RGINE, 7
e,

ﬂYUSQ?
To75%

5

&~
“2!1, 3‘3@

ESTD. 2001

PRATHYUSHA ENGINEERING COLLEGE
DEPARTMENT OF CSE

2.3.2C-E CONTENTS DEVELOPED BY THE FACULTY

SI.No

SUBJECT NAME

FACULTY NAME

CS8492/ DATABASE MANAGEMENT
SYSTEM

Ms.B.GUNASUNDARI

CS8602/COMPILER DESIGN

Ms.K.P.REVATHI

CS6008/HUMAN COMPUTER
INTERACTION

Ms.N.SRIPRIYA

GE6075/PROFESSIONAL ETHICS

Dr.S.PADMAPRIYA

CS8651/INTERNET PROGRAMMING

Mr..MOHAN




ESTD. 200

PRATHYUSHA

ENGINEERING COLLEGE

Poonamallee — Tiruvallur Road, Chennai — 602025.

CS8492

Database M anagement Systems

(Anna University - Regulation)

Ms.B.GunaSundari



GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING LTPC
3003

OBJECTIVES:

o0 To know the basics of agorithmic problem solving

To read and write simple Python programs.

To develop Python programs with conditionals and loops.

To define Python functions and call them.

To use Python data structures — lists, tuples, dictionaries.

To do input/output with filesin Python.

o OO0 oo

UNIT I ALGORITHMIC PROBLEM SOLVING 9

Algorithms, building blocks of algorithms (statements, state, control flow, functions),
notation (pseudo code, flow chart, programming language), agorithmic problem solving,
simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find
minimum in alist, insert a card in a list of sorted cards, guess an integer number in a range,
Towers of Hanoi.

UNIT I DATA, EXPRESSIONS, STATEMENTS 9

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list;
variables, expressions, statements, tuple assignment, precedence of operators, comments,
modules and functions, function definition and use, flow of execution, parameters and
arguments; Illustrative programs. exchange the values of two variables, circulate the values
of n variables, distance between two points.

UNIT 11 CONTROL FLOW, FUNCTIONS 9

Conditionals. Boolean values and operators, conditiona (if), alternative (if-else), chained
conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions:
return values, parameters, local and global scope, function composition, recursion; Strings:
string slices, immutability, string functions and methods, string module; Lists as arrays.
[llustrative programs. square root, gcd, exponentiation, sum an array of numbers, linear
search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES 9
Lists: list operations, list dlices, list methods, list loop, mutability, aliasing, cloning lists, list
parameters; Tuples. tuple assignment, tuple as return value; Dictionaries. operations and
methods; advanced list processing - list comprehension; Illustrative programs. selection sort,
insertion sort, mergesort, histogram.

UNIT V FILES, MODULES, PACKAGES 9
Files and exception: text files, reading and writing files, format operator; command line
arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative
programs. word count, copy file.

TOTAL : 45 PERIODS



OUTCOMES:

Upon completion of the cour se, studentswill be able to

0 Develop algorithmic solutions to simple computational problems
Read, write, execute by hand simple Python programs.
Structure simple Python programs for solving problems.
Identify proper conditionals or iterative statement for problems.
Decompose a Python program into functions.
Apply python string functions.
Represent compound data using Python lists, tuples, dictionaries.
Read and write data from/to files in Python Programs.
Identify and handle errors and exceptions in Python Programs.

OO OO0 O O O O

TEXT BOOKS:

1. Allen B. Downey, ~"Think Python: How to Think Like a Computer Scientist*‘, 2nd edition,

Updated for Python 3, Shroff/O*Reilly Publishers, 2016 (http://greenteapress.com/wp/think- python/)

2. Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python — Revised and updated for
Python 3.2, Network Theory Ltd., 2011.

REFERENCES:

1. John V Guttag, —Introduction to Computation and Programming Using Python**, Revised
and expanded Edition, MIT Press, 2013

2. Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in
Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

3. Timothy A. Budd, —Exploring Pythonl, Mc-Graw Hill Education (India) Private Ltd.,,
2015.

4. Kenneth A. Lambert, —Fundamentals of Python: First Programsl, CENGAGE Learning,
2012.

5. Charles Dierbach, —Introduction to Computer Science using Python: A Computational
Problem-Solving Focus, Wiley India Edition, 2013.

6. Paul Gries, Jennifer Campbell and Jason Montojo, —Practical Programming: An Introduction to Computer
Science using Python 3, Second edition, Pragmatic Programmers, LLC, 2013.



CS8492 DATABASE MANAGEMENT SYSTEMS

UNIT I RELATIONAL DATABASES

Purpose of Database System — Views of data — Data Models — Database System Architecture —
Introduction to relational databases — Relational Model — Keys — Relational Algebra — SQL fundamentals
— Advanced SQL features — Embedded SQL— Dynamic SQL.

1. What is DBMS? What are the applications of database systems?

o A database-management system (DBMS) is a collection of interrelated data and a set of
programs to access those data. The collection of data, usually referred to as the database, contains
information relevant to an enterprise. The primary goal of a DBMS is to provide a way to store
and retrieve database information that is both convenient and efficient.

o Database systems are designed to manage large bodies of information. Management of data
involves both defining structures for storage of information and providing mechanisms for the
manipulation of information. In addition, the database system must ensure the safety of the
information stored, despite system crashes or attempts at unauthorized access. If data are to be
shared among several users, the system must avoid possible anomalous results.

DATABASE-SYSTEM APPLICATIONS:

Databases are widely used. Here are some representative applications:

1) Enterprise Information:

Sales: For customer, product, and purchase information.

Accounting: For payments, receipts, account balances, assets and other accounting information.

Human resources: For information about employees, salaries, payroll taxes, and benefits, and
for generation of paychecks.

Manufacturing: For management of the supply chain and for tracking production of items in
factories, inventories of items in warehouses and stores, and orders for items.

Online retailers: For sales data noted above plus online order tracking, generation of
recommendation lists, and maintenance of online product evaluations.

2) Banking and Finance:

Banking: For customer information, accounts, loans, and banking transactions.

Credit card transactions: For purchases on credit cards and generation of monthly statements.

Finance: For storing information about holdings, sales, and purchases of financial instruments
such as stocks and bonds; also for storing real-time market data to enable online trading by customers and
automated trading by the firm.

3) Universities: For student information, course registrations, and grades (in addition to standard
enterprise information such as human resources and accounting).

4) Airlines: For reservations and schedule information. Airlines were among the first to use databases in a
geographically distributed manner.

5) Telecommunication: For keeping records of calls made, generating monthly bills, maintaining
balances on prepaid calling cards, and storing information about the communication networks.



2. What are the purposes of database systems?

Database systems are designed to manage large bodies of information. Management of data involves both
defining structures for storage of information and providing mechanisms for the manipulation of
information. In addition, the database system must ensure the safety of the information stored, despite
system crashes or attempts at unauthorized access. If data are to be shared among several users, the system
must avoid possible anomalous results.

A database management system is a software tool that makes it possible to organize data in a database. It
is often referred to by its acronym, DBMS. The functions of a DBMS include concurrency, security,
backup and recovery, integrity and data descriptions.

File-processing system is supported by a conventional operating system. The system stores permanent
records in various files, and it needs different application programs to extract records from, and add
records to, the appropriate files. Before database management systems (DBMSs) were introduced,
organizations usually stored information in such systems.

ADVANTAGES OF DATABASE SYSTEMS :

1) Reducing Data Redundancy

The file based data management systems contained multiple files that were stored in many different
locations in a system or even across multiple systems. Because of this, there were sometimes multiple
copies of the same file which lead to data redundancy.

This is prevented in a database as there is a single database and any change in it is reflected immediately.
Because of this, there is no chance of encountering duplicate data.

2) Sharing of Data

In a database, the users of the database can share the data among themselves. There are various levels of
authorisation to access the data, and consequently the data can only be shared based on the correct
authorisation protocols being followed.

Many remote users can also access the database simultaneously and share the data between themselves.

3) Data Integrity

Data integrity means that the data is accurate and consistent in the database. Data Integrity is very
important as there are multiple databases in a DBMS. All of these databases contain data that is visible to
multiple users. So it is necessary to ensure that the data is correct and consistent in all the databases and for
all the users.

4) Data Security

Data Security is vital concept in a database. Only authorised users should be allowed to access the database
and their identity should be authenticated using a username and password. Unauthorised users should not
be allowed to access the database under any circumstances as it violates the integrity constraints.

5) Privacy

The privacy rule in a database means only the authorized users can access a database according to its
privacy constraints. There are levels of database access and a user can only view the data he is allowed to.
For example - In social networking sites, access constraints are different for different accounts a user may
want to access.



6) Backup and Recovery

Database Management System automatically takes care of backup and recovery. The users don't need to
backup data periodically because this is taken care of by the DBMS. Moreover, it also restores the
database after a crash or system failure to its previous condition.

7) Data Consistency

Data consistency is ensured in a database because there is no data redundancy. All data appears
consistently across the database and the data is same for all the users viewing the database. Moreover, any
changes made to the database are immediately reflected to all the users and there is no data inconsistency.

Disadvantages of file-processing system:

1) Data redundancy and inconsistency.

Since different programmers create the files and application programs over a long period, the various
files are likely to have different structures and the programs may be written in several programming
languages. Moreover, the same information may be duplicated in several places (files). For example, if a
student has a double major (say, music and mathematics) the address and telephone number of that student
may appear in a file that consists of student records of students in the Music department and in a file that
consists of student records of students in the Mathematics department. This redundancy leads to higher
storage and access cost. In addition, it may lead to data inconsistency; that is, the various copies of the
same data may no longer agree. For example, a changed student address may be reflected in the Music
department records but not elsewhere in the system.

2) Difficulty in accessing data.

Suppose that one of the university clerks needs to find out the names of all students who live within a
particular postal-code area. The clerk asks the data-processing department to generate such a list. Because
the designers of the original system did not anticipate this request, there is no application program on hand
to meet it. There is, however, an application program to generate the list of all students. The university
clerk has now two choices: either obtain the list of all students and extract the needed information
manually or ask a programmer to write the necessary application program. Both alternatives are obviously
unsatisfactory. Suppose that such a program is written, and that, several days later, the same clerk needs to
trim that list to include only those students who have taken at least 60 credit hours. As expected, a program
to generate such a list does not exist. Again, the clerk has the preceding two options, neither of which is
satisfactory.

Conventional file-processing environments do not allow needed data to be retrieved in a convenient
and efficient manner. More responsive data-retrieval systems are required for general use.

3) Data isolation. Because data are scattered in various files, and files may be in different
formats, writing new application programs to retrieve the appropriate data is difficult.

4) Integrity problems. The data values stored in the database must satisfy certain types of
consistency constraints. Suppose the university maintains an account for each department, and
records the balance amount in each account. Suppose also that the university requires that the
account balance of a department may never fall below zero. Developers enforce these constraints
in the system by adding appropriate code in the various application pro-grams. However, when
new constraints are added, it is difficult to change the programs to enforce them. The problem is
compounded when constraints involve several data items from different files.

5) Atomicity problems.

A computer system is subject to failure. In many applications, it is crucial that, if a failure occurs, the data
be restored to the consistent state that existed prior to the failure. Consider a program to transfer $500 from



the account balance of department A to the account balance of department B. If a system failure occurs
during the execution of the program, it is possible that the $500 was removed from the balance of
department A but was not credited to the balance of department B, resulting in an inconsistent database
state. Clearly, it is essential to database consistency that either both the credit and debit occur, or that
neither occur. That is, the funds transfer must be atomic — it must happen in its entirety or not at all. It is
difficult to ensure atomicity in a conventional file-processing system.

6) Concurrent-access anomalies.

For the sake of overall performance of the system and faster response, many systems allow multiple users
to update the data simultaneously. Indeed, today, the largest Internet retailers may have millions of
accesses per day to their data by shoppers. In such an environment, interaction of concurrent updates is
possible and may result in inconsistent data.

7) Security problems.

Not every user of the database system should be able to access all the data. For example, in a university,
payroll personnel need to see only that part of the database that has financial information. They do not
need access to information about academic records. But, since application programs are added to the file-
processing system in an ad hoc manner, enforcing such security constraints is difficult.

These difficulties prompted the development of database systems.

3. Describe about the various view of data.

A database system is a collection of interrelated data and a set of programs that allow users to access and
modify these data. A major purpose of a database system is to provide users with an abstract view of the
data. That is, the system hides certain details of how the data are stored and maintained.

For the system to be usable, it must retrieve data efficiently. The need for efficiency has led designers to
use complex data structures to represent data in the database. Since many database-system users are not
computer trained, developers hide the complexity from users through several levels of abstraction, to
simplify users’ interactions with the system:

Physical level. The lowest level of abstraction describes how the data are actually stored. The physical
level describes complex low-level data structures in detail.

Logical level. The next-higher level of abstraction describes what data are stored in the database, and what
relationships exist among those data. The logical level thus describes the entire database in terms of a
small number of relatively simple structures. Although implementation of the simple structures at the
logical level may involve complex physical-level structures, the user of the logical level does not need to
be aware of this complexity. This is referred to as physical data independence. Database administrators,
who must decide what information to keep in the database, use the logical level of abstraction.

View level. The highest level of abstraction describes only part of the entire database. Even though the
logical level uses simpler structures, complexity remains because of the variety of information stored in a
large database. Many users of the database system do not need all this information; instead, they need to
access only a part of the database. The view level of abstraction exists to simplify their interaction with the
system. The system may provide many views for the same database.



view level

view 1 | view 2 wan view n

logical
level

‘ phy-sjcal

level

Figure .The three levels of data abstraction.

An analogy to the concept of data types in programming languages may clarify the distinction among
levels of abstraction. Many high-level programming languages support the notion of a structured type. For
example, we may describe a record as follows:*

type instructor = record

ID : char (5);

name : char (20);

dept name : char (20); -
salary : numeric (8,2);

end;

This code defines a new record type called instructor with four fields. Each field has a name and a type
associated with it. A university organization may have several such record types, including

department, with fields dept hame, buiIdingj and budget
course, with fields course id, title, dept name, and credits
student, with fields ID, name, dept name, and tot cred _

At the physical level, an instructor, department, or student record can be described as a block of
consecutive storage locations. The compiler hides this level of detail from programmers. Similarly, the
database system hides many of the lowest-level storage details from database programmers. Database
administrators, on the other hand, may be aware of certain details of the physical organization of the data.

At the logical level, each such record is described by a type definition, as in the previous code segment,
and the interrelationship of these record types is defined as well. Programmers using a programming
language work at this level of abstraction. Similarly, database administrators usually work at this level of
abstraction.

Finally, at the view level, computer users see a set of application programs that hide details of the data
types. At the view level, several views of the database are defined, and a database user sees some or all of
these views. In addition to hiding details of the logical level of the database, the views also provide a
security mechanism to prevent users from accessing certain parts of the database. For example, clerks in
the university registrar office can see only that part of the database that has information about students;
they cannot access information about salaries of instructors.

Instances and Schemas:
Databases change over time as information is inserted and deleted. The collection of information stored in

the database at a particular moment is called an instance of the database. The overall design of the
database is called the database schema. Schemas are changed infrequently, if at all.



Database systems have several schemas, partitioned according to the levels of abstraction.
e The physical schema describes the database design at the physical level.
e The logical schema describes the database design at the logical level.
e A database may also have several schemas at the view level, sometimes called subschemas, that
describe different views of the database.

Of these, the logical schema is by far the most important, in terms of its effect on application programs,
since programmers construct applications by using the logical schema. The physical schema is hidden
beneath the logical schema, and can usually be changed easily without affecting application programs.
Application programs are said to exhibit physical data independence if they do not depend on the
physical schema, and thus need not be rewritten if the physical schema changes.

4. Explain about various data models in details.

Data model is a collection of conceptual tools for describing data, data relationships, data semantics, and
consistency constraints. A data model provides a way to describe the design of a database at the physical,
logical, and view levels.

The data models can be classified into four different categories:

1) Relational Model. The relational model uses a collection of tables to represent both data
and the relationships among those data. Each table has multiple columns, and each column has a
unique name. Tables are also known as relations. The relational model is an example of a record-
based model. Record-based models are so named because the database is structured in fixed-
format records of several types. Each table contains records of a particular type. Each record type
defines a fixed number of fields, or attributes. The columns of the table correspond to the attributes
of the record type. The relational data model is the most widely used data model, and a vast major-
ity of current database systems are based on the relational model.

2) Entity-Relationship Model. The entity-relationship (E-R) data model uses a collection of
basic objects, called entities, and relationships among these objects. An entity is a “thing” or
“object” in the real world that is distinguishable from other objects. The entity-relationship model
is widely used in database design.

3) Object-Based Data Model. Object-oriented programming (especially in Java, C++, or C#)
has become the dominant software-development methodology. This led to the development of an
object-oriented data model that can be seen as extending the E-R model with notions of
encapsulation, methods (functions), and object identity.

The object-relational data model combines features of the object-oriented data model and relational
data model.

4) Semistructured Data Model. The semistructured data model permits the specification of
data where individual data items of the same type may have different sets of attributes. This is in
contrast to the data models mentioned earlier, where every data item of a particular type must have
the same set of attributes. The Extensible Markup Language (XML) is widely used to represent
semistructured data.

5) The network data model and the hierarchical data model preceded the relational data
model. These models were tied closely to the underlying implementation, and complicated the task
of modeling data. As a result they are used little now, except in old database code that is still in
service in some places. They are outlined online in Appendices D and E for interested readers.



5. With the help of a neat block diagram, explain the basic architecture of a data base
management system?

A database system is partitioned into modules that deal with each of the responsibilities of the overall
system. The functional components of a database system can be broadly divided into the storage manager
and the query processor components.

The storage manager is important because databases typically require a large amount of storage space.
Corporate databases range in size from hundreds of gigabytes to, for the largest databases, terabytes of
data. A gigabyte is approximately 1000 megabytes (actually 1024) (1 billion bytes), and a terabyte is 1
million megabytes (1 trillion bytes). Since the main memory of computers cannot store this much
information, the information is stored on disks. Data are moved between disk storage and main memory as
needed. Since the movement of data to and from disk is slow relative to the speed of the central processing
unit, it is imperative that the database system structure the data so as to minimize the need to move data
between disk and main memory.

The query processor is important because it helps the database system to simplify and facilitate access to
data. The query processor allows database users to obtain good performance while being able to work at
the view level and not be burdened with understanding the physical-level details of the implementation of
the system. It is the job of the database system to translate updates and queries written in a nonprocedural
language, at the logical level, into an efficient sequence of operations at the physical level.



naive users sophisticated

application database

(tellers, agents, USers o
rogrammers administrators
web users) PTO& (analysts)
use write use use

<;|Fl]:-|jcatiun 1[:!]:-||.c'|t|un -““\I 1.|l.|ur'. .fa._-lmmp,"m

interfaces k- Flm;.,r'lm#f tnulh _tools

1 L~
compiler and

i'__ linker

application
program

object code

DML queries DDL interpreter

l

DML compiler
and organizer

query evaluation _J
engine ) -
— — | qUEry Processor
T FE— e i = it
I II."_ __________ [, ==z T——— e —— |
| buffer manager | file manager | authorization transaction |
and integrity manager :
manager ;
I
[}
/ l
- / :
e storage manager !
______________ ;,f’
/>
]
disk storage

data dictionary

data ‘— statistical data

~— B

— M

Figure 1.5 System structure.

Storage Manager:

The storage manager is the component of a database system that provides the interface between the low-
level data stored in the database and the application programs and queries submitted to the system. The
storage manager is responsible for the interaction with the file manager. The raw data are stored on the
disk using the file system provided by the operating system. The storage man-ager translates the various
DML statements into low-level file-system commands. Thus, the storage manager is responsible for
storing, retrieving, and updating data in the database.

The storage manager components include:
e Authorization and integrity manager, which tests for the satisfaction of integrity constraints and
checks the authority of users to access data.
e Transaction manager, which ensures that the database remains in a consistent) state despite
system failures, and that concurrent transaction executions proceed without conflicting.



o File manager, which manages the allocation of space on disk storage and the data structures used
to represent information stored on disk.

e Buffer manager, which is responsible for fetching data from disk storage into main memory, and
deciding what data to cache in main memory. The buffer manager is a critical part of the database
system, since it enables the database to handle data sizes that are much larger than the size of main
memory.

The storage manager implements several data structures as part of the physical system implementation:

o Data files, which store the database itself.

o Data dictionary, which stores metadata about the structure of the database, in particular the
schema of the database.

¢ Indices, which can provide fast access to data items. A database index provides pointers to those
data items that hold a particular value. For example, we could use an index to find the instructor
record with a particular 1D, or all instructor records with a particular name. Hashing is an
alternative to indexing that is faster in some but not all cases.

The Query Processor:

The query processor components include:
e DDL interpreter, which interprets DDL statements and records the definitions in the data
dictionary.
o DML compiler, which translates DML statements in a query language into an evaluation plan
consisting of low-level instructions that the query evaluation engine understands.
A query can usually be translated into any of a number of alternative evaluation plans that all give the
same result. The DML compiler also performs query optimization; that is, it picks the lowest cost
evaluation plan from among the alternatives.
° Query evaluation engine, which executes low-level instructions generated by the DML
compiler.

Database Architecture:

i I..
user [ user
R

client - |

application - application client

i
N ] & \ i

-

network network L

&

| application server

)
: |
| |
I | database system | |
| J server i
1 )
! ;

database system ‘
- " - -t 4

(a) Two-tier architecture (b) Three-tier architecture

Figure .Two-tier and three-tier architectures.
The architecture of a database system is greatly influenced by the underlying computer system on which
the database system runs. Database systems can be centralized, or client-server, where one server machine



executes work on behalf of multiple client machines. Database systems can also be designed to exploit
parallel computer architectures. Distributed databases span multiple geographically separated machines.

Most users of a database system today are not present at the site of the database system, but connect to it
through a network. We can therefore differentiate between client machines, on which remote database
users work, and server machines, on which the database system runs.

Database applications are usually partitioned into two or three parts. In a two-tier architecture, the
application resides at the client machine, where it invokes database system functionality at the server
machine through query language statements. Application program interface standards like ODBC and
JDBC are used for interaction between the client and the server.

In contrast, in a three-tier architecture, the client machine acts as merely a front end and does not contain
any direct database calls. Instead, the client end communicates with an application server, usually
through a forms interface. The application server in turn communicates with a database system to access
data. The business logic of the application, which says what actions to carry out under what conditions, is
embedded in the application server, instead of being distributed across multiple clients. Three-tier
applications are more appropriate for large applications, and for applications that run on the World Wide
Web.

Database Users and Administrators:A primary goal of a database system is to retrieve information from
and store new information into the database. People who work with a database can be categorized as
database users or database administrators.

Database Users and User Interfaces:

There are four different types of database-system users, differentiated by the way they expect to interact
with the system. Different types of user interfaces have been designed for the different types of users.

1) Naive users are unsophisticated users who interact with the system by invoking one of the
application programs that have been written previously. For example, a clerk in the university
who needs to add a new instructor to department A invokes a program called new hire. This
program asks the clerk for the name of the new instructor, her new ID, the name of the department
(that is, A), and the salary.

The typical user interface for naive users is a forms interface, where the user can fill in appropriate fields
of the form. Naive users may also simply read reports generated from the database.

As another example, consider a student, who during class registration period, wishes to register for a class
by using a Web interface. Such a user connects to a Web application program that runs at a Web server.
The application first verifies the identity of the user, and allows her to access a form where she enters the
desired information. The form information is sent back to the Web application at the server, which then
determines if there is room in the class (by retrieving information from the database) and if so adds the
student information to the class roster in the database.

2) Application programmers are computer professionals who write application programs.
Application programmers can choose from many tools to develop user interfaces. Rapid
application development (RAD) tools are tools that en-able an application programmer to
construct forms and reports with minimal programming effort.

3) Sophisticated users interact with the system without writing programs. In-stead, they form their
requests either using a database query language or by using tools such as data analysis software.
Analysts who submit queries to explore data in the database fall in this category.

4) Specialized users are sophisticated users who write specialized database applications that do not
fit into the traditional data-processing framework. Among these applications are computer-aided



design systems, knowledge-base and expert systems, systems that store data with complex data
types (for example, graphics data and audio data), and environment-modeling systems. Chapter 22
covers several of these applications.

5) Database Administrator

One of the main reasons for using DBMSs is to have central control of both the data and the programs that
access those data. A person who has such central control over the system is called a database
administrator (DBA). The functions of a DBA include:

o Schema definition. The DBA creates the original database schema by executing a set of data
definition statements in the DDL.

Storage structure and access-method definition.

e Schema and physical-organization modification. The DBA carries out changes to the schema
and physical organization to reflect the changing needs of the organization, or to alter the physical
organization to improve performance.

o Granting of authorization for data access. By granting different types of authorization, the
database administrator can regulate which parts of the database various users can access. The
authorization information is kept in a special system structure that the database system consults
whenever someone attempts to access the data in the system.

¢ Routine maintenance. Examples of the database administrator’s routine maintenance activities
are:

v' Periodically backing up the database, either onto tapes or onto remote servers, to prevent loss of
data in case of disasters such as flooding.

v Ensuring that enough free disk space is available for normal operations, and upgrading disk space
as required.

v Monitoring jobs running on the database and ensuring that performance is not degraded by very
expensive tasks submitted by some users.

6. Explain about relational model.

e The relational model is today the primary data model for commercial data-processing applications.
It attained its primary position because of its simplicity, which eases the job of the programmer,
compared to earlier data models such as the network model or the hierarchical model.

Structure of Relational Databases:

v A relational database consists of a collection of tables, each of which is assigned a unique name.
For example:

1) Consider the instructor table stores information about instructors. The table has four column
headers: ID, name, dept name, and salary. ~

2) The course table stores information about courses, consisting of a course id, title, dept name, and
credits, for each course.Each instructor is identified by the value of the column ID, while each course is
identified by the value of the column course id.

3) The third table, p}ereq, stores the prerequisite courses for each course. The table has two columns,
course id and prereq id.

e A row in a table represents a relationship among a set of values. Since a table is a collection of
such relationships, there is a close correspondence between the concept of table and the
mathematical concept of relation, from which the relational data model takes its name. In



mathematical terminology, a tuple is simply a sequence (or list) of values. A relationship between
n values is represented mathematically by an n-tuple of values, i.e., a tuple with n values, which
corresponds to a row in a table.

ID | Name dept_name Salary
10101 | Srinivasan | Comp. Sci. 65000
33456 | Raghu Physics 87000
45565 | Manasa Comp. Sci. 75000
76543 | Singh Finance 80000
98345 | Ravi Elec. Eng. 80000
Figure .The instructor relation.
course_id | Title dept_name Credits
B10-101 | Intro. to Biology Biology 4
B10-301 | Genetics Biology 4
B10-399 | Computational Biology Biology 3
CS-101 Intro. to Computer Science | Comp. Sci. 4
CS-190 | Game Design Comp. Sci. 4
Figure .The course relation
Course_id | prereq_id
BIO-301 | BIO-101
BIO-399 | BIO-101
CS-190 CS-101
CS-315 CS-101
Figure .The prereq relation.

In the relational model the term relation is used to refer to a table, while the term tuple is used to
refer to a row. Similarly, the term attribute refers to a column of a table.

We use the term relation instance to refer to a specific instance of a relation, i.e., containing a
specific set of rows. The order in which tuples appear in a relation is irrelevant, since a relation is a
set of tuples. Thus, whether the tuples of a relation are listed in sorted order or are unsorted does
not matter;

For each attribute of a relation, there is a set of permitted values, called the domain of that
attribute. Thus, the domain of the salary attribute of the instructor relation is the set of all possible
salary values, while the domain of the name attribute is the set of all possible instructor names.

For all relations r, the domains of all attributes of r be atomic. A domain is atomic if elements of
the domain are considered to be indivisible units. For example, suppose the table instructor had an
attribute phone number, which can store a set of phone numbers corresponding to the instructor.
Then the domain of phone number would not be atomic, since an element of the domain is a set of
phone numbers, and it has subparts, namely the individual phone numbers in the set.



e The important issue is not what the domain itself is, but rather how we use domain elements in our
database. Suppose now that the phone number attribute stores a single phone number. Even then,
if we split the value from the phone number attribute into a country code, an area code and a local
number, we would be treating it as a nonatomic value. If we treat each phone number as a single
indivisible unit, then the attribute phone number would have an atomic domain.

e The null value is a special value that signifies that the value is unknown or does not exist. For
example, suppose as before that we include the attribute phone number in the instructor relation.
It-may be that an instructor does not have a phone number at all, or that the telephone number is
unlisted. We would then have to use the null value to signify that the value is unknown or does
not exist. We shall see later that null values cause a number of difficulties when we access or
update the database, and thus should be eliminated if at all possible. We shall assume null values
are absent initially.

Database Schema:

v’ Database schema is the logical design of the database, and the database instance is a snapshot
of the data in the database at a given instant in time.

v' The concept of a relation corresponds to the programming-language notion of a variable, while the
concept of a relation schema corresponds to the programming-language notion of type
definition.

v" In general, a relation schema consists of a list of attributes and their corresponding domains.

v' The concept of a relation instance corresponds to the programming-language notion of a value of a
variable. The value of a given variable may change with time;

Schema Diagrams:

e A database schema, along with primary key and foreign key dependencies, can be depicted by
schema diagrams. Figure shows the schema diagram for our university organization. Each
relation appears as a box, with the relation name at the top in blue, and the attributes listed inside
the box. Primary key attributes are shown underlined. Foreign key dependencies appear as arrows
from the foreign key attributes of the referencing relation to the primary key of the referenced
relation.

& &

& &

=it

instructor
classroom -

Figure. Schema diagram for the university database.

Relational Query Languages:



A query language is a language in which a user requests information from the database. These languages
are usually on a level higher than that of a standard programming language. Query languages can be
categorized as either procedural or nonprocedural.

1) In a procedural language, the user instructs the system to perform a sequence of operations on the
database to compute the desired result.

2) In a nonprocedural language, the user describes the desired information without giving a specific
procedure for obtaining that information.

classroom(building, room number, capacity)
department(dept name, building, budget)

course(course id, title, dept name, credits)
instructor(ID, name, dept name, salary)-
section(course id, sec id, semester, year, building, room number, time slotid) - _
teaches(ID, course id, sec id, semester, year)
student(ID, name, dept name, tot cred) _
takes(ID, course id, sec id, semester, year, grade)
advisor(s ID, i ID) , o
time slot(time slot id, day, start time, end time) -
prereq(course id, prereq id) _ T

Figure. Schema of the university database.

e Query languages used in practice include elements of both the procedural and the nonprocedural
approaches.

e There are a number of “pure” query languages: The relational algebra is procedural, whereas the
tuple relational calculus and domain relational calculus are nonprocedural. These query languages
are terse and formal, lacking the “syntactic sugar” of commercial languages, but they illustrate the
fundamental techniques for extracting data from the database.

Relational Operations:

o All procedural relational query languages provide a set of operations that can be applied to either a
single relation or a pair of relations. These operations have the nice and desired property that their
result is always a single relation. This property allows one to combine several of these operations
in a modular way. Specifically, since the result of a relational query is itself a relation, relational
operations can be applied to the results of queries as well as to the given set of relations.

1) The most frequent operation is the selection of specific tuples from a single relation (say
instructor) that satisfies some particular predicate (say salary > $85,000). The result is a new relation that
is a subset of the original relation (instructor).

2) Another frequent operation is to select certain attributes (columns) from a relation. The result is a
new relation having only those selected attributes.

3) The join operation allows the combining of two relations by merging pairs of tuples, one from
each relation, into a single tuple. There are a number of different ways to join relations .
4) The Cartesian product operation combines tuples from two relations, but unlike the join operation,
its result contains all pairs of tuples from the two relations, regardless of whether their attribute
values match.

Because relations are sets, we can perform normal set operations on relations.



5) The union operation performs a set union of two “similarly structured” tables (say a table of all
graduate students and a table of all undergraduate students). For example, one can obtain the set of
all students in a department. Other set operations, such as intersection and set difference can be
performed as well.

KEYS:

e The values of the attribute of a tuple must be such that they can uniquely identify the tuple. In other
words, no two tuples in a relation are allowed to have exactly the same value for all attributes.

1) super key:

e A superkey is a set of one or more attributes that, taken collectively, allow us to identify uniquely
a tuple in the relation. For example, the ID attribute of the relation instructor is sufficient to
distinguish one instructor tuple from another. Thus, ID is a superkey. The name attribute of
instructor, on the other hand, is not a superkey, because several instructors might have the same
name.

e A superkey may contain extraneous attributes. For example, the combination of 1D and name is a
superkey for the relation instructor.

2) candidate key:

e A candidate key is a 'minimal' super key meaning the smallest subset of superkey attribute
which is unique.

e |t is possible that several distinct sets of attributes could serve as a candidate key. Suppose that a
combination of name and dept name is sufficient to distinguish among members of the instructor
relation. Then, both {ID} and {name, dept name} are candidate keys. Although the attributes ID
and name together can distinguish instructor tuples, their combination, {ID, name}, does not form
a candidate key, since the attribute ID alone is a candidate key. -

3) Primary key:

o There can be more than one candidate key in a relation out of which one can be chosen as
primary key.

e The primary key denote a candidate key that is chosen by the database designer as the principal
means of identifying tuples within a relation.

o A key (whether primary, candidate, or super) is a property of the entire relation, rather than of the
individual tuples. Any two individual tuples in the relation are prohibited from having the same
value on the key attributes at the same time. The designation of a key represents a constraint in
the real-world enterprise being modeled.

e Primary keys must be chosen with care.

e The primary key should be chosen such that its attribute values are never, or very rarely, changed.

e |t is customary to list the primary key attributes of a relation schema before the other attributes; for
example, the dept name attribute of department is listed first, since it is the primary key. Primary
key attributes are also underlined.

4) Foreign key:

e A relation, say ri, may include amon? its attributes the primary key of an-other relation, say r-.
This attribute is called a foreign key from ry, referencing r».

e The relation ry is also called the referencing relation of the foreign key dependency, and r; is
called the referenced relation of the foreign key.



7. List the operations of relational algebra and the purpose of each with example.

Relational algebra is a procedural query language. It gives a step by step process to obtain the result of the
query. It uses operators to perform queries.

TYPES OF RELATIONAL OPERATIONS:

1. Select Operation:
e The select operation selects tuples that satisfy a given predicate.
e It is denoted by sigma (o).
1. Notation: o p(r)
Where:
¢ is used for selection prediction
r is used for relation
p is used as a propositional logic formula which may use connectors like: AND OR and NOT. These
relational can use as relational operators like =, #, >, <,>, <

For example: LOAN Relation

IBRANCH_NAME|LOAN_NO|AMOUNT]
\Perryride HL-lS H1500 |
\Downtown HL-14 H1500 |
IRoundhill IL-11 900 |
IPerryride IL-16 1300 |
Input:

1. o BrancH NAME="perryride” (LOAN)
Output:
IBRANCH_NAME|LOAN_NO|AMOUNT]
|Perryride |L-15 1500 |
|Perryride IL-16 1300 |

2. Project Operation:
e This operation shows the list of those attributes that we wish to appear in the result. Rest of the
attributes are eliminated from the table.
e It is denoted by [].
1. Notation: ] a1, a2 an (1)
Where
Al, A2, A3is used as an attribute name of relation r.
Example: CUSTOMER RELATION

INAME|STREET|| CITY |
Jones |[Main  |[Harrison|
ISmith |North  |Rye |

Input:
1. T nawe cry (CUSTOMER)
Output:

INAME]|| CITY |
Jones |Harrison|




ISmith |Rye |

3. Union Operation:
e Suppose there are two tuples R and S. The union operation contains all the tuples that are either in
RorSorbothinR &S.
e It eliminates the duplicate tuples. It is denoted by U.
1. Notation:RUS
A union operation must hold the following condition:
e Rand S must have the attribute of the same number.
e Duplicate tuples are eliminated automatically.
Example:
DEPOSITOR RELATION

ICUSTOMER_NAME|ACCOUNT_NO|
Johnson |A-101 ]
|Smith |A-121 y
[Mayes |A-321 |
‘Turner HA-176 ]
Johnson |A-273 |
Jones |A-472 ]
\Lindsay HA-284 ]
BORROW RELATION
ICUSTOMER_NAME|LOAN_NO|
Jones IL-17 |
ISmith L-23 |
Hayes L-15 |
Jackson IL-14 |
ICurry IL-93 |
|Smith IL-11 |
\Williams IL-17 |
Input:

1. [T customer_nave (BORROW) U [T customer_name (DEPOSITOR)
Output:
ICUSTOMER_NAME|
Johnson |
|Smith |
Hayes |
Turner |
Jones |
|Lindsay |
ackson |
ICurry |
\Williams |
Mayes |

4, Set Intersection:



e Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in
bothR & S.
e Itis denoted by intersection N.
1. Notation:R NS
Example: Using the above DEPOSITOR table and BORROW table
Input:
1. [T customer name (BORROW) N [T customer_nave (DEPOSITOR)
Output:

ICUSTOMER_NAME|
|Smith |
Jones |

5. Set Difference:
e Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in

R but not in S.

e It is denoted by intersection minus (-).

1. Notation:R - S
Example: Using the above DEPOSITOR table and BORROW table
Input:

1. [T customer nave (BORROW) - [T customer_nave (DEPOSITOR)
Output:
ICUSTOMER_NAME|
Jackson |
\Hayes \
\Willians |
ICurry |
6. Cartesian product

e The Cartesian product is used to combine each row in one table with each row in the other table. It

is also known as a cross product.

e Itisdenoted by X.
1. Notation: EXD

Example:
EMPLOYEE
[EMP_ID|EMP_NAME| EMP_DEPT|
L ||Smith A |
2 | Harry lc |
E |John B |
DEPARTMENT
IDEPT_NO|DEPT_NAME|
A |Marketing |
B ||Sales |
c |Legal |
Input:
1. EMPLOYEE X DEPARTMENT
Output:
[EMP_ID|[EMP_NAME|[EMP_DEPT|[DEPT_NO|DEPT_NAME|
i ||Smith A A |Marketing |
i ||Smith A B ||Sales |




L ||Smith A lc |Legal \
2 |Harry lc A |[Marketing |
2 | Harry lc B ||sales \
2 |Harry lc lc |Legal \
3 |lJohn IE A |[Marketing |
3 |lJohn IE IE [sales \
E |John B c |Legal |

7. Rename Operation:
The rename operation is used to rename the output relation. It is denoted by rho (p).
Example: We can use the rename operator to rename STUDENT relation to STUDENT1.
1. p(STUDENTI, STUDENT)
Join Operations:
A Join operation combines related tuples from different relations, if and only if a given join condition is
satisfied. It is denoted by .

Example:

EMPLOYEE
[EMP_CODE|[EMP_NAME]
101 ||Stephan |
1102 |lJack |
\103 HHarry \
SALARY
IEMP_CODE|SALARY|
101 50000 |
1102 30000 |
1103 25000 |

1. Operation: (EMPLOYEE ~ SALARY)
Result:
[EMP_CODE| EMP_NAME||SALARY|
1101 ||Stephan 50000 |
1102 | Jack 30000 |
1103 | Harry 25000 |

8. Types of Join operations:

Join Operation

l | l

Natural Join Outer Join Equi Join

I Left Outer Join

Right Quter Join

— Full Outer Join

1) Natural Join:



e Anatural join is the set of tuples of all combinations in R and S that are equal on their common
attribute names.
e Itis denoted by .
Example: Let's use the above EMPLOYEE table and SALARY table:

Input:
1. [lemp_name, saary (EMPLOYEE bt SALARY)
Output:
[EMP_NAME|SALARY|
|Stephan 50000 |
Jack 30000 |
Harry 25000 |

2) Outer Join:
The outer join operation is an extension of the join operation. It is used to deal with missing information.

Example:

EMPLOYEE

[EMP_NAME| STREET | CITY |
\Ram HCiviIIine HMumbai ]
Shyam |Park street ||Kolkata |
‘Ravi HM.G. Street HDeIhi ]
Hari |INehru nagar]|Hyderabad|

FACT_WORKERS

IEMP_NAME ||BRANCH||SALARY]

IRam [Infosys  [10000 |

IShyam |wipro  [20000 |

[Kuber |[HCL  |l30000 |

Hari |TCs 50000 |

Input:

1. (EMPLOYEE m FACT WORKERS)

Output:

[EMP_NAME|| STREET | CITY |BRANCH|SALARY]|
IRam |Civil line ||[Mumbai ||Infosys  [[10000 |
Shyam |Park street |Kolkata |Wipro  [20000 |
Hari |INehru nagar||Hyderabad| TCS |50000 |

An outer join is basically of three types:
a. Left outer join
b. Right outer join
c. Full outer join
a. Left outer join:
o Left outer join contains the set of tuples of all combinations in R and S that are equal on their
common attribute names.
o Inthe left outer join, tuples in R have no matching tuples in S.
e lItis denoted by »<.
Example: Using the above EMPLOYEE table and FACT_WORKERS table
Input:
1. EMPLOYEE < FACT_WORKERS

[EMP_NAME| STREET | CITY |BRANCH|SALARY]
IRam [Civil line  |[Mumbai |Infosys 10000 |




IShyam |Park street |[Kolkata |wipro  |20000 |
Hari [Nehru street|Hyderabad|TCS ~ |50000 |
Ravi IM.G. Street [Delhi ~ |NULL  |NULL |
b. Right outer join:
e Right outer join contains the set of tuples of all combinations in R and S that are equal on their
common attribute names.
e Inright outer join, tuples in S have no matching tuples in R.

e Itis denoted by p<.
Example: Using the above EMPLOYEE table and FACT_WORKERS Relation

Input:
1. EMPLOYEE <t FACT_WORKERS

Output:

[EMP_NAME|BRANCH|SALARY| STREET | CITY |
[Ram Infosys  ][10000  |[Civil line  |[Mumbai |
Shyam |wipro  ][20000  |[Park street ||Kolkata |
Hari [Tcs  ]j50000  |[Nehru street|Hyderabad|
[Kuber l[HcL  [[30000 |INuLL  |INuULL |

c. Full outer join:
o Full outer join is like a left or right join except that it contains all rows from both tables.
o In full outer join, tuples in R that have no matching tuples in S and tuples in S that have no
matching tuples in R in their common attribute name.
e Itis denoted by »<.
Example: Using the above EMPLOYEE table and FACT_WORKERS table

Input:
1. EMPLOYEE »< FACT_WORKERS

Output:

IEMP_NAME| STREET | CITY |BRANCH|SALARY]|
IRam [Civil line |[Mumbai |Infosys |10000 |
Shyam |Park street |[Kolkata |Wipro  |20000 |
Hari |[Nehru street||Hyderabad|TCS ~ |50000 |
IRavi IM.G. Street |[Delhi  |NULL  |NULL |
Kuber INULL  |NULL  |HCL  |[30000 |

3) Equijoin:
It is also known as an inner join. It is the most common join. It is based on matched data as per the equality
condition. The equi join uses the comparison operator(=).
Example:
CUSTOMER RELATION

ICLASS_ID||NAME|

L lJohn |

2 |Harry |

3 ||Jackson|
PRODUCT
IPRODUCT_ID| CITY |
i |Delhi |
2 [Mumbail
3 |Noida |




Input:
CUSTOMER = PRODUCT

Output:

ICLASS_ID|NAME|PRODUCT_ID|| CITY |
L ljohn |1 |Delhi |
2 [Harry |2 | Mumbail
3 |Harry |3 Noida |

8. Describe the six clauses in the syntax of an sql query and show what type of constructs can be
specified in each of the six clauses. Which of the six clauses are required and which are
optional?

The basic categories of commands used in SQL to perform various functions. These functions include
building database objects, manipulating objects, populating database tables with data, updating existing
data in tables, deleting data, performing database queries, controlling database access, and overall database
administration.

The main categories are

DDL (Data Definition Language)
DML (Data Manipulation Language)
DQL (Data Query Language)

DCL (Data Control Language)

Data administration commands
Transactional control commands

i) DDL (Data Definition Language)

Data Definition Language, DDL, is the part of SQL that allows a database user to create and restructure
database objects, such as the creation or the deletion of a table.

Some of the most fundamental DDL commands discussed during following hours include the following:

CREATE TABLE:

CREATE TABLE CUSTOMERS(ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, AGE
INT NOT NULL,ADDRESS CHAR (25) ,SALARY DECIMAL (18, 2),
PRIMARY KEY (ID));

ALTER TABLE:

ALTER TABLE Customers ADD Email varchar(255);

ALTER TABLE Customers DROP COLUMN Email;

ALTER TABLE table_name MODIFY COLUMN column_name datatype;
DROP TABLE

DROP TABLE employee;

CREATE INDEX
CREATE INDEX idx_lastname ON Persons (LastName);



ALTER INDEX
ALTER INDEX <index name> ON <table name> (<column(s)>);

DROP INDEX
DROP INDEX index_name;

CREATE VIEW
CREATE VIEW productll AS SELECT ProductName, Price FROM Products WHERE
Price > (SELECT AVG(Price) FROM Products);

DROP VIEW
DROP VIEW emp_view;

ii) DML (Data Manipulation Language):

Data Manipulation Language, DML, is the part of SQL used to manipulate data within objects of a
relational database.

There are three basic DML commands:

INSERT:
INSERT INTO Customers (CustomerName, City, Country)
VALUES (‘alex’, ‘chennai’, 'india’);

UPDATE:
UPDATE Customers
SET ContactName = 'Alex’, City="bangalore'
WHERE CustomerID = 1;
DELETE:
DELETE FROM Customers WHERE CustomerName='Alex";

iii) DQL (Data Query Language)

Though comprised of only one command, Data Query Language (DQL) is the most concentrated focus of
SQL for modern relational database users. The base command is as follows:

SELECT:
SELECT * FROM table_name;
SELECT CustomerName, City FROM Customers;

This command, accompanied by many options and clauses, is used to compose queries against a relational
database. Queries, from simple to complex, from vague to specific, can be easily created.

A query is an inquiry to the database for information. A query is usually issued to the database through an
application interface or via a command line prompt.

iv) Data Control Language(DCL)
Data control commands in SQL allow you to control access to data within the database. These DCL

commands are normally used to create objects related to user access and also control the distribution of
privileges among users. Some data control commands are as follows:



GRANT:

CREATE USER books_admin IDENTIFIED BY MyPassword;
GRANT SELECT, INSERT, UPDATE, DELETE ON books TO books_admin;

REVOKE:
GRANT SELECT, INSERT, UPDATE, DELETE ON books from books_admin;

CREATE SYNONYM:
CREATE SYNONYM offices FOR locations;
SELECT * FROM locations;

v) Data Administration Commands

Data administration commands allow the user to perform audits and perform analyses on operations within
the database. They can also be used to help analyze system performance. Two general data administration
commands are as follows:

START AUDIT
STOP AUDIT

Do not get data administration confused with database administration. Database administration is the
overall administration of a database, which envelops the use of all levels of commands. Database
administration is much more specific to each SQL implementation than are those core commands of the
SQL language.

vi) Transactional Control Commands

In addition to the previously introduced categories of commands, there are commands that allow the user
to manage database transactions.

COMMIT Saves database transactions

ROLLBACK Undoes database transactions

SAVEPOINT Creates points within groups of transactions in which to ROLLBACK
SET TRANSACTION Places a name on a transaction

9. Explain about nested sub queries.

e SQL provides a mechanism for the nesting of subgueries.
e Asubquery is a select-from-where expression that is nested within another query.
e A common use of subqueries is to perform tests for set membership, set comparisons,
and set cardinality.
o Example Query
e Find courses offered in Fall 2009 and in Spring 2010
= select distinct course_id from section where semester = "Fall” and year=
2009 and course_id in (select course_id from
section where semester = *Spring” and year= 2010);
Find courses offered in Fall 2009 but not in Spring 2010
e select distinct course_id from section where semester = *Fall’ and year= 2009 and
course_id not in (select course_id from section where semester = *Spring’ and
year= 2010);



Example Query:

Find the total number of (distinct) studentswho have taken course sections taught by the
instructor with 1D 10101
e select count (distinct ID) from takes where (course_id, sec_id, semester, year) in (select
course_id, sec_id, semester, year from teaches where teaches.ID= 10101);
Note: Above query can be written in a much simpler manner. The formulation above is
simply to illustrate SQL features.

Set Comparison:

Find names of instructors with salary greater than that of some (at least one) instructor
in the Biology department.
select distinct T.name from instructor as T, instructor as S where
T.salary > S.salary and S.dept_name = "Biology’;
Same query using > some clause
select name from instructorwhere salary > some (select salary
rom instructor where dept name = ’Biology’);

Example Query
o Find the names of all instructors whose salary is greater than the salary of all
instructors in the Biology department.
select name from instructor where salary > all (select salary from
instructor where dept name = "Biology’);
Test for Empty Relations
e The exists construct returns the value true if the
argument subguery is nonempty.
Existsr< r= @
e notexistsre r=@
" Correlation Variables
e Yet another way of specifying the query “Find all courses taught in both the Fall 2009 semester
and in the Spring 2010 semester”
select course_id from section as S where semester = "Fall’ and
year= 2009 and exists (select * from section as T where semester
="Spring’ and year= 2010 and S.course id= T.course id);
e Correlated subquery
e Correlation name or correlation variable
e Not Exists
e Find all students who have taken all courses offered in the Biology department.
select distinct S.ID, S.name from student as Swhere not exists ( (select
course_id from course where dept name = ’Biology’) except (select
T.course_id from takes as T where S.ID = T.ID));
e Notethat X—-Y=0 < XcVY
e Note: Cannot write this query using = all and its variants

Test for Absence of Duplicate Tuples
e The unique construct tests whether a subquery has any duplicate tuples in its
result.
= (Evaluates to “true” on an empty set)
e Find all courses that were offered at most once in 2009



select T.course_id from course as T where unique (select R.course_id from
section as R where T.course_id= R.course_id
and R.year = 2009);

Subqgueries in the From Clause:

e SQL allows a subquery expression to be used in the from clause Find the average
instructors’ salaries of those departments where the average salary is greater than
$42,000.
= select dept_name, avg_salary from (select dept_name, avg (salary) as
avg_salary from instructor group by dept_name) where avg_salary > 42000;
¢ Note that we do not need to use the having clause
e Another way to write above query
select dept_name, avg_salary from (select dept_name, avg (salary) from instructor
group by dept_name)
as dept_avg (dept_name, avg_salary) where avg_salary > 42000;
e And yet another way to write it: lateral clause
select name, salary, avg_salary from instructor 11, lateral (select avg(salary) as avg_salary
from instructor 12 where 12.dept_name= 11.dept_name);
o Lateral clause permits later part of the from clause (after the lateral keyword) to access
correlation variables from the earlier part.
o Note: lateral is part of the SQL standard, but is not supported on many database systems;
some databases such as SQL Server offer alternative syntax

With Clause:

e The with clause provides a way of defining a temporary view whose definition is
available only to the query in which the with clause occurs.
e Find all departments with the maximum budget
= with max_budget (value) as (select max(budget) from department) select budget
from department, max_budget where department.budget = max_budget.value;

Complex Queries using With Clause:

e With clause is very useful for writing complex queries
e Supported by most database systems, with minor syntax variations
e Find all departments where the total salary is greater than the average of the total
salary at all departments
with dept _total (dept_name, value) as (select dept _name, sum(salary) from instructor
group by dept_name), dept_total_avg(value) as (select avg(value) from dept_total)
select dept_name from dept_total, dept_total avg where
dept_total.value >= dept_total_avg.value;

Scalar Subquery:

e Scalar subquery is one which is used where a single
value is expected
e E.g. select dept_name, (select count(*) from instructor where
department.dept_name = instructor.dept_name) as
num_instructors from department;



E.g. select name from instructor where salary * 10 >
o (select budget from department where department.dept_name =
instructor.dept_name)
Runtime error if subquery returns more than one
result tuple

Modification of the Database:

Deletion of tuples from a given relation
Insertion of new tuples into a given relation
Updating values in some tuples in a given relation

= Modification of the Database — Deletion
Delete all instructors delete from instructor
Delete all instructors from the Finance department delete
from instructor where dept name= "Finance’;
Delete all tuples in the instructor relation for those instructors associated with a department
located in the Watson building.

delete from instructor where dept_name in (select dept_name from department where building =
*Watson’);

Delete all instructors whose salary is less than the average salary of instructors
o delete from instructor where salary< (select avg (salary) from instructor);
Problem: as we delete tuples from deposit, the average salary changes
Solution used in SQL.:
o First, compute avg salary and find all tuples to delete
o Next, delete all tuples found above (without recomputing avg or retesting the
tuples)

= Modification of the Database — Insertion
Add a new tuple to course insert into course values (’CS-437’, ’Database Systems’,
’Comp. Sci.’, 4);
or equivalently insert into course (course_id, title, dept_name, credits) values (CS-
437’, *Database Systems’, ’Comp. Sci.’, 4);
Add a new tuple to student with tot_creds set to null insert into student values
(’3003°, *Green’, ’Finance’, null);
Add all instructors to the student relation with tot_creds set to 0
e insert into student select ID, name, dept_name, 0 from instructor

The select from where statement is evaluated fully before any of its results are

inserted into the relation (otherwise queries like insert into tablel select * from

tablelwould cause problems, if tablel did not have any primary key defined.

o Modification of the Database — Updates
. Increase salaries of instructors whose salary is over $100,000 by 3%,
and all others receive a 5% raise
Write two update statements:
update instructor set salary = salary * 1.03 where salary > 100000;

update instructor set salary = salary * 1.05 where salary <= 100000;

The order is important
Can be done better using the case statement



Case Statement for Conditional Updates:
o Same query as before but with case statement
update instructor set salary = case when salary <= 100000 then salary * 1.05 else salary * 1.03 end

Updates with Scalar Subqueries:
e Recompute and update tot_creds value for all students
update student S set tot_cred = ( select sum(credits) from takes natural join
course where S.ID= takes.ID and takes.grade <> ’F’ and takes.grade is not

null);

e Sets tot_creds to null for students who have not taken any course
o Instead of sum(credits), use: case when sum(credits) is not null then sum(credits) else 0
end

10. Explain about join operations in SQL.
® Join operations take two relations and return as a result another relation.

® A join operation is a Cartesian product which requires that tuples in the two relations match
(under some condition). It also specifies the attributes that are present in the result of the join

® The join operations are typically used as subquery expressions in the from clause
Join operations — Example

® Relation course

|course_id| title I dept_name I crcdifsl
BIO-301 | Genetics Biology 4
CS-190 | Game Design| Comp. Sci. 4
(CS-315 |Robotics Comp. Sci. 3

® Relation prereq

course_id | prereq_id

BIO-301 | BIO-101
CS-190 | CS-101
(CS-347 | CS-101

® Observe that prereq information is missing for CS-315 and course information is missing

for CS-437
Outer Join

® An extension of the join operation that avoids loss of information.

® Computes the join and then adds tuples form one relation that does not match tuples in the
other relation to the result of the join.

® Uses null values.

Left Outer Join
"1l]course natural left outer join prereq

| course_id| title | dept_name | credits | prereq_id |
BIO-301 | Genetics Biology 4 BIO-101
CS-190 | Game Design| Comp. Sci. 4 CS-101
CS-315 | Robotics Comp. Sci. 3 rull

Right Outer Join
[1[course natural right outer join prereq



| course_id| title | dept_name | credits | prereq_id |

BIO-301 | Genetics Biology 4 BIO-101
CS-190 | Game Design| Comp. Sci. -+ CS-101
CS-347 | null null null CS-101

Joined Relations
Join operations take two relations and return as a result another relation.

These additional operations are typically used as subquery expressions in the from

Join condition — defines which tuples in the two relations match, and what attributes
are present in the result of the join.

|

|
clause

|

|

Join type — defines how tuples in each relation that do not match any tuple in the other
relation (based on the join condition) are treated.

Join types Join Conditions
inner join natural

left outer join on < predicate>
right outer join using (A, Ay, ..., A,)
full outer join

Full Outer Join
'Icourse natural full outer join prereq

|c0urse_id| title | dept_name | credits |p1’e7’eq_id|
BIO-301 | Genetics Biology 4 BIO-101
C5-190 | Game Design| Comp. Sci. 4 C5-101
C5-315 | Robotics Comp. Sci. 3 null
CS-347 | null null null CS-101

Joined Relations — Examples

® course inner join prereq on course.course_id = prereg.course_id
Icourse_id| title | dept_name | credits |pr€1’eq_id| course_id |

BIO-301 | Genetics Biology 4 BIO-101 | BIO-301
CS-190 | Game Design| Comp. Sci. 4 CS-101 C5-190

® \What is the difference between the above, and a natural join?

® course left outer join prereq on course.course_id = prereq.course_id

course__id title dept_narie credits I preveqg_id c:ourse_idl

BIO-301 | Genetics Biology 4 BIO-101 BIO-301

CS-190 Game Design | Comp. Sci. 4 CS-101 CS-190

CS-315 Robotics Comp. Sci. 3 reeell reuell

Joined Relations — Examples
® course natural right outer join prereq
I course_idl title | dept_name | credits | prereq id |

BIO-301 | Genetics Biology 4 BIO-101
CS-190 | Game Design| Comp. Sci. 4 CS-101
CSs-347 riull rull 11ull CS-101

® course full outer join prereq using (course_id)



course_id| title | dept_name | credits | prereq_id |
BIO-301 | Genetics Biology 4 BIO-101
CS5-190 | Game Design| Comp. Sci. 4 CS5-101
CS-315 | Robotics Comp. Sci. 3 riull
CS-347 | nulil null null CS5-101

11. Discuss about view in SQL.

Database views are created using the CREATE VIEW statement. Views can be created
from a single table, multiple tables, or another view. To create a view, a user must have the

appropriate system privilege according to the specific implementation.

SQL> CREATE TABLE EMPLOYEE (

Table created.

SUNTAX FOR CREATION OF VIEW

CREATE [OR REPLACE] [FORCE ] VIEW viewname [(column-

EMPLOYEE_NAME VARCHAR2(10),

EMPLOYEE_NO
DEPT_NAME

DEPT_NO

DATE_OF_JOIN

CREATE VIEW

name, column-name)] AS Query [with check option];
Include all not null attribute.

CREATION OF VIEW

NUMBER(8),
VARCHAR2(10),

NUMBER (5),
DATE

SQL> CREATE VIEW EMPVIEW AS SELECT EMPLOYEE_NAME,

EMPLOYEE_NO,

DEPT_NAME,

DEPT_NO,

DATE_OF_JOIN FROM EMPLOYEE;

View Created.

DISPLAY VIEW:

SQL> SELECT * FROM EMPVIEW;
EMPLOYEE_NO

EMPLOYEE_N

124
345
98

DEPT_NAME

DEPT_NO
89
21
22



GIRI 100 CSE 67
SQL> INSERT INTO EMPVIEW VALUES ('SRI', 120,'CSE', 67);
1 ROW CREATED.

SQL>DROP VIEW EMPVIEW,;
view dropped

SQL> CREATE OR REPLACE VIEW EMP_TOTSAL AS SELECT
EMPNO "EID", ENAME "NAME", SALARY "SAL" FROM EMPL;
JOIN VIEW:

EXAMPLE:

SQL> CREATE OR REPLACE VIEW DEPT_EMP_VIEW AS SELECT A.EMPNO,
A.ENAME,
A.DEPTNO,
B.DNAME,
B.LOC
FROM EMPL A, DEPMT B
WHERE
A.DEPTNO=B.DEPTNO,;

12. Explain about integrity constraints and index creation in SQL.

1) not null
2) primary key
3) unigue
4) check (P), where P is a predicate
5) Not Null and Unique Constraints
not null
a. Declare name and budget to be not null name varchar(20) not null
budget numeric(12,2) not null
> unique (A, A, ..., An)
v The unique specification states that the attributes A1, A2, ... Am form a
candidate key.
Candidate keys are permitted to be null (in contrast to primary keys).

The check clause
check (P):
where P is a predicate
Example: ensure that semester is one of fall, winter, spring or summer:
create table section ( course_id varchar (8), sec_id varchar (8), semester varchar (6),
year numeric (4,0), building varchar (15), room_number varchar (7), time slot id
varchar (4), primary key (course_id, sec_id, semester, year), check (semester in
(’Fall’, >Winter’, ’Spring’, ’Summer’)));
Referential Integrity
> Ensures that a value that appears in one relation for a given set of attributes also appears for
a certain set of attributes in another relation.
Example: If “Biology” is a department name appearing in one of the tuples in the
instructor relation, then there exists a tuple in the department relation for “Biology”.



> Let A be a set of attributes. Let R and S be two relations that contain attributes A and
where A is the primary key of S. A'is said to be a foreign key of R if for any values of A
appearing in R these values also appear in S.

Cascading Actions in Referential Integrity
> create table course ( course_id char(b) primary key,title varchar(20),dept_name
varchar(20) references department)
create table course ( ...dept_name varchar(20),
foreign key (dept_name) references department on delete cascade
on update cascade, L)
> alternative actions to cascade: set null, set default

> Integrity Constraint Violation During Transactions
E.g.
create table person ( ID char(10), name char(40), mother char(10), father char(10),
primary key ID, foreign key father references person, foreign key mother
references person)
> Hov‘v/to insert a tuple without causing constraint violation ?
insert father and mother of a person before inserting person
4 OR, set father and mother to null initially, update after inserting all persons (not
possible if father and mother attributes declared to be not null)
OR defer constraint checking (next slide)

Complex Check Clauses
® check (time_slot_id in (select time_slot_id from time_slot)) /[ 'why not use a foreign key
here?

® Every section has at least one instructor teaching the section.

how to write this?
® Unfortunately: subquery in check clause not supported by pretty much any database

v’ Alternative: triggers (later)

o cre?}e assertion <assertion-name> check <predicate>;

Also not supported by anyone

BUILT-IN DATA TYPES IN SQL

L4 datei/Dates, containing a (4 digit) year, month and date
Example: date ‘2005-7-27’

L time‘:; ime of day, in hours, minutes and seconds.
Example: time ‘09:00:30° time ‘09:00:30.75°

L4 timef}amp: date plus time of day
Example: timestamp ‘2005-7-27 09:00:30.75°

® interval: period of time
Example: interval ‘1’ day
Subtracting a date/time/timestamp value from another gives an interval value
Interval values can be added to date/time/timestamp values

INDEX CREATION
® create table student (ID varchar (5), name varchar (20) not null, dept_name varchar
(20), tot_cred numeric (3,0) default 0, primary key (1D))
® create index studentID_index on student(ID)
® |ndices are data structures used to speed up access to records with specified values for index
attributes

e.g. select * from student where ID = 12345’
can be executed by using the index to find the required record, without looking at all
records of student
More on indices in Chapter 11
User-Defined Types
create type construct in SQL creates user-defined type



create type Dollars as numeric (12,2) final
create table department (dept_name varchar (20), building varchar (15), budget
Dollars);
Domains
® create domain construct in SQL-92 creates user-defined domain types create domain
person_name char(20) not null
® Types and domains are similar. Domains can have constraints, such as not null, specified
on them.
® create domain degree_level varchar(10) constraint degree_level_test
check (value in (’Bachelors’, "Masters’, ’Doctorate’));
Large-Object Types
Large objects (photos, videos, CAD files, etc.) are stored as a large object:
® Dblob: binary large object -- object is a large collection of uninterpreted binary data
(whose interpretation is left to an application outside of the database system)
® clob: character large object -- object is a large collection of character data
® \When a query returns a large object, a pointer is returned rather than the large object
itself.

13. Describe the GRANT functions and explain how it relates to security. What types of privileges
may be granted? How rights could be revoked.

Forms of authorization on parts of the database:
® Read - allows reading, but not modification of data.
® [nsert - allows insertion of new data, but not modification of existing data.
® Update - allows modification, but not deletion of data. Delete - allows deletion of data.
Forms of authorization to modify the database schema Index - allows creation and deletion of
indices.
® Resources - allows creation of new relations.
® Alteration - allows addition or deletion of attributes in a relation.
® Drop - allows deletion of relations.
Authorization Specification in SQL
The grant statement is used to confer authorization grant <privilege list> on <relation
name or view name> to <user list> <user list> is:
v’ auser-id
public, which allows all valid users the privilege granted
A role (more on this later)
Granting a privilege on a view does not imply granting any privileges on the underlying
relations.
The grantor of the privilege must already hold the privilege on the specified item (or be the
database administrator).
Privileges in SQL
select: allows read access to relation,or the ability to query using the view
Example: grant users U;, U, and Us select authorization on the instructor relation:
grant select on instructor to U, Uz, Us
insert: the ability to insert tuples
update: the ability to update using the SQL update statement
delete: the ability to delete tuples.
all privileges: used as a short form for all the allowable privileges
Revoking Authorization in SQL
The revoke statement is used to revoke authorization. revoke <privilege list> on
<relation name or view name> from <user list> Example:
revoke select on branch from Uy, Uy, U3
<privilege-list> may be all to revoke all privileges the revokee may hold.
If <revokee-list> includes public, all users lose the privilege except those granted it
explicitly.

YVvVvv WV V V



> If the same privilege was granted twice to the same user by different grantees, the user
may retain the privilege after the revocation.
All privileges that depend on the privilege being revoked are also revoked.

14. Explain about functions and procedures in SQL.

At the schema level, subprogram is a standalone subprogram. It is created with the CREATE
PROCEDURE or the CREATE FUNCTION statement. It is stored in the database and can be deleted with
the DROP PROCEDURE or DROP FUNCTION statement.

A subprogram created inside a package is a packaged subprogram. It is stored in the database and can be
deleted only when the package is deleted with the DROP PACKAGE statement.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters. PL/SQL
provides two kinds of subprograms —

e Functions — These subprograms return a single value; mainly used to compute and return a value.
e Procedures — These subprograms do not return a value directly; mainly used to perform an action.

Program 1:
create or replace procedure pl as

begin
doms_output.put_line('welcome’);
end;

/

Procedure created.

SQL> execute p1;
welcome

Program 2:

create PROCEDURE findMin(x IN number, y IN number, z OUT number) IS
BEGIN
IF x <y THEN
Z:=X;
ELSE
=Y,
END IF;
END;
/

Procedure created.

declare

a number;

b number;

¢ number;
begin
a:=23;
b:=4,



findMin(a,b,c);
dbms_output.put_line('Minimum value is:'||c);
end;
/
Output:
Minimum value is:4

Program 3:

SQL> create table emp22(id number,name varchar(20),designation varchar(20),salary number);
Table created.

SQL> insert into emp22 values(3,'john’,'manager’,100000);

1 row created.

SQL> insert into emp22 values(3,'jagan’,'hr',400000);

1 row created.

Functions:

CREATE OR REPLACE FUNCTION totalemployee return number as
total number;
begin
SELECT count(*) into total from emp22;
Return total;
end;
/
Function created.

declare
a number:=0;
begin
a:=totalemployee();
dbms_output.put_line('Total employees are '|[a);
end;
/

Total employees are 2

Language Constructs for Procedures & Functions:

° SQL supports constructs that gives it almost all the power of a general purpose
programming language.
®  Compound statement: begin ... end,
v May contain multiple SQL statements between begin and end.

v Local variables can be declared within a compound statements
While and repeat statements:
v while boolean expression do
sequence of statements ;
end while

v' repeat



sequence of statements ;
until boolean expression
end repeat

° For loop
Permits iteration over all results of a query

° Example: Find the budget of all departments
declare n integer default 0;
for r as select budget from department do
set n =n + r.budget
end for

®  Conditional statements (if-then-else)
SQL:1999 also supports a case statement similar to C case statement
®  Example procedure: registers student after ensuring classroom capacity is not exceeded
v’ Returns 0 on success and -1 if capacity is exceeded
®  Signaling of exception conditions, and declaring handlers for exceptions
declare out_of _classroom_seats condition

declare exit handler for out_of classroom_seats
begin
.. signal out_of_classroom_seats

end
v" The handler here is exit -- causes enclosing begin..end to be exited

15. Explain about triggers in SQL.

® Atrigger is a statement that is executed automatically by the system as a side
effect of a modification to the database.
® To design a trigger mechanism, we must:
v Specify the conditions under which the trigger is to be executed.
v Specify the actions to be taken when the trigger executes.
® Triggers introduced to SQL standard in SQL:1999, but supported even earlier
using non-standard syntax by most databases.

v Syntax illustrated here may not work exactly on your database
system; check the system manuals
Triggering Events and Actions in SQL

® Triggering event can be insert, delete or update

® Triggers on update can be restricted to specific attributes
v’ For example, after update of STUDENT on grade

® Values of attributes before and after an update can be referenced
v referencing old row as : for deletes and updates
v referencing new row as : for inserts and updates

Table creation:
Create table employee22(empid number,empname varchar(20),empdept varchar(20),salary number);

Example:

CREATE OR REPLACE TRIGGER display_salary



BEFORE DELETE OR UPDATE ON employee22
FOR EACH ROW

DECLARE

sal_diff number;

BEGIN

sal_diff := :NEW.salary -:OLD.salary;
dbms_output.put_line('Old salary: ' || :OLD.salary);
dbms_output.put_line('New salary: ' || :NEW.salary);
doms_output.put_line('Salary difference: ' || sal_diff);

END;
/

16. Explain about embedded SQL.

The SQL standard defines embeddings of SQL in a variety of programming
languages such as C, C++, Java, Fortran, and PL/1,

A language to which SQL queries are embedded is referred to as a host language,
and the SQL structures permitted in the host language comprise embedded SQL.

The basic form of these languages follows that of the System R embedding of SQL
into PL/1.

EXEC SQL statement is used to identify embedded SQL request to the preprocessor
EXEC SQL <embedded SQL statement >;
Note: this varies by language:

v" In some languages, like COBOL, the semicolon is replaced with END-EXEC
v InJava embedding uses #SQL {.... };

Before executing any SQL statements, the program must first connect to the
database. This is done using:

EXEC-SQL connect to server user user-name using password;
Here, server identifies the server to which a connection is to be established.

® Variables of the host language can be used within embedded SQL statements. They
are preceded by a colon (:) to distinguish from SQL variables (e.g., :credit_amount
)

® Variables used as above must be declared within DECLARE section, as illustrated
below. The syntax for declaring the variables, however, follows the usual host
language syntax.

EXEC-SQL BEGIN DECLARE SECTION}

int credit-amount ;
EXEC-SQL END DECLARE SECTION,;
® To write an embedded SQL query, we use the declare ¢ cursor for <SQL query>
statement. The variable c is used to identify the query
® Example:

v’ From within a host language, find the ID and name of students who have
completed more than the number of credits stored in variable credit_amount
in the host langue (11 1Specify the query in SQL as follows:

EXEC SQL

declare ¢ cursor for select ID, name from student
where tot_cred > :credit_amount

END_EXEC



EXEC-SQL connect to server user user-name using password;
EXEC-SQL BEGIN DECLARE SECTION}
int credit-amount ;

EXEC-SQL END DECLARE SECTION;
EXEC SQL

declare c cursor for select ID,

name from student where

tot_cred > :credit_amount
END_EXEC
EXEC SQL openc ;
EXEC SQL fetch c into :si, :sn END_EXEC

EXEC SQL close ¢ ;

® The variable ¢ (used in the cursor declaration) is used to identify the query

® The open statement for our example is as follows:
EXEC SQL openc;
This statement causes the database system to execute the query and to save the results within
a temporary relation. The query uses the value of the host-language variable credit-amount at
the time the open statement is executed.

® The fetch statement causes the values of one tuple in the query result to be placed on
host language variables.
EXEC SQL fetch c into :si, :sn END_EXEC
Repeated calls to fetch get successive tuples in the query result

® A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is available

® The close statement causes the database system to delete the temporary relation that
holds the result of the query.
EXEC SQL close ¢ ;
Note: above details vary with language. For example, the Java embedding defines Java
iterators to step through result tuples.

Updates Through Embedded SQL
o Embedded SQL expressions for database modification (update, insert, and delete)
e Can update tuples fetched by cursor by declaring that the cursor is for update

EXEC SQL

declare c cursor for
select *from instructor where dept_name = ‘Music’ for update
e We then iterate through the tuples by performing fetch operations on the cursor and after fetching
each tuple we execute the following code:
update instructor
set salary = salary + 1000 where current of ¢



17. Discuss about dynamic SOL.

The embedded SQL queries were written as part of the host program source code. Hence, any time
we want to write a different query, we must modify the program code, and go through all the steps
involved (compiling, debugging, testing, and so on).

In some cases, it is convenient to write a program that can execute different SQL queries or
updates (or other operations) dynamically at runtime. For example, we may want to write a
program that accepts an SQL query typed from the monitor, executes it, and displays its result,
such as the interactive interfaces available for most relational DBMSs.

Another example is when a user-friendly interface generates SQL queries dynamically for the user
based on point-and-click operations on a graphical schema (for example, a QBE-like interface).
Dynamic SQL is one technique for writing this type of database program, by giving a simple
example to illustrate how dynamic SQL can work.

Program segment E3 in Figure reads a string that is input by the user (that string should be an
SQL update command) into the string program variable sqlupdatestring in line 3. It then prepares
this as an SQL command in line 4 by associating it with the SQL variable sglcommand. Line 5
then executes the command.

Notice that in this case no syntax check or other types of checks on the command are possible at
compile time, since the SQL command is not available until runtime. This contrasts with our
previous examples of embedded SQL, where the query could be checked at compile time because
its text was in the program source code.

Although including a dynamic update command is relatively straightforward in dynamic SQL, a
dynamic query is much more complicated. This is because usually we do not know the types or the
number of attributes to be retrieved by the SQL query when we are writing the program.

A complex data structure is sometimes needed to allow for different numbers and types of
attributes in the query result if no prior information is known about the dynamic query.

In E3, the reason for separating PREPARE and EXECUTE is that if the command is to be
executed multiple times in a program, it can be prepared only once. Preparing the command
generally involves syntax and other types of checks by the system, as well as generating the
code for executing it. It is possible to combine the PREPARE and EXECUTE commands
(lines 4 and 5 in E3) into a single statement by writing

EXEC SQL EXECUTE IMMEDIATE :sqlupdatestring ;

This is useful if the command is to be executed only once. Alternatively, the pro-grammer can
separate the two statements to catch any errors after the PREPARE statement, if any.

EXEC SQL BEGIN DECLARE SECTION ;

varchar sqlupdatestring [256] ;

EXEC SQL END DECLARE SECTION;

prompt("Enter the Update Command: ", sglupdatestring) ;
EXEC SQL PREPARE sglcommand FROM :sglupdatestring ;

EXEC SQL EXECUTE sglcommand ;.



CS8492 /| DATABASE MANAGEMENT SYSTEMS

UNIT-1
PART-A

1. What is the purpose of Database Management System? Nov/ Dec 2014

A DBMS is a software for creating and managing databases. It provides users with a systematic way to
create, retrieve, update and manage data. It is a middleware between the database which store all the data
and the users or applications which need to interact with that stored database. A DBMS can limit what
data the end user sees, as well as how that end user can view the data, providing many views of a single
database schema

2.  What are the characteristics that distinguish the database approach with the File — based

approach? April/ May 2015

In File System, files are used to store data while, collections of databases are utilized for the storage of
data in DBMS. Although File System and DBMS are two ways of managing data, DBMS clearly has
many advantages over File Systems. Typically when using a File System, most tasks such as storage,
retrieval and search are done manually and it is quite tedious whereas a DBMS will provide automated
methods to complete these tasks. Because of this reason, using a File System will lead to problems like
data integrity, data inconsistency and data security, but these problems could be avoided by using a
DBMS. Unlike File System, DBMS are efficient because reading line by line is not required and certain
control mechanisms are in place.

3. Isit possible for several attributes to have the same domain? lllustrate your answer with
suitable example. Nov/ Dec 2015

A domain is a pool of values from which the values of specific attributes of specific relations are taken.
For example, the domain dept is a set of all possible dept names and the domain emp_name is a set of all
employee names. Thus each and every attribute has its own domain. Hence it is not possible for several
attributes to have the same domain.

4. What are the disadvantages of file processing system? May/ June 2016

The disadvantages of file processing systems are

a) Data redundancy and inconsistency b) Difficulty in accessing data ¢) Data isolation d) Integrity
problems e) Atomicity problems f) Concurrent access anomalies

5. Differentiate File System with Database Management system. Nov/ Dec 2016

5. No

File System

Database Management system

filas ars usad to stors data

collections of databases are utilized for the
storage of data

T

most tadks such as storage, rebrieval
and zearch are done manually and it i=
quite tedious

provide automated metheds fto complete
these tasks

filez resulting in considerable amount
of redundancy of the stored data. Thus
storage space is wasted

3 File Svyztem will lead to problems like | these problems could be aveided by using a
data integrity; dats inconszistency and | DEME
data security

4 Each application has its own private | It has centralized control over the database

Henee, data iz shared and redundaney is
aveidad

Thers 1= no cenfralized control over
the database. Hence concurrent access
rezults in data inconsistency

It haz cenfralized control owver the data.
Hence concurrant access to the database
dossn’t result in data inconsistency




6. Distinguish key and super key. Nov Dec 2017

Minimal column which are sufficient to identify row is primary key. Super key also use for
identify row but one super key may be contain more than 1 primary key or combination of
primary keys known as super key. Both used for uniquely identify of row. Table contain more
than 1 candidate key but only 1 primary key

7. What are the advantages of using a DBMS?

a) Controlling redundancy b) Restricting unauthorized access ¢) Providing multiple user interfaces
d) Enforcing integrity constraints. e) Providing backup and recovery

8. Define instance and schema?

Instance: Collection of data stored in the data base at a particular moment is called an Instance of the
database.

Schema: The overall design of the data base is called the data base schema.
9. Define the terms 1) Physical schema 2) logical schema.

Physical schema: The physical schema describes the database design at the physical level, which is the
lowest level of abstraction describing how the data are actually stored.

Logical schema: The logical schema describes the database design at the logical level, which describes
what data are stored in the database and what relationship exists among the data.

10. What is storage manager? List the components.
A storage manager is a program module that provides the interface between the low level data
Stored in a database and the application programs and queries submitted to the system.
The storage manager components include
a) Authorization and integrity manager b) Transaction manager c) File manager d) Buffer manager
11. What is a data dictionary?

A data dictionary is a data structure which stores Meta data about the structure of the database ie. The
schema of the database.

12. What are attributes? Give examples.

An entity is represented by a set of attributes. Attributes are descriptive properties possessed by each
member of an entity set.

Example: possible attributes of customer entity are customer name, customer id, Customer Street,
customer city.

13. What is relationship? Give examples

A relationship is an association among several entities.



Example: A depositor relationship associates a customer with each account that he/she has.
14. Define the term Relationship set.

Relationship set: The set of all relationships of the same type is termed as a relationship set.
15. Define null values

In some cases a particular entity may not have an applicable value for an attribute or if we do not know the
value of an attribute for a particular entity. In these cases null value is used.

16. List the role of DBA.

The person who has central control over the system is called database administrator. The functions of the
DBA include the following:

Schema definition

Storage structure and access-method definition
Schema and physical-organization modification
Granting of authorization for data access
Integrity-constraint specification

17. Differentiate Static SQL and Dynamic SQL. Nov/ Dec 2014, April/ May 2015, Nov/ Dec 2015,
Nov/ Dec 2016

Static SQL.: Static SQL statements are SQL instructions that are a part of the language syntax. It can
be used directly in the source code as normal procedural instructions.

Dynamic SQL.: It is a programming technique that enables to build SQL statements dynamically at
runtime.
18. Give a brief description in DCL commands. NOV/DEC 2014

It is a computer language and a subset of SQL, used to control access to data in a database.
Examples of DCL commands include:

GRANT: used to allow specified users to perform specified tasks.
REVOKE: used to cancel previously granted permission

19. Why does SQL allow duplicate tuples in a table or in a query result? Nov/ Dec 2015
SQL usually treats a table not as a set but rather as a multiset. Duplicate tuples can appear more than
once in a table and in the result of a query. SQL does not automatically eliminate duplicate tuples in

the results of queries for the following reasons.

1. Duplicate elimination is an expensive operation one way to implement it, is to sort
the tuples first and then eliminate duplicates.

. The users may want to see duplicate tuples in the result of a query
When an aggregate function is applied to tuples in most cases we do not want to eliminate duplicates
20. Name the categories of SQL Command. May/ June 2016

a. data definition language
b. data manipulation language



c. data control language
d. transaction control language

21. What is Data Definition Language? Give example. Nov/ Dec 2016

It is used to define relational database of a system. It creates, changes and removes a table structure.
Ex. CREATE, ALTER, DROP, RENAME and TRUNCATE.
22. Define Data Manipulation Language.

DML.: A data manipulation language is a language that enables users to insert, modify and
delete the data in the database.
Ex. Insert, delete, modify
23. List the SQL statements used for Transaction Control.
a. Commit d. Set Transaction
b. Rollback

c. Save point
24. Define database objects.

A database object is any defined object in the database that is used to store or reference data. Some
examples include tables, views, clusters, sequences, indexes and synonyms.
25. Name the different types of joins supported in SQL.

a. Inner join

b. Quter join
1. Left Outer Join
2. Right Outer Join
3. Full Outer Join

c¢. Natural join

26. What is a trigger in SQL?

A trigger is a statement that the system executes automatically as a side effect of a
modification to the database.

27. What are primary keys?
A primary key is one or more columns in a table used to uniquely identify each row in the
table. Its values must not be null and must be unique across the column.

28. Explain the basic structure of an SQL expression.

An SQL Expression has three clauses: select, from and where.
a. Select- used to list the attributes desired in the result of a query
B. From- lists the relations to be scanned
x. Where- predicate involving attributes in the from clause
select Al, A2....An fromrl, r2,....rn where p;
29. Write a SQL Statement to find the names & loan numbers of all customers who have a
loan at Chennai branch from the following relations.

i). Loan (Loan _ no, Branch _ name, amount)
ii). Branch (Branch _ name, Branch _city, Assets)

select Loan_no from Loan, Branch where Loan.Branch_name = Branch.Branch_name and
Branch_city =’Chennai’;



Part B

1. Consider a student registration database comprising of the below given table schema .
student file

| student number , student name, address, telephone

course file

\course number , description , hours , professor number

professor file

\ professor number , name , office

registration file

\ student number , course number , date

consider a suitable example of tuples/records for the above mentioned tables and write DML , statements
(SQL) to answer for the queries listed below

i) Which courses does a specific professor teach ?

i) What courses are taught by two specific professors?

iii) Who teaches a specific courses and where is his/her office?

iv)For specific student number in which courses is the student registered and what is his/her name?

v) who are the professors for a specific student ?

vi) Who are the students registered in specific courses?

2) Explain the following with examples:
i) DDL
ii) DML
ii) Embedded SQL

3) Assume the following table :

degree(degcode,name,subject)

candidate(seat no, degcode,semesrer,month,year,result)
Marks(seatno,degcode,semester,month,year,papcode, marks)

Degcode-degree code.Name-name of the degree(MSC.MCOM)

SUBJECT _subject of courses Eg. Phy , pap code —paper code eg.Al

Solve the following queries using SQL

i) Write a SELECT statement to display all the degree codes are there in the candidate table but not present
in degree table in the order of degcode.

ii) Write a SELECT statement to display the name of all the candidates who have got less than 40 marks
in exactly 2 subjects .

iii) Write a SELECT statement to display the name, subject and number of the candidate for all degrees in
which there are less than 5 candidates.

iv) Write a SELECT statement to display the names of all the

candidates who have got highest total marks in MSc., (Maths).

4) Describe the GRANT functions and explain how it relates to security. what types of privileges may
be granted? How rights could be revoked ?

5) With the help of a neat block diagram , explain the basic architecture of a data base management
system?

6) Describe the six clauses in the syntax of an sgl query and show what type of constructs can be specified
in each of the six clauses.which of the six clauses are required and which are optional?

7) List the operations of relational algebra and the purpose of each with example.
8) consider the relation schema given in figure 1.design and draw an ER diagram that capture the
information of this schema.

Employee(empno,name,office,age)



Books(isbn,tittle ,authors,publisher)
Loan(empno,isbn,date)
write the following queries in relational algebra and SQL.
i)find the name of employees who have borrowed a book published by McGraw-Hill.
ii) find the name of employees who have borrowed all books published by McGraw-Hill.

9) Write the DDL,DML,DCL commands for the students database.Which contains
Student details :name,id,DOB,branch,DOJ.
Course details:Course name,Course id,Stud.id,Faculty name,id,marks.

10) Differentiate between foreign key constraints and referential integrity constraints with suitable
examples?

11) Justify the need of embedded SQL .consider the relation student(studentno,name, mark and
grade). Write embedded dynamic SQL statements in C language to retrieve all the student’s records whose
marks more than 90.
12) Explain about functions and procedures in SQL.
13) Discuss about triggers.

SOL QUERIES (UNIVERSITY QUESTIONS)

1) Consider a student registration database comprising of the below given table schema.
Student
student number, student name, address, telephone
course
course number, description, hours, professor number
professor
professor number, name, office
registration
student number, course number, date
Consider a suitable example of tuples/records for the above mentioned tables and write DML,
statements (SQL) to answer for the queries listed below
i) Which courses does a specific professor teach and what courses are taught by two specific
professors?
i) Who teaches a specific courses and where is his/her office?
iii) For specific student number in which courses is the student registered and what is his/her
name?
iv) Who are the professors for a specific student and who are the students registered in specific
courses?

ANSwers:

i)select courseno from course where professor no=10001;

select courseno from course where professor no=10001 or professor no=10004;
ii) select name , office from professor, course where coursed=101 and
professor.professorno=course.professorno;



iii) select courseno,studentname from registration . student where student.studentno=
registration.studentno;

iv)select professorno from course , registration where studentno=5001 and course.courseno=
registration.courseno;

select studentno from registration where courseno=6003;

2) Consider the relation schema given in figure.
Employee(empno, name, office, age)

Books(isbn, tittle, authors, publisher)

Loan(empno, isbn, date)
Write the following queries in relational algebra and SQL.
a) Find the name of employees who have borrowed a book published by McGraw-Hill.
b) Find the name of employees who have borrowed all books published by McGraw-Hill.
¢) Find the name of the employee who has loan and age greater than 25

Answers:

a) select name from employee e, books b, loan | where e.empno = l.empno and l.isbn =
b.isbn and b.publisher = ‘McGrawHill’

b) select distinct e.name from employee e where not exists (( select isbn from books where
publisher = "McGrawHill’) except ( select isbn from loan | where l.empno = e.empno ));

c) select name from employee e, loan | where l.age>25 and e.empno=Il.empno;

4) Elaborate about various join types of operations in SQL with example.
Assume the following table:
degree(degcode,name,subject)
candidate(seat no, degcode,semesrer,month,year,result)
Marks(seatno,degcode,semester,month, year,papcode, marks)
Degcode-degree code.Name-name of the degree(MSC.MCOM)
SUBJECT _subject of courses Eg. Phy , pap code —paper code eg.Al
Solve the following queries using SQL
i) Write a SELECT statement to display all the degree codes are there in the candidate table but
not present in degree table in the order of degcode.
i) Write a SELECT statement to display the name of all the candidates who have got less than
40 marks in exactly 2 subjects .
iii) Write a SELECT statement to display the name, subject and number of the candidate for all
degrees in which there are less than 5 candidates.
iv) Write a SELECT statement to display the names of all the candidates who have got highest
total marks in MSc., (Maths).

Answers:
i) select degcode from candidate where degcode not in select degcode from degree;



i) select name from candidate,marks where candidate.seatid=marks.seatid and marks.mark
<40;

iii) Select name,subject, count (seatno) from degree, marks group by degcode;

iv) Select seatno from marks m1,marks m2 where m1.mark>m2.mark;

5. Justify the need of embedded SQL .consider the relation student(studentno, name,
mark and grade).Write embedded SQL statements in C language to retrieve all the
student’s records whose marks more than 90.

EXEC-SQL connect to server user user-name using password;
EXEC SQL BEGIN DECLARE SECTION;
int studno, mark1,grad ;
char sname[30];
EXEC SQL END DECLARE SECTION,;

EXEC SQL
declare c cursor for select studentno, name, mark , grade from student where mark>90
END EXEC

EXEC SQL openc;
EXEC SQL fetch c into :studno, :sname, :markl, :grad END_EXEC

EXEC SQL close ¢ ;



CS8492 DATABASE MANAGEMENT SYSTEMS

UNIT 1 DATABASE DESIGN

Entity-Relationship model — E-R Diagrams — Enhanced-ER Model — ER-to-Relational Mapping —
Functional Dependencies — Non-loss Decomposition — First, Second, Third Normal Forms, Dependency
Preservation — Boyce/Codd Normal Form — Multi-valued Dependencies and Fourth Normal Form — Join
Dependencies and Fifth Normal Form.

2.1. ENTITY-RELATIONSHIP MODEL and E-R DIAGRAMS:

The term database application refers to a particular database and the associated programs that
implement the database queries and updates.

For example, a BANK database application that keeps track of customer accounts would include
programs that implement database updates corresponding to customer deposits and withdrawals.
These programs provide user-friendly graphical user interfaces (GUISs) utilizing forms and menus
for the end users of the application— the bank tellers, in this example. Hence, a major part of the
database application will require the design, implementation, and testing of these application
programs.

Traditionally, the design and testing of application programs has been considered to be part of
software engineering rather than database design. In many software design tools, the database
design methodologies and software engineering methodologies are intertwined since these
activities are strongly related.

Entity-Relationship (ER) model is a popular high-level conceptual data model. This model and
its variations are frequently used for the conceptual design of database applications, and many
database design tools employ its concepts.

The diagrammatic notation associated with the ER model is known as ER diagrams.

Using High-Level Conceptual Data Models for Database Design:

1) Requirements collection and analysis :

During this step, the database designers interview prospective database users to understand and
document their data requirements. The result of this step is a concisely written set of users’
requirements. These requirements should be specified in as detailed and complete a form as
possible. In parallel with specifying the data requirements, it is useful to specify the known
functional requirements of the application. These consist of the user-defined operations (or
transactions) that will be applied to the database, including both retrievals and updates. In
software design, it is common to use data flow diagrams, sequence diagrams, scenarios, and
other techniques to specify functional requirements.



[ - I
Miniworld
\

REQUIREMENTS

COLLECTION AND

Functional Requirements Data Requirements
FUNCTIONAL ANALYSIS | | CONCEPTUAL DESIGN

High-Level Transaction Conceptual Schema
Specification (In a high-level data model)

i

LOGICAL DESIGN
(DATA MODEL MAPPING)

T DBMS-independent

l DBMS-specific

Logical (Conceptual) Schema
(In the data model of a specific DBEMS)

:

PHYSICAL DESIGN ‘

r E
TRANSACTION Internal Schema
IMPLEMENTATION

APPLICATION PROGRAM
DESIGN

[ ]

Figure 7.1
A simplified diagram to illustrate the

Application Programs main phases of database design.

2) Conceptual design:

e Once the requirements have been collected and analyzed, the next step is to create a
conceptual schema for the database, using a high-level conceptual data model. This step is
called conceptual design. The conceptual schema is a concise description of the data
requirements of the users and includes detailed descriptions of the entity types, relationships,
and constraints; these are expressed using the concepts pro-vided by the high-level data model.
Because these concepts do not include implementation details, they are usually easier to
understand and can be used to communicate with nontechnical users. The high-level
conceptual schema can also be used as a reference to ensure that all users’ data requirements
are met and that the requirements do not conflict. This approach enables database designers to
concentrate on specifying the properties of the data, without being concerned with storage and
implementation details. This makes it is easier to create a good conceptual data-base design.

e During or after the conceptual schema design, the basic data model operations can be used to
specify the high-level user queries and operations identified during functional analysis. This also
serves to confirm that the conceptual schema meets all the identified functional requirements.
Modifications to the conceptual schema can be introduced if some functional requirements cannot
be specified using the initial schema.



3) Logical design:

e The next step in database design is the actual implementation of the database, using a commercial
DBMS. Most current commercial DBMSs use an implementation data model—such as the
relational or the object-relational database model—so the conceptual schema is transformed from
the high-level data model into the implementation data model. This step is called logical design
or data model mapping; its result is a database schema in the implementation data model of the
DBMS. Data model mapping is often automated or semiautomated within the database design
tools.

4) Physical design:

e The last step is the physical design phase, during which the internal storage structures, file
organizations, indexes, access paths, and physical design parameters for the database files are
specified. In parallel with these activities, application programs are designed and implemented as
database transactions corresponding to the high-level transaction specifications.

A Sample Database Application

o Consider a sample database application, called COMPANY, which serves to illustrate the basic
ER model concepts and their use in schema design.

e The company is organized into departments. Each department has a unique name, a unigue
number, and a particular employee who manages the department. We keep track of the start date
when that employee began managing the department. A department may have several locations.

e A department controls a number of projects, each of which has a unique name, a unigue number,
and a single location.

e We store each employee’s name, Social Security number,address, salary, sex (gender), and birth
date. An employee is assigned to one department, but may work on several projects, which are
not necessarily controlled by the same department. We keep track of the current number of hours
per week that an employee works on each project. We also keep track of the direct supervisor of
each employee (who is another employee).

o We want to keep track of the dependents of each employee for insurance purposes. We keep each
dependent’s first name, sex, birth date, and relation-ship to the employee.

e Figure shows how the schema for this database application can be displayed by means of the
graphical notation known as ER diagrams. This figure will be explained gradually as the ER
model concepts are presented. We describe the step-by-step process of deriving this schema from
the stated requirements—and explain the ER diagrammatic notation—as we introduce the ER
model concepts.



superisar sUpBnisss

@w

Entity Types, Entity Sets, Attributes, and Keys

1)

The ER model describes data as entities, relationships, and attributes.

Entities and Attributes:

The basic object that the ER model represents is an entity, which is a thing in the real world with
an independent existence.

An entity may be an object with a physical existence (for example, a particular person, car,
house, or employee) or it may be an object with a conceptual existence (for instance, a company,
a job, or a university course).

Each entity has attributes—the particular properties that describe it. For example, an
EMPLOYEE entity may be described by the employee’s name, age, address, salary, and job.

A particular entity will have a value for each of its attributes. The attribute values that describe
each entity become a major part of the data stored in the database.



— Name = Sunco Oil

/—— Mame = John Smith /

/ _ Address =2311 Kirby /
[~ Houston, Texas 77001 {
= o4 +7 Headquarters = Houston
+|<- \ Figure 7.3
\ T Age=>55 | Two entities,

EMPLOYEE e,, and
\ \ COMPANY c,, and

~— Home_phone =713-749-2630 —— President = John Smith  their atiributes.

e Figure shows two entities and the values of their attributes. The EMPLOYEE entity e; has four
attributes: Name, Address, Age, and Home_phone; their values are ‘John Smith,” ‘2311 Kirby,
Houston, Texas 77001°, <55°, and ‘713-749-2630°, respec-tively. The COMPANY entity ¢; has
three attributes: Name, Headquarters, and President; their values are ‘Sunco Oil’, ‘Houston’, and
‘John Smith’, respectively.

Several types of attributes occur in the ER model:

i) simple versus composite

i) single-valued versus multivalued

iii) stored versus derived.

i) Composite versus Simple (Atomic) Attributes.

e Composite attributes can be divided into smaller subparts, which represent more basic
attributes with independent meanings.

e For example, the Address attribute of the EMPLOYEE entity shown in Figure can be
subdivided into Street_address, City, State, and Zip, with the values ‘2311 Kirby’, ‘Ashok
nagar’, ‘Tamilnadu’, and ‘600001.

e Attributes that are not divisible are called simple or atomic attributes.
e Composite attributes can form a hierarchy; for example, Street address can be further

subdivided into three simple component attributes: Number, Street, and Apartment_number.
The value of a composite attribute is the concatenation of the values of its component simple

attributes.
Address
\H“"‘x.__\
Street_address City State Zip
Number Street Apartment_number

Figure .A hierarchy of composite attributes.



e Composite attributes are useful to model situations in which a user sometimes refers to the
composite attribute as a unit but at other times refers specifically to its components. If the
composite attribute is referenced only as a whole, there is no need to subdivide it into component
attributes. For example, if there is no need to refer to the individual components of an address
(Zip Code, street, and so on), then the whole address can be designated as a simple attribute.

i) Single-Valued versus Multivalued Attributes:

e Most attributes have a single value for a particular entity; such attributes are called single-valued.
For example, Age is a single-valued attribute of a person. In some cases an attribute can have a
set of values for the same entity—for instance, a Colors attribute for a car, or a College_degrees
attribute for a person. Cars with one color have a single value, whereas two-tone cars have two
color values. Similarly, one person may not have a college degree, another person may have one,
and a third person may have two or more degrees; therefore, different people can have different
numbers of values for the College_degrees attribute. Such attributes are called multivalued. A
multivalued attribute may have lower and upper bounds to constrain the number of values
allowed for each individual entity. For example, the Colors attribute of a car may be restricted to
have between one and three values, if we assume that a car can have three colors at most.

iii) Stored versus Derived Attributes:

e In some cases, two (or more) attribute values are related—for example, the Age and Birth_date
attributes of a person. For a particular person entity, the value of Age can be determined from the
current (today’s) date and the value of that person’s Birth_date. The Age attribute is hence called
a derived attribute and is said to be derivable from the Birth_date attribute, which is called a
stored attribute. Some attribute values can be derived from related entities; for example, an
attribute Number_of employees of a DEPARTMENT entity can be derived by counting the
number of employees related to (working for) that department.

NULL Values:

In some cases, a particular entity may not have an applicable value for an attribute. For example, the
Apartment_number attribute of an address applies only to addresses that are in apartment buildings and
not to other types of residences, such as single-family homes. Similarly, a College_degrees attribute
applies only to people with college degrees. For such situations, a special value called NULL is created.
An address of a single-family home would have NULL for its Apartment_number attribute, and a person
with no college degree would have NULL for College degrees. NULL can also be used if we do not
know the value of an attrib-ute for a particular entity—for example, if we do not know the home phone
number of ‘John Smith’. The meaning of the former type of NULL is not applicable, whereas the
meaning of the latter is unknown. The unknown category of NULL can be further classified into two
cases. The first case arises when it is known that the attribute value exists but is missing—for instance, if
the Height attribute of a person is listed as NULL. The second case arises when it is not known whether
the attribute value exists—for example, if the Home_phone attribute of a person is NULL.

Complex Attributes:

{Address_phone( {Phone(Area_code,Phone_number)} Address(Street_address
(Number,Street Apartment_number) City, State,Zip) )}

Figure: complex attribute : Address_phone



In general, composite and multivalued attributes can be nested arbitrarily. We can represent arbitrary
nesting by grouping components of a composite attribute between parentheses () and separating the
components with commas, and by displaying multivalued attributes between braces { }. Such attributes
are called complex attributes. For example, if a person can have more than one residence and each
residence can have a single address and multiple phones, an attribute Address_phone for a person can be
specified as shown in Figure. Both Phone and Address are themselves composite attributes.

2) Entity Types, Entity Sets, Keys, and Value Sets
Entity Types and Entity Sets.

e A database usually contains groups of entities that are similar. For example, a company
employing hundreds of employees may want to store similar information concerning each of the
employees. These employee entities share the same attributes, but each entity has its own
value(s) for each attribute.

e An entity type defines a collection (or set) of entities that have the same attributes. Each entity
type in  the  database is  described by its name and  attributes.

Entity Type Name: EMPLOYEE COMPANY Figure 7.6
. Two entity types,
Mame, Age, Salary MName, Headquarters, President EMBLOYEE and
( Y COMPANY, and some
81 o Cle member entities of
each.

{(John Smith, 55, 80k) (Sunco Qil, Houston, John Smith)

€ o €2 o
Entity Set: i
(Extension) (Fred Brown, 40, 30K) (Fast Computer, Dallas, Bob King)
€3 e

(Judy Clark, 25, 20K)

e Figure shows two entity types: EMPLOYEE and COMPANY, and a list of some of the attributes
for each. A few individual entities of each type are also illustrated, along with the values of their
attributes.

e The collection of all entities of a particular entity type in the data-base at any point in time is
called an entity set; the entity set is usually referred to using the same name as the entity type.
For example, EMPLOYEE refers to both a type of entity as well as the current set of all
employee entities in the database.

e An entity type is represented in ER diagrams as a rectangular box enclosing the entity type name.
e Attribute names are enclosed in ovals and are attached to their entity type by straight lines.

e Composite attributes are attached to their component attributes by straight lines.



Figure 7.7 (a) T e,

al - tat Mumbe
he CAR entity type I“--'_J_a%i ‘\_‘/.Jﬂ i

with two key attributes,

Registration and

Multivalued attributes are displayed in double ovals. Figure (a) shows a CAR entity type in this
notation.

An entity type describes the schema or intension for a set of entities that share the same
structure. The collection of entities of a particular entity type is grouped into an entity set, which
is also called the extension of the entity type.

-,
)

(Eeqiatraﬁnﬂr‘j} ﬁehicle iE‘_)

Vehicle_id. (a) ER I J—
5 Y
diagram notation. (b) ( Year } QMndeLﬁ
Entity set with three — —
entities. /"___'“"*\x o
Cooer) (e
(b} CAR
Registration (Mumber, State), Vehicle_id, Make, Model, Year, {Color}
-
CAR; N

{(ABC 123, TEXAS), TKE629, Ford Mustang, convertible, 2004 {red, black})

CAR;
((ABC 123, NEW YORK), WPOBT72, Mizssan Maxima, 4-door, 2008, {blue})

CAR;
((VSY 720, TEXAS), TD720, Chrysler LeBaron, 4-door, 2002, {white, blua})

" . J

Key Attributes of an Entity Type:

An important constraint on the entities of an entity type is the key or unigueness constraint on
attributes. An entity type usually has one or more attributes whose values are distinct for each
individual entity in the entity set. Such an attribute is called a key attribute, and its values can be
used to identify each entity uniquely.

For example, the Name attribute is a key of the COMPANY entity type, because no two
companies are allowed to have the same name.

For the PERSON entity type, a typical key attribute is Ssn (Social Security number). Sometimes
several attributes together form a key, meaning that the combination of the attribute values must
be distinct for each entity.

If a set of attributes possesses this property, the proper way to represent this in the ER model that
we describe here is to define a composite attribute and designate it as a key attribute of the entity
type. Notice that such a composite key must be minimal; that is, all component attributes must be
included in the composite attribute to have the uniqueness property. Superfluous attributes must
not be included in a key. In ER diagrammatic notation, each key attribute has its name
underlined inside the oval, as illustrated in Figure (a).



e Specifying that an attribute is a key of an entity type means that the preceding uniqueness
property must hold for every entity set of the entity type. Hence, it is a constraint that prohibits
any two entities from having the same value for the key attribute at the same time. It is not the
property of a particular entity set; rather, it is a constraint on any entity set of the entity type at
any point in time. This key con-straint (and other constraints we discuss later) is derived from the
constraints of the miniworld that the database represents.

e Some entity types have more than one key attribute. For example, each of the Vehicle_id and
Registration attributes of the entity type CAR (Figure 7.7) is a key in its own right. The
Registration attribute is an example of a composite key formed from two simple component
attributes, State and Number, neither of which is a key on its own. An entity type may also have
no key, in which case it is called a weak entity type..

e In our diagrammatic notation, if two attributes are underlined separately, then each is a key on its
own. Unlike the relational model, there is no concept of primary key in the ER modele; the
primary key will be chosen during mapping to a relational schema.

Value Sets (Domains) of Attributes.

o Each simple attribute of an entity type is associated with a value set (or domain of values),
which specifies the set of values that may be assigned to that attribute for each individual entity.

e In Figure, if the range of ages allowed for employees is between 16 and 70, we can specify the
value set of the Age attribute of EMPLOYEE to be the set of integer numbers between 16 and
70. Similarly, we can specify the value set for the Name attribute to be the set of strings of
alphabetic characters separated by blank characters, and so on.

e Value sets are not displayed in ER diagrams, and are typically specified using the basic data
types available in most programming languages, such as integer, string, Boolean, float,
enumerated type, subrange, and so on. Additional data types to represent common database
types such as date, time, and other concepts are also employed.

e Mathematically, an attribute A of entity set E whose value set is V can be defined as a function
from E to the power set® P(V ) of V:

AE—PV)

o We refer to the value of attribute A for entity e as A(e). The previous definition cov-ers both
single-valued and multivalued attributes, as well as NULLs. A NULL value is represented by the
empty set. For single-valued attributes, A(e) is restricted to being a singleton set for each entity e
in E, whereas there is no restriction on multivalued attributes.” For a composite attribute A, the
value set V is the power set of the Cartesian product of P(V1), P(V2), ..., P(Vy), where V1, Vo, ...,
V, are the value sets of the simple component attributes that form A:

V =P (P(V1) X P(V2) x ... x P(V4))

e The value set provides all possible values. Usually only a small number of these val-ues exist in
the database at a particular time. Those values represent the data from the current state of the
miniworld. They correspond to the data as it actually exists in the miniworld.

Initial Conceptual Design of the COMPANY Database

1. An entity type DEPARTMENT with attributes Name, Number, Locations,Manager, and
Manager_start_date. Locations is the only multivalued attribute.We can specify that both Name and
Number are (separate) key attributes because each was specified to be unique.



2. An entity type PROJECT with attributes Name, Number, Location, and Controlling_department. Both
Name and Number are (separate) key attributes.

3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary, Birth_date, Department,
and Supervisor. Both Name and Address may be composite attributes; however, this was not specified in
the requirements. We must go back to the users to see if any of them will refer to the individual
components of Name—First_name, Middle_initial, Last_name—or of Address.

4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex, Birth_date, and
Relationship (to the employee).

<Departr~ ,en

EMF’LOYE E
\Blrth da_g

QddresQ

@ir‘th datg‘@ CEmpI-}yée}
C_RT;atinr'ahip _C:Depe-ndent nar_n_:E:I

DEPENDENT

Figure. Preliminary design of entity types for the COMPANY database. Some of the shown attributes
will be refined into relationships.

Relationship types, Roles, Structural Constraints:

Relationship type: R among n Entity types E1, ..., En defines a set of associations among entities
from these types. Each association will be denoted as:

(e1, ..., en) where ei belongs to Ei, 1 <=i<=n.

ex. WORKS_FOR relationship



EMPLOYEE WORKS_FOR DEPARTMENT

Figure. Some instances of the WORKS_FOR relationship between EMPLOYEE and
DEPARTMENT.

Degree of a relationship:

The degree of a relationship type is the number of participating entity types. Hence, the
WORKS_FOR relationship is of degree two. A relationship type of degree two is called binary, and one
of degree three is called ternary. An example of a ternary relationship is SUPPLY Degree of relationship
=n (usually n = 2, binary relationship)

SUPPLIER SUPPLY
PROJECT

Figure. Some relationship instances of a ternary relationship SUPPLY.



Relationships as Attributes: It is sometimes convenient to think of a relationship type in terms of
attributes,

Role names

Each entity participating in a relationship has a ROLE.

E.g. Employee plays the role of worker and Department plays the role of employer in the
WORKS_FOR relationship type
Role names are more important in recursive relationships.

SUPERVISION

EMFLOYEE
RN
/=

Figure.The recursive relationship SUPERVISION, where the EMPLOYEE entity type plays the
two roles of supervisor (1) and supervisee (2).

Structural Constraints on Relationships

Two types:

1) Cardinality Ratio Constraint (1-1, 1-N, M-N)
2) Participation Constraint

* Total participation (existence dependency)

* Partial participation



EMPLOYEE

MANAGES DEPARTMENT

Figure. The 1:1 relationship MANAGES, with partial participation of employee and total

participation of DEPARTMENT.

WORKS_ON
EMPLOYEE

PROJECT

Figure. The M:N relationship WORKS_ON between EMPLOYEE and PROJECT.

In ER Diagrams:
Total participation is denoted by double line and partial participation by single line cardinality
ratios are mentioned as labels of edges.

Attributes of relationships:

e.X. Hours attribute for WORKS_ON relationship

If relationship is 1-N or 1-1, these attributes can be migrated to the entity sets involved in the
relationship.

1-N: migrate to N side

1-1: migrate to either side



Weak Entity Types
¢ An entity that does not have a key attribute

A weak entity must participate in an identifying relationship type with an owner or identifying
entity type

o Entities are identified by the combination of:

A partial key of the weak entity type

The particular entity they are related to in the identifying entity type

Example:
Suppose that a DEPENDENT entity is identified by the dependent’s first name and birthdates, and

the specific EMPLOYEE that the dependent is related to. DEPENDENT is a weak entity type

with EMPLOYEE as its identifying entity type via the identifying relationship type
DEPENDENT_OF

Weak Entity Type is: DEPENDENT

Identifying Relationship is: DEPENDENTS_OF
Constraints on Relationships

@ Constraints on Relationship Types

» ((Also known as ratio constraints )

» Maximum Cardinality
° One-to-one (1:1)
° One-to-many (1:N) or Many-to-one (N:1)
. Many-to-many

» Minimum Cardinality (also called participation constraint or existence dependency

constraints)

° zero (optional participation, not existence-dependent)
° one or more (mandatory, existence-dependent)



Notation for ER Diagrams:

O
O
—
—
—O

F T .
L £l

|

I, AL |

WeEAR ERTITY TYFE

RELATIOMEHIE TYFE

DEMTIFY G RELATIONEHIE TYFE

HEY ATT=IEUT=

ML TRABLUZD AT TRIEUTE

,.
-

5
il
n
1 JO a{.IElLILlIHS ol |

COMPOETE AT TRIBUTE

ERWVED ATTRIBUT=

TOTAL FASTICEETION OF Es N A

"UOTIRIOU WRISRIP ¥

CARDMALITY RATO 1:NFOREEsM A



|
‘ N

supervisar sUpervisss
a WORKS_ON PROJECT

N ( dame

N

@w-

Figure. ER diagram for the COMPANY schema, with all role names included and with structural
constraints on relationships specified using the alternate notation (min, max).

2.2. EXTENDED-ER (EER) MODEL :

Extended-ER (EER) Model Concepts

¢ Includes all modeling concepts of basic ER

o Additional concepts: subclasses/superclasses, specialization/generalization, categories, attribute
inheritance

e The resulting model is called the enhanced-ER or Extended ER (E2R or EER) model
It is used to model applications more completely and accurately if needed

e It includes some object-oriented concepts, such as inheritance

Subclasses and Superclasses:
e An entity type may have additional meaningful subgroupings of its entities
e Example: EMPLOYEE may be further grouped into SECRETARY, ENGINEER, MANAGER,
TECHNICIAN, SALARIED EMPLOYEE, HOURLY EMPLOYEE,...




— Each of these groupings is a subset of EMPLOYEE entities
— Each is called a subclass of EMPLOYEE
— EMPLOYEE is the superclass for each of these subclasses

e These are called superclass/subclass relationships.

e Example: EMPLOYEE/SECRETARY, EMPLOYEE/TECHNICIAN

e These are also called I1S-A relationships (SECRETARY IS-A EMPLOYEE, TECHNICIAN IS-A
EMPLOYEE, ...).
o Note: An entity that is member of a subclass represents the same real-world entity as some
member of the superclass
— The Subclass member is the same entity in a distinct specific role
— An entity cannot exist in the database merely by being a member of a subclass; it must
also be a member of the superclass
— A member of the superclass can be optionally included as a member of any number of its
subclasses
o Example: A salaried employee who is also an engineer belongs to the two subclasses ENGINEER
and SALARIED_EMPLOYEE
— Itis not necessary that every entity in a superclass be a member of some subclass

Attribute Inheritance in Superclass / Subclass Relationships

e An entity that is member of a subclass inherits all attributes of the entity as a member of the
superclass .
It also inherits all relationships

Specialization and Generalization:

1)Specialization

o Isthe process of defining a set of subclasses of a superclass
The set of subclasses is based upon some distinguishing characteristics of the entities in the
superclass
e Example: {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of EMPLOYEE
based upon job type.
— May have several specializations of the same superclass
e Example: Another specialization of EMPLOYEE based in method of pay is
{SALARIED EMPLOYEE, HOURLY_EMPLOYEE}.
Superclass/subclass relationships and specialization can be diagrammatically represented
in EER diagrams
— Attributes of a subclass are called specific attributes. For example, TypingSpeed of
SECRETARY
— The subclass can participate in specific relationship types. For example, BELONGS_TO
of HOURLY_EMPLOYEE



Example of a Specialization

Fname Minit LName

Name @ BmhoateAﬁ

EMPLOYEE

TypingSpeed EngType

SECRETARY TECHNICIAN ENGINEER

Figure.Specialization
2)Generalization

The reverse of the specialization process
o Several classes with common features are generalized into a superclass; original classes become
its subclasses
e Example: CAR, TRUCK generalized into VEHICLE; both CAR, TRUCK become subclasses of
the superclass VEHICLE.
— We can view {CAR, TRUCK} as a specialization of VEHICLE
— Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK

(b) (‘u'ehmle ||:| 3 ( Prlua ] .; I.h,enue |:|*11e no’ *.
U'EHICLE
No. of passent (@) ¢ No_of arles)
- (No_ _of_pass enger :f x’,f’ “m; \ LR i
M:L: Enied \___ | - “‘a T ?(*nrraggj
1 CAR TRUCK

3)Generalization and Specialization
o Diagrammatic notation sometimes used to distinguish between generalization and specialization
— Arrow pointing to the generalized superclass represents a generalization
— Arrows pointing to the specialized subclasses represent a specialization
— We do not use this notation because it is often subjective as to which process is more
appropriate for a particular situation
— We advocate not drawing any arrows in these situations



Data Modeling with Specialization and Generalization
— Asuperclass or subclass represents a set of entities
— Shown in rectangles in EER diagrams (as are entity types)
— Sometimes, all entity sets are simply called classes, whether they are entity types,
superclasses, or subclasses

Constraints on Specialization and Generalization
If we can determine exactly those entities that will become members of each subclass by a
condition, the subclasses are called predicate-defined (or condition-defined) subclasses
» Condition is a constraint that determines subclass members
» Display a predicate-defined subclass by writing the predicate condition next to the line
attaching the subclass to its superclass
If all subclasses in a specialization have membership condition on same attribute of the
superclass, specialization is called an attribute defined-specialization
» Attribute is called the defining attribute of the specialization
» Example: JobType is the defining attribute of the specialization {SECRETARY,
TECHNICIAN, ENGINEER} of EMPLOYEE
If no condition determines membership, the subclass is called user-defined
» Membership in a subclass is determined by the database users by applying an operation to
add an entity to the subclass
» Membership in the subclass is specified individually for each entity in the superclass by
the user
Two other conditions apply to a specialization/generalization:
Disjointness Constraint:
» Specifies that the subclasses of the specialization must be disjointed (an entity can be a
member of at most one of the subclasses of the specialization)
» Specified by d in EER diagram
» If not disjointed, overlap; that is the same entity may be a member of more than one
subclass of the specialization
» Specified by o in EER diagram
Completeness Constraint:
» Total specifies that every entity in the superclass must be a member of some subclass in
the specialization/ generalization
» Shown in EER diagrams by a double line
» Partial allows an entity not to belong to any of the subclasses
» Shown in EER diagrams by a single line
Hence, we have four types of specialization/generalization:
» Disjoint, total
» Disjoint, partial
» Overlapping, total
» Overlapping, partial
Note: Generalization usually is total because the superclass is derived from the subclasses.
Example of disjoint partial Specialization




d
U

SECRETARY TECHNICIAN ENGINEER

Figure. Disjoint partial Specialization

Specialization / Generalization Hierarchies, Lattices and Shared Subclasses

A subclass may itself have further subclasses specified on it Forms a hierarchy or a lattice
Hierarchy has a constraint that every subclass has only one superclass (called single inheritance)
In a lattice, a subclass can be subclass of more than one superclass (called multiple inheritance)
In a lattice or hierarchy, a subclass inherits attributes not only of its direct superclass, but also of
all its predecessor superclasses

A subclass with more than one superclass is called a shared subclass

Can have specialization hierarchies or lattices, or generalization hierarchies or lattices

In specialization, start with an entity type and then define subclasses of the entity type by
successive specialization (top down conceptual refinement process)

In generalization, start with many entity types and generalize those that have common properties
(bottom up conceptual synthesis process)

In practice, the combination of two processes is employed

Specialization / Generalization Lattice Example (UNIVERSITY)

EMPLOYEE

a

GRADUATE_ UNDERGRADUATE _

STUDENT STUDENT
FACULTY STUDENT.
ASSISTANT (Class)

,}\

I_RESEARCH ASSISTANT| | TEACHING_ASSISTANT |
Figure. Specialization / Generalization




Modeling of UNION types using categories:

All of the superclass/subclass relationships we have seen thus far have a single superclass
A shared subclass is subclass in more than one distinct superclass/subclass relationships, where
each relationships has a single superclass (multiple inheritance)
In some cases, need to model a single superclass/subclass relationship with more than one
superclass
Superclasses represent different entity types
Such a subclass is called a category or UNION TYPE
Example: Database for vehicle registration, vehicle owner can be a person, a bank (holding a lien
on a vehicle) or a company.

— Category (subclass) OWNER is a subset of the union of the three superclasses

COMPANY, BANK, and PERSON

— A category member must exist in at least one of its superclasses
Note: The difference from shared subclass, which is subset of the intersection of its superclasses
(shared subclass member must exist in all of its superclasses).

Example of categories (UNION TYPES)

Figure. categories (UNION TYPES)



2.3. ER-TO-RELATIONAL MAPPING

Figure . The ER conceptual schema diagram for the COMPANY database

(I_:name;\) (:_ Mlnlt)-" Lnameﬁ)
(\’_Bda.te (:_Name 4 hddressﬁj Salary P
Y

s\ \ /S,

WORKS_FOR I
/e \@W ==
-": tarl date Number 01’ emplnyees DEPARTMENT
........ 7
Ia’ \ _ 1
/ \
/ \
\ H
f \ fours N
/ ”n\ N
Su F:uen.ris{:url,-"I '.llﬂupewisee
1

N

DEPENDENTS_OF

N

| DEPENDENT |
T B B Hx’“:._—_
., E.-) {_’33 (__Birth_da _-> ”ffelalhnshie:}




EMPLOYEE
| Frame | Minit | Lnamel Ssn ] Bdate | Address | Sex | Salary ] Super_ssn| Dno |
Ili* |

DEPARTMENT

| Dname [ Dnumber [ Mgr_ssn[ Mgr_staﬂ._date|
A
DEPT_LOCATIONS

| Dnumber | Dlocation |
1

PROJECT
| Pname | Pnumber | Plocation | Dnum
' | I
WORKS_ON
| Essn l Eno | Hours |
[ I .
| Figure 9.2
Result of mapping the

DEPENDENT COMPANY ER schema
| Essn | Dependent_name | Sex | Bdate | Relationship nto a relational database

L schema.

Seven-step algorithm to convert the basic ER model constructs into relations :

Step 1: Mapping of Regular Entity Types:

For each regular (strong) entity type E in the ER schema, create a relation R that includes all the
simple attributes of E. Include only the simple component attributes of a composite attribute.
Choose one of the key attributes of E as the primary key for R. If the chosen key of E is a
composite, then the set of simple attributes that form it will together form the primary key of R.

If multiple keys were identified for E during the conceptual design, the information describing the
attributes that form each additional key is kept in order to specify secondary (unique) keys of
relation R. Knowledge about keys is also kept for index-ing purposes and other types of analyses.

In our example, we create the relations EMPLOYEE, DEPARTMENT, and PROJECT in Figure to
correspond to the regular entity types EMPLOYEE, DEPARTMENT, and PROJECT in Figure .
The foreign key and relationship attributes, if any, are not included yet; they will be added during
subsequent steps. These include the attributes Super_ssn and Dno of EMPLOYEE, Mgr_ssn and
Mgr_start_date of DEPARTMENT, and Dnum of PROJECT. In our example, we choose Ssn,
Dnumber, and Pnumber as primary keys for the relations EMPLOYEE, DEPARTMENT, and
PROJECT, respectively. Knowledge that Dname of DEPARTMENT and Pname of PROJECT are
secondary keys is kept for possible use later in the design.

The relations that are created from the mapping of entity types are sometimes called entity
relations because each tuple represents an entity instance.

Step 2: Mapping of Weak Entity Types:

e For each weak entity type W in the ER schema with owner entity type E, create a relation R
and include all simple attributes (or simple components of composite attributes) of W as



attributes of R. In addition, include as foreign key attributes of R, the primary key attribute(s)
of the relation(s) that correspond to the owner entity type(s); this takes care of mapping the
identifying relationship type of W. The primary key of R is the combination of the primary
key(s) of the owner(s) and the partial key of the weak entity type W, if any.

o If there is a weak entity type E2 whose owner is also a weak entity type Ej, then E; should be
mapped before E; to determine its primary key first.

e In our example, we create the relation DEPENDENT in this step to correspond to the weak
entity type DEPENDENT . We include the primary key Ssn of the EMPLOYEE relation—
which corresponds to the owner entity type—as a foreign key attribute of DEPENDENT; we
rename it Essn, although this is not necessary.

Figure . lllustration of some mapping steps.

(a) Entity relations after step 1.
(b) Additional weak entity relation after step 2.

(c) Relationship relation after step 5.
(d) Relation representing multivalued attribute after step 6.

(a) EMPLOYEE
Fname | Minit | Lname | Ssn | Bdate | Address | Sex | Salary

DEPARTMENT

Dname | Dnumber |

PROJECT

Pname | Poumber | Plocation

(6) DEPENDENT
Essn | Dependent_mame | Sex | Bdate | Relationship

() WORKS_ON

Essn | Fno | Hours |

(d) DEPT_LOCATIONS

| Dnumber ] Dlocation |

The primary key of the DEPENDENT relation is the combination {Essh, Dependent_name}, because
Dependent_name is the partial key of DEPENDENT.

It is common to choose the propagate (CASCADE) option for the referential triggered action on the
foreign key in the relation corresponding to the weak entity type, since a weak entity has an existence
dependency on its owner entity. This can be used for both ON UPDATE and ON DELETE.



Step 3: Mapping of Binary 1:1 Relationship Types:

For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that
correspond to the entity types participating in R. There are three possible approaches:

(1) Foreign key approach

(2) Merged relationship approach

(3) Cross-reference or relationship relation approach.

The first approach is the most useful and should be followed unless special conditions exist.

(1) Foreign key approach:

Choose one of the relations—S, say—and include as a foreign key in S the primary key of T. It is
better to choose an entity type with total participation in R in the role of S. Include all the simple
attributes (or simple components of composite attributes) of the 1:1 relationship type R as attributes of S.

In our example, we map the 1:1 relationship type MANAGES from Figure by choosing the
participating entity type DEPARTMENT to serve in the role of S because its participation in the
MANAGES relationship type is total (every department has a manager). We include the primary key of
the EMPLOYEE relation as foreign key in the DEPARTMENT relation and rename it Mgr_ssn. We also
include the simple attribute Start_date of the MANAGES relationship type in the DEPARTMENT
relation and rename it Mgr_start_date.

Note that it is possible to include the primary key of S as a foreign key in T instead. In our example,
this amounts to having a foreign key attribute, say Department_managed in the EMPLOYEE relation, but
it will have a NULL value for employee tuples who do not manage a department. If only 2 percent of
employees manage a department, then 98 percent of the foreign keys would be NULL in this case.
Another possibility is to have foreign keys in both relations S and T redundantly, but this creates
redundancy and incurs a penalty for consistency maintenance.

(2)Merged relation approach:

An alternative mapping of a 1:1 relationship type is to merge the two entity types and the relationship
into a single rela-tion. This is possible when both participations are total, as this would indicate that the
two tables will have the exact same number of tuples at all times.

(3)Cross-reference or relationship relation approach:

The third option is to set up a third relation R for the purpose of cross-referencing the primary keys
of the two relations S and T representing the entity types. As we will see, this approach is required for
binary M:N relationships. The relation R is called a relationship relation (or sometimes a lookup table),
because eachtuple in R represents a relationship instance that relates one tuple from S with one tuple from
T. The relation R will include the primary key attributes of S and T as foreign keys to S and T. The
primary key of R will be one of the two foreign keys, and the other foreign key will be a unique key of R.
The drawback is having an extra relation, and requiring an extra join operation when combining related
tuples from the tables.



Step 4: Mapping of Binary 1:N Relationship Types:

For each regular binary 1:N relationship type R, identify the relation S that represents the
participating entity type at the N-side of the relationship type. Include as foreign key in S the primary key
of the relation T that represents the other entity type participating in R; we do this because each entity
instance on the N-side is related to at most one entity instance on the 1-side of the relationship type.
Include any simple attributes (or simple components of composite attributes) of the 1:N relationship type
as attributes of S.

In our example, we now map the 1:N relationship types WORKS_FOR, CONTROLS, and
SUPERVISION from Figure 9.1. For WORKS_FOR we include the primary key Dnumber of the
DEPARTMENT relation as foreign key in the EMPLOYEE relation and call it Dno. For SUPERVISION
we include the primary key of the EMPLOYEE relation as foreign key in the EMPLOYEE relation
itself—because the relationship is recursive—and call it Super_ssn. The CONTROLS relationship is
mapped to the foreign key attribute Dnum of PROJECT, which references the primary key Dnumber of
the DEPARTMENT relation. .

An alternative approach is to use the relationship relation (cross-reference) option as in the third
option for binary 1:1 relationships. We create a separate relation R whose attributes are the primary keys
of S and T, which will also be foreign keys to S and T. The primary key of R is the same as the primary
key of S. This option can be used if few tuples in S participate in the relationship to avoid excessive
NULL val-ues in the foreign key.

Step 5: Mapping of Binary M:N Relationship Types.

For each binary M:N relationship type R, create a new relation S to represent R. Include as foreign
key attributes in S the primary keys of the relations that represent the participating entity types; their
combination will form the primary key of S. Also include any sim-ple attributes of the M:N relationship
type (or simple components of composite attributes) as attributes of S. Notice that we cannot represent an
M:N relationship type by a single foreign key attribute in one of the participating relations (as we did for
1:1 or 1:N relationship types) because of the M:N cardinality ratio; we must cre-ate a separate relationship
relation S.

In our example, we map the M:N relationship type WORKS_ON from Figure by creating the relation
WORKS_ON in Figure 9.2. We include the primary keys of the PROJECT and EMPLOYEE relations as
foreign keys in WORKS_ON and rename them Pno and Essn, respectively. We also include an attribute
Hours in WORKS_ON to represent the Hours attribute of the relationship type. The primary key of the
WORKS_ON relation is the combination of the foreign key attributes {Essn, Pno}.

The propagate (CASCADE) option for the referential triggered action should be specified on the
foreign keys in the relation corresponding to the relationship R, since each relationship instance has an
existence dependency on each of the entities it relates. This can be used for both ON UPDATE and ON
DELETE.

Notice that we can always map 1:1 or 1:N relationships in a manner similar to M:N relationships by
using the cross-reference (relationship relation) approach, as we discussed earlier. This alternative is
particularly useful when few relationship instances exist, in order to avoid NULL values in foreign keys.
In this case, the primary key of the relationship relation will be only one of the foreign keys that refer-
ence the participating entity relations. For a 1:N relationship, the primary key of the relationship relation
will be the foreign key that references the entity relation on the N-side. For a 1:1 relationship, either
foreign key can be used as the primary key of the relationship relation.



Step 6: Mapping of Multivalued Attributes:

For each multivalued attribute A, create a new relation R. This relation R will include an attribute
corresponding to A, plus the primary key attribute K—as a foreign key in R—of the relation that repre-
sents the entity type or relationship type that has A as a multivalued attribute. The primary key of R is the
combination of A and K. If the multivalued attribute is com-posite, we include its simple components.

In our example, we create a relation DEPT_LOCATIONS (see Figure 9.3(d)). The attribute Dlocation
represents the multivalued attribute LOCATIONS of DEPARTMENT, while Dnumber—as foreign
key—represents the primary key of the DEPARTMENT relation. The primary key of
DEPT_LOCATIONS is the combination of {Dnumber, Dlocation}. A separate tuple will exist in
DEPT_LOCATIONS for each loca-tion that a department has.

The propagate (CASCADE) option for the referential triggered action should be specified on the
foreign key in the relation R corresponding to the multivalued attribute for both ON UPDATE and ON
DELETE. We should also note that the key of R when mapping a composite, multivalued attribute
requires some analysis of the meaning of the component attributes. In some cases, when a multi-valued
attribute is composite, only some of the component attributes are required to be part of the key of R; these
attributes are similar to a partial key of a weak entity type that corresponds to the multivalued attribute .

Step 7: Mapping of N-ary Relationship Types:

For each n-ary relationship type R, where n > 2, create a new relation S to represent R. Include as
foreign key attributes in S the primary keys of the relations that represent the participating entity types.
Also include any simple attributes of the n-ary relationship type (or simple components of composite
attributes) as attributes of S. The primary key of S is usually a combination of all the foreign keys that
reference the relations representing the participating entity types. However, if the cardinality constraints
on any of the entity types E participating in R is 1, then the primary key of S should not include the
foreign key attribute that references the relation E corresponding to E.

Table . Correspondence between ER and Relational Models

ER MODEL RELATIONAL MODEL

Entity type Entity relation

1:1 or 1:N relationship type Foreign key (or relationship relation)
M:N relationship type Relationship relation and two foreign keys
n-ary relationship type Relationship relation and n foreign keys
Simple attribute Attribute

Composite attribute Set of simple component attributes
Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

2.4. FUNCTIONAL DEPENDENCIES:

A functional dependency is a constraint between two sets of attributes from the database.

A functional dependency, denoted by X — Y, between two sets of attributes X and Y that are
subsets of R specifies a constraint on the possible tuples that can form a relation state r of R. The
constraint is that, for any two tuples t1 and t in r that have t:[X] = tz[X], they must also have t:[Y]
= [Y].



o

o

This means that the values of the Y component of a tuple in r depend on, or are determined by,
the values of the X component; alternatively, the values of the X com-ponent of a tuple uniquely
(or functionally) determine the values of the Y component. We also say that there is a functional
dependency from X to Y, or that Y is functionally dependent on X. The abbreviation for
functional dependency is FD or f.d. The set of attributes X is called the left-hand side of the FD,
and Y is called the right-hand side.

Thus, X functionally determines Y in a relation schema R if, and only if, whenever two tuples of
r(R) agree on their X-value, they must necessarily agree on their Y-value. Note the following:

If a constraint on R states that there cannot be more than one tuple with a given X-value in any
relation instance r(R)—that is, X is a candidate key of R—this implies that X — Y for any
subset of attributes Y of R (because the key constraint implies that no two tuples in any legal state
r(R) will have the same value of X). If X is a candidate key of R, then X — R.

If X — Y in R, this does not say whether or not Y — X in R.

A functional dependency is a property of the semantics or meaning of the attributes. The
database designers will use their understanding of the semantics of the attributes of R—that is,
how they relate to one another—to specify the functional dependencies that should hold on all
relation states (extensions) r of R. Whenever the semantics of two sets of attributes in R indicate
that a functional dependency should hold, we specify the dependency as a constraint. Relation
extensions r(R) that satisfy the functional dependency constraints are called legal relation states
(or legal extensions) of R.

Hence, the main use of functional dependencies is to describe further a relation schema R by
specifying constraints on its attributes that must hold at all times. Certain FDs can be specified
without referring to a specific relation, but as a property of those attributes given their commonly
understood meaning. For example, {State, Driver_license_number} — Ssn should hold for any
adult in the United States and hence should hold whenever these attributes appear in a relation. It
is also possible that certain functional dependencies may cease to exist in the real world if the
relationship changes. For example, the FD Zip_code — Area_code used to exist as a relationship
between postal codes and telephone num-ber codes in the United States, but with the proliferation
of telephone area codes it is no longer true.

Consider the relation schema EMP_PROJ. From the semantics of the attributes and the relation,
we know that the following functional dependencies should hold:

. Ssn — Ename
. Pnumber —{Pname, Plocation}

. {Ssn, Pnumber} — Hours

These functional dependencies specify that (a) the value of an employee’s Social Security number
(Ssn) uniquely determines the employee name (Ename), (b) the value of a project’s number
(Pnumber) uniquely determines the project name (Pname) and location (Plocation), and (c) a
combination of Ssn and Pnumber values uniquely determines the number of hours the employee
currently works on the project per week (Hours). Alternatively, we say that Ename is functionally
determined by (or functionally dependent on) Ssn, or given a value of Ssn, we know the value of
Ename, and so on.

A functional dependency is a property of the relation schema R, not of a particular legal relation
state r of R. Therefore, an FD cannot be inferred automatically from a given relation extension r
but must be defined explicitly by someone who knows the semantics of the attributes of R.



e Given a populated relation, one cannot determine which FDs hold and which do not unless the
meaning of and the relationships among the attributes are known. All one can say is that a certain
FD may exist if it holds in that particular extension. One cannot guarantee its existence until the
meaning of the corresponding attributes is clearly understood. One can, however, emphatically
state that a certain FD does not hold if there are tuples that show the violation of such an FD.
(a)

EMP DEPT
Ename | San | Bdate | Address | Dnumber | Dimame | Dimgr_s&n
: L ' T )
I |
(b}
EMP_PROJ
San | Pnumber | Hours | Ename | Pnama | Plocation |
FO1 | | A A
FI:I2| |
FO3 |

e Figure introduces a diagrammatic notation for displaying FDs: Each FD is displayed as a
horizontal line. The left-hand-side attributes of the FD are connected by vertical lines to the line
representing the FD, while the right-hand-side attributes are connected by the lines with arrows
pointing toward the attributes. We denote by F the set of functional dependencies that are
specified on relation schema R.

2.5. NON LOSS DECOMPOSITION (OR) LOSSLESS DECOMPOSITION :

e The decompositio of relation R into R1 and R2 is lossless when the join of R1 and R2 yield the
same relation as in R.

o A relational table is decomposed (or factored) into two or more smaller tables, in such a way that
the designer can capture the precise content of the  original table by joining the decomposed
parts. This is called lossless-join (or non-additive join) decomposition.

This is also referred as non-additive decomposition.

e The lossless-join decomposition is always defined with respect to a specific set F of

dependencies.

Example:

<EmplInfo>

Emp_ID Emp_Name Emp_Age Emp_Location Dept_ID Dept_Name
E001 Jacob 29 Alabama Dptl Operations
E002 Henry 32 Alabama Dpt2 HR

E003 Tom 22 Texas Dpt3 Finance

Decompose the above table into two tables:



<EmpDetails>

Emp_ID
E001
E002
E003

<DeptDetails>

Dept_ID
Dptl
Dpt2
Dpt3

Emp_Name
Jacob
Henry

Tom

Dept_Name

Operations

HR

Finance

Emp_Age
29
32
22

Now, Natural Join is applied on the above two tables:

The result will be:

Emp_ID
E001
E002
E003

Emp_Name

29
32
22

Emp_Age

Emp_Location

Alabama
Alabama

Texas

Emp_Location

Alabama

Alabama

Texas
Dept_ID Dept_Name
Dptl Operations
Dpt2 HR
Dpt3 Finance

Therefore, the above relation had lossless decomposition i.e. no loss of information.

Lossy Decomposition:

e When a relation is decomposed into two or more relational schemas, the loss of information is
unavoidable when the original relation is retrieved.

Example:
<EmplInfo>
Emp_ID
E001

E002

E003

Decompose the above table into two tables:

Emp_Name

29

32

22

Emp_Age

Emp_Location

Alabama
Alabama

Texas

Dept_ID Dept_Name
Dptl Operations
Dpt2 HR

Dpt3 Finance



<EmpDetails>

Emp_ID Emp_Name Emp_Age Emp_Location
E001 Jacob 29 Alabama

E002 Henry 32 Alabama

E003 Tom 22 Texas

<DeptDetails>

Dept_ID Dept_Name
Dptl Operations
Dpt2 HR

Dpt3 Finance

Now, you won’t be able to join the above tables, since Emp_ID isn’t part of the DeptDetails relation.
Therefore, the above relation has lossy decomposition.

2.6. NORMAL FORMS:

A database schema consists of a number of relation schemas. The attributes are grouped to form
a relation schema by using the common sense of the database designer or by mapping a database
schema design from a conceptual data model such as the ER or Enhanced-ER (EER) data model.
These models make the designer identify entity types and relationship types and their respective
attributes, which leads to a natural and logical grouping of the attributes into relations when the
mapping procedures are followed. However, we still need some formal way of analyzing why one
grouping of attributes into a relation schema may be better than another.

There are two levels at which we can discuss the goodness of relation schemas.

1)

2)

The first is the logical (or conceptual) level—how users interpret the relation schemas and the
meaning of their attributes. Having good relation schemas at this level enables users to
understand clearly the meaning of the data in the relations, and hence to formulate their queries
correctly.

The second is the implementation (or physical storage) level—how the tuples in a base relation
are stored and updated. This level applies only to schemas of base relations—which will be
physically stored as files—whereas at the logical level we are interested in schemas of both base
relations and views (virtual relations).

Database design may be performed using two approaches:

1)

A bottom-up design methodology (also called design by synthesis) considers the basic
relationships among individual attrib-utes as the starting point and uses those to construct relation
schemas. This approach is not very popular in practice because it suffers from the problem of
having to collect a large number of binary relationships among attributes as the starting point. For
practical situations, it is next to impossible to capture binary relationships among all such pairs of
attributes.



2)

In contrast, a top-down design methodology (also called design by analysis) starts with a
number of groupings of attributes into relations that exist together naturally, for example, on an
invoice, a form, or a report. The relations are then analyzed individually and collectively, lead-ing
to further decomposition until all desirable properties are met. The theory described in this
chapter is applicable to both the top-down and bottom-up design approaches, but is more
appropriate when used with the top-down approach.

Relational database design ultimately produces a set of relations. The implicit goals of the design
activity are information preservation and minimum redundancy. Information is very hard to
guantify—hence we consider information preservation in terms of maintaining all concepts,
including attribute  types, entity types, and relationship types as well as
generalization/specialization relationships.

Thus, the relational design must preserve all of these concepts, which are originally captured in
the conceptual design after the conceptual to logical design mapping. Minimizing redundancy
implies minimizing redundant storage of the same information and reducing the need for multiple
updates to maintain consistency across multiple copies of the same information in response to
real-world events that require making an update.

Four informal guidelines that may be used as measures to determine the quality of relation
schema design:

v" Making sure that the semantics of the attributes is clear in the schema
v" Reducing the redundant information in tuples

v" Reducing the NULL values in tuples

v" Disallowing the possibility of generating spurious tuples

Normalization of Relations:

1)
2)

The normalization process is first proposed by Codd (1972)

The normalization process takes a relation schema through a series of tests to certify whether it
satisfies a certain normal form. The process, which proceeds in a top-down fashion by
evaluating each relation against the criteria for normal forms and decomposing relations as
necessary, can thus be considered as relational design by analysis.

Initially, Codd proposed three normal forms, which he called first, second, and third normal
form. A stronger definition of 3NF—called Boyce-Codd normal form (BCNF)—was proposed
later by Boyce and Codd. All these normal forms are based on a single analytical tool: the
functional dependencies among the attributes of a relation. Later, a fourth normal form (4NF)
and a fifth normal form (5NF) were proposed, based on the concepts of multivalued
dependencies and join dependencies, respectively.

Normalization of data can be considered a process of analyzing the given relation schemas
based on their FDs and primary keys to achieve the desirable properties of

minimizing redundancy

minimizing the insertion, deletion, and update anomalies

Example: Suppose a manufacturing company stores the employee details in a table named employee that
has four attributes: emp_id for storing employee’s id, emp name for storing employee’s name,
emp_address for storing employee’s address and emp_dept for storing the department details in which the
employee works. At some point of time the table looks like this:



emp_id lemp_name emp_address lemp_dept

101 Rick Delhi D001
101 Rick Delhi D002
123 Maggie  |Agra D890

166 Glenn Chennai D900
166 Glenn Chennai D004

The above table is not normalized. We will see the problems that we face when a table is not normalized.

Update anomaly: In the above table we have two rows for employee Rick as he belongs to two
departments of the company. If we want to update the address of Rick then we have to update the same in
two rows or the data will become inconsistent. If somehow, the correct address gets updated in one
department but not in other then as per the database, Rick would be having two different addresses, which
is not correct and would lead to inconsistent data.

Insert anomaly: Suppose a new employee joins the company, who is under training and currently not
assigned to any department then we would not be able to insert the data into the table if emp_dept field
doesn’t allow nulls.

Delete anomaly: Suppose, if at a point of time the company closes the department D890 then deleting the
rows that are having emp_dept as D890 would also delete the information of employee Maggie since she
is assigned only to this department.

e To overcome these anomalies we need to normalize the data.

e It can be considered as a “filtering” or “purification” process to make the design have
successively better quality. Unsatisfactory relation schemas that do not meet certain conditions—
the normal form tests—are decomposed into smaller relation schemas that meet the tests and
hence possess the desirable properties. Thus, the normalization procedure provides database
design-ers with the following:

a. A formal framework for analyzing relation schemas based on their keys and on the functional
dependencies among their attributes

b. A series of normal form tests that can be carried out on individual relation schemas so that the
relational database can be normalized to any desired degree

The normal form of a relation refers to the highest normal form condition that it meets, and hence
indicates the degree to which it has been nor-malized.

Normal forms, when considered in isolation from other factors, do not guarantee a good database
design. It is generally not sufficient to check separately that each relation schema in the database is, say,
in BCNF or 3NF. Rather, the process of normalization through decomposition must also confirm the
existence of additional properties that the relational schemas, taken together, should possess. These would
include two properties:

1) The nonadditive join or lossless join property, which guarantees that the spurious tuple
generation problem does not occur with respect to the relation schemas created after decomposition.

2) The dependency preservation property, which ensures that each functional dependency is
represented in some individual relation resulting after decomposition.



e The nonadditive join property is extremely critical and must be achieved at any cost,
whereas the dependency preservation property, although desirable, is some-times sacrificed.

Denormalization is the process of storing the join of higher nor-mal form relations as a base
relation, which is in a lower normal form.

A superkey of a relation schema R = {A1, A2, ..., A} is a set of attributes S € R with the
property that no two tuples t; and tz in any legal relation state r of R will have t1[S] = t;[S]. A
key K is a superkey with the additional property that removal of any attribute from K will
cause K not to be a superkey any more.

The difference between a key and a superkey is that a key has to be minimal;

If a relation schema has more than one key, each is called a candidate key. One of the
candidate keys is arbitrarily designated to be the primary key, and the others are called
secondary keys.

An attribute of relation schema R is called a prime attribute of R if it is a member of some
candidate key of R. An attribute is called nonprime if it is not a prime attribute—that is, if it is
not a member of any candidate key.

2.7. FIRST NORMAL FORM (1NF)

First normal form states that the domain of an attribute must include only atomic (simple,
indivisible) values and that the value of any attribute in a tuple must be a single value from the
domain of that attribute.

The only attribute values permitted by 1NF are single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure We assume that each
department can have a number of locations. This is not in 1INF because Dlocations is not an
atomic attribute. There are two ways we can look at the Dlocations attribute:

1) The domain of Dlocations contains atomic values, but some tuples can have a set of these values.

In

this case, Dlocations is not functionally dependent on the primary key Dnumber.

2) The domain of Dlocations contains sets of values and hence is nonatomic. In this case, Dnumber

— Dlocations because each set is considered a single member of the attribute domain.

a)
DEPARTMENT
|Dname  [Dnumber | Dmgr ssn Plocations |

(b)
DEPARTMENT
Dname Dnumber [Dmgr_ssn Dlocations
Research 5 333445555 [ Bangalore, Chennai, Delhi}
Administration4 087654321 ({ Chennai }
Headquarters (L 388665555 [ Delhi }




(¢ ) DEPARTMENT

Dname Dnumber [Dmgr_ssn  [Dlocation
Research 5 333445555 [Bangalore
Research 5 333445555  [Chennai
Research 5 333445555  |Delhi
Administration 087654321 [Chennai
Headquarters [1 388665555  [Delhi

Figure. Normalization into 1NF. (a) A relation schema that is not in 1INF. (b) Sample state of relation
DEPARTMENT. (c) 1NF version of the same relation with redundancy.

2.8. SECOND NORMAL FORM:

e Second normal form (2NF) is based on the concept of full functional dependency.

e A functional dependency X — Y is a full functional dependency if removal of any attribute A
from X means that the dependency does not hold any more; that is, for any attribute A ¢ X, (X —
{A}) does not functionally determine Y.

o A functional dependency X — Y is a partial dependency if some attribute A ¢ X can be
removed from X and the dependency still holds; that is, for some A e X, (X - {A}) — Y.

e In Figure, {Ssn, Pnumber} — Hours is a full dependency (neither Ssn — Hours nor

Pnumber — Hours holds). However, the dependency {Ssn, Pnumber} — Ename is partial
because Ssn — Ename holds.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully functionally
dependent on the primary key of R.



(a)

EMP_PROJ

Ssn |F'num|:|er |H|:|urs Ename | Pname | Plocation

FD1
FD2
FD3

i _ + T A [}

2NF Normalization l

EP1 ) EP2 i EP3 ) )
_ Ssn |F'num|:|er | Hours _ | Ssn _Ename | _ Pnumber | Pname | Plocation
FD1| + FO2 A FD3| A A

29.TH

The test for 2NF involves testing for functional dependencies whose left-hand side attributes are
part of the primary key. If the primary key contains a single attribute, the test need not be applied
at all. The EMP_PROJ relation in Figure is in INF but is not in 2NF.

The nonprime attribute Ename violates 2NF because of FD2, as do the nonprime attributes
Pname and Plocation because of FD3. The functional dependencies FD2 and FD3 make Ename,
Pname, and Plocation partially dependent on the primary key {Ssh, Pnumber} of EMP_PROQOJ,
thus violating the 2NF test.

If a relation schema is not in 2NF, it can be second normalized or 2NF normalized into a number
of 2NF relations in which nonprime attributes are associated only with the part of the primary
key on which they are fully functionally dependent. Therefore, the functional dependencies FD1,
FD2, and FD3 in Figure lead to the decomposition of EMP_PROQJ into the three relation schemas
EP1, EP2, and EP3 shown in Figure 15.11(a), each of which is in 2NF.

IRD NORMAL FORM:

Third normal form (3NF) is based on the concept of transitive dependency. A functional
dependency X — Y in a relation schema R is a transitive dependency if there exists a set of
attributes Z in R that is neither a candidate key nor a subset of any key of R, and both X — Z and
Z — Y hold. The dependency Ssn — Dmgr_ssn is transitive through Dnumber in EMP_DEPT in
Figure 15.3(a), because both the dependencies Ssn — Dnumber and Dnumber — Dmgr_ssn hold
and Dnumber is nei-ther a key itself nor a subset of the key of EMP_DEPT. Intuitively, we can
see that the dependency of Dmgr_ssn on Dnumber is undesirable in since Dnumber is not a
key of EMP_DEPT.

Definition. A relation schema R is in 3NF if it satisfies 2NF and no nonprime attribute of R is

transitively dependent on the primary key.



(b)

EMP_DEPT
_ Ename _ Ssn | Bdate _ Address | Dnumber | Dname _Dmgr_ssn |
+ ' A A [l T
3NF Normalization
_ED1 _ ED2 _
Ename San | Bdate | Address | Dnumber | Dnumber | Dname | Dmgr_ssn
A ] A A | A +

2.10.B

The relation schema EMP_DEPT in Figure 15.3(a) is in 2NF, since no partial dependencies on a
key exist. However, EMP_DEPT is not in 3NF because of the transitive dependency of Dmgr_ssn
(and also Dname) on Ssn via Dnumber. We can normalize EMP_DEPT by decomposing it into
the two 3NF relation schemas ED1 and ED2 shown in Figure. Intuitively, we see that ED1 and
ED2 represent independent entity facts about employees and departments. A NATURAL JOIN
operation on ED1 and ED2 will recover the original relation EMP_DEPT without generating
spurious tuples.

Intuitively, we can see that any functional dependency in which the left-hand side is part (a
proper subset) of the primary key, or any functional dependency in which the left-hand side is a
nonkey attribute, is a problematic FD.

2NF and 3NF normalization remove these problem FDs by decomposing the original relation into
new relations. In terms of the normalization process, it is not necessary to remove the partial
dependencies before the transitive dependencies, but historically, 3NF has been defined with the
assumption that a relation is tested for 2NF first before it is tested for 3NF.

OYCE-CODD NORMAL FORM (BCNF):

Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was found to
be stricter than 3NF. That is, every relation in BCNF is also in 3NF; however, a relation in 3NF is
not necessarily in BCNF.

A table is in BCNF if every functional dependency X — Y, X is the super key of the table.

For BCNF, the table should be in 3NF, and for every FD, LHS is super key.

Example: Let's assume there is a company where employees work in more than one department.

EMPL

OYEE table:

EMP_ID|EMP_COUNTRY|EMP_DEPT|DEPT_TYPE|[EMP_DEPT_NO

264 India Designing ||D394 283
264 India Testing D394 300
364 UK Stores D283 232
364 UK Developing (D283 549




In the above table Functional dependencies are as follows:

1. EMP_ID — EMP_COUNTRY
2. EMP_DEPT — {DEPT_TYPE, EMP_DEPT_NO}
Candidate key: {EMP-ID, EMP-DEPT}

The table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys.
To convert the given table into BCNF, we decompose it into three tables:

EMP_COUNTRY table:

EMP_ID|EMP_COUNTRY

264 India

264 India

EMP_DEPT table:

EMP_DEPTI|[DEPT_TYPE|[EMP_DEPT_NO
Designing ||D394 283
Testing D394 300
Stores D283 232
Developing ||D283 549

EMP_DEPT_MAPPING table:

EMP_ID|EMP_DEPT
D394  |[283
D394  |[300
D283  |[232
D283  |[549

Functional dependencies:

1. EMP_ID — EMP_COUNTRY
2. EMP_DEPT — {DEPT_TYPE, EMP_DEPT_NO}



Candidate keys:

For the first table: EMP_ID
For the second table: EMP_DEPT
For the third table: {EMP_ID, EMP_DEPT}

Now, this is in BCNF because left side part of both the functional dependencies is a key.

2.11. MULTIVALUED DEPENDENCY AND FOURTH NORMAL FORM

Definition. A multivalued dependency X —— Y specified on relation schema R, where X and Y are
both subsets of R, specifies the following constraint on any relation state r of R: If two tuples t; and t,
exist in r such that t1[X] = t2[X], then two tuples t; and ts should also exist in r with the following
properties, where we use Z to denote (R — (X U Y))

ta[X] = t[X] = t[X] = [X].
ts[Y] = tu[Y] and t[Y] = tz[Y].
ts[Z] = t[Z] and t[Z] = tu[Z].

o Whenever X —— Y holds, we say that X multidetermines Y. Because of the symmetry in the
definition, whenever X —— Y holds in R, so does X —— Z. Hence, X —-— Y implies X —»—
Z, and therefore it is sometimes written as X —— Y|Z.

e AnMVD X —»— Y inRiscalled a trivial MVD if (a) Y is a subset of X, or (b) X U Y=R.

e  For example, the relation EMP_PROJECTS in Figure 15.15(b) has the trivial MVD Ename ——
Pname. An MVD that satisfies neither (a) nor (b) is called a nontrivial MVD. A trivial MVD will
hold in any relation state r of R; it is called trivial because it does not specify any significant or
meaningful constraint on R.

o If we have a nontrivial MVD in a relation, we may have to repeat values redundantly in the
tuples. In the EMP relation of Figure(a), the values ‘X’ and ‘Y’ of Pname are repeated with each
value of Dname (or, by symmetry, the values ‘John” and ‘Anna’ of Dname are repeated with each
value of Pname). This redundancy is clearly undesirable. However, the EMP schema is in BCNF
because no functional dependencies hold in EMP. Therefore, we need to define a fourth normal
form that is stronger than BCNF and disallows relation schemas such as EMP.

o Notice that relations containing nontrivial MVDs tend to be all-key relations—that is, their key
is all their attributes taken together. Furthermore, it is rare that such all-key relations with a
combinatorial occurrence of repeated values would be designed in practice. However, recognition
of MVDs as a potential problematic dependency is essential in relational design.

Definition. A relation schema R is in 4NF with respect to a set of dependencies F (that includes
functional dependencies and multivalued dependencies) if, for every nontrivial multivalued dependency X
—— Y inF, Xisasuperkey for R.



The process of normalizing a relation involving the nontrivial MVDs that is not in 4NF consists of
decomposing it so that each MVD is represented by a separate relation where it becomes a trivial MVD.

(a) EmP
| Ename | Pname | Dname |
Smith X John
Smith | ¥ | Anna
Smith | X | Anna
Smith | Y | John
(b) EMP_PROJECTS EMP_DEPEMDENTS
| Ename [ Pname | | Ename | Dname |
Smith X Smith John
Smith | Y | | Smith | Anna

Figure . (a)The EMP relation with two MVDs: Ename —— Pname and Ename —— Dname.

(b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and
EMP_DEPENDENTS.

o Consider the EMP relation in Figure(a). EMP is not in 4NF because in the nontrivial MVDs
Ename —— Pname and Ename——Dname, and Ename is not a superkey of EMP.

o We decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS, shown in Figure(b).
Both  EMP_PROJECTS and EMP_DEPENDENTS are in 4NF, because the MVDs
Ename——Pname in EMP_PROJECTS and Ename —— Dname in EMP_DEPENDENTS are
trivial  MVDs. No other nontrivial MVDs hold in either EMP_PROJECTS or
EMP_DEPENDENTS. No FDs hold in these relation schemas either.

2.12. JOIN DEPENDENCIES AND FIFTH NORMAL FORM

Definition. A join dependency (JD) can be said to exist if the join of R; and R> over C is equal to
relation R. Where, R; and R; are the decompositions Ri(A, B, C), and R, (C,D) of a given relations R (A,
B, C, D). Alternatively, R: and R: is a lossless decomposition of R.

Definition Of fifth normal form, which is also called project-join normal form.

A database is said to be in 5NF, if and only if,

e It'sin4NF

e If we can decompose table further to eliminate redundancy and anomaly, and when we re-join the
decomposed tables by means of candidate keys, we should not be losing the original data or any
new record set should not arise. In simple words, joining two or more decomposed table should
not lose records nor create new records.

e Consider an example of different Subjects taught by different lecturers and the lecturers taking
classes for different semesters.

e Note: Please consider that Semester 1 has Mathematics, Physics and Chemistry and Semester 2
has only Mathematics in its academic year!!



COURSE SUBJECT LECTURER CLASS
SUBJECT Mathematics [Alex SEMESTER 1
LECTURER Mathematics |Rose SEMESTER 1
CLASS Physics Rose SEMESTER 1

Physiics Joseph SEMESTER 2
Chemistry  [Adam SEMESTER 1

e In above table, Rose takes both Mathematics and Physics class for Semester 1, but she does not
take Physics class for Semester 2. In this case, combination of all these 3 fields is required to
identify a valid data. Imagine we want to add a new class - Semester3 but do not know which
Subject and who will be taking that subject. We would be simply inserting a new entry with Class
as Semester3 and leaving Lecturer and subject as NULL. As we discussed above, it's not a good
to have such entries. Moreover, all the three columns together act as a primary key, we cannot
leave other two columns blank!

e Hence we have to decompose the table in such a way that it satisfies all the rules till 4NF and
when join them by using keys, it should yield correct record. Here, we can represent each
lecturer's Subject area and their classes in a better way. We can divide above table into three -
(SUBJECT, LECTURER), (LECTURER, CLASS), (SUBJECT, CLASS)

| SNF |
SUBIJECT LECTURER CLASS LECTURER
Mathematics |Alex SEMESTER 1 Alex
Mathematics |Rose SEMESTER 1 Rose
Physics Rose SEMESTER 1 Rose
Physics Joseph SEMESTER 2 Joseph
Chemistry  |Adam SEMESTER 1 Adam
CLASS SUBIJECT
SEMESTER 1 Mathematics
SEMESTER 1 Physics
SEMESTER 1 Chemistry
SEMESTER 2 Physics

e Now, each of combinations is in three different tables. If we need to identify who is teaching
which subject to which semester, we need join the keys of each table and get the result.

e For example, who teaches Physics to Semester 1, we would be selecting Physics and Semesterl
from table 3 above, join with tablel using Subject to filter out the lecturer names. Then join with
table2 using Lecturer to get correct lecturer name. That is we joined key columns of each table to
get the correct data. Hence there is no lose or new data - satisfying 5NF condition.

SELECT t3.Class, t3.Subject, t1.Lecturer FROM TABLE3 t3, TABLE3 t2, TABLE3 t1,
where t3.Class = 'SEMESTER1' and t3.SUBJECT="PHYSICS' AND t3.Subject = t1.Subject
AND t3.Class = t2.Class AND tl.Lecturer = t2.Lecturer;



CS8492 DATABASE MANAGEMENT SYSTEMS

UNIT I TRANSACTIONS

Transaction Concepts — ACID Properties — Schedules — Serializability — Concurrency
Control — Need for Concurrency — Locking Protocols — Two Phase Locking — Deadlock —
Transaction Recovery - Save Points — Isolation Levels — SQL Facilities for Concurrency and
Recovery.

3.1. TRANSACTION CONCEPTS:

e A transaction is a unit of program execution that accesses and possibly updates
various data items.

e A transaction is delimited by statements of the form begin transaction and end
transaction. The transaction consists of all operations executed between the begin
transaction and end transaction.

e This collection of steps must appear to the user as a single, indivisible unit. Since a
transaction is indivisible, it either executes in its entirety or not at all. Thus, if a
transaction begins to execute but fails for whatever reason, any changes to the
database that the transaction may have made must be undone.

e This requirement holds regardless of whether the transaction itself failed , the
operating system crashed, or the computer itself stopped operating.

3.2. ACID Properties:

Properties of the transactions:

1) Atomicity. Either all operations of the transaction are reflected properly in the
database, or none are.

2) Consistency. Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the data-base.

3) Isolation. Even though multiple transactions may execute concurrently, the
system guarantees that, for every pair of transactions T; and T; , it appears to T; that either T;
finished execution before T; started or T; started execution after T; finished. Thus, each
transaction is unaware of other transactions executing concurrently in the system.

4) Durability. After a transaction completes successfully, the changes it has made to
the database persist, even if there are system failures.
These properties are often called the ACID properties; the acronym is derived from the first
letter of each of the four properties.

A Simple Transaction Model:

e Consider a simple bank application consisting of several accounts and a set of
transactions that access and update those accounts.
e Transactions access data using two operations:



. read(X), which transfers the data item X from the database to a variable, also
called X, in a buffer in main memory belonging to the transaction that executed the
read operation.

o write(X), which transfers the value in the variable X in the main-memory
buffer of the transaction that executed the write to the data item X in the database.

e Itis important to know if a change to a data item appears only in main memory or if
it has been written to the database on disk. In a real database system, the write
operation does not necessarily result in the immediate update of the data on the disk;
the write operation may be temporarily stored elsewhere and executed on the disk
later. For now, however, we shall assume that the write operation updates the
database immediately.

Let Ti be a transaction that transfers $50 from account A to account B. This transaction can
be defined as:

Ti: read(A);
A:=A-50;
write(A);
read(B);
B :=B + 50;
write(B).

Let us now consider each of the ACID properties.

Consistency: The consistency requirement here is that the sum of A and B be unchanged by
the execution of the transaction. Without the consistency requirement, money could be
created or destroyed by the transaction! It can be verified easily that, if the database is
consistent before an execution of the transaction, the database remains consistent after the
execution of the transaction.

Ensuring consistency for an individual transaction is the responsibility of the application
programmer who codes the transaction. This task may be facilitated by automatic testing of
integrity constraints.

Atomicity: Suppose that, just before the execution of transaction T; , the values of
accounts A and B are $1000 and $2000, respectively. Now suppose that, during the
execution of transaction T;, a failure occurs that prevents T; from completing its execution
successfully. Further, suppose that the failure happened after the write(A) operation but
before the write(B) operation. In this case, the values of accounts A and B reflected in the
database are $950 and $2000. The system destroyed $50 as a result of this failure. In
particular, we note that the sum A + B is no longer preserved.

Thus, because of the failure, the state of the system no longer reflects a real state of the
world that the database is supposed to capture. We term such a state an inconsistent state.
We must ensure that such inconsistencies are not visible in a database system. Note,
however, that the system must at some point be in an inconsistent state. Even if transaction
Ti is executed to completion, there exists a point at which the value of account A is $950 and



the value of account B is $2000, which is clearly an inconsistent state. This state, however, is
eventually replaced by the consistent state where the value of account A is $950, and the
value of account B is $2050. Thus, if the transaction never started or was guaranteed to
complete, such an inconsistent state would not be visible except during the execution of the
transaction. That is the reason for the atomicity requirement: If the atomicity property is
present, all actions of the transaction are reflected in the database, or none are.

The basic idea behind ensuring atomicity is this: The database system keeps track (on disk)
of the old values of any data on which a transaction performs a write. This information is
written to a file called the log. If the transaction does not complete its execution, the
database system restores the old values from the log to make it appear as though the
transaction never executed. Ensuring atomicity is the responsibility of the database system;
specifically, it is handled by a component of the database called the recovery system.

Durability: Once the execution of the transaction completes successfully, and the user
who initiated the transaction has been notified that the transfer of

funds has taken place, it must be the case that no system failure can result in a loss of data
corresponding to this transfer of funds. The durability property guarantees that, once a
transaction completes successfully, all the updates that it carried out on the database persist,
even if there is a system failure after the transaction completes execution.

We assume for now that a failure of the computer system may result in loss of data in main
memory, but data written to disk are never lost. We can guarantee durability by ensuring that
either:

The updates carried out by the transaction have been written to disk before the
transaction completes.

Information about the updates carried out by the transaction and writ-ten to disk is
sufficient to enable the database to reconstruct the updates when the database system is
restarted after the failure.

The recovery system of the database is responsible for ensuring durability, in addition to
ensuring atomicity.

Isolation: Even if the consistency and atomicity properties are ensured for each
transaction, if several transactions are executed concurrently, their operations may interleave
in some undesirable way, resulting in an inconsistent state.

For example, as we saw earlier, the database is temporarily inconsistent while the transaction
to transfer funds from A to B is executing, with the deducted total written to A and the
increased total yet to be written to B. If a second concurrently running transaction reads A
and B at this intermediate point and computes A+ B, it will observe an inconsistent value.
Furthermore, if this second transaction then performs updates on A and B based on the
inconsistent values that it read, the database may be left in an inconsistent state even after
both transactions have completed.



A way to avoid the problem of concurrently executing transactions is to execute transactions
serially—that is, one after the other. However, concur-rent execution of transactions
provides significant performance benefits, as we shall see in Section 14.5. Other solutions
have therefore been developed; they allow multiple transactions to execute concurrently.

The isolation property of a transaction ensures that the con-current execution of transactions
results in a system state that is equivalent to a state that could have been obtained had these
transactions executed one at a time in some order. Ensuring the isolation property is the
responsibility of a component of the database system called the concurrency-control
system.

STATES OF TRANSACTION:

e A transaction may not always complete its execution successfully. Such a transaction is
termed aborted.

o If we are to ensure the atomicity property, an aborted transaction must have no effect on
the state of the database. Thus, any changes that the aborted transaction made to the
database must be undone.

e Once the changes caused by an aborted transaction have been undone, we say that the
transaction has been rolled back.

e It is part of the responsibility of the recovery scheme to manage transaction aborts. This
is done typically by maintaining a log.

o Each database modification made by a transaction is first recorded in the log. We record
the identifier of the transaction performing the modification, the identifier of the data
item being modified, and both the old value (prior to modification) and the new value
(after modification) of the data item.

e Only then is the database itself modified. Maintaining a log provides the possibility of
redoing a modification to ensure atomicity and durability as well as the possibility of
undoing a modification to ensure atomicity in case of a failure during transaction
execution.

e A transaction that completes its execution successfully is said to be committed. A
committed transaction that has performed updates transforms the database into a new
consistent state, which must persist even if there is a system failure.

e Once a transaction has committed, we cannot undo its effects by aborting it. The only
way to undo the effects of a committed transaction is to execute a compensating
transaction. For instance, if a transaction added $20 to an account, the compensating
transaction would subtract $20 from the account.

e However, it is not always possible to create such a compensating transaction. Therefore,
the responsibility of writing and executing a compensating transaction is left to the user,
and is not handled by the database system. Chapter 26 includes a discussion of
compensating transactions.



We need to be more precise about what we mean by successful completion of a
transaction. We therefore establish a simple abstract transaction model.

A transaction must be in one of the following states:

1) Active, the initial state; the transaction stays in this state while it is executing.

2) Partially committed, after the final statement has been executed.

3) Failed, after the discovery that normal execution can no longer proceed.

4) Aborted, after the transaction has been rolled back and the database has been restored

to its state prior to the start of the transaction.

5) Committed, after successful completion.We say that a transaction has committed

only if it has entered the committed state.

Figure. State diagram of a transaction.

Similarly, we say that a transaction has aborted only if it has entered the aborted state. A
transaction is said to have terminated if it has either committed or aborted.

A transaction starts in the active state. When it finishes its final statement, it enters the
partially committed state. At this point, the transaction has completed its execution, but
it is still possible that it may have to be aborted, since the actual output may still be
temporarily residing in main memory, and thus a hardware failure may preclude its
successful completion.

The database system then writes out enough information to disk that, even in the event
of a failure, the updates performed by the transaction can be re-created when the system
restarts after the failure. When the last of this information is written out, the transaction
enters the committed state.

A transaction enters the failed state after the system determines that the transaction can
no longer proceed with its normal execution (for example, because of hardware or
logical errors). Such a transaction must be rolled back. Then, it enters the aborted state.
At this point, the system has two options:



It can restart the transaction, but only if the transaction was aborted as a
result of some hardware or software error that was not created through the internal logic
of the transaction. A restarted transaction is considered to be a new transaction.

It can Kill the transaction. It usually does so because of some internal logical
error that can be corrected only by rewriting the application program, or because the
input was bad, or because the desired data were not found in the database.

We must be cautious when dealing with observable external writes, such as writes to a
user’s screen, or sending email. Once such a write has occurred, it cannot be erased,
since it may have been seen external to the database system.

Most systems allow such writes to take place only after the transaction has entered the
committed state. One way to implement such a scheme is for the database system to
store any value associated with such external writes temporarily in a special relation in
the database, and to perform the actual writes only after the transaction enters the
committed state.

If the system should fail after the transaction has entered the committed state, but before
it could complete the external writes, the database system will carry out the external
writes (using the data in nonvolatile storage) when the system is restarted.

Handling external writes can be more complicated in some situations. For example,
suppose the external action is that of dispensing cash at an automated teller machine, and
the system fails just before the cash is actually dispensed (we assume that cash can be
dispensed atomically).

It makes no sense to dispense cash when the system is restarted, since the user may
have left the machine. In such a case a compensating transaction, such as depositing the
cash back in the user’s account, needs to be executed when the system is restarted.

As another example, consider a user making a booking over the Web. It is possible that
the database system or the application server crashes just after the booking transaction
commits. It is also possible that the network connection to the user is lost just after the
booking transaction commits.

In either case, even though the transaction has committed, the external write has not
taken place. To handle such situations, the application must be designed such that when
the user connects to the Web application again, she will be able to see whether her
transaction had succeeded or not.

For certain applications, it may be desirable to allow active transactions to display data
to users, particularly for long-duration transactions that run for minutes or hours.
Unfortunately, we cannot allow such output of observable data unless we are willing to
compromise transaction atomicity.



3.3. SCHEDULES:

Transaction-processing systems usually allow multiple transactions to run con-
currently. Allowing multiple transactions to update data concurrently causes several
complications with consistency of the data, as we saw earlier. Ensuring consistency
in spite of concurrent execution of