg $s0 » 1 bits

Before Execution

For example, if register $s0 = 9

0000 0000 0000 00000 000 0000 0000 0000 1001two= 9ten

The instruction to shift right by 1 was executed, the new value would look like this:

After Execution

0000 0000 0000 0000 0000 0000 0000 0000 0100two= 4two

3. Data transfer Instructions

These instruction will transfer data between registers and main memory.

 Examples: lw load word i.e. transfer of data from memory to register

 sw store word i.e. transfer of data from register to memory

 Arithmetic operations occur only on registers in MIPS instructions; thus, MIPS must include instructions

that transfer data between memory and registers. Such instructions are called data transfer instructions. To

access a word in memory, the instruction must supply the memory address.Memory is just a large, single-

dimensional array, with the address acting as the index to that array, starting at 0.

EXAMPLE

load word lw $s1,100($s2) $s1 = Memory[$s2 + 100] Data from memory to register

 The data transfer instruction that copies data from memory to a register is traditionally called load. The

format of the load instruction is the name of the operation followed by the register to be loaded, then a constant

and register used to access memory. The sum of the constant portion of the instruction and the contents of the

second register forms the memory address.

store word sw $s1,100($s2) Memory[$s2 + 100] = $s1 Data from register to memory

The data transfer instruction that copies data from Register to a Memory is traditionally called store.

.

 Instruction Example Meaning Comments

load word lw $s1,20($s2)
$s1 = Memory ($s2

+20) Word from memory to register

store word sw $s1,20($s2)
Memory ($s2 +20) =

$s1 Word from register to memory

load half lh $s1,20($s2)
$s1 = Memory ($s2

+20) Half word memory to register

load half unsigned lhu $s1,20($s2)
$s1 = Memory ($s2

+20) Half word memory to register

store half sh $s1,20($s2)
Memory ($s2 +20) =

$s1 Half word register to memory

load byte lb $s1,20($s2)
$s1 = Memory ($s2

+20) Byte from memory to register

load byte unsigned lbu $s1,20($s2)
$s1 = Memory ($s2

+20) Byte from memory to register

store byte sb $s1,20($s2)
Memory ($s2 +20) =

$s1 Byte from register to memory

load linked word ll $s1,20($s2)
$s1 = Memory ($s2

+20)

Load word as 1st half of

atomic swap

store condition sc $s1,20($s2) Memory ($s2 +20) = store word as 2nd half of

word $s1; $s1= 0 or 1 atomic swap

load upper immed lui $s1,20 $s1=20 * 216
Loads constant in upper 16

bits

Example: add i $s1, $s2, 20 # $s1= $s2+20

 lw $s1, 20($s2) #$s1=memory($s2+20)

 sw $s1, 20($s2) #memory($s2+20) = $s1

4. Conditional Branch Instructions (DECISION MAKING)

These instruction will perform transfer the control from current location to target address

when the specified condition is satisfied otherwise control will go to next instructions.

Examples: beq branch on equal

 bne branch not equal

 Branch instruction loads a new value into the program counter. As a result, the processor fetches and executes the

instruction at this new address, called branch target, instead of executing in sequential order.

 A Conditional branch instruction repeats the loop only if a specified condition is satisfied. If the condition is not

satisfied it comes out of the loop.

Decision making is commonly represented in programming languages using the if statement, sometimes

combined with go to statements and labels. MIPS assembly language includes two decision-making instructions, similar

to an if statement with a go to.

EXAMPLE

beq register1, register2, L1

This instruction means go to the statement labeled L1 if the value in register1 equals the value in register2. The mnemonic

beq stands for branch if equal. The second instruction is

bne register1, register2, L1

It means go to the statement labeled L1 if the value in register1 does not equal the value in register2. The mnemonic bne

stands for branch if not equal. These two instructions are traditionally called conditional branches.

Conditional Branch Instructions

Instruction Example Meaning Comments

branch on equal beq $s1,$s2,25
if($s1 == $s2) go t

o PC + 4 +100 Equal test ; PC- relative branch

branch on not

equal
bne $s1,$s2,25

if($s1!= $s2) go t o

PC + 4 +100 Not equal test ; PC- relative

set on less than slt $s1,$s2,$s3

if($s2 < $s3)

$s1=1;

else $s1 = 0 Compare less than for beq, bne

set on less than

unsigned

sltu

$s1,$s2,$s3

if($s2 < $s3)

$s1=1;

else $s1 = 0 Compare less than unsigned

set on less than slti $s1,$s2,20 if($s2 < 20) $s1=1; Compare less than constant

immediate else $s1 = 0

set on less than

immediate

unsigned

sltiu $s1,$s2,20

if($s2 < 20) $s1=1;

else $s1 = 0 Compare less than constant unsigned

Example:

Compiling IF statements:

5. Unconditional Jump Instructions

These instructions will transfer control from current location to target address.

Examples: J: jump to transfer address
 jr: jump to target address available in register $ra used for procedure return.

 jal: load the return address (PC+4)into register $ra and jump to target address, used for procedure call.

Note: MIPS processor has no I/O Instructions.

Unconditional Jump Instructions

Instruction Example Meaning Comments

jump j 2500 go to 10000 Jump to target address

jump register jr $ra go to $ra
For switch, procedure

return

jump and link jal 2500
$ra = PC + 4; go to

10000 For procedure call

OPERANDS AVAILABLE IN MIPS

MIPS instruction uses three type of operands

1. Register 2. Memory 3. Immediate

1. Register: MIPS processor has 32 registers.

The size of the register is 32 bits. These registers are represented by 5 bit binary number in the MIPS

instruction and they are referred by 2 or 3 character name in MIPS assembly code.

Example: add $t1, $s1, $s2 #$t1=$s1+$s2

2. Memory

 Since arithmetic and logic instructions use only register operands, MIPS need instruction to

transfer data between memory & register. Such instruction are called Data Transfer instructions.

 The instruction which transfer the data from memory to register is called Load.

Example: lw $t0, 8($s1)

 Ist operand Register operand

 II nd operand Memory operand

 8 is called offset

 $s1 is called base register

▪ To get the proper memory address, the offset to be added to base registers $s1.

▪ Normally base register $s1 will have address of data array

▪ The offset 8 permits to get second element of data array.

3. Immediate

 Many times, a program will use a constant in an operation for example incrementing an index to

point to the next element of an array. This constant field size is 16 bit that permits ±215(32768).

 Example: add i $s3,$s3,4 # $s3 =$s3+4

 add i $s3,$s3,1 #$s3 =$s3+1

ADDRESSING MODES OF MIPS

The different ways in which the address of the operand is specified in an instruction is called addressing mode.

The addressing modes vary from one computer to another MIPS processor supports the following five addressing modes.

1. Immediate addressing, where the operand is a constant within the instruction itself.
2. Register addressing, where the operand is a register.
3. Base or displacement addressing, where the operand is at the memory location whose address is the sum of a register
and a constant in the instruction.
4. PC-relative addressing, where the branch address is the sum of the PC and a constant in the instruction.
5. Pseudodirect addressing, where the jump address is the 26 bits of the instruction concatenated with the upper Four bits

of the PC.

1. Immediate addressing: The operand is a constant within the instructionitself. i.e. The operand is specified in the
instruction itself.

Example: Add i $t1, $s1,d

2. Register addressing: The operand is in a CPU register. The register is specified in the instruction.

Example: add $t1, $S1, $S2

3. Base or displacement addressing: The operand is at the memory location whose address is the sum of a register and a
constant in the instruction.

Here the operand is a memory location whose address is the sum of register (base register) and a constant

(offset/displacement)

Example: lw $s1, 20($s2)

 PC-relative addressing: The branch address is the sum of the PC and a constant in the instruction.

Example :beq $rs, $rt, d

 Pseudo-direct addressing: The jump address is the 26 bits of the instruction concatenated withthe upper Four bits of the
PC.

Example : j d

REPRESENTATION OF INSTRUCTION (INSTRUCTION FORMAT)

1. R-TYPE : Used in arithmetic Instruction

2. I-type : used in data transfer instruction and conditional branch instruction

3. J-type: used in unconditional branch instructions.

R-TYPE:

This instruction format is called R type and used for arithmetic and logic instruction.

 The meaning of each field is given below

▪ op : Basic operation of the instruction (op code)

▪ rs : The first register source field

▪ rt : The second register source field

▪ rd : The register destination field get the result

▪ shamt: shift amount for shift instruction and zero for other

instruction

▪ funct : called function code specific variant of the operation in the op field

 All register field are 5 bit to refer any one of the 32 MIPS registers.

Example : add $t0, $s1, $s2 # $t0=$s1+$s2

I-TYPE: This is used for immediate as well as data transfer

instruction.

 The meaning of each field is given below

▪ op : op code

▪ rs : The first register source field

▪ rt : register destination for load & source for store

▪ constant or address : constant is used in immediate instruction and address is used in data

transfer instruction

This format is used for branch instruction and it is similar to I type.

 The meaning of each field is given below

▪ op : op code

▪ rs : The first register source field

▪ rt : Second register source field

▪ address : address is used in branch instruction

Example :beq $s1, $s2,d #if($s1=$s2) goto (PC+4+(4*d))

iii) J-TYPE: This instruction format is used for jump instruction called J type.

The meaning of each field is given below

 WHERE op : op code and Address : used in jump

Example : j d # go to 4*d

UNIT II

ARITHMETIC OPERATIONS

ALU - Addition and subtraction – Multiplication – Division – Floating Point operations Subword

parallelism.

ARITHEMETIC AND LOGICAL UNIT

The arithmetic logic unit (ALU) performs

• The arithmetic operations like addition and subtraction.

• Logical operations like AND and OR.

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let’s assume that we will connect 32 1-bit

ALUs to create the desired ALU.

ALU-ADDITION

 1-Bit MIPS ALU

1.1 HALF ADDER

Truth table :CarryOut = (b · CarryIn) + (a · CarryIn) + (a · b) + (a · b · CarryIn)

FULL ADDER

The multiplexer selects AND or OR or adder output based on the value of operation 0(00) or 1 (01) or

2(10).The adder takes three input (two digits & one carry from previous stage) and produce sum and carry

outputs, and it is called full adder. The truth table is shown below.

The logic expression for sum is

The logical expression for carryout

is

 32 BITS ADDER

32 bit ALU can be constructed by connecting 32 1-bit ALU in cascade. 1-bit ALU with logical unit for AND

and OR and adder is shown below.

ALU MIPS SUBTRACTION

Subtraction is the same as adding the negative version of an operand and this is how adder performs subtraction.

For negating a 2’s complement number is to invert each bit and add 1. To invert each bit, 2:1 multiplexer

chooses between b and b as in Fig .3

Fig 3 : 1-Bit ALU with AND, OR, ADD and SUBTRACT

These four operations—add, subtract, AND, OR—are found in the ALU of almost every computer, and the

operations of most MIPS instructions can be performed by this ALU. But the design of the ALU is incomplete.

One instruction that still needs support is the set on less than instruction (slt). Recall that the operation produces

1 if rs < rt, and 0 otherwise. Consequently, slt will set all but the least significant bit to 0, with the least

significant bit set according to the comparison. For the ALU to perform slt, we first need to expand the three-

input multiplexor in above figure to add an input for the slt result. We call that new input Less and use it only

for slt.

From the description of slt above, we must connect 0 to the Less input for the upper 31 bits of the ALU, since

those bits are always set to 0. What remains to consider is how to compare and set the least significant bit for set

on less than instructions.

What happens if we subtract b from a?

If the difference is negative, then a < b since (a − b) < 0 ⇒ ((a − b) + b) < (0 + b) ⇒ a < b

We want the least significant bit of a set on less than operation to be a 1 if a < b;

 that is, a 1 if a − b is negative and a 0 if it’s positive.

This desired result corresponds exactly to the sign bit values:

1 means negative and 0 means positive.

Following this line of argument, we need only connect the sign bit from the adder output to the least significant

bit to get set on less than.

Unfortunately, the Result output from the most signifi cant ALU bit in the top of Figure C.5.10 for the slt

operation is not the output of the adder; the ALU output for the slt operation is obviously the input value Less.

Thus, we need a new 1-bit ALU for the most significant bit that has an extra output bit: the adder output. The

bottom drawing of Figure C.5.10 shows the design, with this new adder output line called Set, and used only for

slt.

As long as we need a special ALU for the most significant bit, we added the overflow detection logic since it is

also associated with that bit.

32 bits

Subtraction

Carry Look Ahead Adder:

In ripple carry adders, the carry propagation time is the major speed limiting factor as seen in the previous

lesson.

Most other arithmetic operations, e.g. multiplication and division are implemented using several

add/subtract steps. Thus, improving the speed of addition will improve the speed of all other arithmetic

operations.

Accordingly, reducing the carry propagation delay of adders is of great importance. Different logic

design approaches have been employed to overcome the carry propagation problem.One widely used approach

employs the principle of carry look-ahead solves this problem by calculating the carry signals in advance,

based on the input signals.

This type of adder circuit is called as carry look-ahead adder (CLA adder). It is based on the fact that a carry

signal will be generated in two cases:

(1) when both bits Ai and Bi are 1, or

(2) when one of the two bits is 1 and the carry-in (carry of the previous stage) is 1.

To understand the carry propagation problem, let’s consider the case of adding two n-bit numbers A and

B.

The Figure shows the full adder circuit used to add the operand bits in the ith column; namely Ai & Bi and the

carry bit coming from the previous column (Ci).

In this circuit, the 2 internal signals Pi and Gi are given by:

Pi = Ai ⊕Bi ……………………..(1)

Gi = Ai Bi ……………….……(2)

The output sum and carry can be defined as :

Si = Pi ⊕Ci ……………………(3)

C i +1 = Gi + Pi C i …………(4)

Gi is known as the carry Generate signal since a carry (Ci+1) is generated whenever Gi =1, regardless of the input

carry (Ci).Pi is known as the carry propagate signal since whenever Pi =1, the input carry is propagated to the

output carry, i.e., Ci+1. = Ci (note that whenever Pi =1, Gi =0).Computing the values of Pi and Gi only depend on the

input operand bits (Ai & Bi) as clear from the Figure and equations. Thus, these signals settle to their steady-state

value after the propagation through their respective gates. Computed values of all the Pi’s are valid one XOR-gate

delay after the operands A and B are made valid. Computed values of all the Gi’s are valid one AND-gate delay

after the operands A and B are made valid.

The Boolean expression of the carry outputs of various stages can be written as follows:

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1 (G0 + 0C0) = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

C4 = G3 + P3C3= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

In general, the ith. carry output is expressed in the form Ci = Fi (P’s, G’s , C0).

In other words, each carry signal is expressed as a direct SOP function of C0 rather than its preceding carry

signal.Since the Boolean expression for each output carry is expressed in SOP form, it can be implemented in

two-level circuits.The 2-level implementation of the carry signals has a propagation delay of 2 gates, i.e., 2τ.

The 4-bit carry look-ahead (CLA) adder consists of 3 levels of logic:

First level: Generates all the P & G signals. Four sets of P & G logic (each consists of an XOR gate and an

AND gate). Output signals of this level (P’s & G’s) will be valid after 1τ.

Second level: The Carry Look-Ahead (CLA) logic block which consists of four 2-level implementation logic

circuits. It generates the carry signals (C1, C2, C3, and C4) as defined by the above expressions. Output signals

of this level (C1, C2, C3, and C4) will be valid after 3τ.

Third level: Four XOR gates which generate the sum signals (Si) (Si = Pi ⊕ Ci). Output signals of this level

(S0, S1, S2, and S3) will be valid after 4τ.

MULTIPLICATION
The basics multiplication (The traditional Approach)
Multiplying 1000ten by 1001ten

Multiplicand 1000ten

Multiplier x 1001ten

1000

 0000

 0000

 1000

Product 1001000ten

• The first operand is called the multiplicand and the second the multiplier. The final result is called the

product.

• The length of the multiplication of an n-bit multiplicand and an m-bit multiplier is a product that is n + m

bits long. That is, n + m bits are required to represent all possible products. Hence, like add, multiply

must cope with overflow because we frequently want a 32-bit product as the result of multiplying two

32-bit numbers.

MULTIPLICATION HARDWARE

The following fig shows hardware for 32 bit multiplication

 In the Hardware Diagram, Let’s assume that the multiplier is in the 32-bit Multiplier register and that

the 64-bit Product register is initialized to 0. It’s clear that we will need to move the multiplicand left one digit

each step, as it may be added to the intermediate products. Over 32 steps, a 32-bit multiplicand would move 32

bits to the left. Hence, we need a 64-bit Multiplicand register, initialized with the 32-bit multiplicand in the right

half and zero in the left half. This register is then shifted left 1 bit each step to align the multiplicand with the

sum being accumulated in the 64-bit Product register.

Multiplication Hardware Diagram

MULTIPLICATION ALGORITHM

Three basic steps are required for each bit of multiplier.

Step1. The least significant bit of multiplier is examined ,if 1 add multiplicand

 with product otherwise no add

Step2. Multiplicand register is shifted left by one bit

Step3. Multiplier register is shifted right by one bit

These 3 steps are repeated 32 times and at the end product is available in product register.

The hardware is further optimized to adder with 32 bit and multiplicand register with 32 bit,no multiplier

register and product register of 64 bit.

Example

Using 4-bit numbers to save space, multiply 2ten X 3ten, or 0010two X 0011two. Figure 3.6 shows the value

of each register for each of the steps labeled according to Figure 3.4, with the final value of 0000 0110two or

6ten.

MULTIPLICATION FLOWCHART

REFI NED VERSION OF THE MULTIPLICATION HARDWARE

 Compare with the first version. The Multiplicand register, ALU, and Multiplier register are all 32 bits

wide, with only the Product register left at 64 bits. Now the product is shifted right. The separate Multiplier

register also disappeared. The multiplier is placed instead in the right half of the Product register.

FASTER MULTIPLICATION:

➢ Moore’s Law has provided so much more in resources that hardware designers can now build much

faster multiplication hardware. Whether the multiplicand is to be added or not is known at the beginning

of the multiplication by looking at each of the 32 multiplier bits.

➢ Faster multiplications are possible by essentially providing one 32-bit adder for each bit of the

multiplier: one input is the multiplicand ANDed with a multiplier bit, and the other is the output of a

prior adder.

➢ A straightforward approach would be to connect the outputs of adders on the right to the inputs of adders

on the left, making a stack of adders 32 high.

➢ An alternative way to organize these 32 additions is in a parallel tree shows. Instead of waiting for 32

add times, we wait just the log2 (32) or five 32-bitadd times.

DIVISION

Basic Division Operation

The hardware division is identical to school division algorithm.

Example : 7 ÷ 2; Quotient = 3; Remainder = 1

Divide’s two operands, called the dividend and divisor, and the result, called the quotient, are accompanied by

a second result, called the remainder. Here is another way to express the relationship between the components:

Dividend _ Quotient _ Divisor _ Remainder

where the remainder is smaller than the divisor.

 DIVISION HARDWARE

To start with 32 bit quotient register set to 0. Since each iteration divisor need to be shifted right by one digit,

start with the divisor is placed in the left half of 64 bit DIVISIOR register and shift right by 1 bit each step to

align with the dividend. The remainder register is initialized with dividend

DIVISION ALGORITHM

Three basic steps are.

Step1: Subtract divisor register from remainder register place the result in remainder register.

Step1 A: If the reminder is +ve. Shift the quotient register to the left and set Qo=1

Step2B: If the remainder is –ve. Restore the original value by adding the

 DIVISOR register to the remainder register and place the result in remainder register

and also shift the quotient register to the left and set Qo = 0.

Step 3: Shift the divisor right by 1 bit. Repeat these three steps 33 times and at the end remainder and quotient

are available in the corresponding registers. This is called Restoring Division.

DIVISION FLOW CHART

AN IMPROVED VERSION OF THE DIVISION HARDWARE.

The Divisor register, ALU, and Quotient register are all 32 bits wide, with only the Remainder register left at 64

bits the ALU and Divisor registers are halved and the remainder is shifted left.

The hardware is further optimized with divisor register and Adder 32-bit wide with only reminder register left

at 64 bits. This version also combines the Quotient register with the right half of the Remainder register.

FLOATING POINT OPERATIONS
IEEE standards for Binary Arithmetic operations for floating point numbers

Includes Fraction and Exponent

Representation of ARM(Advanced RISC machine) Floating-point Number

S →Sign of the floating point number

E→ Value of the 8-bit exponent field

F→ 23-bit number

• Single Precision Format

Format of Floating point number

• Overflow Interrupt occurs in Floating-point Arithmetic

• Overflow→ Positive Exponent is too large to be represented in the Exponent field

• Underflow→ Negative Exponent is too large to be represented in the Exponent field

• To reduce the chances of Underflow and overflow

• Another format is used has a larger exponent

• Double Precision floating-point arithmetic

• Both called IEEE 754 Floating-point Standard invented in 1980

• Double Precision floating-point

– S →Sign of the floating point number

– E→ Value of the 11-bit exponent field

– F→ 32-bit number

(Or)

Exponent bias is 127 for single-precision

 1023 for double-precision

Representation

• sign, exponent, significand

 (–1)sign × significand × 2exponent

• more bits for significand gives more accuracy

• more bits for exponent increases range

Exponent => range, significand => precision

Example

IEEE 754 binary Representation of the number –0.7510 in Single and Double Precision

Number –0.7510 is also -3/4ten or -3/22
ten

Represented in binary fraction -11/22
ten

Scientific Notation -0.11two x 20

Normalized into -1.1two x 2-1

-1.1two x 2-1

Single precision representation

Subtracting the bias 127 from the exponent

Single: –1 + 127 = 126 = 011111102

Double: -1+1023=1022= 011111111102

Underflow and Overflow in single precision

• In single precision floating point representation exponent is represented in excess 127

• Total exponent field range is -127 to +128

• Since +128 and -127 are used for special case, real exponent range is -126 to +127

• If the exponent exceeds +127 it is called overflow

• If the exponent is < -126 it is called underflow

Underflow and Overflow in double precision

• In double precision floating point representation exponent is represented in excess 1023

• Total exponent field range is -1023 to +1024

• Since -1023 and +1024 are used for special case, real exponent range is -1022 to +1023

• If the exponent exceeds +1023 it is called overflow

• If the exponent is < -1022 it is called underflow

NORMALIZATION

Normalization of Floating Point Number

In floating point the number is always put in normalized form. By convention when the decimal point is placed

to the right of first significant digit, the number is said to be normalized.

Example of unnormalized number

 .0010110 x 29

Normalized Form = 1.0110 X (29 X 2-3)

 = 1.0110 X 26

FLOATING POINT ADDITION

FLOATING POINT ADDITION ALGORITHM

The following steps gives the algorithm for IEEE floating point addition(also indicated in the flow

chart..

Step 1:Compare the exponents of two numbers and shift the number with smaller exponent, until the

exponent matches the larger exponent.

 Step 2:Add the significands.

 Step 3:Normalize the result if required either shift right and increment exponent or shift left and

 decrement the exponent and check for overflow / under flow.

Step 4:Round the significant to appropriate number of bits normalize if required and

check for overflow / underflow.

FLOWCHART:

Explain how floating point addition is carried out in a computer system. Give an example for a binary

floating point addition.

BLOCK DIAGRAM OF ARITHEMETIC UNIT TO FLOATING POINT ADDITION

 FLOATING POINT MULTIPLICATION
FLOATING POINT MULTIPLICATION ALGORITHM

Step1: Add the biased exponent and subtract the bias (127 for Sp and 1023 for Dp).

Step 2: Multiply the significands.

Step3: Normalize the result if required shift right and incrementing the exponent and check for

 overflow / under flow.

Step4: Round the significand to appropriate number of bits and normalize if required.

Step 5: Set the sign of the product.

FLOWCHART

EXAMPLE

SUBWORD PARALLELISM

 By partitioning the existing 64 bit ALU, the processor can perform simultaneous operation on

short vectors of eight 8 bit operands, four 16 bit operands or two 32 bit operands. This type of

parallelism with in a wide word is called as subword parallelism..

 This is also called vector or SIMD(Single Instruction stream multiple data stream)

MMX for Intel 80 x 86

❖ MMX (multi media Extension) was the first set of SIMD extensions applied

 to Intel 80x86 processor(Pentium MMX)

❖ This was introduced in 1997

❖ MMX provides 8 registers of 64 bit.

❖ These registers are called MM0 –MM7

MMX REGISTER SET

❖ These register can be used as

➢ One 64 bit Quad word

➢ Two 32 bits double word

➢ Four 16 bits word

➢ Eight 8 bits byte

MMX has 57 instructions and a few MMX instructions are listed

MMX - Data Movement

 movd - Move double word

 movq - Move Quad word

MMX - Boolean Logic

 por - bitwise OR

 pand - AND

MMX - Arithmetic

 padd b - adds mmx registers as unsigned 8 bit byte

 padd sb - adds as signed 8 bit byte

 padd w - adds as unsigned 16 bit word

 padd sw - adds as signed 16 bit word

MMX - Compare

 pcmpeqb - Compare for 8 bit equality

 pcmeqw - compare for 16 bit equality

The later SIMD extensions for 80x86 are called SSE, SSE2, SSE3, SSE4 and AVX.

Neon Multimedia Extension for ARM Processor

Here 128 bit registers are used as

Integer Data Type: 16 no’s of 8 bit.
8 no’s of 16 bit.

4 no’s of 32 bit.

2 no’s of 64 bit.

Float data type

 4 no’s of 32 bit.

➢ Neon has more than 100 instruction to support subword parallelism.

UNIT III
PROCESSOR AND CONTROL UNIT

Basic MIPS implementation – Building datapath – Control Implementation scheme – Pipelining –Pipelined datapath and

control – Handling Data hazards & Control hazards – Exceptions

Basic MIPS implementation

I. INSTRUCTION FETCH

Instruction Memory : Memory to store the instruction of a program and supply instruction for given address.

Program counter: Program counter is a 32 bit register that hold the address of current instruction to be

fetched.

Datapath Used For Fetching Instructios And Incrementing The Program Counter

Register File:

 The processor’s 32 general purpose register are stored in a structure called register file. The register file

is a collection of registers in which any register can be read or written by specifying the address of the

register.

Sign extension of 16 bit offset into 32 bit :This unit extend 16 bit offset in the instruction to 32 bit

Data Memory:The data memory has to be read on load instruction and written on store instruction. Hence

the data memory has both read and write control signals, an address input , data output and input for the

data to be written.

BUILDING A DATAPATH:

The operations of arithmetic-logical (or R-type) instructions and the memory instructions datapath are quite similar. The key

differences are the following:

■ The arithmetic-logical instructions use the ALU, with the inputs coming from the two registers. The memory instructions can

also use the ALU to do the address calculation, although the second input is the sign extended 16-bit off set fi eld from the

instruction.

■ The value stored into a destination register comes from the ALU (for an R-type instruction) or the memory (for a load).

OPERATION OF THE DATAPATH :

R type - add $t1,$t2,$t3

1. The instruction is fetched, and the PC is incremented.

2. Two registers, $t2 and $t3, are read from the register file; also, the main control unit computes the setting of the control

lines during this step.

3. The ALU operates on the data read from the register file, using the function code (bits 5:0, which is the funct field, of

the instruction) to generate the ALU function.

4. The result from the ALU is written into the register file using bits 15:11 of the instruction to select the destination

register ($t1).

lw $t1, offset($t2)

1. An instruction is fetched from the instruction memory, and the PC is incremented.

2. A register ($t2) value is read from the register file.

3. The ALU computes the sum of the value read from the register fi le and the sign-extended, lower 16 bits of the

instruction (offset).

4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory unit is written into the register fi le; the register destination is given by bits 20:16 of the

instruction ($t1).

beq $t1, $t2, offset

1. An instruction is fetched from the instruction memory, and the PC is incremented.

2. Two registers, $t1 and $t2, are read from the register file.

3. The ALU performs a subtract on the data values read from the register file. The value of PC + is added to the sign-

extended, lower 16 bits of the instruction (offset) shifted left by two; the result is the branch target address.

4. The Zero result from the ALU is used to decide which adder result to store into the PC.

SIMPLE DATAPATH FOR MIPS ARCHITECTURE

CONTROL IMPLEMENTATION SCHEME

This control unit consists of two components.

Main control unit

ALU control Unit

Main control unit :Main control unit takes instruction opcode (6 bit) as input and generate 7 control signals and two

ALU op

ALU CONTROL SIGNAL:The ALU control unit takes two inputs. Function field of the instruction 6 (bits) and 2 bit

control field called ALU op and generate 4 ALU control signals.

The MIPS ALU defines the 6 following combinations of four control inputs

0000 AND

0001 OR

0010 Add

0110 Subtract

0111 Set on less

than

1100 NOR

• Depending on the instruction class, the ALU will need to perform one of these first five functions.

• For load word and store word instructions, we use the ALU to compute the memory address by addition

• For the R-type instructions, the ALU needs to perform one of the five actions (AND, OR, subtract, add,

or set on less than), depending on the value of the 6-bit funct (or function) field

• in the low-order bits of the instruction .

• For branch equal, the ALU must perform a subtraction.

Instruction Classes / Instruction Format:

There are several major observations about this instruction format that we will rely on:

■ The op field, also called the Opcode, is always contained in bits 31:26. We will refer to this field as Op[5:0].

■ The two registers to be read are always specified by the rs and rt fields, at positions 25:21 and 20:16. This is true for the

R-type instructions, branch equal, and for store.

■ The base register for load and store instructions is always in bit positions 25:21 (rs).

The 16-bit offset for branch equal, load, and store is always in positions 15:0.

■ The destination register is in one of two places. For a load it is in bit positions 20:16 (rt), while for an R-type instruction

it is in bit positions 15:11 (rd). Thus we will need to add a multiplexor to select which field of the instruction is used to

indicate the register number to be written.

Fuction of seven control signals

Explanation of the above mentioned tabular column

Regdst 0 Register destination rt field (bits 20:16)

 1 Register destination rd field(bits 15:11)

Regwrite 0 none

 1 Data is written into register

ALUSrc 0 Second register file out load data 2

 1 Sign extended 16 bit of instruction

PCSrc 0 normal Pc is replaced by PC+4

 1 the PC is replaced by PC+4 + (4 * offset)

MemRead 0 None

 1 Data memory Read

memWrite 0 None

 1 Data memory Write

MemReg 0 Write data for reg comes from ALU

 1 Comes from memory

 A SIMPLE DATAPATH WITH THE CONTROL UNIT

R type - add $t1,$t2,$t3

1. The instruction is fetched, and the PC is incremented.

2. Two registers, $t2 and $t3, are read from the register file; also, the main control unit computes the setting of the control

lines during this step.

3. The ALU operates on the data read from the register file, using the function code (bits 5:0, which is the funct field, of

the instruction) to generate the ALU function.

4. The result from the ALU is written into the register file using bits 15:11 of the instruction to select the destination

register ($t1).

lw $t1, offset($t2)

1. An instruction is fetched from the instruction memory, and the PC is incremented.

2. A register ($t2) value is read from the register file.

3. The ALU computes the sum of the value read from the register fi le and the sign-extended, lower 16 bits of the

instruction (offset).

4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory unit is written into the register fi le; the register destination is given by bits 20:16 of the

instruction ($t1).

beq $t1, $t2, offset

1. An instruction is fetched from the instruction memory, and the PC is incremented.

2. Two registers, $t1 and $t2, are read from the register file.

3. The ALU performs a subtract on the data values read from the register file. The value of PC + is added to the sign-

extended, lower 16 bits of the instruction (offset) shifted left by two; the result is the branch target address.

4. The Zero result from the ALU is used to decide which adder result to store into the PC.

PIPELINE

 Pipeline

Pipelining is used to overlap the execution of instructions and improve performance. This potential overlap among

instructions is called instruction level parallelism (ILP) since the instruction can be evaluated in parallel.

The value of the CPI (cycles per instruction) for a pipelined processor is the sum of the base CPI and all contributions

from stalls:

Pipeline CPI = Ideal pipeline CPI + Structural stalls + Data hazard stalls + Control stalls

The ideal pipeline CPI is a measure of the maximum performance attainable by the implementation.

Pipeline Instruction-Execution

• Fetch instruction from memory (IF)

• Decoding the instruction & read registers (ID)

• Execute the operation or calculate address(E)

• Access the operand in memory (Mem)

• Write result into a register (WB)

Non pipelined execution of instructions.

 The sequential execution of instructions is shown in diagram below.

Assuming each

step takes one clock cycle, each instruction execution takes

 5 clock cycles

Pipelined execution of instructions.

The sequence of events in the five stage pipeline system is shown in diagram below.

Here 1st instruction gets completed in clock cycle 5

Then for each clock cycle one instruction is getting completed.

PIPELINE PERFORMANCE

▪ In sequential operation, each instruction needs five clock cycles

▪ In pipelined processor, the processing of one instruction is completed in each clock cycle

▪ Under ideal condition with a large number of instructions, the speedup of pipelining is approximately equal to

number of pipeline stages. i.e. the speed up of five stage pipeline is nearly five.

PIPELINE DATAPATH

The goal of pipelining is to allow multiple instructions execute at the same time. It may need to perform several

operations in a clock cycle such as increment the PC and add registers at the same time, fetch one instruction while

another one reads or writes data, etc,.

In figure 3.1, these five components correspond roughly to the way the datapath is drawn; instructions and data

move generally from left to right through the five stages as they complete execution.

There are however, two exceptions to this left-to-right flow of instructions:

• The write-back stage, which places the result back into the register file in the middle of the datapath.

• The selection of the next value of the PC, choosing between the incremented PC and the branch address from the

MEM stage.

Data flowing from left does not affect the current instruction; only later instructions in the pipeline are influenced

by these reverse data movements. Note that the first right-to-left flow of data can lead to data hazards and the second leads

to control hazards.

Figure 3.1 Pipeline Process for Single-Cycle Datapath

One way to show what happens in pipelined execution is to pretend that each instruction has its own datapath, and

then to place these data paths on a timeline to show their relationship. Figure 3.2 shows the execution of the instructions

by displaying their private data paths on a common timeline.

Figure 3.2 Instructions being executed using the single-cycle datapath

This figure seems to suggest that three instructions need three datapaths. Instead, add registers to hold data so that

portions of a single datapath can be shared during instruction execution. The instruction memory is used during only one

of the five stages of an instruction, allowing it to be shared by following instructions during the other four stages. To

retain the value of an individual instruction for its other four stages, the value read from instruction memory must be

saved in a register. Similar arguments apply to every pipeline stage must be placed in registers.

Figure 3.3 shows the pipelined datapath with the pipeline registers highlighted. All instructions advance during

each clock cycle from one pipeline register to the next. The registers are named for the two stages separated by that

register. For example, the pipeline register between the IF and ID stages is called IF/ID.

PIPELINED DATAPATH

The division of an instruction into five stages means a five-stage pipeline, which in turn means that up to five

instructions will be in execution during any single clock cycle. Thus, we must separate the datapath into five pieces, with

each piece named corresponding to a stage of instruction execution:

1. IF: Instruction fetch

2. ID: Instruction decode and register fi le read

3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

The five stages are the following:

1. Instruction fetch: In this stage instruction is being read from memory using the address in the PC and

then being placed in the IF/ID pipeline register. The PC address is incremented by 4 and then written

back into the PC to be ready for the next clock cycle. This incremented address is also saved in the IF/ID

pipeline register in case it is needed later for an instruction, such as beq.

2. Instruction decode and register file read: The bottom portion of shows the instruction portion of the

IF/ID pipeline register supplying the 16-bit immediate fi eld, which is sign-extended to 32 bits, and the

register numbers to read the two registers. All three values are stored in the ID/EX pipeline register,

along with the incremented PC address. We again transfer everything that might be needed by any

instruction during a later clock cycle.

3. Execute or address calculation: The load instruction reads the contents of register 1 and the sign-

extended immediate from the ID/EX pipeline register and adds them using the ALU. That sum is placed

in the EX/MEM pipeline register.

4. Memory access: The top portion of the diagram shows the load instruction reading the data memory

using the address from the EX/MEM pipeline register and loading the data into the MEM/WB pipeline

register.

5. Write-back: The bottom portion of shows the final step: reading the data from the MEM/WB pipeline

register and writing it into the register file in the middle of the figure.

PIPELINE CONTROL LINES

PIPELINE HAZARDS

Due to non availability of the data or instruction, the next instruction cannot be executed in the following clock cycle,

these events are called hazards. There are three different types of hazards.

1. Structural hazard

2. Data hazard

3. Control Hazard

Structural hazard
When a planned instruction cannot execute in a proper clock cycle, because hardware does not support

combination of instructions that are set to execute.

This will happen when the system has single unified cache memory for both instruction and data. The pipelined

executions of three instructions are shown in the following figure.

When the fourth instruction is fetched, in the same clock cycle the first instruction is accessing data from the memory

while the fourth instruction is fetching an instruction from the same memory. Without two memories, the pipeline had a

structural hazard.

To overcome structural Hazards

Hence the most of the current processors have two caches one for instruction and one for data (split cache) which will

reduce the structural hazard.

DATA HAZARD

Data Hazards occur when pipeline must be stalled because one Instruction must wait for another

instruction to complete.

Suppose we have an add instruction followed immediately by a subtract instruction that uses the sum ($S0).The

second instruction has to wait until the add instruction has written its result. add intruction writes its result only

during fifth clock cycle, there clock cycle is wasted in pipeline, this stall condition is known as Data Hazard.

Data hazard is caused due the data dependency between instructions.

Solution for Data hazards(Various techniques to reduce Data Hazards)

1.Forwarding or Bypassing

2. Reordering Code to control Data

Hazard

Nop: An instruction that does no operation to change state.

Diagrammatic representation:

CONTROL HAZARDS

Various techniques to reduce control Hazards

1. Branch prediction:

Static Branch Prediction:

To reorder code around branches so that it runs faster, we need to predict the branch statically when we compile the

program. There are several different methods to statically predict branch behavior. The simplest scheme is to predict a

branch as taken.

This scheme has an average misprediction rate that is equal to the untaken branch frequency, which for the SPEC

programs is 34%. Unfortunately, the misprediction rate for the SPEC programs ranges from not very accurate (59%) to

highly accurate (9%).A more accurate technique is to predict branches on the basis of profile information collected from

earlier runs. The effectiveness of any branch prediction scheme depends both on the accuracy of the scheme and the

frequency of conditional branches, which vary in SPEC from 3% to 24%. The fact that the misprediction rate for the

integer programs is higher and that such programs typically have a higher branch frequency is a major limitation for static

branch prediction.

2.Dynamic Branch Prediction: Is the ability of the hardware to make an educated guess about which way a branch will

go - will the branch be taken or not. The hardware can look for clues based on the instructions, or it can use past history .

The simplest dynamic branch-prediction scheme is a branch-prediction buffer or branch history table. A branch-

prediction buffer is a small memory indexed by the lower portion of the address of the branch instruction. The memory

contains a bit that says whether the branch was recently taken or not. The prediction is a hint that is assumed to be correct,

and fetching begins in the predicted direction. If the hint turns out to be wrong, the prediction bit is inverted and stored

back. This simple 1-bit prediction scheme has a performance shortcoming: Even if a branch is almost always taken, we

will likely predict incorrectly twice, rather than once, when it is not taken, since the misprediction causes the prediction

bit to be flipped.

`To remedy this weakness, 2-bit prediction schemes are often used. In a 2-bit scheme, a prediction must miss

twice before it is changed. Figure 2.4 shows the finite-state processor for a 2-bit prediction scheme. A branch-prediction

buffer can be implemented as a small, special “cache” accessed with the instruction address during the IF pipe stage, or as

a pair of bits attached to each block in the instruction cache and fetched with the instruction. If the instruction is decoded

as a branch and if the branch is predicted as taken, fetching begins from the target as soon as the PC is known. Otherwise,

sequential fetching and executing continue. As Figure 2.4 shows, if the prediction turns out to be wrong, the prediction

bits are changed.

3.Correlating Branch Predictors

The 2-bit predictor schemes use only the recent behavior of a single branch to predict the future behavior of that branch. It

may be possible to improve the prediction accuracy if we also look at the recent behavior of other branches rather than

just the branch we are trying to predict. Consider a small code fragment

if (aa==2)

aa=0;

if (bb==2)

bb=0;

if (aa!=bb) {}

Let’s label these branches b1, b2, and b3. The key observation is that the behavior of branch b3 is correlated with the

behavior of branches b1 and b2. Clearly, if branches b1 and b2 are both not taken (i.e., if the conditions both evaluate to

true and aa and bb are both assigned 0), then b3 will be taken, since aa and bb are clearly equal. A predictor that uses only

the behavior of a single branch to predict.

Branch predictors that use the behavior of other branches to make a prediction are called correlating predictors or two-

level predictors.

4. Tournament Predictors: Adaptively Combining Local and Global Predictors

Tournament predictors take this insight to the next level, by using multiple predictors, usually one based on global

information and one based on local information, and combining them with a selector.The advantage of a tournament

predictor is its ability to select the right predictor for a particular branch.

EXCEPTION HANDING IN MIPS ARCHITECTURE

One of the hardest parts of control is implementing EXCEPTIONS AND INTERRUPTS

events other than branches or jumps that change the normal flow of instruction execution. They were initially created to

handle unexpected events from within the processor, like arithmetic overflow.

EXCEPTION to refer to any unexpected change in control flow without distinguishing whether the cause is internal or

external;

INTERRUPT refer to when the event is externally caused. Here are five examples showing whether the situation is

internally generated by the processor or externally generated:

• The two types of exceptions that our current implementation can generate are execution of an

undefined instruction and an arithmetic overflow.

• The basic action that the processor must perform when an exception occurs is to save the address of the

offending instruction in the exception program counter (EPC) and then transfer control to the operating

system at some specified address.

• The operating system can then take the appropriate action, which may involve providing some service to

the user program, taking some predefined action in response to an overflow, or stopping the execution of

the program and reporting an error.

• After performing whatever action is required because of the exception, the operating system can

terminate the program or may continue its execution, using the EPC to determine where to restart the

execution of the program.

• For the operating system to handle the exception, it must know the reason for the exception, in addition

to the instruction that caused it.

• There are two main methods used to communicate the reason for an exception.

The First method used in the MIPS architecture is to include a status register (called the Cause

register), which holds a field that indicates the reason for the exception.

A second method is to use vectored interrupts. In a vectored interrupt, the address to which control is transferred is

determined by the cause of the exception.

For example, to accommodate the two exception types listed above, we might define the following two exception vector

addresses: Exception type Exception vector

The addresses are separated by 32 bytes or eight instructions, and the operating system must record the reason for the

exception and may perform some limited processing in this sequence. When the exception is not vectored, a single entry

point for all exceptions can be used, and the operating system decodes the status register to find the cause.

 Let’s assume that we are implementing the exception system used in the MIPS architecture, with the single entry

point being the address 8000 0180hex.(Implementing vectored exceptions is no more difficult.) We will need to add two

additional registers to our current MIPS implementation:

■ EPC: A 32-bit register used to hold the address of the affected instruction. (Such a register is needed even when

exceptions are vectored.)

■ Cause: A register used to record the cause of the exception. In the MIPS architecture, this register is 32 bits, although

some bits are currently unused.

Exceptions in a Pipelined Implementation

 For example, suppose there is an arithmetic overflow in an add instruction. we must flush the instructions that follow the

add instruction from the pipeline and begin fetching instructions from the new address.

• To flush the instruction in the IF stage by turning it into a nop.

• To flush instructions in the ID stage, we use the multiplexor already in the ID stage that zeros control

signals for stalls. A new control signal, called ID.Flush, is ORed with the stall signal from the hazard

detection unit to flush during ID.

• To flush the instruction in the EX phase, we use a new signal called EX.Flush to cause new multiplexors

to zero the control lines.

 To start fetching instructions from location 8000 0180hex, which is the MIPS exception address, we simply add an

additional input to the PC multiplexor that sends 8000 0180hex to the PC.

Example

Exception in a Pipelined Computer

Given this instruction sequence,

40hex sub $11, $2, $4

44hex and $12, $2, $5

48hex or $13, $2, $6

4Chex add $1, $2, $1

50hex slt $15, $6, $7

54hex lw $16, 50($7)

assume the instructions to be invoked on an exception begin like this:

80000180hex sw $26, 1000($0)

80000184hex sw $27, 1004($0)

Show what happens in the pipeline if an overflow exception occurs in the add instruction.

UNIT IV PARALLELISM

Parallel processing challenges – Flynn’s classification – SISD, MIMD, SIMD, SPMD, and

Vector Architectures - Hardware multithreading – Multi-core processors and other Shared

Memory Multiprocessors - Introduction to Graphics Processing Units, Clusters, Warehouse

Scale Computers and other Message-Passing Multiprocessors.

Instruction Level Parallelism
The parallelism among instructions is called Instruction Level Parallelism.

There are two primary methods for increasing the potential amount of
instruction-level parallelism

➢ Increasing the depths of pipeline

• Multiple Issue:Replicate the internal components of the computer so that it can issue

multiple instructions in a clock cycle. The general name of this technique is multiple issues.

SuperScalar – Issue varying number of instructions per clock

➢ There are two types of multiple issue processor
➢ static multiple issue An approach to implementing a multiple-issue processor where many

decisions are made by the compiler before execution.

➢ Dynamic multiple issue An approach to implementing a multiple issue processor where

many decisions are made during execution by the processor.

➢ Issue slots The positions from which instructions could issue in a given clock cycle.

Static Multiple Issue(Example VLIW-Very Long Instruction Word)
Static multiple-issue processors all use the compiler to assist with packaging instructions

and handling hazards.

Very Long Instruction Word (VLIW)
A style of instruction set architecture that launches many operations that are defined to be

independent in a single wide instruction, typically with many separate opcode fields.

Simple Multiple-Issue Code Scheduling (CPI of 0.8)
How would this loop be scheduled on a static two-issue pipeline for MIPS?

Loop: lw $t0, 0($s1) # $t0=array element

addu $t0,$t0,$s2 # add scalar in $s2

sw $t0, 0($s1) # store result

addi $s1,$s1,–4 # decrement pointer

bne $s1,$zero,Loop # branch $s1!=0

Reorder the instructions to avoid as many pipeline stalls as possible.

Dynamic Multiple-Issue Processors(Hardware Approach)Superscalar
Processor.

Dynamic Pipeline Scheduling

Dynamic pipeline scheduling chooses which instructions to execute next, possibly reordering them

to avoid stalls.

In such processors, the pipeline is divided into three major units:

• instruction fetch

• issue unit

• multiple functional units

• a commit unit

The first unit fetches instructions, decodes them, and sends each instruction to a corresponding

functional unit for execution. Each functional unit has buffers, called reservation stations, which

hold the operands and the operation. As soon as the buffer contains all its operands and the

functional unit is ready to execute, the result is calculated. When the result is completed, it is sent

to any reservation stations waiting for this particular result as well as to the commit unit, which

buffers the result until it is safe to put the result into the register file or, for a store, into memory.

The buffer in the commit unit, often called the reorder buffer, is also used to supply operands, in

much the same way as forwarding logic does in a statically scheduled pipeline. Once a result is

committed to the register file, it can be fetched directly from there, just as in a normal pipeline.

Consider the following steps:
1. When an instruction issues, it is copied to a reservation station for the appropriate functional

unit. Any operands that are available in the register file or reorder buffer are also immediately

copied into the reservation station. The instruction is buffered in the reservation station until all the

operands and the functional unit is available. For the issuing instruction, the register copy of the

operand is no longer required, and if a write to that register occurred, the value could be

overwritten.

2. If an operand is not in the register file or reorder buffer, it must be waiting to be produced by a

functional unit. The name of the functional unit that will produce the result is tracked. When that

unit eventually produces the result, it is copied directly into the waiting reservation station from

the functional unit bypassing the registers. These steps effectively use the reorder buffer and the

reservation stations to implement register renaming.

improvement factor

PARALLEL PROCESSING CHALLENGES : (Developing parallel processing program in
harder/difficult than sequential program. Explain)

Parallel processing program:

A single program which runs on multiple processors simultaneously is called parallel

processing program. It is difficult to develop S/W that uses multiple processors to complete one

task faster.

The difficulties are:

1. Sequential portion restricts speedup.

2.Speedup is function of problem size

3.Speedup is function of load balancing.

4.Communication & Synchronization.

These problems gets worse or stiffer when the number of processors increases.

Sequential portion restricts speedup.
Suppose one want to achieve a speedup of 90 times faster with 100 processors. What

percentage of the original code can be sequential?

Execution Time after improvement =
Executiontimeaffectedbyimprovement

Amountof improvement

+ ExecutionTimeunaffected

Speedup =
Execution Time before

Execution Time after Improvemen t

 ExecutionTime before
=

Execution Time Unaffecte d+
Execution Time affected by improvement

Amount of improvemnt

Execution time before

(Execution time before - Execution Time affected by improvement) +
Execution time affected by improvement

= 1

1 − k +
k

n

Where k - portion of parallisable code

n - improvement factor or no of processor

speedup = 90 =
1

1− k +

k

100

90 - 90k + .9k = 1

90-1 = 90k - .9k = 89.1k

 k =

Sequential code is =0.1%

89

89.1
= .999

Speedup is function of problem size.
Initial problem=10addition+10 x10 matrix addition

10 addition is sequential and matrix addition is parallelizable

Execution Time for Uniprocessor = 10t+100t =110t where t is addition time

Execution Time in 10 processor =
10t +

100
t = 20t

10

speedup =
110t

= 5.5
20t

ExecutionTime in 40 processor = 10t +
100t

= 12.5t
40t

speedup =
110t

12.5t

= 8.8

We get potential speedup 55% for 10 processor & 22% for 40 processor.

Now we change the matrix size to 20 x 20

Execution time in Uniprocessor = 10t+400t = 410t

ExecutionTime in 10 processor = 10t +
400

t = 50t

410t

10

speedup =

50t
= 8.2

Execution Time for 40 processor = 10t+10t = 20t

speedup =
410t

= 20.5
20t

Potential speedup 82% for 10 processor & 51% for 40 processors.

Problem Size Speedup(10 processor) Speed up(10 processor)

10 x 10 55 % 22%

20 x 20 82% 51 %

Hence the speedup increases with problem size.

Strong scaling: Strong scaling means measuring speed-up while keeping the problem size fixed.

Weak scaling: Weak scaling means that the problem size grows proportionally to the increase in

the number of processors.

Speedup is function of load balancing
The problem has 400 addition and this was carried 40 processors and each processor has

2.5% load & speedup obtained is 20.5. Impact on Speedup can be seen of one processor

a) 5% load & b) 12.5% load. How well other processors are utilized.

Sequential Execution Time = 410t

5% load = 400/100 X 5 =20

Balance load = 400-20=380

ExecutionTime = max{
380

,
20

}t +10t = 30t

39 1

speedup =
410t

= 13.66
30t

12.5% load =
400

X12.5 = 50
100

Balance load = 350

ExecutionTime = max{
350

,
50

}t +10t = 60t

39 1

speedup =
410t

= 6.83
60t

Hence speedup drops from 20.5 to 14 for 5% load and 7 for 12.5% load on heavily loaded

processor .This example shows the dropping of speedup with unbalance in load.

FLYNN CLASSIFICATION OF COMPUTER ARCHITECTURE

• In 1966, Michael Flynn proposed a classification for computer architectures based

on the number of instruction steams and data streams (Flynn’s Taxonomy).

• Flynn uses the stream concept for describing a machine's structure

• A stream simply means a sequence of items (data or instructions).

• The classification of computer architectures based on the number of instruction

steams and data streams (Flynn’s Taxonomy).

Flynn’s Taxonomy
SISD: Single instruction single data

SIMD: Single instruction multiple data

MISD: Multiple instructions single data

MIMD: Multiple instructions multiple data

1)Single Instruction And Single Data Stream
A sequential computer which exploits no parallelism in either the instruction or data streams.

Single control unit (CU) fetches single Instruction Stream (IS) from memory. The CU then

generates appropriate control signals to direct single processing element (PE) to operate on single

Data Stream (DS) i.e. one operation at a time.

Examples of SISD architecture are the traditional uniprocessor machines like a PC (currently

manufactured PCs have multiple processors) or old mainframes.

 2)Single Instruction And Multiple Data Stream
A computer which exploits multiple data streams against a single instruction stream to

perform operations which may be naturally parallelized. For example, an array processor.

• Each instruction is executed on a different set of data by different processors i.e

multiple processing units of the same type process on multiple-data streams.

• This group is dedicated to array processing machines.

• Sometimes, vector processors can also be seen as a part of this group.

 3)Multiple Instruction And Single Data Stream

• Multiple instructions operate on a single data stream. Uncommon architecture which

is generally used for fault tolerance. Heterogeneous systems operate on the same

data stream and must agree on the result. Examples include the Space Shuttle flight

control computer.

• MISD (Multiple-Instruction streams, Singe-Data stream)

• Each processor executes a different sequence of instructions.

• In case of MISD computers, multiple processing units operate on one single-data

stream .

• In practice, this kind of organization has never been used

4)Multiple Instruction And Multiple Data Stream

Multiple autonomous processors simultaneously executing different instructions on different data.

Distributed systems are generally recognized to be MIMD architectures; either exploiting a single

shared memory space or a distributed memory space. A multi-core superscalar processor is an

MIMD processor.

• MIMD (Multiple-Instruction streams, Multiple-Data streams)

• Each processor has a separate program.

• An instruction stream is generated from each program.

• Each instruction operates on different data.

• This last machine type builds the group for the traditional multi-processors. Several

http://en.wikipedia.org/wiki/Uniprocessor
http://en.wikipedia.org/wiki/Personal_Computer
http://en.wikipedia.org/wiki/Mainframe_computer
http://en.wikipedia.org/wiki/Array_processor
http://en.wikipedia.org/wiki/Space_Shuttle
http://en.wikipedia.org/wiki/Distributed_system
http://en.wikipedia.org/wiki/Multi-core
http://en.wikipedia.org/wiki/Superscalar

processing units operate on multiple-data streams.

Diagram comparing classifications

Visually, these four architectures are shown below

where each "PU" is a central processing unit:

SISD

MISD

SIMD MIMD

SIMD stands for single instruction stream and multiple data streams. Early

implementation of SIMD concepts is as array processor, later as vector processor, and

recently as MMX & SSE instructions of every micro processor.

Array Processor
A single SIMD instruction might add 64 numbers by sending 64 data streams to 64

ALU to form 64 sum with in single clock cycle. Such system is called array processor and

now it is almost disappeared.

Vector processor:
Vector processor is another implementation of SIMD architecture. This was

implemented by SeyMour Cray in Cray super computers. Instead of using 64 ALU performing 64

additions simultaneously like old array processors, this vector architecture pipelined the ALU to

get good performance. Here the data elements are transferred from memory and loaded into large

set of register and operate them sequentially using pipelined execution units and then write back

the results into memory. A key feature of vector architecture is the set of vector registers.

Vector processor may have 32 nos vector registers each with 64 nos of 64-bit

registers. All modern vector computers have vector functional unit with multiple parallel pipelines

called vector lanes. Generally vector architecture are very efficient to execute instructions with

data vectors.

Fig: Single add pipeline can complete one add/clock

Fig: Four add pipeline can complete 4 add/clock

Difference between Vector architecture and Multimedia extension:

MMX & SSE of Intel 80x86 processor.

This is mostly widely used implementation of SIMD and this is found in almost every

microprocessor. The implementation of Intel 80x86 processor is given below.

MMX for Intel 80 x 86
❖ MMX (multi media Extension) was the first set of SIMD extensions applied

to Intel 80x86 processor(Pentium MMX)

❖ This was introduced in 1997

❖ MMX provides 8 registers of 64 bit.

❖ These registers are called MM0 –MM7

 MMX REGISTER SET

❖ These register can be used as

➢ One 64 bit Quad word

➢ Two 32 bits double word

➢ Four 16 bits word

➢ Eight 8 bits byte

MMX DATA TYPE

❖ MMX has 57 instructions and a few MMX instructions are listed

MMX - Data Movement
movd - Move double word

movq - Move Quad word

MMX - Boolean Logic
por - bitwise OR

pand - AND

MMX - Arithmetic
padd b - adds mmx registers as unsigned 8 bit byte

padd sb - adds as signed 8 bit byte

padd w - adds as unsigned 16 bit word

padd sw - adds as signed 16 bit word

MMX - Compare
pcmpeqb - Compare for 8 bit equality

pcmeqw - compare for 16 bit equality

❖ The later SIMD extensions for 80x86 are called SSE, SSE2, SSE3, SSE4 and AVX.

HARDWARE MULTITHREADING
Threads: multiple processes that share code and data (and much of their address space) recently,

the term has come to include processes that may run on different processors and even have disjoint

address spaces, as long as they share the code.

Hardware multithreading allows multiple threads to share the functional units of a single

processor in an overlapping fashion. To permit this sharing, the processor must duplicate the

independent state of each thread.

There are two main approaches to hardware multithreading.

• Fine-grained Multithreading

• Coarse-grained multithreading

• Simultaneous multithreading

Fine-grained Multithreading switches between threads on each instruction, resulting in

interleaved execution of multiple threads. This interleaving is often done in a round-robin fashion,

skipping any threads that are stalled at that clock cycle. To make fine-grained multithreading

practical, the processor must be able to switch threads on every clock cycle.

Advantage

It can hide the throughput losses that arise from both short and long stalls, since instructions from

other threads can be executed when one thread stalls.

Disadvantage

It slows down the execution of the individual threads, since a thread that is ready to execute

without stalls will be delayed by instructions from other threads.

Coarse-grained multithreading
Coarse grained multithreading is a version of hardware multithreading that implies

switching between thread only after significant events such as last level cache miss.

Switches threads only on costly stalls, such as second-level cache misses.

This change relieves the need to have thread switching be extremely fast and is much less

likely to slow down the execution of an individual thread, since instructions from other

threads will only be issued when a thread encounters a costly stall.

Multithreading issues instructions from a single thread, when a stall occurs, the pipeline

must be emptied or frozen.

The new thread that begins executing after the stall must fill the pipeline before instructions

will be able to complete. Due to this start-up overhead, coarse-grained multithreading is

much more useful for reducing the penalty of high-cost stalls, where pipeline refill is

negligible compared to the stall time.

Disadvantage
It is limited in its ability to overcome throughput losses, especially from shorter stalls.

Simultaneous multithreading (SMT) is a variation on hardware multithreading that uses the

resources of a multiple-issue, dynamically scheduled pipelined processor to exploit thread-level

parallelism at the same time it exploits instruction level parallelism. Since SMT relies on the

existing dynamic mechanisms, it does not switch resources every cycle. Instead, SMT is always

executing instructions from multiple threads, leaving it up to the hardware to associate instruction

slots and renamed registers with their proper threads.

Shows how the four threads could be combined to execute on the processor more efficiently using

three multithreading options:

• A superscalar coarse-grained multithreading

• A superscalar with fine-grained multithreading

• A superscalar with simultaneous multithreading

Multi-core processors and other Shared Memory Multiprocessors
 Multicore Processor :

A multi-core processor is a single computing component with two or more independent

actual central processing units (called "cores"), which are the units that read and execute program

instructions. The instructions are ordinary CPU instructions such as add, move data, and branch,

but the multiple cores can run multiple instructions at the same time, increasing overall speed for

programs agreeable to parallel computing. Manufacturers typically integrate the cores onto a single

integrated circuit die (known as a chip multiprocessor or CMP), or onto multiple dies in a single

chip package.

Homogeneous multi-core systems include only identical cores, Heterogeneous multi-

core systems have cores that are not identical.

Just as with single-processor systems, cores in multi-core systems may implement

architectures such as superscalar, VLIW, vector processing, SIMD, or multithreading.

Multi-core processors are widely used across many application domains including general-

purpose, embedded, network, digital signal processing (DSP), and graphics.

A Microprocessor containing multiple processors (called cores) in a single Integrated Circuit

is called Multicore microprocessor. Dual core means two core and Quad core means four core. A

multicore processor with four core is shown below.

Examples of multicore processors

❖ Intel Core i3 - Dual cores

❖ Intel Corei7 - Quad cores

❖ Intel xenon phi - More than 50 cores

Multi-core architecture

 Replicate multiple processor cores on a single die.

 The cores fit on a single processor socket.

 The cores run in parallel(like on a uniprocessor)

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Instruction_(computer_science)
http://en.wikipedia.org/wiki/Instruction_(computer_science)
http://en.wikipedia.org/wiki/Instruction_set
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Die_(integrated_circuit)
http://en.wikipedia.org/wiki/Chip_carrier
http://en.wikipedia.org/w/index.php?title=Homogeneous_computing&action=edit&redlink=1
http://en.wikipedia.org/wiki/Heterogeneous_computing
http://en.wikipedia.org/wiki/Superscalar
http://en.wikipedia.org/wiki/VLIW
http://en.wikipedia.org/wiki/Vector_processor
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/Multithreading_(computer_hardware)
http://en.wikipedia.org/wiki/Embedded_processor
http://en.wikipedia.org/wiki/Network_processor
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Graphics_processing_unit

Advantages:
1. Cache coherency circuitry can operate at a much higher clock rate than is possible if the

signals have to travel off-chip.

2. Signals between different CPUs travel shorter distances, those signals degrade less.

3. These higher quality signals allow more data to be sent in a given time period since

individual signals can be shorter and do not need to be repeated as often.

4. A dual-core processor uses slightly less power than two coupled single-core processors.

5. Multi-core chips also allow higher performance at lower energy. This can be a big factor in

mobile devices that operate on batteries.

Disadvantages

• Maximizing the utilization of the computing resources provided by multi-core

processors requires adjustments both to the operating system (OS) support and to existing

application software.

• Integration of a multi-core chip drives chip production yields down and they are more

difficult to manage thermally than lower-density single-chip designs.

• Intel has partially countered this first problem by creating its quad-core designs by

combining two dual-core on a single die with a unified cache, hence any two working dual-

core dies can be used, as opposed to producing four cores on a single die and requiring all

four to work to produce a quad-core.

• From an architectural point of view, ultimately, single CPU designs may make better use

of the silicon surface area than multiprocessing cores, so a development commitment to

this architecture may carry the risk of obsolescence.

• Finally, raw processing power is not the only constraint on system performance. Two

processing cores sharing the same system bus and memory bandwidth limits the real-

world performance advantage.

Shared Memory Multiprocessors

A computer system with two or more processor is called multiprocessor. This

can be classified into types

1. Shared Memory Multiprocessor(SMP).

2. Message passing Multi processor or cluster. The organization of

shared memory multi processor is shown below

http://en.wikipedia.org/wiki/Operating_system

Here all the processors share a common single address space as well as single common

physical memory. Such system will have one as and each system can run independent job in

their own virtual address space. Processor communicates through shared variable in memory.

As processors operating in parallel will normally share data otherwise, one processor could

start working on data before another is finished with it.

SMP come in two styles.
1. Uniform memory access multi processor(UMA).

2. Non uniform memory access multiprocessor(NUMA).

Uniform Memory Access (UMA) Multiprocessor
A multiprocessor in which accesses to main memory take about the same amount of

time no matter which processor request the access and no matter which word is asked.

Non Uniform Memory Access (NUMA)Multiprocessor
A multiprocessor in which some memory accesses are much faster than others depending on which

processor asks for which word.

Here each processor has some dedicated local memory and also in addition they have common

memory. Hence local memory can be accessed by the local processor at a faster rate and

common memory can be accessed at slow rate. Such machines are called Non Uniform

Memory Access multiprocessor.

Advantages:
❖ NUMA has lower latency for local memory

❖ This can scale to large size

Synchronization: The process of coordinating the behavior of two or more processes, which

may be running on different processors.

Lock: A synchronization device that allows access to data to only one processor at a time.

The organizing of a multiprocessor with message passing is shown below

Here the each processor has its own physical memory address space and the processor are

connected by inter connection network. The processor communicate via explicit message

passing such system is also called cluster. Application with little communication like web

search, mail server and file server do not require shared memory multiprocessor.

Advantage: Message passing multiprocessor or cluster is scalable to thousands of nodes.

Draw back of cluster compared shared memory multiprocessor:
1)Cluster need N operating systems compare to single copy of OS in SMP.

2)Processor in cluster are usually connected using I/O interconnect. whereas the

processors in SMP are usually connected on the memory interconnect.

3)Cluster administering is equal to administering of N machines. Where as the administering SMP

is same as administering single machine.

In the symmetric memory architecture single main memory has a relationship to all processors and a

uniform access time from any processor, these multiprocessor are most often called as symmetric

memory architecture sometimes called uniform memory access.

The use of large multilevel caches can substantially reduce the memory bandwidth demands of a

processor. If the main memory bandwidth demands of a single processor are reduced, multiple

processors may be able to share the same memory

Symmetric memory supports both shared and private data. Private data are used by a single

processor, while shared data is used by multiple processors;

This symmetric shared memory contains 2 problem.

PROBLEM 1:
Caching of a shared data introduces new problem. Which is called as a cache coherence.

Two different processor can have two different values for the same location. This is called as Cache

Coherence. It defines what values can be returned by a read instruction or operation. PROBLEM 2:

CONSISTENCY:Consistency determines when a written value will be returned by a read

operation.

A cache coherence problem for a single memory location X, read and write by 2-processor A,B.

EXAMPLE: The cache coherence problem for a single Memory location(x), read and written by 2

processor(A and B).

THE SNOOPING PROTOCOL IS USED in the symmetric shared memory based

protocol. Which is the hardware approach to overcome the cache coherence? It has two

types.

invalidation protocol or write invalidate protocol

write update or broadcast protocol

Distributed Shared Memory Architecture
• Each processor has its own memory system, which it can access directly

• To obtain data that is stored in some other processor‘s memory, a processor

must communicate with that to request the data

Advantages
Each processor has its own local memory system.More total bandwidth in the memory system than in

a centralized memory system The latency to complete a memory request is lower─ each processor‘s

memory is located physically close to it

Disadvantages
Only some of the data in the memory is directly accessible by each processor, since a

processor can only read and write its local memory system. Leads to different processors

having different values for the same variable

INTRODUCTION TO GRAPHICS PROCESSING UNITS

Introduction:

Graphics processing unit (GPU) A processor optimized for 2D and 3D graphics, video, visual

computing, and display.

Visual computing: A mix of graphics processing and computing that lets you visually interact

with computed objects via graphics, images, and video.

Heterogeneous system: A system combining diff erent processor types. A PC is a heterogeneous CPU–

GPU system.

GPU Evolution
Graphics on a PC were performed by a video graphics array (VGA) controller.

By 1997, VGA controllers were beginning to incorporate some three-dimensional (3D) acceleration

functions, including hardware for triangle setup and rasterization (dicing triangles into individual

pixels) and texture mapping and shading (applying “decals” or patterns to pixels and blending

colors).

 In 2000, the single chip graphics processor incorporated almost every detail of the traditional high-

end workstation graphics pipeline and, therefore, deserved a new name beyond VGA controller. The

term GPU was coined to denote that the graphics device had become a processor.

GPUs have become massively parallel programmable processors with hundreds of cores and

thousands of threads. Recently, processor instructions and memory hardware were added to

support general purpose programming languages, and a programming environment was created to

allow GPUs to be programmed using familiar languages, including C and C. This innovation makes

a GPU a fully general-purpose, programmable, many core processor, albeit still with some special

benefits and limitations.

GPU Graphics Trends
GPUs and their associated drivers implement the OpenGL and DirectX models of graphics

processing. OpenGL is an open standard for 3D graphics programming available for most

computers. DirectX is a series of Microsoft multimedia programming interfaces, including

Direct3D for 3D graphics.

Application programming interface (API):A set of function and data structure definitions

providing an interface to a library of functions

Why CUDA and GPU Computing?
GPU computing Using a GPU for computing via a parallel programming language and API.

(General Purpose computation on GPU)GPGPU: Using a GPU for general-purpose

computation via a traditional graphics API and graphics pipeline.

(Compute Unifed Device Architecture)CUDA: A scalable parallel programming model and

language based on C/C. It is a parallel programming platform for GPUs and multicore CPUs

Basic Unifed GPU Architecture
Unified GPU architectures are based on a parallel array of many programmable

processors. They unify vertex, geometry, and pixel shader processing and parallel computing

on the same processors, unlike earlier GPUs which had separate processors dedicated to each

processing type. The programmable processor array is tightly integrated with fixed function

processors for texture filtering, rasterization, raster operations, anti-aliasing, compression,

decompression, display, video decoding, and high-definition video processing. Although the

fixed-function processors signifi cantly outperform more general programmable processors in

terms of absolute performance constrained by an area, cost, or power budget, we will focus on

the programmable processors here. Compared with multicore CPUs, manycore GPUs have a

different architectural design point, one focused on executing many parallel threads efficiently

on many processor cores. By using many simpler cores and optimizing for data-parallel

behavior among groups of threads, more of the per- chip transistor budget is devoted to

computation, and less to on-chip caches and overhead.

Shader A program that operates on graphics data such as a vertex or a pixel fragment.

Shading language A graphics rendering language, usually having a datafl ow or streaming

programming model.

The CUDA Paradigm
CUDA is a minimal extension of the C and C programming languages. The programmer

writes a serial program that calls parallel kernels, which may be simple functions or full

programs

kernel A program or function for one thread, designed to be executed by many threads.

Thread block A set of concurrent threads that execute the same thread program and may

cooperate to compute a result.

Grid A set of thread blocks that execute the same kernel program.

Parallel execution and thread management is automatic.Threads may access data from multiple

memory spaces during their execution. Each thread has a private local memory.

local memory Perthread local memory private to the thread.

shared memory memory shared by all threads of the block.

global memory Perapplication memory shared by all threads.

Implications for Architecture
The parallel programming models for graphics and computing have driven GPU architecture

to be different than CPU architecture.

The key aspects of GPU programs driving GPU processor architecture are:

■ Extensive use of fine-grained data parallelism: Shader programs describe how to

process a single pixel or vertex, and CUDA programs describe how to compute an

individual result.

■ Highly threaded programming model: A shader thread program processes a single pixel or

vertex, and a CUDA thread program may generate a single result. A GPU must create and

execute millions of such thread programs per frame, at 60 frames per second.

■ Scalability: A program must automatically increase its performance when provided

with additional processors, without recompiling.

■ Intensive floating-point (or integer) computation.

■ Support of high throughput computations.

COMPUTER ARCHITECTURE OF WAREHOUSE-SCALE COMPUTERS
Ware House Scale Computers:

Warehouse-scale computers that basically exploit request level parallelism and data level

parallelism.

A Warehouse-scale computer(WSC) is a cluster comprised of tens of thousands of servers.

Warehouse-scale computers (WSCs) form the foundation of internet services that people use

for search, social networking, online maps, video sharing, online shopping, email, cloud

computing, etc.

WSCs share many goals and requirements with servers. They are:

Cost-performance: Because of the scale involved, the cost-performance becomes very critical.

Even small savings can amount to a large amount of money.

Energy efficiency: There is a lot of money invested in power distribution for consumption

and also to remove the heat generated through cooling systems). Hence, work done per joule is

critical for both WSCs and servers because of the high cost of building the power and

mechanical infrastructure for a warehouse of computers and for the monthly utility bills to

power servers. If servers are not energy-efficient they will increase (1) cost of electricity, (2)

cost of infrastructure to provide electricity, (3) cost of infrastructure to cool the servers.

Therefore, we need to optimize the computation per joule.

Dependability via redundancy: The hardware and software in a WSC must collectively

provide at least 99.99% availability, while individual servers are much less reliable.

Redundancy is the key to dependability for both WSCs and servers. While servers use more

hardware at higher costs to provide high availability, WSC architects rely on multiple cost-

effective servers connected by a low cost network and redundancy managed by software.

Multiple WSCs may be needed to handle faults in whole WSCs. Multiple WSCs also reduce

latency for services that are widely deployed.

Network I/O: Networking is needed to interface to the public as well as to keep data

consistent between multiple WSCs.

Both interactive and batch-processing workloads: Search and social networks are

interactive and require fast response times. At the same time, indexing, big data analytics etc.

create a lot of batch processing workloads also.

WSCs also have characteristics that are not shared with servers. They are:

Ample parallelism: In the case of servers, we need to worry about the parallelism

available in applications to justify the amount of parallel hardware. This is not the case with

WSCs. Most jobs are totally independent and exploit “Request-level parallelism”. Interactive

internet service applications, known as Software as a Service (SaaS) workload consists of

independent requests of millions of users. Secondly, data of many batch applications can be

processed in independent chunks, exploiting data-level parallelism.

Operational costs count: Server architects normally design systems for peak performance

within a cost budget. Power concerns are not too much as long as the cooling requirements are

maintained. The operational costs are ignored. WSCs, however, have a longer life times and

the building, electrical and cooling costs are very high. So, the operational costs cannot be

ignored.

Scale and its opportunities and problems: Since WSCs are so massive internally, you get

volume discounts and economy of scale, even if there are not too many WSCs. On the other

hand,

custom hardware can be very expensive, particularly if only small numbers are manufactured.

The economies of scale lead to cloud computing, since the lower per-unit costs of WSCs lead

to lower rental rates. The flip side of the scale is failures. Even if a server had a Mean Time To

Failure (MTTF) of twenty five years, the WSC architect should design for five server failures

per day. Similarly, if there were four disks per server and their annual failure rate was 4%,

there would be one disk failure per hour, considering 50,000 servers.

Computer Architecture of WSCs: Networks are the connecting tissue that binds all the

tens of thousands of servers in a WSC. WSCs often use a hierarchy of networks for

interconnection.

The most popular switch for a rack is a 48-port Ethernet switch. The bandwidth within the

rack is the same for each server.

As far as the storage is concerned, the simplest solution is to use disks inside the servers and

use the Ethernet connectivity for accessing information on the disks of remote servers. The

other option is to use Network Attached Storage (NAS) through a storage network like

Infiniband. This is more expensive, but supports multiple features including RAID for

improving dependability. WSCs generally rely on local disks and provide storage software that

handle connectivity and dependability. For example, the Google File System (GFS) uses local

disks and maintains at least three replicas to provide dependability.

Measuring Efficiency of a WSC: A widely used measure to evaluate the efficiency of a

datacenter or WSC is the Power Utilization Effectiveness (PEU).

PUE = Total facility power / IT equipment power

UNIT V MEMORY AND I/O SYSTEMS

Memory Hierarchy - memory technologies – cache memory – measuring and improving cache
performance – virtual memory, TLBs – Accessing I/O Devices – Interrupts – Direct Memory
Access – Bus structure – Bus operation – Arbitration – Interface circuits - USB.

MEMORY HIERARCHY

BASIC CONCEPTS OF MEMORY SYSTEMS:

➢ Programs and data that operate in a system are stored in the memory of computer.

➢ The execution speed of the program is highly dependent on the speed with which

instructions and data can be transferred between the processor and the memory.

➢ The large memory helps to execute programs that are large and deal with huge amount of

data.

➢ For good system, the memory should be fast, large and inexpensive. But it is difficult to

meet all these requirements. Because increased speed and size are achieved at

increased cost.

➢ By improving the apparent speed and size of the memory, will help to keep the cost

reasonable.

➢ The apparent speed can be increased by using cache memory and the apparent size can be

achieved by Virtual memory.

The speed of the memory unit is measured in terms of
✓ Memory access time

✓ Memory cycle time

Memory access time:It is the time that elapses between the initiation of an operation and the

completion of that operation.

Memory cycle time: It is the minimum time delay required between two successive memory

operations. Example the time between two successive read operation

Memory hierarchy

Memory hierarchy is a structure that uses multiple levels of memories, as the distance from the

processor increases, the size of the memories and the access time both increase. A memory

hierarchy consists of multiple levels of memory with different speeds and sizes. The faster

memories are more expensive per bit than the slower memories and thus are smaller..

Fig:1 The basic structure of memory hierarchy

➢ The principle of locality states that programs access a relatively small portion of their

address space at any instant of time
There are two different types of locality

• Temporal locality

• Spatial locality

Temporal locality(locality in time): The tendency to reuse recently accessed data
items.

Spatial locality(locality in space): The tendency to reference data items that are close

to other recently accessed items.

Fig.2 This diagram shows the structure of a memory hierarchy: as the distance from the
processor increases, so does the size.

➢ The above fig shows that a memory hierarchy uses smaller and faster memory

technologies close to the processor. Thus, accesses that hit in the highest level of the

hierarchy can be processed quickly. Accesses that miss go to lower levels of the hierarchy,

which are larger but slower.

Cache memory:It is a small, fast memory that is inserted between the larger, slower main memory and the

processor. It holds the currently active segments of a program and their data.

Upper level

Lower level

 Fig 3: The pair of levels in the memory hierarchy

Upper level memories are closer to the processor and it is smaller and faster than the lower

level memory because the technology used in the upper level is more expensive.

Block: The minimum unit of information that can be either present or not present in the two-
level hierarchy.

Hit: If the data requested by the processor appears in some block in the upper level,this is
called a hit..

Miss: If the data is not found in the upper level, the request is called a miss.

The hit rate or hit ratio, is the fraction of memory accesses found in the upper level; it is often
used as a measure of the performance of the memory hierarchy.

Miss rate: The fraction of memory accesses not found in a level of the memory hierarchy.

Hit time: The time required to access a level of the memory hierarchy, including the time

needed to determine whether the access is a hit or a miss.

Miss penalty: is the time to replace a block in the upper level with the corresponding block from

the lower level, plus the time to deliver this block to the processor.

MEMORY TECHNOLOGIES

There are four primary technologies used today in memory hierarchies.

• Main memory is implemented from DRAM (dynamic random access memory),

• levels closer to the processor (caches) use SRAM (static random access memory).

• The third technology is Flash memory.

• The fourth technology, used to implementthe largest and slowest level in the hierarchy in

servers, is Magnetic disk.

a) SRAM Technology:

SRAM is based on F/F cell as shown in fig and array of cells is implemented as a chip.

▪ Here two inverters are cross coupled to form Flip Flop

▪ The cells are connected to bit line by switches T1 & T2

▪ The switches are activated by word line.

▪ When the word line is 1, the switches are closed and F/F output are connected to

bit line.

STATIC RAM (SRAM) CELL

▪ Here, as long as power is applied, the content is kept indefinitely. Hence it is called

Static RAM.
▪ SRAM have a fixed access time to any data.

▪ No need to refresh.

▪ Uses six to eight transistors per bit.

▪ In the past, most PC and server systems uses separate SRAMS chips for caches.

Today caches are integrated on to the processor chip so the market for separate

SRAM chips has reduced.

b) DYNAMIC RAM

▪ Static Memory is fast, but they are costly since the cell require more transistors and

hence more semi conductor area.
▪ Hence simple RAM cell is implemented to reduce the cost.

▪ Sample DRAM cell consists of a capacitor and a Transistor shown below.

Dynamic RAM (DRAM)
▪ Information is stored in the form of charge in a capacitor.

▪ Since the charge can be maintained for only Tens of millisecond, the contents must be

periodically refreshed by restoring the charge in the capacitor to keep the information

for a much longer time.

▪ Hence they are called Dynamic RAM

ASYNCHRONOUS DYNAMIC RAM

▪ The initial DRAM was asynchronous type.

▪ Here the processor must take into account the delay in the response of the memory.

Such memories are referred as ASYNCHRONOUS DRAM

Internal organization of a 2M x 8 dynamic memory cell

➢ The cells are organized in the form of a 4K x 4K array. The 4096 cells in each row are

divided into 512 groups of 8, so that a row can store 512 bytes of data. Thus, a 21-bit

address is needed to access a byte in this memory. The high-order 12 bits and the low-

order 9 bits of the address constitute the row and column addresses of a byte,

respectively.

➢ During a Read or a Write operation, the row address is applied first. It is loaded into

the row address latch in response to a signal pulse on the Row Address Strobe (RAS)

input of the chip. Then a Read operation is initiated, in which all cells on the

selected row are read and refreshed.

➢ Shortly after the row address is loaded, the column address is applied to the address

pins and loaded into the column address latch under control of the Column Address

Strobe (CAS) signal. The information in this latch is decoded and the appropriate group

of 8 Sense/Write circuits is selected.

➢ If the R/Wcontrol signal indicates a Read operation, the output values of the

selected circuits are transferred to the data lines, D7-D0.

➢ For a Write operation, the information on the D7-D0 lines is transferred to the selected
circuits.

➢ Applying a row address causes all cells on the corresponding row to be read and

refreshed during both Read and Write operations. To ensure that the contents of a

DRAM are maintained, each row of cells must be accessed periodically.

➢ A refresh circuit usually performs this function automatically. Many dynamic memory

chips incorporate a refresh facility within the chips themselves. Here, the dynamic

nature of these memory chips is almost invisible to the user.

A specialized memory controller circuit provides the necessary
control signals, RAS and CAS that govern the timing. The processor must
take into account the delay in the response of the memory. Such memories
are referred to as asynchronous DRAMs.

Advantage of DRAMS :

▪ High density and low cost, DRAMs are widely used in the memory units of computers.

▪ To provide flexibility in designing memory systems, these chips are manufactured in

different organizations. For example, a 64-Mbit chip may be organized as 16M x 4, 8M x

8, or 4M x 16.

FAST PAGE MODE:
When the DRAM in above Figure is accessed, the contents of all 4096 cells in the

selected row are sensed, but only 8 bits are placed on the data lines D7-D0. This byte is selected

by the column address bits A8-A0.

A simple modification can make it possible to access the other bytes in the same row

without having to reselect the row. A latch can be added at the output of the sense amplifier in

each column. The application of a row address will load the latches corresponding to all bits

in the selected row. Then, it is only necessary to apply different column addresses to place the

different bytes on the data lines.

Advantage of Fast page mode:
The faster rate attainable in block transfers can be exploited in applications in which memory

accesses follow regular patterns, such as in graphics terminals.

This feature is also beneficial in general-purpose computers for transferring data blocks

between the main memory and a cache.

2. Synchronous DRAM

DRAMs operation is directly synchronized with a clock signal. Such memories are

known as synchronous DRAMs (SDRAMs).

Structure of a Synchronous DRAM

➢ The cell array is the same as in asynchronous DRAMs. The address and data connections

are buffered by means of registers.

➢ The output of each sense amplifier is connected to a latch. A Read operation causes the

contents of all cells in the selected row to be loaded into these latches. But, if an access is

made for refreshing purposes only, it will not change the contents of these latches; it

will merely refresh the contents of the cells.

➢ Data held in the latches that correspond to the selected column(s) are transferred into the

data output register, thus becoming available on the data output pins.

➢ SDRAMs have several different modes of operation, which can be selected by writing

control information into a mode register.

➢ All actions are triggered by the rising edge of the clock. The burst operation is used for

the block transfer of data as fast page mode feature. It is specified by setting the mode

register.

➢ First, the row address is latched under control of the RAS signal. The memory typically

takes 2 or 3 clock cycles to activate the selected row. Then, the column address is latched

under control of the CAS signal.

➢ After a delay of one clock cycle, the first set of data bits is placed on the data lines. The

SDRAM automatically increments the column address to access the next three sets of bits

in the selected row, which are placed on the data lines in the next 3 clock cycles.

➢ SDRAMs have built-in refresh circuitry. A part of this circuitry is a refresh counter,

which provides the addresses of the rows that are selected for refreshing. In a typical

SDRAM, each row must be refreshed at least every 64 ms.

Double – data rate SDRAM (DDR SDRAM)

The standard SDRAM performs all actions on the rising edge of the clock

signal.The SDRAM,which accesses the cell array for transfers of data on both edges of the

clock signal is called double – data rate SDRAMs. The latency of these devices is same as

for standard SDRAMs. But, they transfer data on both edges of the clock. Such devices is

called double – data- rate SDRAMs. Their bandwidth is doubled for long burst transfers.

Application of DDR SDRAM and Standard SDRAMs:
Mainly used in the application where block transfers are established. Some examples are,
Used in general purpose computers in which transfer is mainly between main memory and
processor caches.Used in high - quality video displays.

FLASH MEMORY

Flash memory is a type of EPROM. Similar to EPROM, a flash cell is based on a single
transistor controlled by trapped charge.

Advantages:
Flash memory devices have greater density than EPROM.

Higher capacity and lower cost per bit.

They require a single power supply voltage.

Consumes less power in their operation.

More suitable for portable equipments that are battery driven like hand-held computers, cell

phones, digital cameras and MP3 music players.

Disadvantages:
It writes can wear out flash memory bits. Flash controllers spread the writes by remapping blocks

that have been written many times to less used blocks. This techniques is called wear Leveling.

Disk Memory:

A magenetic hard disk consists of a collection of platters, which rotate on a spindle at 5400 to

15000 revolutions per minutes.

Each disk surface is divided into concentric circles called Tracks. There are typically tens of

thousands of tracks per surface. Each track is in turn dividd into sector that contain the

information. Each track may have thousands of sectors.

To access data, the operating system must direct the disk through a three stage process.

1. The first step is to position the head over the proper track. The operation is called a seek

and the time to move the head to the desired track is called the seek time.

2. Once the head has reached the correct track, we must wait for the desired sector to rotate

under the read/write head. This time is called the Rotational Latency/ Delay.

3. The last component of a disk access, Transfer Time, is the time to transfer a block of bits.

The transfer time is a function of the sector size, the rotation speed, and the recording

density of a track.

CACHE :
A small, fast memory introduced between the processor and the main memory is called

cache memory which improves the effective speed of the memory.

Use of a Cache Memory
I) BLOCK IDENTIFICATION (How to find the Cache block):

➢ Caches have an address tag on each block frame that gives the block address. The

most common procedure is to add a valid bit to the tag to say whether or not this entry

contains a valid address. If the bit is not set, there cannot be a match on this address.

➢ Figure C.3 shows how an address is divided. The first division is between the block

address and the block offset. The block frame address can be further divided into the tag

field and the index field. The block offset field selects the desired data from the block, the

index field selects the set, and the tag field is compared against it for a hit.

II) CACHE REPLACEMENT STRATEGIES:

There are three primary strategies employed for selecting which block to replace:

Random :To spread allocation uniformly, candidate blocks are randomly selected.

Least-recently used(LRU): Relying on the past to predict the future, the block replaced is the

one that has been unused for the longest time. If recently used blocks are likely to be used again,

then a good candidate for disposal is the least-recently used block.

First in, first out (FIFO):Because LRU can be complicated to calculate, this approximates LRU

by determining the oldest block rather than the LRU.

III) WHAT HAPPENS ON A WRITE? OR WRITE STRATEGY

Write through—The information is written to both the block in the cache and to the block in the

lower-level memory.

Write back—The information is written only to the block in the cache. The modified cache

block is written to main memory only when it is replaced.

IV) BLOCK PLACEMENT OR MAPPING FUNCTIONS:

Explain Mapping function in cache memory to determine how memory blocks are placed

in Cache.

Mapping functions are used as a way to decide which main memory block occupies which

line of cache.

Let us discuss the possible methods for specifying where memory blocks are placed in the

cache. Consider a cache consisting of 128 blocks of 16 words for a total of 2048 (2K) words and

Assume that the main memory is 64K words, which we will view as 4K blocks of 16 words each.

For ease of understanding, assume that consecutive addresses refer to consecutive words.

Direct Mapping

➢ The simplest way to determine cache locations in which to store memory blocks is

the direct-mapping technique.

➢ Both main memory and cache memory is divided into blocks of size equal to 16 words.

➢ In this technique, (block j of the main memory) mod (Number of cache blocks in the

cache)

− Here block j of main memory maps to (block j mod 128) of cache.

− Main memory blocks 0, 128, 256 … loaded into cache block 0

− Main memory blocks 1, 129, 257 … loaded into cache block 1 and so on

➢ Placement of a block in the cache is determined from memory address.

− Memory address is divided into three fields as shown in figure

− Lower order 4 bit select one of 16 words within a block.

− Next 7 bits select cache block (determines the cache position in which the

memory block must be stored.)

− Next 5 bits decides block from which segment is mapped to cache.

− During processing higher order 5 bits are compared with tag bits of cache block
pointed by 7 bit cache block field

➢ If match – desired word is in the block – Cache Hit

➢ If not – desired word is brought from main memory and loaded to cache – Cache Miss

Advantages:
It is easy to implement.

Disadvantages:
It is not very flexible. Contention problem may arise.

➢ Since more than one memory block is mapped onto a given cache block position,

contention may arise for that position even when the cache is not full.

➢ For example, instructions of aprogram may start in block 1 and continue in block 129,

possibly after a branch. As this program is executed, both of these blocks must be

transferred to the block-1 position in the cache. Contention is resolved by allowing the

new block to overwrite the currently resident block. In this case, the replacement

algorithm is trivial.

ASSOCIATIVE MAPPING

Associative mapping is much more flexible mapping method, in which a main memory

block can be placed into any cache block position.

Associative mapped cache

➢ Here 12 tag bits are required to identify a memory block when it is resident in the

cache.

➢ The tag bits of an address received from the processor are compared to the tag bits of

each block of the cache to see if the desired block is present. This is called the

associative-mapping technique.

➢ It gives complete freedom in choosing the cache location in which to place the

memory block. Thus, the space in the cache can be used more efficiently.

➢ A new block that has to be brought into the cache has to replace
an existing block only if the cache is full. In this case, we need an
algorithm to select the block to be replaced. (By using
replacement algorithm – Random, LRU, FIFO)

➢ The cost of an associative cache is higher than the cost of a direct-mapped cache

because of the need to search all 128 tag patterns to determine whether a, given block

is in the cache. A search of this kind is called an associative search.

➢ For better performance, the tags must be searched in parallel.

Merit:

 It is more flexible than direct mapping technique.

Demerit:
➢ Its cost is high.

SET – ASSOCIATIVE MAPPING
➢ A combination of the direct- and associative-mapping techniques can be used.

➢ Blocks of the cache are grouped into sets, and the mapping allows a block of the main

memory to reside in any block of a specific set.

➢ Hence, the contention problem of the direct method is eased by having a few choices

for block placement. At the same time, the hardware cost is reduced by decreasing the

size of the associative search.

➢ An example of this set-associative-mapping technique is shown below for a cache

with two blocks per set.

➢ Block j of main block is mapped into (j mod 64) of cache block

memory blocks 0, 64, 128 … mapped to cache set 0 and they can occupy either of

two blocks position within the set
memory blocks 1, 65, 129 … mapped to cache set 1 and so on

Set-associative-mapped cache with two blocks per set

➢ During operation 6 bit set field give the set which contain the data and 6 bit Tag of

address is associatively compared to the tags of the two blocks of the set to check the

desired data is in cache.

➢ Having 64 sets means that the 6-bit set field of the address determines which set of

the cache might contain the desired block. The tag field of the address must then be

associatively compared to the tags of the two blocks of the set to check if the desired

block is present. This two-way associative search is simple to implement.

➢ A cache that has K blocks per set is referred as a K way set associative cache.

➢ The other extreme of one block per set is the direct-mapping method. A cache that
has k blocks per set is referred to as a k-way set-associative cache.

Measuring and Improving Cache Performance

CPU time can be divided into the clock cycles that the CPU spends executing the program and

the clock cycles that the CPU spends waiting for the memory system. Thus,

The memory-stall clock cycles come primarily from cache misses, and we make that assumption

here. We also restrict the discussion to a simplified model of the memory system. In real

processors, the stalls generated by reads and writes can be quite complex, and accurate

performance prediction usually requires very detailed simulations of the processor and memory

system.

Memory-stall clock cycles can be defined as the sum of the stall cycles coming from reads plus
those coming from writes:

Th e read-stall cycles can be defi ned in terms of the number of read accesses per program, the

miss penalty in clock cycles for a read, and the read miss rate:

For a write-through scheme, we have two sources of stalls: write misses, which usually require

that we fetch the block before continuing the write and write buffer stalls, which occur when the

write buffer is full when a write occurs. Th us, the cycles stalled for writes equals the sum of

these two:

In most write-through cache organizations, the read and write miss penalties are the same (the

time to fetch the block from memory). If we assume that the write buffer stalls are negligible, we

can combine the reads and writes by using a single miss rate and the miss penalty:

Average memory access time (AMAT) is the average time to access memory considering both

hits and misses and the frequency of different accesses;

Advanced Cache Optimizations Technique:

The average memory access time formula above gives us three metrics for cache

optimizations: hit time, miss rate, and miss penalty.

• Reducing the hit time: small and simple caches, way prediction, and trace caches

• Increasing cache bandwidth: pipelined caches, multibanked caches, and nonblocking
caches

• Reducing the miss penalty: critical word first and merging write buffers

• Reducing the miss rate: compiler optimizations

• Reducing the miss penalty or miss rate via parallelism: hardware prefetching and
compiler prefetching

Small and Simple Caches to Reduce Hit Time:

• A time consuming portion of a cache hit is using the index portion of the address to read

the tag memory and then compare it to the address.

• Smaller hardware can be faster, so a small cache can help the hit time.

• keep the cache simple, such as using direct mapping. One benefit of direct-mapped
caches is that the designer can overlap the tag check with the transmission of the data.

Way Prediction to Reduce Hit Time
In way prediction, extra bits are kept in the cache to predict the way, or block within the set of

the next cache access.

• This prediction means the multiplexor is set early to select the desired block, and only a

single tag comparison is performed that clock cycle in parallel with reading the cache

data.

• Way prediction is a good match to speculative processors, since they must already undo
actions when speculation is unsuccessful

Trace Caches to Reduce Hit Time
• To provide instruction-level parallelism find enough instructions every cycle without

use dependencies.

• To address this challenge, blocks in a trace cache contain dynamic traces of the
executed instructions rather than static sequences of instructions.

• Trace caches have much more complicated address-mapping mechanisms.

Pipelined Cache Access to Increase Cache Bandwidth
• This optimization is simply to pipeline cache access so that the effective latency of a

first-level cache hit can be multiple clock cycles, giving fast clock cycle time and

high bandwidth but slow hits.

Nonblocking Caches to Increase Cache Bandwidth
• For pipelined computers that allow out-of-order completion, the processor need not

stall on a data cache miss.

• The processor could continue fetching instructions from the instruction cache while
waiting for the data cache to return the missing data.

• A nonblocking cache or lockup-free cache escalates the potential benefits of such a
scheme by allowing the data cache to continue to supply cache hits during a miss.

• This “hit under miss” optimization reduces the effective miss penalty by being helpful
during a miss instead of ignoring the requests of the processor.

Multibanked Caches to Increase CacheBandwidth
• Rather than treat the cache as a single monolithic block, we can divide it into independent

banks that can support simultaneous accesses.

• Banking works best when the accesses naturally spread themselves across the banks, so

the mapping of addresses to banks affects the behavior of the memory system.

• A simple mapping that works well is to spread the addresses of the block sequentially
across the banks, called sequential interleaving.

• For example, if there are four banks, bank 0 has all blocks whose address modulo 4 is 0;

bank 1 has all blocks whose address modulo 4 is 1; and so on. Figure 5.6 shows this

interleaving.

Critical Word First and Early Restart to Reduce Miss Penalty
• This strategy is impatience: Don’t wait for the full block to be loaded before sending

the requested word and restarting the processor. Here are two specific strategies:

Critical word first—Request the missed word first from memory and send it to the

processor as soon as it arrives; let the processor continue execution while filling the

rest of the words in the block.

Early restart—Fetch the words in normal order, but as soon as the requested word of

the block arrives, send it to the processor and let the processor continue execution.

• These techniques only benefit designs with large cache blocks, since the benefit is low
unless blocks are large.

Merging Write Buffer to Reduce Miss Penalty
• write-back caches use a simple buffer when a block is replaced. If the write buffer is

empty, the data and the full address are written in the buffer, and the write is finished

from the processor’s perspective; the processor continues working while the write

buffer prepares to write the word to memory.

• If the buffer contains other modified blocks, the addresses can be checked to see if

the address of this new data matches the address of a valid write buffer entry. If so,

the new data are combined with that entry. Write merging is the name of this

optimization.

• This optimization uses the memory more efficiently since multiword writes are

usually faster than writes performed one word at a time.

• In a write-back cache, the block that is replaced is sometimes called the victim.Hence,

the AMD Opteron calls its write buffer a victim buffer. The write victim buffer or

victim buffer contains the dirty blocks that are discarded from a cache because of a

miss. Rather than stall on a subsequent cache miss, the contents of the buffer are

checked on a miss to see if they have the desired data before going to the next lower-

level memory.

• It sounds like another optimization called a victim cache. In contrast, the victim cache

can include any blocks discarded from the cache on a miss, whether they are dirty or

not.

Compiler Optimizations to Reduce Miss Rate

Code and Data Rearrangement
• Code can easily be rearranged without affecting correctness; for example, reordering

the procedures of a program might reduce instruction miss rates by reducing conflict

misses.

• Reoodering the instruction reduced misses by 50% for a 2kb direct mapped
instruction cache with 4byte blocks.75% in an 8Kb cache.

• Aligning basic blocks so that the entry point is at the beginning of a cache block

decreases the chance of a cache miss for sequential code.

• Data have even fewer restrictions on location than code. The goal of such

transformations is to try to improve the spatial and temporal locality of the data.

Loop Interchange

• Some programs have nested loops that access data in memory in non sequential order.

Simply exchanging the nesting of the loops can make the code access the data in the

order they are stored. Assuming the arrays do not fit in the cache, this technique reduces
misses by improving spatial locality; reordering maximizes use of data in a cache block

before they are discarded.

/* Before */

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)
x[i][j] = 2 * x[i][j];

/* After */

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)
x[i][j] = 2 * x[i][j];

Blocking
• This optimization tries to reduce cache misses via improved temporal locality.

• Consider multiple arrays,with some array accessed by rows and some by columns.

• Storing the array row by row or column by column does not solve the problem because

both the rows and columns are used in every iteration by the loop.Such orthogonal access

meanse that transformation such as loop interchange are not helpful.

• Instead of operating on entire rows or columns of an array, blocked algorithms operate on

submatrices or blocks. The goal is to maximize accesses to the data loaded into the cache

before the data are replaced. The code example below, which performs matrix

multiplication, helps motivate the optimization:
/* Before */

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

{r = 0;

for (k = 0; k < N; k = k + 1)

r = r + y[i][k]*z[k][j];
x[i][j] = r; };

• The two inner loops read all N-by-N elements of z, read the same N

elements in a row of y repeatedly, and write one row of N elements of x.

• The number of capacity misses clearly depends on N and the size of the cache.

• To ensure that the elements being accessed can fit in the cache, the original code is
changed to compute on a submatrix of size B by B.

• Two inner loops now compute in steps of size B rather than the full length of x and z. B is

called the blocking factor. (Assume x is initialized to zero.)

Hardware Prefetching of Instructions and Data to
Reduce Miss Penalty or MissRate

• Instruction prefetch is frequently done in hardware outside of the cache Both instructions

and data can be prefetched, either directly into the caches or into an external buffer that

can be more quickly accessed than main memory.

• Typically, the processor fetches two blocks on a miss: the requested block and the next

consecutive block. The requested block is placed in the instruction cache when it returns,

and the prefetched block is placed into the instruction stream buffer.

• If the requested block is present in the instruction stream buffer, the original cache

request is canceled, the block is read from the stream buffer, and the next prefetch request

is issued.

• Prefetching relies on utilizing memory bandwidth that otherwise would be unused, but if

it interferes with demand misses, it can actually lower performance.

Compiler-Controlled Prefetching to Reduce Miss Penalty or Miss Rate
• An alternative to hardware prefetching is for the compiler to insert prefetch instructions

to request data before the processor needs it. There are two flavors of prefetch:
1. Register prefetch will load the value into a register.

2. Cache prefetch loads data only into the cache and not the register.

Either of these can be faulting or nonfaulting;“faulting register prefetch instruction.” Nonfaulting

prefetches simply turn into no-ops if they would normally result in an exception, which is what

we want.

Virtual Memory (What is virtual memory? Explain the steps
involved in virtual memory address translation.)

The main memory act as a “cache” for the secondary storage, usually implemented with

magnetic disks. This technique is called virtual memory.

A virtual memory block is called a page, and a virtual memory miss is called a page

fault. With virtual memory, the processor produces a virtual address, which is translated by a

combination of hardware and software to a physical address, which in turn can be used to access

main memory. Figure 5.25 shows the virtually addressed memory with pages mapped to main

memory. This process is address mapping or address translation.

In virtual memory, the address is broken into a virtual page number and a pageoff set.

Figure 5.26 shows the translation of the virtual page number to a physical page number. The

physical page number constitutes the upper portion of the physical address, while the page off

set, which is not changed, constitutes the lower portion.

The number of bits in the page off set field determines the page size. The number of

pages addressable with the virtual address need not match the number of pages addressable with

the physical address.

In virtual memory systems, we locate pages by using atable that indexes the memory; this

structure is called a page table, and it resides in memory. A page table is indexed with the page

number from the virtual address to discover the corresponding physical page number. Each

program has its own page table, which maps the virtual address space of that program to main

memory.

To indicate the location of the page table in memory, the
hardware includes a register that points to the start of the page
table; we call this the page table register.

Making Address Translation Fast: the TLB

The key to improving access performance is to rely on locality of reference to the page

table. When a translation for a virtual page number is used, it will probably be needed again in

the near future, because the references to the words on that page have both temporal and spatial

locality. Accordingly, modern processors include a special cache that keeps track of recently

used translations. This special address translation cache is traditionally referred to as a

translation-lookaside buffer (TLB)
Figure 5.29 shows that each tag entry in the TLB holds a portion of the virtual page

number, and each data entry of the TLB holds a physical page number. Because we access the

TLB instead of the page table on every reference, the TLB will need to include other status bits,

such as the dirty and the reference bits.
On every reference, we look up the virtual page number in the TLB.

If we get a hit, the physical page number is used to form the address, and the

corresponding reference bit is turned on. If the processor is performing a write, the dirty bit

is also turned on.

If a miss in the TLB occurs, we must determine whether it is a page fault or merely a

TLB miss. If the page exists in memory, then the TLB miss indicates only that the translation is

missing. In such cases, the processor can handle the TLB miss by loading the translation from

the page table into the TLB and then trying to the reference again.

If the page is not present in memory, then the TLB miss indicates a true page fault. In

this case, the processor invokes the operating system using an exception.
Because the TLB has many fewer entries than the number of pages in main memory,

TLB misses will be much more frequent than true page faults.

ACCESSING I/O DEVICES (I/O INTERFACE AND ITS COMPONENTS)

The hardware required to connect an Input / Output device to the bus is called I/O interface.

The major components of I/O interface are

i. Address decoder

ii. Control circuit

iii. Data & status register

Address Decoder: Enables the device to recognize its address when this address appears

on the address lines.

Data Register: This holds the data being transferred to or appears on the data lines.

Status Register: Contains information relevant to the operation of the I/O device.

I/O and memory mapped I/O:

The components of a computer system CPU, Memory and I/O Units are connected by a group of

wires called Bus
The system bus consists of 3 group of lines

a. Address

b. Data and

c. Control

Methods of I/O
Addressing There are two methods of I/O
addressing

a. I/O mapped I/O
b. Memory mapped I/O

a. I/O mapped I/O

- Here the processor has separate I/O and memory space

- The memory reference instruction activates Read M or Write M control line which

will not affect I/O device

- The CPU has separate Input / Output instruction which activates Read I/O or Write
I/O

- This method is used in intel 8085

I/O Mapped I/O

b. Memory mapped I/O

- Here there is no separate I/O address and no I/O instructions

- Here some memory address is reserved for I/O register by the designer

- This method is used in Motorola - 6800

Memory Mapped I/O

Comparison of I/O Mapped I/O and Memory Mapped I/O

 Memory Mapped I/O I/O Mapped I/O

1. Part of memory space is used as I/O address
Motorola – 6800

Separate I/O Address space Intel –
8085

2. No Separate I/O instruction Separate I/O Instruction (In / Out)

3. Extra decoding Logic No extra Logic

 INTERRUPTS (Explain Interrupts and Interrupts Hardware.)
➢ There are many situations where other tasks can be performed while waiting for an I/O

device to become ready. A hardware signal called an Interrupt will alert the processor

when an I/O device becomes ready. Interrupt-request line is usually dedicated for this

purpose.

Example: Consider a task that requires some computations to be performed and the results

to be printed on a line printer. Let the program consist of two routines, COMPUTE and

PRINT. Assume that COMPUTE produces a set of n lines of output, to be printed by the

PRINT routine.

➢ This example illustrates the concept of interrupts. The routine executed in response to an

interrupt request is called the interrupt-service routine, which is the PRINT routine in our

example.

➢ Assume that an interrupt request arrives during execution of instruction I in fig 4.5

➢ The processor first completes execution of instruction i. Then, it loads the program

counter with the address of the first instruction of the interrupt-service routine.

➢ After execution of the interrupt-service routine, the processor has to come back to

instruction i + 1.

➢ Therefore, when an interrupt occurs, the current contents of the PC, which point to

instruction i + 1, must be put in temporary storage in a known location.

➢ A Return-From-interrupt instruction at the end of the interrupt-service routine reloads

the PC from that temporary storage location, causing execution to resume at

instruction i + 1. In many processors, the return address is saved on the processor

stack.

➢ The execution of an instruction in the interrupt-service routine that accesses a status or

data register in the device interface implicitly informs the device that its interrupt

request has been recognized.

➢ A subroutine performs a function required by the program from which it is called.

However, the interrupt service routine may not have anything in common with the

program being executed at the time the interrupt request is received.

➢ In fact, the two programs often belong to different users. Therefore, before starting

execution of the interrupt -service routine, any information that may be altered during the

execution of that routine must be saved.

➢ Saving registers also increases the delay between the time an interrupt request is received

and the start of execution of the interrupt -service routine. This delay is called interrupt

latency.
INTERRUPT HARDWARE

An I/O device requests can interrupt by activating a bus line called interrupt-request.

Most computers are likely to have several I/O devices that can request an interrupt.

A single interrupt-request line may be used to serve n devices as depicted in Figure 4.6.

➢ All devices are connected to the line via switches to ground. To request an interrupt, a

device closes its associated switch. Thus, if all interrupt-request signals INTR1 to INTRn

are inactive, that is, if all switches are open, the voltage on the interrupt-request line will

be equal to Vdd. This is the inactive state of the line.
➢ When a device requests an interrupt by closing its switch, the voltage on the line drops to

0, causing the interrupt-request signal, INTR, received by the processor to go to 1.

➢ Since the closing of one or more switches will cause the line voltage to drop to 0, the

valueof INTR is the logical OR of the requests from individual devices, that is,
INTR = INTR1 +... + INTRn

Assuming that interrupts are enabled, the following is a typical scenario:

1. The device raises an interrupt request.

2. The processor interrupts the program currently being executed.

3. Interrupts are disabled by changing the control bits in the PS (except in the case of

edge-triggered interrupts).

4. The device is informed that its request has been recognized, and in response, it

deactivates the interrupt-request signal.
5. The action requested by the interrupt is performed by the interrupt-service routine.

6. Interrupts are enabled and execution of the interrupted program is resumed.

HANDLING MULTIPLE DEVICES
Daisy Chaining:

. The interrupt request line INTR is common to all the devices. The interrupt

acknowledgement line INTA is connected to devices in a DAISY CHAIN way. INTA

propagates serially through the devices. Device that is electrically closest to the processor gets

high priority. Low priority device may have a danger of STARVATION.

Combining Daisy chaining and Interrupt nesting to form priority group. Each group has different

priority levels and within each group devices are connected in daisy chain way.

Vectored Interrupts

➢ The term vectored interrupts refers to all interrupt-handling schemes.

➢ To reduce the time involved in the polling process, a device requesting an interrupt

may identify itself directly to the processor.

➢ A device requesting an interrupt can identify itself by sending a special code to the

processor over the bus. This enables the processor to identify individual devices even

if they share a single interrupt-request line.

➢ The code supplied by the device may represent the starting address of the interrupt-

service routine for that device. The code length is typically in the range of 4 to 8 bits.

The remainder of the address is supplied bythe processor based on the area in its

memory where the addresses for interrupt-service routines are located.

➢ This arrangement implies that the interrupt-service routine for a given device must

always start at the same location. The programmer can gain some flexibility by storing

in this location an instruction that causes a branch to the appropriate routine.

➢ In many computers, this is done automatically by the interrupt-handling mechanism.

The location pointed to by the interrupting device is used to store the starting

address of the interrupt-service routine. The processor reads this address, called

the interrupt vector, and loads it into the PC. The interrupt vector may also

include a new value for the processor status register.

➢ In most computers, I/O devices send the interrupt-vector code over the data bus, using

the bus control signals to ensure that devices do not interfere with each other

interrupt-vector code immediately. For example, it must first complete the execution

of the current instruction, which may require the use of the bus.

➢ A multiple-priority scheme can be implemented easily by using separate interrupt-request

and interrupt-ack lines for each device as shown in fig.4.7

➢ Each of the interrupt-request lines is assigned a different priority level. Interrupt request

receive over these lines are sent to a priority arbitration circuit in the processor.

➢ A request is accepted only if it has a higher priority level than that currently assigned to

the processor.

DIRECT MEMORY ACCESS

A special control unit may be provided to allow transfer of a block of data directly

between an external device and the main memory, without continuous intervention

by the processor. This approach is called direct memory access or DMA.

➢ DMA transfers are performed by a control circuit that is part of the I/O device interface.

We refer to this circuit as a DMA controller.

Figure 4.18 shows DMA controller registers that are accessed by the processor to initiate transfer

operations.

➢ Two registers are used for storing the starting address and the word count. The third

register contains status and control flags.

➢ The R/W bit determines the direction of the transfer. When this bit is set to 1 by a

program instruction, the controller performs a read operation, that is, it transfers data

from the memory to the I/O device. Otherwise, it performs a write operation.

➢ When the controller has completed transferring a block of data and is ready to receive

another command, it sets the Done flag to 1.

➢ Bit 30 is the Interrupt-enable flag, IE. When this flag is set to 1, it causes the controller to

raise an interrupt after it has completed transferring a block of data. Finally, the controller

sets the IRQ bit to 1 when it has requested an interrupt.

Figure 4.19 showing how DMA controllers may be used.

➢ A DMA controller connects a high-speed network to the computer bus. The disk

controller, which controls two disks, also has DMA capability and provides two DMA

channels.

➢ It can perform two independent DMA operations, as if each disk had its own DMA

controller. The registers needed to store the memory address, the word count, and so on

are duplicated, so that one set can be used with each device.

➢ To start a DMA transfer of a block of data from the main memory to one of the disks, a

program writes the address and word count information into the registers of the

corresponding channel of the disk controller.

➢ Among different DMA devices, top priority is given to high-speed peripherals such as a

disk, a high-speed network interface, or a graphics display device.

➢ Since the processor originates most memory access cycles, the DMA controller can be

said to "steal" memory cycles from the processor. Hence, this interweaving technique is

usually called cycle stealing. Alternatively, the DMA controller may be given exclusive

access to the main memory to transfer a block of data without interruption. This is known

as block or burst mode.

➢ A conflict may arise if both the processor and a DMA controller or two DMA

controllers try to use the bus at the same time to access the main memory. To resolve

these conflicts, an arbitration procedure is implemented on the bus to coordinate the
activities of all devices requesting memory transfers.

However in DMA, the block of data is directly transferred between external

device and memory without involving CPU. This type of I/O is called DMA. The

circuit which performs DMA is called DMA controller.

Circuit required for DMA
DMA Data Transfer

1. CPU Load the counter and address Reg with initial

values Counter – contain the number of words to be

transferred Address Reg – contain the starting address

of the block to be

transferred

2. When DMA Controller is ready to transmit or receive

• It activates DMA request to CPU

• CPU waits for the next DMA Breakpoint and
activate DMA acknowledge

DMA request & DMA acknowledge are essentially bus

request and bus grant lines

3. The DMA controller now transfers data directly to or from

memory. After each word is transferred Address Register, Word

Counter is updated.

4. The Step 3 is repeated until word counter reaches Zero. DMA

controller now give back the controls of the system bus it may also

send the interrupt signal to CPU. The CPU responds by halting the

I/O device or by initiating another DMA transfer.

- Interrupt can take place – between two instruction

- DMA interrupt can take place every bus cycle of the

instruction Types of data Transfers in DMA
a) DMA Block Transfer:

Block of words is transferred in a single burst, while DMA controller is the

master of Bus

b) Cycle Stealing:

This allows the DMA controller to use the system bus to transfer one data word

and return the control to CPU. Hence long block of I/O data are transferred by a

sequence of DMA transactions interspersed with CPU transactions.

BUS ARBITRATION

➢ The device that is allowed to initiate data transfers on the bus at any given

time is called the bus master.

➢ Bus arbitration is the process by which the next device to become the bus

master is selected and bus mastership is transferred to it. There are two

approaches to bus arbitration:

• Centralized: In centralized arbitration, a single bus arbiter performs
the required arbitration

• Distributed:In distributed arbitration, all devices participate in the

selection of the next bus master.
Centralized Arbitration

➢ The bus arbiter may be the processor or a separate unit connected to the bus.

➢ Figure 4.20 illustrates a basic arrangement in which the processor contains the

bus arbitration circuitry.

➢ The processor is normally the bus master unless it grants bus mastership to one

of the DMA controllers.

➢ A DMA controller indicates that it needs to become the bus master by

activating the Bus- Request line, BR.

➢ The signal on the Bus-Request line is the logical OR of the bus requests from

all the devices connected to it. When Bus-Request is activated, the processor

activates the Bus- Grant signal, BG1, indicating to the DMA controllers that

they may use the bus when it becomes free. This signal is connected to all

DMA controllers using a daisy-chain arrangement.

➢ Thus, if DMA controller 1 is requesting the bus, it blocks the propagation of

the grant signal to other devices. Otherwise, it passes the grant downstream by

asserting BG2.

➢ The current bus master indicates to all devices that it is using the bus by

activating another open-collector line called Bus-Busy, BBSY.

➢ Hence, after receiving the Bus-Grant signal, a DMA controller waits for Bus-

Busy to become inactive, and then assumes mastership of the bus. At this time,

it activates Bus- Busy to prevent other devices from using the bus at the same

time.

➢ Polling Method

In Polling Method, all masters use the same line for the bus request.The

Controller places the address of the bus master on address bus. The requesting master

recognizes its address, activates the busy line and gets the control of the bus.

Advantages: The priority of the masters can be changed by altering the polling

sequences.Failure of one device does not affects the others.

➢ Independent Priority:

Each master has a separate pair of bus request and bus grant lines. Each master has

different priority . The priority decoder in the controller selects the highest priority

master which makes the request ad enables the corresponding grant signal.

Distributed Arbitration
Distributed arbitration means that all devices waiting to use the bus have

equalresponsibility in carrying out the arbitration process, without using a central

arbiter

BUS STRUCTURE

A bus is a collection of wires that connect several devices within a computer system.

When a word of data is transferred between units, all its bits are transferred in parallel.

A computer must have some lines for addressing and control purposes.

Three main groupings of lines:

1. Data Bus. This is for the transmission of data.

2. Address Bus. This specifies the location of data in MM.

3. Control Bus. This indicates the direction of data transfer and coordinates the

timing of events during the transfer.

Fig:Single bus Structure

BUS OPERATION
Synchronous Bus: All devices derive timing information from a control line called

the bus clock. The timing diagram shows an idealized representation of the actions

that take place on the bus lines.

Figure 5.28: Timing of an input transfer on a synchronous bus

The sequence of signal events during an input (Read) operation.

At time t0, the master places the device address on the address lines and sends a

command on the control lines indicating a Read operation.

Information travels over the bus.

The clock pulse width, t1 − t0, must be longer than the maximum propagation delay

over the bus. Also, it must be long enough to allow all devices to decode the address

and control signals, so that the addressed device (the slave) can respond at time t1 by

placing the requested input data on the data lines.

At the end of the clock cycle, at time t2, the master loads the data on the data lines
into one of the setup time of the register. Hence, the period t2 − t1 must be greater than

the maximum

propagation time on the bus plus the setup time of the master‘s register.The exact times

at which signals change state are somewhat different from idealized representation,

because of

propagation delays on bus wires and in the circuits of the devicesThe master sends

the address and command signals on the rising edge of the clock at the beginning of
the clock cycle (at t0).

However, these signals do not actually appear on the bus until tAM, largely due to

the delay in the electronic circuit output from the master to the bus lines.A short while

later, at tAS, the signals reach the slave. The slave decodes the address, and at t1sends

the requested data.Here again, the data signals do not appear on the bus until tDS.
They travel toward the master and arrive at tDM. At t2, the master loads the data into

its register.

Hence the period t2 − tDM must be greater than the setup time of that register. The
data must continue to be valid after t2 for a period equal to the hold time requirement

of the register

Asynchronous Bus: An alternative scheme for controlling data transfers on a bus is

based on the use of a handshake protocol between the master and the slave. A

handshake is an exchange of command and response signals between the master and

the slave.

The master places the address and command information on the bus. Then it

indicates to all devices that it has done so by activating the Master-ready line.

This causes all devices to decode the address. The selected slave performs the
required operation and informs the processor that it has done so by activating the

Slave-ready line.

The master waits for Slave-ready to become asserted before it removes its signals
from the bus.

In the case of a Read operation, it also loads the data into one of its registers.

t0—The master places the address and command information on the bus, and all

devices on the bus decode this information.

t1—The master sets the Master-ready line to 1 to inform the devices that the

address and command information is ready. Sufficient time should be allowed for

the device interface circuitry to decode the address. The delay needed can be

included in the period t1 − t0.

t2—The selected slave, having decoded the address and command information,

performs the required input operation by placing its data on the data lines. At the same

time, it sets the Slave- ready signal to 1. If extra delays are introduced by the interface

circuitry before it places the data on the bus, the slave must delay the Slave-ready

signal accordingly. The period t2 − t1 depends on the distance between the master and

the slave and on the delays introduced by the slave‘s circuitry.

t3—The Slave-ready signal arrives at the master, indicating that the input data are

available on the bus. After a delay to the master loads the data into its register. Then,

it drops the Master- ready signal, indicating that it has received the data.

Figure: Handshake control of data transfer during an input

operation t4—The master removes the address and command information from the

bus. The delay between t3 and t4 is again intended to allow for bus skew. Erroneous

addressing may take place if the address, as seen by some device on the bus, starts to

change while the Master-ready signal is still equal to 1.

t5—when the device interface receives the 1-to-0 transition of the Master-ready

signal, it removes the data and the Slave-ready signal from the bus. This completes
the input transfer.

Processor

DATAIN

SIN

Keyboard

Figure: Handshake control of data transfer during an output

INTERFACE CIRCUITS

Datapath and associated controls to transfer data between the interface and the I/O

device. This side is called as a port.

Ports can be

classified into
two: Parallel port

Serial port.

Parallel port transfers data in the form of a number of bits, normally 8 or 16 to or

from the device. Serial port transfers and receives data one bit at a time.

Bus connections between processor and
keyboard

Bus

➢ Striking a character stores the corresponding character in Data in (8 bit Buffer Register)

➢ The availability of character is indicated by a Flag SIN (Status Control Flag)

➢ The processor checks this flag and if the flag is set, the processor will read the

character from data in

Readwait: BR Readwait if SIN = 0

IN Datain, R1

➢ Reading the character from datain to register, will clear sin flag

➢ This procedure repeats for each character

➢ The fig 4.28 shows the hardware components needed for connecting a

keyboard to a processor. A typical keyboard consists of mechanical switches

that are normally open. When a key is pressed, its switch closes and

establishes a path for an electrical signal. This signal is detected by an

encoder circuit that generates the ASCII code for the corresponding character.

A difficulty with such push-button switches it that the contacts bounce when

a key is pressed.

The effect of bouncing must be eliminated by two ways.
➢ A simple debouncing circuit can be included or a software approach can be used.

➢ When debouncing is implemented in software, the I/O routine

that reads a character from the keyboard waits long enough to

ensure that bouncing has subsided.

Fig 4. 28 Illustrates the hardware approach; debouncing circuits are included as a

part of the encoder block.

➢ The output of the encoder consists of the bits that represent the encoded

character and one control signal called valid, which indicates that a key is

being pressed. This information is sent to the interface circuit, which

contains a data register, DATAIN, and a status flag, SIN.

➢ When a key is pressed, the valid signal changes from 0 to 1, causing the

ASCII code to be loaded into DATAIN and SIN to be set to 1. The status

flag SIN is cleared to 0 when the processor reads the contents of the

DATAIN register.

➢ The interface circuit is connected to an asynchronous bus on which
transfers are controlled using handshake signals Master-ready and

Salve-ready as in the fig 4.26

➢ The third control line, R/W distinguishes read and write transfers.

Let us now consider an output interface that can be used to connect an output device,

such as a printer, to a processor, as shown in Fig 4.31

➢ The printer operates under control of the handshake signals valid and Idle in

a manner similar to the handshake used on the bus with the Master-ready and

Slave-ready signals. When it is ready to accept a character, the printer asserts

its Idle signal. The interface circuit can then place a new character on the

data lines and activate the valid signal.

➢ In response, the printer starts printing the new character and negates the

Idle signal, which in turn causes the interface to deactivate the valid
signal.

➢ The interface contains a data register, DATAOUT, and a status flag, SOUT.

The SOUT flag is set to 1 when the printer is ready to accept another

character and it is cleared to 0 when a new character is loaded into

DATAOUT by the processor.

Serial port

Serial port is used to connect the processor to I/O devices that require transmission

of data one bit at a time.

Serial port communicates in a bit-serial fashion on the device side and bit parallel

fashion on the bus side.

Transformation between the parallel and serial formats is achieved with shift

registers that have parallel access capability.

Figure : A serial Interface

Input shift register accepts input one bit at a time from the I/O device.

• Once all the 8 bits are received, the contents of the input shift register are loaded in

parallel into DATAIN register.
• Output data in the DATAOUT register are loaded into the output shift register.

Bits are shifted out of the output shift register and sent out to the I/O device one bit at a time.

• As soon as data from the input shift registers are loaded into DATAIN, it can start

accepting another 8 bits of data.

• Input shift register and DATAIN registers are both used at input so that the input

shift register can start receiving another set of 8 bits from the input device after

loading the contents to DATAIN, before the processor reads the contents of

DATAIN. This is called as double- buffering.

Serial interfaces require fewer wires, and hence serial transmission is convenient

for connecting devices that are physically distant from the computer.

Speed of transmission of the data over a serial interface is known as the

―bit rate. Bit rate depends on the nature of the devices connected.

In order to accommodate devices with a range of speeds, a serial interface must be

able to use a range of clock speeds.
Several standard serial interfaces have been developed:

Universal Asynchronous Receiver Transmitter (UART) for low-speed

serial devices. RS-232-C for connection to communication links

Input/output system(INTERFACE)

A different interface may have to be designed for every combination of I/O device and

computer, resulting in many different interfaces.

There are three widely used bus standards,

✓ PCI(Peripheral Component Interconnect),

✓ SCSI(Small Computer System Interface)

✓ USB(Universal Serial Bus).

PCI → Defines an expansion bus on the motherboard.

SCSI → Used for connecting additional devices, both inside and outside the computer box

→ It is a high speed parallel bus intended for devices such as disk and

video Displays USB → Used for connecting additional devices, both inside and

outside the computer box

→ Uses serial transmission to suit the needs of equipment ranging

fromkeyboard to game controls to internet connections

Peripheral Component Interconnect
➢ It supports the functions found on a processor bus but in a standardized format

that is independent of any particular processor.

➢ Devices connected to the PCI bus appear to the processor as if they were

connected directly to the processor bus. They are assigned addresses in the

memory address space of the processor.

➢ The PCI follows a sequence of bus standards that were used primarily in IBM

PCs. Early PCs used the 8-bit XT bus, whose signals closely mimicked those

of Intel's 80x 86 processors.

➢ The PCI was developed as a low-cost bus that is truly processor independent.

Its design anticipated a rapidly growing demand for bus bandwidth to support

high-speed disks and graphic and video devices, as well as the specialized

needs of multiprocessor systems.

➢ An important feature that the PCI pioneered is a plug-and-play capability for

connecting I/O devices. To connect a new device, the user simply connects the

device interface board to the bus. The software takes care of the rest

Data Transfer
➢ Data are transferred between the cache and the main memory in bursts of

several words each.

➢ The words involved in such a transfer are stored at successive memory

locations. When the processor specifies an address and requests a read
operation from the main memory.

➢ The memory responds by sending a sequence of data words starting at that

address. Similarly, during a write operation, the processor sends a memory

address followed by a sequence of data words, to be written in successive

memory locations starting at that address.

SCSI BUS
➢ The acronym SCSI stands for Small Computer System Interface. It refers

to a standard bus defined by the American National Standards
Institute(ANSI).

➢ In the original specification of the standard, devices such as disks are

connected to a computer via a 50-wire cable, which can be up to 25 meters

in length and can transfer data at rates upto 5 megabytes.

➢ A SCSI bus may have eight data lines, in which case it is called a narrow bus

and transfers data one byte at a time. Alternatively, a wide SCSI bus has 16

data lines and transfers data 16 bits at a time.

➢ There are also several options for the electrical signaling scheme used. The bus

may use single-ended transmission (SE), where each signal uses one wire, with

a common ground return for signals. In another option, differential signaling is

used, where a separate return wire is provided for each signal.

➢ In this case, two voltage levels are possible. Earlier versions tile 5 V (TTL

levels) and are known as High Voltage Differential (HVD). More recently, 3.3

V versions have been introduced and are known as Low Voltage Differential

(LVD).

➢ Because of these various options, the SCSI connector may have 50, 68, or 80

pins. The maximum transfer rate in commercial devices that are currently

available varies from 5 megabytes/s to 160 megabytes.

➢ The maximum transfer rate on a given bus is often a function of thelength of

the cable and the number of devices connected, with higher rates for a shorter

cable and fewer devices.

➢ To achieve the top data transfer rate, the bus length is typically limited to 1.6

m for SE signaling and 12 m for LVD signaling. However, manufacturers

often provide special bus expanders to connect devices that are farther away.

➢ The maximum capacity of the bus is 8 devices for a narrow bus and 16 devices
for a wide bus.

➢ Devices connected to the SCSI bus are not part of the address space of the

processor in the same way as devices connected to the processor bus. This

controller uses DMA to transfer data packets from the main memory to the

device, or vice versa.
➢ A packet may contain a block of data, commands from the processor to the device, or

information about the device.

USB. Universal Serial Bus (USB) is an industry standard developed through a

collaborative effort of several computer and communication companies, including

Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, Nortel Networks, and Philips.
Speed

• Low-speed(1.5 Mb/s)

• Full-speed(12 Mb/s)

• High-speed(480 Mb/s)

Port Limitation: the parallel and serial ports provide a general purpose point of

connection through which a variety of low to medium speed devices can be

connected to a computer.Device Characteristics: the kinds of devices that may be

connected to a computer cover a wide range of functionality. The speed, volume,

and timing constraints associated with data transfers to and from such devices vary

significantly.

Plug-and-play: Feature means that a new device, such as an additional speaker

can be connected at any time while system is operating.

Universal Serial Bus tree structure
To accommodate a large number of devices that can be added or removed at any

time, the USB has the tree structure as shown in the figure.

Each node of the tree has a device called a hub, which acts as an intermediate

control point between the host and the I/O devices. At the root of the tree, a root hub

connects the entire tree to the host computer. The leaves of the tree are the I/O devices

being served (for example, keyboard, Internet connection, speaker, or digital TV)

In normal operation, a hub copies a message that it receives from its upstream

connection to all its downstream ports. As a result, a message sent by the host

computer is broadcast to all I/O devices, but only the addressed device will respond

to that message..

Fig:Universal serial bus tree structure

Addressing

When a USB is connected to a host computer, its root hub is attached to the

processor bus, where it appears as a single device. The host software communicates

with individual devices attached to the USB by sending packets of information,

which the root hub forwards to the appropriate device in the USB tree.

Each device on the USB, whether it is a hub or an I/O device, is assigned a 7-bit

address. This address is local to the USB tree and is not related in any way to the

addresses used on the processor bus.

A hub may have any number of devices or other hubs connected to it, and

addresses are assigned arbitrarily. When a device is first connected to a hub, or when

it is powered on, it has the address 0. The hardware of the hub to which this device is

connected is capable of detecting that the device has been connected, and it records

this fact as part of its own status information.

Periodically, the host polls each hub to collect status information and learn about

new devices that may have been added or disconnected.

When the host is informed that a new device has been connected, it uses a sequence

of commands to send a reset signal on the corresponding hub port, read information

from the device about its capabilities, send configuration information to the device,

and assign the device a unique USB address. Once this sequence is completed the

device begins normal operation and responds only to the new address.

USB Protocols
All information transferred over the USB is organized in packets, where a packet

consists of one or more bytes of information. There are many types of packets that

perform a variety of control functions.

The information transferred on the USB can be divided into two broad categories:

control and data.

Control packets perform such tasks as addressing a device to initiate data transfer,

acknowledging that data have been received correctly, or indicating an error.

Data packets carry information that is delivered to a device.

A packet consists of one or more fields containing different kinds of information.

The first field of any packet is called the packet identifier, PID, which identifies the

type of that packet.

They are transmitted twice. The first time they are sent with their true values, and

the second time with each bit complemented

The four PID bits identify one of 16 different packet types. Some control packets,

such as ACK (Acknowledge), consist only of the PID byte.

Figure: USB packet format.

Isochronous Traffic on USB

One of the key objectives of the USB is to support the transfer of isochronous data.

Devices that generates or receives isochronous data require a time reference to

control the sampling process.

To provide this reference. Transmission over the USB is divided into frames of

equal length. A frame is 1ms long for low-and full-speed data.

The root hub generates a Start of Frame control packet (SOF) precisely once

every 1 ms to mark the beginning of a new frame.

The arrival of an SOF packet at any device constitutes a regular clock signal that

the device can use for its own purposes.

To assist devices that may need longer periods of time, the SOF packet carries an
11-bit frame number.

Following each SOF packet, the host carries out input and output transfers for

isochronous devices.

This means that each device will have an opportunity for an input or output

transfer once every 1 ms.

Electrical Characteristics
• The cables used for USB Connections consist of four wires.
• Two are used to carry power, +5V and ground.
• Thus, a hub or an I/O device may be powered directly from the bus, or it may have its

own. Different signaling schemes are used for different speeds of transmission.
• At low speed, 1s and 0s are transmitted by sending a high voltage state (5V) on one or the

other of the two signal wires.
• For high-speed links, differential transmission is used. Control packets used for

controlling data transfer operations are called token packets.

