THE EVALUATION OF ANTI-OXIDANT, ANTI-BACTERIAL AND WOUND HEALING ACTIVITY OF METHANOLIC EXTRACT OF *EICHHORNIA CRASSIPES* IN MICE FIBROBLAST CELL LINE

A PROJECT REPORT

Submitted by

M. RAGHUNATH

(Reg. No: 111416214027)

P.S. PADMANABHAN

(Reg. No: 111416214020)

In partial fulfilment for the award of the degree

Of

BACHELOR OF TECHNOLOGY

IN

BIOTECHNOLOGY

PRATHYUSHA ENGINEERING COLLEGE

CHENNAI 602 025

ANNA UNIVERSITY: CHENNAI 600 025

APRIL 2020

ANNA UNIVERSITY: CHENNAI 600 025 BONAFIDE CERTIFICATE

Certified that this project report "THE EVALUATION OF ANTI-**OXIDANT, ANTI-BACTERIAL AND WOUND HEALING ACTIVITY** OF METHANOLIC EXTRACT OF EICHHORNIA CRASSIPES IN MICE FIBROBLAST CELL LINE" is the bonafide work of RAGHUNATH. M (Reg. No. 111416214027), PADMANABHAN. P. S (Reg. No. 111416214020) who carried out the project work under my supervision.

P. Dhasmothen

SIGNATURE

SIGNATURE

Dr. P. DHASARATHAN Ph. D.,

HEAD OF THE DEPARTMENT

Department of Biotechnology

Prathyusha Engineering College

Chennai - 602 025

Submitted for the viva-voce held on _____ 22-9-20_____

Dr. A. J. A. RANJIT SINGH Ph.D., PROFESSOR Department of Biotechnology

Prathyusha Engineering College

Chennai - 602 025

g. Cholopdig

INTERNAL EXAMINER

P. Dhasmothen

EXTERNAL EXAMINER

DECLARATION

We hereby declare that the project report entitled "THE EVALUATION OF ANTI-OXIDANT, **ANTI-BACTERIAL** AND WOUND HEALING OF EXTRACT OF ACTIVITY **METHANOLIC EICHHORNIA CRASSIPES IN MICE FIBROBLAST CELL LINE (3T3)**" Submitted to the Department of Biotechnology, Prathyusha Engineering College, affiliated to the Anna University, Chennai, in partial fulfilment of the award of the degree Bachelor of Technology in Biotechnology is the record of the original work carried by us under the guidance of Dr. A. J. A. RANJIT SINGH, professor, Department of Biotechnology, Prathyusha Engineering College, during the period of December 2019 to March 2020. We further declare the results of the work have not been previously submitted for the award of any degree or diploma.

Place: Thiruvallur

Date:

Raghunath. M

Padmanabhan. P. S

ACKNOWLEDGEMENT

We take this opportunity to extend our heartiest thanks to our honourable chairman, **Shri.P. RAJA RAO**, of **Prathyusha Engineering College** for providing necessary facility to carry out our project work.

We also wish to acknowledge our beloved Principal **Dr. RAMESH PLN.** for his valuable suggestions, constant support and encouragement during the project period.

We solemnly express our earnest and humble thanks to our guide **Dr. A. J. A RANJIT SINGH,** Assistant professor, Department of Biotechnology, Prathyusha Engineering College and project coordinator, **Dr. Cholapandian**, Assistant professor, Department of Biotechnology, Prathyusha Engineering College for their guidance and valuable suggestions throughout our project work.

We also wish to express our heartfelt thanks to **Dr. P. DHASARATHAN Ph.D.,** Head of the department of Biotechnology, Prathyusha Engineering College, for giving us an opportunity to carry out our project in lab.

We express our sincere thanks to our **Parents** and **Friends** for their continuous support throughout our study period.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
NO.		NO.
	ABSTRACT	iv
	LIST OF TABLES	v
	LIST OF FIGURES	v
	LIST OF ABREVIATIONS	vi
	AIM	vii
	OBJECTIVE	vii
1	INTRODUCTION	1
	1.1 WOUND	1
	1.2 TYPES OF WOUNDS	1
	1.2.1 OPEN WOUNDS	1
	1.2.2 CLOSED WOUNDS	2
	1.2.3 ACUTE WOUNDS	2
	1.2.4 CHRONIC WOUNDS	2
	1.3 WOUND HEALING	2
	1.4 PHASES OF WOUND HEALING	2
	1.5 WATER HYACINTH [E.crassipes]	3

	1.5.1 THE SYSTEMIC POSITION	4
	1.5.2 GEOGRAPHICAL DATA	4
	1.5.3 HABITUAL CONDITIONS	4
	1.5.4 CHARACTERISTICS	5
	1.5.5 EFFECT ON ENVIRONMENT	6
	1.5.6 EFFECT ON HUMANS	6
2	REVIEW OF LITERATURE	7
3	MATERIALS AND METHODS	13
	3.1 SAMPLE COLLECTION	13
	3.2 PREPARATION OF EXTRACTS	13
	3.3 PHYTOCHEMICAL TEST ASSAY	14
	3.3.1 ALKANOIDS (WAGER'S TEST)	14
	3.3.2 CARBOHYDRATES (FEHLING'S TEST)	14
	3.3.3 GLYCOSIDES (BORN TRAGER'S TEST)	14
	3.3.4 SAPONINS (FOAM TEST)	14
	3.3.5 PROTEINS (BIURET TEST)	14
	3.3.6 AMINO ACID (NINHYDRIN TEST)	15
	3.3.7 PHENOLIC COMPUND (FERRIC CHLORIDE TEST)	15
	3.3.8 STEROIDS	15

3.3.9 FLAVONOIDS	15
3.4 ANTI-BACTERIAL ASSAY	16
3.5 ANTI-OXIDANT ASSAY	17
3.5.1 1,1-DIPHENYL-2-PICRYLHYDRAZYL (DPPH) RADICAL SCAVENGING ASSAY	17
3.6 ANTI-INFLAMMATORY ASSAY	17
3.6.1 PROTEIN DENATURATION INHIBITION ASSAY	17
3.6.2 HEAT INDUCED HEMOLYSIS ASSAY	17
3.7 GAS CHROMATOGRAPHY- MASS SPECTOMETRY	18
3.7.1 GC-MS INFORMATION	18
3.7.2 INSTRUMENT ACQUISITION PARAMETERS	19
3.7.3 MASS CONDITION (EI)	19
3.7.4 GC-MS ANALYSIS	19
3.8 WOUND HEALING ASSAY	20
RESULTS AND DISCUSSION	21
4.1 PHYTOCHEMICAL TESTS	21
4.2 ANTI-BACTERIAL ASSAY	23
4.3 ANTI-OXIDANT ASSAY	25

	REFERENCES	46
	APPENDIX	45
5	SUMMARY AND CONCLUSION	43
	4.6 WOUND HEALING ASSAY	41
	4.5 GAS CHROMATOGRAPHY- MASS SPECTOMETRY	29
	4.4.2 HEAT INDUCED HEMOLYSIS ASSAY	28
	4.4.1 PROTEIN DENATURATION INHIBITION ASSAY	27
	4.4 ANTI-INFLAMMATORY ASSAY	27

ABSTRACT

Wound is the discontinuity or break in the surface of skin due to cuts, burns or due to pathological infections. Wound healing process can be effectively improved by shortening the healing time period and by avoiding pathological infection. In our study, Water hyacinth was found to serve as potential wound healers, by minimizing the healing time and inhibiting microbial infections, herein we aimed to assess the anti-oxidant and antibacterial effects of *Eichhornia crassipes* (Water hyacinth) and thereby evaluated the wound healing property of Water hyacinth in mice fibroblast cell lines by scratch assays. Air dried, powered Water hyacinth was used for extraction process with methanol. The methanolic extract of the Water hyacinth found to have anti-bacterial and anti-oxidant property, and wound scratch assay showed rapid migration of mice fibroblast cells from both the ends having 80.77% of wound healed within 76 hours. The results conclude by saying that, Water hyacinth plays a significant role in healing the wound. Thereby, effective way of minimizing the plant population in water bodies and making them used clinically.

Keywords: *Eichhornia crassipes*, anti-bacterial, anti-oxidant, wound scratch assay, wound healing.

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
4 1	Phytochemical estimation of methanolic extract of <i>E</i> .	22
4.1	crassipes.	24
4.2	Representing the Zone of inhibition of various bacterial strains treated against methanolic extract of <i>E. crassipes</i> .	24
		26
4.3	Anti-oxidant activity of <i>E. crassipes</i>	
4.4	Proposed Retension Time, Compound, Molecular weight and molecular formula of Methanolic extract of <i>E. crassipes</i>	40
		43
4.5	Rate of Wound Healing with Extract Treatment	

LIST OF FIGURE

FIGURE NO.	TITLE	PAGE NO.
1.1	E. crassipes (Water Hyacinth)	3
3.1	Leaf - Cut Removed	13
3.2	Leaf- Shade Dried and Powdered	13
3.3	Filtered Extract	13
3.4	Stored Extract	13
3.5	Enterobacter cloacae	16
3.6	Escherichia coli	16
3.7	Enterococcus sp.	16
3.8	Pseudomonas aeruginosa	16

4.1	Phytochemical Test

4.2	Zone of inhibition of methanolic extract of <i>E. crassipes</i> against cloacae, (b) Enterococcus sp., (c) <i>P. aeruginosa</i> and (d) <i>E. coli</i> .	(a) <i>E</i> . 23
4.3	Zone of inhibition of various bacterial strains treated against metha extract of <i>E. crassipes</i>	nolic 24
4.4	Anti-Oxidant Assay - DPPH Method.	25
4.5	Protein denaturation inhibition	27
4.6	Heat induced hemolysis	28
4.7	Gas chromatography - E.crassipes -methanolic extract	29
4.8	Mass spectra (RT-19.110) of <i>E. crassipes</i> - Methanolic extract	30
4.9	Mass spectra (RT-27.283) of <i>E. crassipes</i> - Methanolic extract	31
4.10	Mass spectra (RT-27.498) of <i>E. crassipes</i> - Methanolic extract	32
4.11	Mass spectra (RT-27.864) of E. crassipes - Methanolic extract	33

4.12	Mass spectra (RT-28.089) of <i>E. crassipes</i> - Methanolic extract	34
4.13	Mass spectra (RT-28.179) of E. crassipes - Methanolic extract	35
4.14	Mass spectra (RT-28.694) of E. crassipes - Methanolic extract	36
4.15	Mass spectra (RT-28.774) of E. crassipes - Methanolic extract	37
4.16	Mass spectra (RT-28.934) of E. crassipes - Methanolic extract	38
4.17	Mass spectra (RT-29.354) of <i>E. crassipes</i> - Methanolic extract	39
4.18	Control	41
4.19	Wounded cell	42
4.20	Wound Healing at 24 hr (07.69%)	42
4.21	Wound Healing at 48 hr (42.31%)	42
4.22	Wound Healing at 76 hr (80.77%)	42

LIST OF ABBREVIATIONS

MEX	- Methanolic extract
DPPH	- 2, 2-diphenyl-1-picryl-hydrazyl-hydrate
MSP	- Mass spectrum
GC-MS	- Gas chromatography-mass spectrometry
FAO	- Flavin-containing anime oxidases
MIC	- Minimal inhibitory concentration
DMSO	- Dimethyl sulfoxide
MTT	- 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide
CuAO	- Copper anime oxidases
H2O2	- Hydrogen peroxide
CFU	- Colony-forming unit
sp.	-Species
E. coli	- Escherichia coli
E. cloacae	- Enterobacter cloacae
P. aeruginosa	- Pseudomonas aeruginosa
E.crassipes	- Eichhornia crassipes
NaH2PO4	- Monosodium phosphate
Na2HPO4	- Disodium phosphate
NaCl	- Sodium chloride
ZOI	-Zone of ionhibition

AIM OF THE PROJECT

To evaluate the anti-oxidant and anti-bacterial property of E. crassipes (water hyacinth), and investigated the wound healing activity of Water hyacinth in vitro in Fibroblast cell lines using in-vitro wound scratch assay.

OBJECTIVES OF THE PROJECT

- i. To extract the phytochemicals of water Hyacinth (*E. crassipes*) using methanol as solvent by cold percolation method.
- ii. To evaluate the anti-bacterial activity of MEX of *E. crassipes*.
- iii. To evaluate the anti-oxidant property of *E. crassipes*.
- iv. To ensure the biocompatibility of MEX of *E. crassipes* in Fibroblast cell line (3T3).
- v. To evaluating the wound healing rate using wound scratch assay.
- vi. To screen and isolate the bioactive compunds and determine the composition of each components present in the MEX using GC-MS analysis method.

CHAPTER 1

INTRODUCTION

1.1 WOUND:

The incidence of accidents has steeply risen in this modern age, which is responsible for the different types of wounds. A wound is the anatomic discontinuity or cellular disruption which may occur due to accidents, cuts, burns or pathological infection. (Prafulla et.al., 2012). If wounds were not healed, it may activate many inflammatory mediators and may cause severe pain, which will brings about physical and mental illness to patients (Badri et.al., 2011). Unhealed wounds may develop in chronic wounds, which also lead to organ damage. Healing of wounds (i.e. process of repair) partly dependes on the depth of wounds, as well as the overall health and nutritional state of the individual.

1.2 TYPES OF WOUNDS

Based on their aetiology, location, type of injury or presenting symptoms, wound depth and tissue loss or clinical appearance, a wound can be classified as open and closed wound on underlying cause of wound creation; acute and chronic wounds on the physiology of wound healing (Prafulla et.al., 2012).

1.2.1 Open Wounds

Here, the blood escapes the body and there will be clear visible bleeding. Open wounds are further classified as: Incised wound, Laceration or tear wound, Abrasions or superficial wounds, Puncture wounds, Penetration wounds and gunshot wounds (Strodtbeck et al 2001).

1

1.2.2 Closed wounds

In closed wounds blood escapes the circulatory system, but remains in the body. It includes Contusion or bruises, heamatomas or blood tumor, Crush injury etc..

1.2.3 Acute wounds

Acute wound is a tissue injury that normally precedes through an orderly and timely reparative process that results in sustained restoration of anatomic and functional integrity. Acute wounds are usually caused by cuts or surgical incisions and complete the wound healing process within the expected time frame (Kumar et al 2007).

1.2.4 Chronic wounds

Chronic wounds are wounds that have failed to progress through the normal stages of healing and therefore enter a state of pathologic inflammation chronic wounds either require a prolonged time to heal or recur frequently (Kumar et al 2007; (Robert et al 1998)

1.3 WOUND HEALING

Wound healing is a biologically sequential event that takes place at the wound site in the name of four steps: haemostasis phase, inflammatory phase, proliferative phase and maturation phase.

1.4 PHASES OF WOUND HEALING

• Haemostasis phase is the first and fore most phases, take place within seconds when wound created. The blood vessel gets constricted and platelets stick on to the walls of the vessels, thus forming coagulation.

- In **Inflammatory phase**, where the transudate (made of water, salt and protein) leaks from the blood vessel wall which causes swelling. Swelling, pain, heat and redness takes place during inflammatory phase.
- **Proliferative phase**, here the wounds get rebuild with the new tissue and extra cellular matrix. And the wounds are kept moist and hydration takes place, so which epithelialization happens fast.
- Maturation phase, the last phase in wound healing where the type III to type II collagen remodalization takes place. The cross-linking of collagen reduces scar thickness and makes wounded skin area stronger.
 Consequently, the proper wound healing and scar formation get delayed if inflammatory response elongated or exacerbated (Van-Linh Nguyen et. al., 2017)

1.5 WATER HYACINTH [E. crassipes]

Figure 1.1 E. crassipes (Water Hyacinth)

1.5.1 THE SYSTEMIC POSITION:

Kingdom : Plantae Family: Pontederiaceae Order: Commelinales Genus: Eichhornia Species: crassipes Common name: Water hyacinth

1.5.2 GEOGRAPHICAL DATA

E. crassipes, commonly known as water hyacinth, is native to the Amazon Basin in tropical South America, its entry into Africa, Asia, India, Australia, Central America North America (California and southern states) and New Zealand was largely facilitated by human activities. Its one of the world's most noxious aquatic weed. Lack of natural enemies together with nutrient enriched water bodies; continues to spread aggressively throughout temperate, tropical and sub-tropical climates (Dagno, Lahlali, Friel, Bajji, & Jijakli, 2007).

1.5.3 HABITUAL CONDITIONS

After first introduced into Bengal around 1896 as an ornamental plant, it has spread throughout India and occupies over 200,000 ha of water surface. It now occurs in all fresh water ponds, tanks, lakes, reservoirs, streams, rivers and irrigation channels. *E. crassipes* stabilizes pH levels and temperature in lagoons thereby preventing stratification and increasing mixing within the water column. It can tolerate pH values from 4 to 10. Optimal water temperature for growth is 28-30°C while optimal air temperature is 21-30°C. The plant mass doubles in two weeks if water temperature lie between 27°C and 33°C. Temperatures above 33°C inhibit further growth (Center, Hill, Cordo, & Julien, 2002). Water hyacinth tolerates drought well because it can survive in moist sediments up to

4

several months (Center, Hill, Cordo, & Julien, 2002).Salinity is the main obstacle for growth of water hyacinth in coastal areas (Evans, 1963; De Groote, Ajuonua, Attignona, Djessoub, & Neuenschwandera, 2003).

1.5.4 CHARACTERISTICS

Water hyacinth has the following systematic, morphological, developmental, biological, and ecological characteristics (Gopal, 1987):

- A perennial plant whose average size is 40 cm but can reach up to 1 m high;
- Have a high rate of vegetative growth and multiplication;
- Produce seeds that remain viable for very long periods;
- Have a fairly wide ecological amplitude;

• Stems and leaves contain air-filled tissue which gives the plant its considerable buoyancy;

- Double its population in 15-18 days by asexual vegetative reproduction;
- Each mother plant produces 4 daughter plants which are capable of reproduction after 2 weeks;

• Growth is highly enhanced in nutrient-rich, eutrophic water bodies with high nitrate and phosphate content;

- Seeds can remain viable for up to 15 years;
- Have no known natural enemies for the seeds;
- It grows in mats up to 2 m thick; and

• When mature, it consists of long, pendant roots, rhizomes, stolons, leaves, inflorescences and fruit clusters.

1.5.5 EFFECT ON ENVIRONMENT

The weed has inflicted enormous negative effects not only on the environment but also on the health status and well-being of many people who seek livelihood from the infested waters and the economy in general (Dagno, Lahlali, Friel, Bajji, & Jijakli, 2007). Photosynthesis is limited beneath water hyacinth mats, and the plant itself does not release oxygen into the water as do phytoplankton and submerged vegetation, resulting in decreased dissolved oxygen concentration (Dagno, Lahlali, Diourte, & Haissam, 2012).Worryingly, climate change may allow the spread of water hyacinth to higher latitudes (Rahel & Olden, 2008; Patel, 2012).

1.5.6 EFFECT ON HUMANS

E. crassipes cause major public health problems such as malaria, schistosomiasis and lymphatic filariasis by presence Some species of mosquito. These plants also create prime habitat for mosquitos, classic vectors of disease, species of snail known to host a parasitic flatworm which and а causes schistosomiasis. It interferes with the production of hydro-electricity, blocks water flow in irrigation projects (40 to 95% reduction), prevents the free movement of navigation vessels, interferes with fishing and fish culture and facilitates. The weed is responsible for great water loss (1.26 to 9.84%) due to evapo-transpiration from the luxuriant foliage of water hyacinth (Sushilkumar 2011). So far, not even a single successful mycoherbicide has been employed against any aquatic weed in India in spite of many reports of fungal pathogen infesting many aquatic weeds severly (Aneja et al. 1993, Kauraw and Bhan 1994, Ray et al. 2008b). Ray et al. (2008c) studied the combined impact of various pathogens for integrated management of E. Crassipes (Mart.) Solms. Therefore, eradication of the weed is highly advocated all over the world

CHAPTER 2

REVIEW OF LITERATURE

Rupesh Thakur et al., (2000) Study described about the creation of wounds on animal by using appropriate surgical equipment and handling of animals before the testing of animals. The surface of the animal which was to be handled must be shaved and then it was to be anasthesized by using suitable chemicals by using chloroform/ether and and wound was to be created with the help of surgical puncher and proper testing must be carried out.

Alessandra Cona et al., (2008) had performed the wound healing activity in plants by identifying the reaction of chemical such as CuAO and FAO and H_2O_2 producing enzymes which are primarily responsible for the oxidative deamination of polyamines. These apoplastic anime oxidases are found to have a key role in plants as they tend to behave as a H_2O_2 delivering systems in the cell wall during cell growth and cell differentiation in the context of host-pathogen interactions. The H_2O_2 also plays a key role as a signalling molecule in defence mechanism and also acts as a co-substrate for peroxidase driven reaction during the process of cell-wall maturation. Experimental evidences also denote that PAO performs wound healing activity in *Zea mays*. It was also found that the same apoplastic PAO was found to have similar effect in *Nicotiana tabacum*. These wound healing activity was found to be decisive in some of the plants.

Chi-Bao Bui et al.,(2017) have predicted the wound healing and antiinflammatory activity by using calophyllolide-a major constituent from *Callophyllum inophyllum* which is reported to have anti-inflammatory, anti coagulant, anti-bacterial and even anti-cancer activities. In this process the isolated callophyllolide was made to test on HaCaT and RAW264.7 cell viability and was tested by MTT assay. It is found that the calophyllolide was found to have no effect on cell viability and also reduced the fibrosis formation and effectively resulted in would closure in animal models without any weight loss. The calophyllolide was also checked whether it has the property of accelerating the process of wound healing through anti-inflammatory activity mechanism. From those findings it is shown that the calophyllolide have a effect of wound healing in experimental models.

Kofi Annan et al.,(2008) performed the anti-oxidant and anti-bacterial activity of *Ficus asperifolia* and *Gossypium arboreum* by preparing their extracts. The extracts were prepared by collecting 30g of the sample and was introduced onto an cellulose thimble and was extracted for 48 hours. The anitoxidant and anti-bacterial assays were also performed. Microorganism innocula was prepared from the 24hr Mueller-Hinton broth and the suspensions were adjusted to 10⁵ CFU. The Minimal Inhibitory Concentration(MIC) was predicted based on an micro-well diffusion method. Anti-oxidant assay was predicted on fibrobast cell lines in which the cells were treated with different concentration of extracts overnight and then they werr exposed to 10⁻⁴M hydrogen peroxide and further incubated for 3 hours at 37°C. Catalase was used as a positive control throughout the process. The cell lines were then stained with neutral red and was observed for any damage in the cell lines.

Lata Nuka et al., (2010) had used the plant methanolic extract of *E. crasspies* to predict the wound healing activity of water hyacinth. In this process the wound healing properties were tested on rats by preparing a gel matrix (10% and 15% of extract with the gel matrix ointment) and the wound healing activity was compared with respect to regular ointment. The gel matrix suspended with the plant extract had shown greater activity when compared to the standard (regular ointment) and with increase in concentration increases its effect considerably higher than before.

Venapani Dubey et al., (2010) have identified the phytochemical properties and therapeutic activities of *E. crassipes*. The collected samples were powdered and soaked in distilled water for 12 hours. The extracts were filtered using whatman filter paper and used for tests. They have tested the plant samples tannins, pholobatannin, saponin, steroid, terpenoid, alkaloid,flavanoid, phenol,quinone, anthraquinone and cardiac glycosides. All the tests that have been performed showed positive results predicting the presence of such phytochemicals in *E. crassipes*.

Renu solanki et al., (2011) had explained about the scaling up of plant extracts if they were to be developed into an novel product. One of the methods includes the development of gel matrix in which the plant extract was entrapped. The gel matrix was made up of 15% w/w polyethylene glycol-150,then 37.4-45% w/w ethoxydiglycol, 1-6% w/w polysorbate surfactant and a biocompartible liquid.

Ranjit singh et al., (2012) explained about the preparation of methanoloic extract of *Desmodium gyrans* in which the shade dried leaves leaves were extracted with the help of soxhlet apparatus and then the extracts were evaporated in rotary vacumn evaporator and from the extracted samples, the antimicrobial and phytochemical screenings were performed. The wound healing studies were performed on *Orchtolacus sp* in which a wound was created and 0.5g of neomycin was added. In one rabbit, 1g of *Desmodium gyrans* was used to treat as it was applied over the region where the wound was created and it was observed for 7 days. The extract showed excellent activity in clearing the wound.

Abhay K. Pandey et al., (2014) performed the invitro anti-oxidant, anti-bacterial and cytotoxic activity and invivo effect of leaf extracts of *E. crassipes* and *Syngonium podophyllum*. The phenolic contents of the prepared extracts were determined by dissolving the extracts with DMSO solution and the absorbance

was measured at 650nm against blank using spectrophotometer and the antimicrobial activity was performed against *Bacillus cerus, Streptococcus mutans, Proteus vulgaris* and *Salmonella typhi*. The plates were then saturated using DMSO and was incubated at 37°C for 24 hours. Ampiciilin was used as positive control and the growth were recorded. The plant extract showed excellent inhibitory activity similar/more than the control that was used.

Lalitha et al., (2014) experimented on predicting the antimicrobial activity of E. crassipes. The ethyl acetate extract of E. crassipes was prepared and the extract was initially subjected to sonication, dipping and homogenization for 1hour and the anti-bacterial studies was initially performed on Corneybacterium strain. The antimicrobial studies were done by using disk diffusion method in which a sterile swab was introduced onto an previously developed inoculum and they were left to dry at room temperature with their lid closed. The plate was tehn divided into two quadrants in which the extracted samples were added on one column and ciprofloxacin was added to other column. The plates were then placed on refrigerator at 4°C for 1hour and then incubated at 37°C for 24 hours. The ZOI was then measured. No bacterial growth was observed on the extract coated sample thereby showing its antimicrobial ability.

F.Khosravitabar et al., (2017) have performed the extraction of *Achillea eriophora* by the performing the process of maceration in which the grinded dried leaves of plants were extracted with methanol (1:20 W/V) and the extract was then filtered using normal filter paper and then it was made to evaporate under vacuum to become a powdered extract.

Tyagi Tulika et al., (2017) The studies that they performed on the plant *E. crassipes* have found that the plant had various phytochemical properties such as phenoloic compounds, alkaloids sterols and glycosides respectively. Also by performing paper disk diffusion assay, they have also found that the plant

species tend to have high antimicrobial activity and it is also found that the MEX of *E. crassipes* tend to show better wound healing activity in which the extracts were developed into an ointment (10% and 15% w/w of leaf extract in the ointment) and was investigated in animal model (rat) and it tend to show good wound healing activity.

Samuel Mesfin et al.,(2018) worked on various phtochemical tests for checking the phytochemical properties of the *E. crassipes*. The tests include wagner's test, Alkali reagent test, Ferric chloride test, Foam test, Chloride test, Tannins test to predict the phytochemical activity of the *E. crassipes*. The results were found to be positive on all the tests showing such phyochemicals were present within the plant system with various therapeutic properties.

Agung Krismariono et al., (2019) performed the anti-bacterial activity of E. crassipes by preparing the ethanoloic extract of the leaves by the process of maceration and the anti-bacterial activity is identified. Inhibition activity test was performed in which serial dilution of plant extracts were performed on various concentrations ranging from 100%, 50%, 25%, 12.5%, 6.25%, 3.125%, 1.56% 0.78%. and In each test tube 1ml of *Aggregatibacter* actinomycetemcomitans was added and was incubated at 37°C for 24 hours. It was then streaked with MHA agar and then incubated for further 24 hours. In the concentrations of 100%, 50%, 25%, 12.5% and 6.25%, there was no or less growth of bacteria in that concentration thereby showing excellent anti-bacterial activity.

Abira Khan et al., (2018) performed antimicrobial efficiency and phytochemical analysis of three aquatic plants namely *E. crassipes, Pistia stratiotes* and *Spirodela polyrrhiza*. The extract of *E. crassipes* was prepared from isolating the dried leaves of the sample and and was prepared in 95% ethanol and 95% ethyl acetate(20g of each in 200mL solvent) and filtered using

whatman filter paper and the extracts were finally concentrated using rotary evaporator and then store at -10°C. The antimicrobial assay was performed against *Staphylococcus aureus*, *Salmonella typhi* and *Lactobacillus spp* and compared their efficiency against standard antibiotics and Well diffusion test was done to confirm the results. The inhibitory effects of ethanol and ethyl acetate extracts was calculated by measuring the activity index.

CHAPTER 3

MATERIALS AND METHODOLOGY

3.1SAMPLE COLLECTION:

E. crassipes an aquatic weed was collected during the month of December, 2020 at madhuravoyal, chennai. The leaves of *E. crassipes* were cut removed from the stem. They were washed, shade dried and grinded to powered using mortar and pestle.

Figure 3.2 Leaf- Shade Dried and Powdered

3.2 PREPARATION OF EXTRACTS:

The phytochemicals were extracted using Cold Percolation technique (**Kalirajan et al., 2012**). Powered test sample of 30g were taken in an conical flask and absolute methanol (gifted from Cavins care pvt. Ltd) was added and kept in a orbital shaker at 37 $^{\circ}$ for 3 days. The extract was filtered using whatman filter paper and stored for later use.

Figure 3.3 Filtered Extract

Figure 3.4 Stored Extract

3.3 PHYTOCHEMICAL TEST ASSAY:

The phytochemical test were conducted with reference to the work by (Sahira Banu et al., 2015)

3.3.1 ALKANOIDS (Wagner's test):

1ml of the test extract and 2ml of Wagner's reagent (1.27g of iodine +2g of potassium iodide) was added in a test tube. Appearence of reddish brown colour indicates the presence of alkaloids.

3.3.2 CARBOHYDRATE (Fehling's test):

1ml of extract was boiled with fehlings solution A & B. The formation of red precipitate indicates the presence of carbohydrate.

3.3.3 GLYCOSIDES (Born trager's test):

2ml of test extract was added to 3ml of chloroform and once the chloroform layer separated, 10% ammonium solution was added. The appearence of pink colour indicates the pink colour.

3.3.4 SAPONINS (foam test):

1 ml of test extract was added to 2 ml of didtilled water. Formation of foam indicates the presence of foam.

3.3.5 PROTEINS (Biuret test):

To the 2 ml of test extract few ml of 2% copper sulfate solution was added, followed by addition of 1 ml ethanol along with potassium hydroxide pellets. Appearance of pink colour on ethanolic layer indicates the presence of proteins.

3.3.6 AMINO ACIDS: (Ninhydrin test):

2ml of test extrct was added to 2ml of ninhydrins (10 mg ninhydrin in 200 ml acetone). Appearance of purple colour indicates the presence of amino acids.

3.3.7 PHENOLIC COMPOUND (Ferric chloride test):

2 ml of distilled water and few drops of 5% ferric chloride solution was added to 1 ml of extract. Appearance green colour indictes the presence of phenolic compunds.

3.3.8 STEROIDS:

2 ml of chloroform was added to 1 ml of test extract, followed by addition of few drops of acetic acid and concentrated sulfuric acid. Appearance of blue green colour indicates the presence of steroids.

3.3.9 FLAVANOIDS:

1 ml of test extract was added to 2 ml of ammonia. Appearance of yellow colour indicates the presence of flavonoids.

3.4 ANTI-BACTERIAL ASSAY:

The anti-bacterial activity of the sample was tested using agar well diffusion assay against the Gram-positive bacteria, such as *Enterococcus sp.* and Gramnegative bacteria, such as Pseudomonas *aeruginosa, Enterobacter cloacae*, *Escherichia coli*. The pathogenic strains were obtained from wound and pus of patients, billroth hospital, Chennai. The freshly cultured pathogens were swabbed on nutrient agar plates and five equidistant wells were made using a sterilized cork borer. The wells were loaded with different concentrations (25, 50, 75, 100 μ L) of sample. Gentamycin was also added in separate well as positive control. The plates were incubated at 37°C for 24 hrs and the zone of inhibition (ZOI; mm) appearing around the wells was recorded (Mosachristas et al., 2018).

Figure 3.5 E. cloacae

Figure 3.7 Enterococcus sp.

Figure 3.6 E. coli

Figure 3.8 P. aeruginosa

3.5 ANTI-OXIDANT ASSAY:

3.5.1 DPPH radical scavenging assay

In order to evaluate the anti-oxidant potential through free radical scavenging by the test samples, the change in optical density of DPPH radicals is monitored. According to Manzocco et al. (1998), the various concentrations of sample extract were mixed with 2 mL of DPPH solution (4 mM) and left in dark at room temperature. After 30 min, the absorbance is measured at 517 nm. The percentage of the DPPH radical scavenging is calculated using the equation as given below:

% inhibition of DPPH radical = Abs control – Abs sample x 100 / Abs control.

3.6 ANTI-INFLAMMATORY ASSAY:

3.6.1 Protein denaturation inhibition assay

Protein denaturation assay was done as decribed by (Jayasuriya et al., 2017) Egg albumin was the protein sample used here. In 1000 μ L of methanolic extract, 200 μ L of egg albumin and 1400 μ L of phosphate buffered saline were added and incubated for 37 ° C for 15 min. Instead of methanolic extract, distilled water was used as negative control and ibuprofen (Brufen, Abbott India Ltd.) was used as positive control. The final mixture was heated at 70° C for 5 min in a preheated water bath. After cooling, the absorbances were measured at 660 nm.

% Inhibition of denaturation = $(1-A1/A2) \times 100$

Where A1 = absorbance of sample (test sample or positive control) and A2 = absorbance of negative control.

3.6.2 Heat induced hemolysis assay

i. Preparation of Erythrocyte Suspension: Erythrocyte suspension was prepared according to the method described in (Shin de et al., 1999), with some modifications. Whole human blood was collected from a healthy human subject. The blood was centrifuged at 3000 rpm for 5 min in heparinized centrifuge tubes, and washed three times with equal volume of normal saline (0.9% NaCl). After the centrifugation, the blood volume was

measured and reconstituted as a 10% (v/v) suspension with isotonic buffer solution (10 mM sodium phosphate buffer pH 7.4). Composition of the buffer solution (g/L) used was NaH2PO4 (0.2), Na2HPO4 (1.15), and NaCl (9.0).

ii. This test was carried out as described by (Gunathilake et al., 2018). Briefly, 0.05 mL of blood cell suspension and 0.05 mL of methanolic extracts of leaves were mixed with 2.95 mL phosphate buffer (pH 7.4). The mixture was incubated at 54 °C for 20 min in a shaking water bath. After the incubation, the mixture was centrifuged (2500 rpm for 3 min), and the absorbance of the supernatant was measured at 540 nm using a UV/VIS spectrometer (Optima, SP-3000, Tokyo, Japan). Phosphate buffer solution was used as a control for the experiment. The level of haemolysis was calculated using the following equation based on the (Okoli et al., 2008):

% inhibition of hemolysis = $100 \times (1 - A2/A1)$,

where A1 = absorption of the control, and A2 = absorption of test sample mixture.

3.7 GAS CHROMATOGRAPHY-MASS SPECTROMETRY:

The crude extract of E. crassipes was sent to Sophisticated Instrumentation facility, School of advanced sciences, Chemistry division, VIT university, Vellore for GC-MS analysis. During GC-MS analysis, the test extract was injected into a GC which volatiles the sample, then seperates the various components based on its size and polarity. The separated components then go into mass selective detector and the produced spectrum was correlated with standard reference libraries for the identification of the components (Jennifer Mathias, 2014).

3.7.1 GC-MS INFORMATION:

Make	: Perkin Elmer
GC model	: clarus 680
Mass Spectrometer	: clarus 600 (EI)
Software	: TurboMass ver 5.4.2
Library year	: NIST-2008

3.7.2 INSTRUMENT ACQUISITION PARAMETERS: Oven: Initial temp 60°C for 2 min, ramp 10°C/min to 300°C, hold 6 min, Total Run Time: 32.00 mint InjAauto=260°C, Volume=1 μL, Split=10:1, Flow Rate: 1 mL/mint Carrier Gas=He, Column=Elite-5MS (30.0m, 0.25mmID, 250μm df)

```
3.7.3 MASS CONDITION (EI):
Solvent Delay=2.00 min,
Transfer Temp=230°C,
Source Temp=230°C,
Scan: 50 to 600Da.
```

3.7.4 GC-MS analysis:

The Clarus 680 GC was used in the analysis employed a fused silica column, packed with Elite-5MS (5% biphenyl 95% dimethylpolysiloxane, 30 m × 0.25 mm ID × 250µm df) and the components were separated using Helium as carrier gas at a constant flow of 1 ml/min. The injector temperature was set at 260°C during the chromatographic run. The 1µL of MEX of *E. crassipes* was injected into the instrument. The oven temperature was initially held at 60°C for 2 min, followed by an increase in temperature at the rate of 10°C min–1 till it attained 300°C, where it was held for 6 min. The mass detector conditions were set with transfer line temperature at 230°C, ion source temperature at 230 °C; and ionization mode electron impact at 70 eV, along with a scan time of 0.2 sec and scan interval of 0.1 sec. The fragments from 40 to 600 Da were analysed. The spectrums of the components were compared with the database of spectrum of known components stored in the GC-MS NIST (2008) library.

3.8 WOUND HEALING ASSAY:

3T3 Swiss albino mice embryo cells were seeded in 6-well plates (8 × 10^5 cells/well) and grown until reached a confluence of 90%, in the optimum culture conditions. In the middle of cell monolayer, a scratch was made by a P10 pipette tip, to mimic a wound, and cell debris were removed by washing with fresh medium. The wound was exposed for 50 µg/mL of MEX of *E. crassipes* for 24-72 hours at 37°C in a humidified atmosphere of 5% CO₂. The cell grown in extract-free medium were used as control. Scratch wound closure was analyzed under the inverted microscope (Magnus INVI, Noida) equipped with a digital CCD camera, by acquiring digital images at different time 0th (T0), 2^{nd} (T1), 3^{rd} (T2) and 4^{th} (T3) days (static imaging). In the static imaging modality, the closure of the scratch was quantified, as recently described (Felice *et al.*, 2015), by measuring the difference between the wound width at T0 and T1/T2/T3, using the ImageJ processing software [http://rsbweb.nih.gov/ij/].

CHAPTER 4

RESULTS AND DISCUSSION

4.1 PHYTOCHEMICAL TESTS:

The phytochemical test were conducted, according to Sahira Banu et al (2015). The observations were recorded and tabulated as below. Similar test results were found in the phytochemical test conducted by Tyagi Tulika et al. (2015), where they additionally got positive observations for Alkaloids and Terpeniods test with MEX of *E. crassipes*. Also the presence of Phenolic and Flavonoid compounds may support the fact that the plant extract may be used of its medicinal value.

Figure 4.1 Phytochemical Test

S. No	Phytochemical	E. crassipes
1	Alkanoids	-
2	Carbohydrate	+
3	Gylcosides	-
4	Saponins	+
5	Proteins	-
6	Amino acids	-
7	Phenolic compounds	+
8	Steroids	+
9	Flavonids	+
10	Terpenoids	-

Table 4.1 Phytochemical estimation of methanolic extract of *E. crassipes*.

4.2 ANTI-BACTERIAL ASSAY:

The bacterial plates after 24 hours from plating and adding the extract through well diffusion, were observed to measure the ZOI created by the extract of *E. crassipes* against the bacterial strains. The extract shows more inhibition to *P. aeruginosa* and *Enterococcus sp* than to *E. cloacae* and *E. coli*. The zones of inhibition were measured in mm and were tabulated as in table 4.2.

(a) *E. cloacae*

(b) Enterococcus sp

(c) P. aeruginosa

(d) E. coli

Figure 4.2 ZOI of methanolic extract of *E. crassipes* against (a) *E.cloacae*, (b) *Enterococcus sp.*, (c) *P.aeruginosa* and (d) *E.coli*.

TABLE 4.2 Representing the Zone of inhibition of various bacterial strains treated against MEX of *E. crassipes*.

Organisms	ZOI (mm in diameter)						
	25 µl	50 µl	75 µl	100 µl	Positive Control		
P. aeruginosa	06	10	13	15	22		
E. coli	-	-	03	04	20		
E. cloacae	04	06	07	09	20		
Enterococcus sp.	04	09	10	14	16		

Figure 4.3 ZOI of various bacterial strains treated against MEX of *E. crassipes*

4.3 ANTI-OXIDANT ASSAY:

E.crassipes have well known anti-oxidant property that ensure its medical importance for using it for skin diseases and wound healing. It was found that Gallic acid (phenolic) and Rutin (flavonoids) were rich in *E. crassipes*, (**Ganesh et al., 2018**) which is responsible for their anti-oxidant and wound healing properties. Also found that, Hydroponical exposure of *E.crassipes* to various concentration of Ag, Cd, Cr, Cu, Hg, Ni, Pb And Zn for 21 days may positively induce their anti-oxidant property. From the test, it was observed that 20, 40, 60, 80 and 100 (μ g/mL) could have inhibition to oxidation about 9.80, 19.65, 41.65, 64.48 and 81.04 (%) respectively.

Figure 4.4 Anti-Oxidant Assay - DPPH Method

Concentration (µg/mL)	Ι	II	Average	Inhibition (%)
Control	0.937	0.941	0.939	0
20	0.845	0.849	0.847	9.80
40	0.757	0.752	0.7545	19.65
60	0.555	0.55	0.5525	41.16
80	0.331	0.336	0.3335	64.48
100	0.177	0.179	0.178	81.04

Table 4.3 Anti-oxidant	activity	of <i>E</i> .	crassipes
------------------------	----------	---------------	-----------

•

4.4 ANTI-INFLAMMATORY ASSAY:

The anti-inflammatory test was done in reference to *Jayasuriya et al.* (2017). Two different tests were conducted for determining the anti-inflammatory property of MEX of *E. crassipes*. In Protein denaturation inhibition assay, the % inhibition of denaturation was found to be 24% and in Heat induced haemolysis method, the % inhibition of haemolysis was calculated as 15.5%.

4.4.1 PROTEIN DENATURATION INHIBITION ASSAY:

% Inhibition of denaturation = $(1-A1/A2) \times 100$

Where A1 = absorbance of sample (test sample or positive control) and A2 = absorbance of negative control.

we found that,

% Inhibition of denaturation = (1 - 1.69 / 2.00) * 100

= 24%

Figure 4.5 Protein denaturation

4.4.2 HEAT INDUCED HEMOLYSIS:

% inhibition of hemolysis = $100 \times (1 - A2/A1)$,

where A1 = absorption of the control, and A2 = absorption of test sample mixture. We found that,

% inhibition of hemolysis = (1 - 1.52 / 2.00)

= 15.5%

Figure 4.6 Heat induced hemolysis

4.5 GAS CHROMATOGRAPHY-MASS SPECTOMETRY :

The resulting spectrums of the components were compared with the database of spectrum of known components stored in the GC-MS NIST (2008) library. These results were shown as follows

Figure 4.7 GC - E. crassipes -MEX

Figure 4.8 Mass spectrum (RT-19.110) of E. crassipes - MEX

Figure 4.9 Mass spectrum (RT-27.283) of E. crassipes - MEX

Figure 4.10 Mass spectrum (RT-27.498) of E. crassipes - MEX

Figure 4.11 Mass spectrum (RT-27.864) of E. crassipes - MEX

										, 20 - re	0-2020 + 15:20
WATERH	YACINTH-(20E	:S-0116)- 5	J56 (28.089)								2.16
100 _∃	13 07 0	2 01 405									2.10
%	45 6/ 8	3 91 105	133 147 405 185	207		281				12.2	22.2
04,,,,	, , III., , III., , III., , III., , , III	Արիկեստերաներ	100 147 105	193 221	249 267	297 323	341 355 369 38	37401 416 429	445	484	564
R:743	Derson (Derson) i	Nist 2	193: 3H-CYCLO	DECA[B]FU	RAN-2-ONE,	4,9-DIHYDRO	XY-6-METHYL-	3,10-DIMETH	YLENE	-3A,4,7,8,9,10,11	11A-OCTAHYDRO
100	41										Н
100	39 55 00	95									
%	6979	91/ 117	135 149 163 18	3 200 22	8						
04+++	•• •••••••••••••••••••••••••••••••••••	1, 1/41, 1/41, 1/4	1 ¹¹ 1 ¹¹ 1 ¹ 1 ¹ 1 ¹ 1 ¹								
R:721	0	Nist 4	4629: CYCLOHE	EXANE, 1,1'-	(2-ETHYL-1,	3-PROPANEL	DIYL)BIS-				
100-	41 55 8	3									н
%	39 43 69	97	400 151	207							
0	Y	11 12	5139 131		236						
U III	53	103	153	203	253	303	353	403	453	503	553
12.20.4	1								100		
15:20:41	1										
	1										
	OH										
	OH										
1	\sim										
/											
/	V										
1											
	=										
	_										
		> o									
		> o									
		o									
	НО) o									
	НО	> o									
	НО	> o	Ó								
	НО	o	`0								
	НО	o	Ô								
	HO	0	ò								
	НО	0	`0						WAT	TERHYACIN	VTH-(20ES-011
Hit	HO	o	O	e				N	WA7	TERHYACIN Formula	VTH-(20ES-011 CAS
Hit	HO	0 0 1 1 1 1 19	O Compound Name 4-PENTADECYN	e NE. 15-CHLOR	0.			N	WA]	Formula C15H27CI	VTH-(20ES-011 CAS 56554-70-2
Hit 1 2	HO REV 750 743	0 0 107 519 515	O Compound Name 4-PENTADECYN 3H-CYCLODECA	e NE, 15-CHLOR	0- 0NE 4 9-DIHY	DROXY-6-MFTF		N LENE-	WA7	Formula C15H27CI C15H20C4	VTH-(20ES-011 CAS 56554-70-2 900310-90-7
Hit 1 2 3	HO REV 750 743 721	0 tor 519 515 400	O Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE	e NE, 15-CHLOR A[B]FURAN-2-(: 11/:/2-FTHY	0- ONE, 4,9-DIHY	DROXY-6-METH	tyL-3,10-DIMETHY	LENE-	WA7	Formula C15H27CI C15H2004 C17H32	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0
Hit 1 2 3 4	HO REV 750 743 721 748	0 for 519 515 490 489	O Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE	e NE, 15-CHLOR A[B]FURAN-2-(;, 1,1'-(2-ETHY	0- ONE, 4,9-DIHY L-1,3-PROPAN	DROXY-6-METH (EDIYL)BIS- AMEDIYU IBIS-	łYL-3,10-DIMETHY	N	WA7 .W. .42 .64 .36 .22	Formula C15H27Ci C15H20O4 C17H32 C16H30	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2882-09-4
Hit 1 2 3 4 5	HO REV 750 743 721 718 745	0 for 519 515 490 488 470	O Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE CYCLOHEXANE TPANS TPANM	e NE, 15-CHLOR A[B]FURAN-2-(5, 1,1'-(2-NETH ATIC ACID	0- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/	DROXY-6-METH (EDIYL)BIS- 4NEDIYL)BIS-	łYL-3,10-DIMETHY	LENE-	WA7 .W. 442 164 136 122 128	Formula Formula C15H27CI C15H20O4 C17H32 C16H30 C19H20O4	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4
Hit 1 2 3 4 5	HO REV 750 743 721 718 715	0 10 10 10 10 10 10 10 10 10 1	O Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE TRANS-TRAUM/	e NE, 15-CHLOR A[B]FURAN-2-(;, 1,1'-(2-NETH ATIC ACID ATIC ACID	0- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/	DROXY-6-METH (EDIYL)BIS- ANEDIYL)BIS- BIS- BIS-TRUELLOPE	IYL-3,10-DIMETHY	LENE-	WA7 .W. 442 164 136 122 128	Formula C15H27CI C15H27CI C15H2004 C17H32 C16H30 C12H2004 C12H2004	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4 2027-02
Hit 1 2 3 4 5 6 7	HO REV 750 743 721 718 715 715 715	0 for 519 515 490 488 470 518	O Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE TRANS-TRAUMA 1,3-DIOXOLANE	e NE, 15-CHLOR A[B]FURAN-2-(5, 1,1'-(2-ETHY ATIC 4-METH ATIC ACID 5, 4-PENTYL-5-	0- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/ -PROPYL-2,2-F	DROXY-6-METH IEDIYL)BIS- ANEDIYL)BIS- BIS(TRIFLUORC	HYL-3,10-DIMETHY METHYL)-, CIS-	LENE-	WA7 .W. .42 .64 .36 .22 .28 .22 .28 .22	Formula Formula C15H27CI C15H2004 C17H32 C16H30 C12H2004 C13H2004 C13H2002F6	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4 38274-68-9 5274-68-9
Hit 1 2 3 4 5 6 7	HO REV 750 743 721 718 715 715 715 701	0 tor 519 515 490 488 470 518 476	O Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE TRANS-TRAUM/ 1,3-DIOXOLANE CYCLOHEXANE	e NE, 15-CHLOR A[B]FURAN-2-(5, 1,1'-(2-ETHY 4, 11'-(2-METH ATIC ACID 5, 4-PENTYL-5- 5, 1,1'-(2-PROP	0- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/ -PROPYL-2,2-P VYL-1,3-PROP/	DROXY-6-METH IEDIYL)BIS- ANEDIYL)BIS- BIS(TRIFLUORC ANEDIYL)BIS- DIS(TRIFLUORC	HYL-3,10-DIMETHY METHYL)-, CIS-	LENE-	WA7 .W. 442 464 436 422 228 422 50	Formula Formula C15H27CI C15H2004 C17H32 C16H30 C12H2004 C12H2004 C13H2002F6 C18H34	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4 38274-68-9 55030-21-2
Hit 1 2 3 4 5 6 7 8	HO REV 750 743 721 718 715 715 701 700	0 tor 519 515 490 488 470 518 476 476	O Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE TRANS-TRAUM/ 1,3-DIOXOLANE CYCLOHEXANE 1,3-DIOXOLANE	e NE, 15-CHLOR A[B]FURAN-2- 5, 1,1'-(2-ETHY ATIC ACID 5, 4-PENTYL-5- 5, 1,1'-(2-PROP 5, 4-PENTYL-5-	0- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/ -PROPYL-2,2-F PROPYL-2,2-F	DROXY-6-METH IEDIYL)BIS- ANEDIYL)BIS- BIS(TRIFLUORC ANEDIYL)BIS- BIS(TRIFLUORC	HYL-3,10-DIMETHY METHYL)-, CIS- METHYL)-, TRANS	LENE-	WA7 .W. 442 464 436 422 228 422 50 422	TERHYACIN Formula C15H27CI C15H2004 C17H32 C16H30 C12H2004 C13H2002F6 C18H34 C13H2002F6	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4 38274-68-9 55030-21-2 38274-69-0
Hit 1 2 3 4 5 6 7 8 9	HO REV 750 743 721 718 715 701 700 694	0 for 519 515 490 488 470 518 476 413	O Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE TRANS-TRAUM/ 1,3-DIOXOLANE CYCLOHEXANE 1,3-DIOXOLANE CHOLESTA-6,22	e NE, 15-CHLOR A[B]FURAN-2- 5, 1,1'-(2-ETHY ATIC ACID 5, 4-PENTYL-5- 5, 1,1'-(2-PROP 5, 4-PENTYL-5- 2,24-TRIENE, 4	0- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/ -PROPYL-2,2-f -PROPYL-2,2-f 4,4-DIMETHYL-	DROXY-6-METH IEDIYL)BIS- ANEDIYL)BIS- BIS(TRIFLUORC ANEDIYL)BIS- BIS(TRIFLUORC	HYL-3,10-DIMETHY METHYL)-, CIS- METHYL)-, TRANS	LENE-	WA7 1.W. 142 164 136 122 128 122 150 122 194	TERHYACIN Formula C15H27CI C15H2004 C17H32 C16H30 C12H2004 C13H2002F6 C18H34 C13H2002F6 C29H46 C29H46	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4 38274-68-9 55030-21-2 38274-69-0 900128-66-9
Hit 1 2 3 4 5 6 6 7 8 9 10	HO REV 750 743 721 718 715 701 700 694 691	0 for 519 515 490 488 470 518 476 413 479	O Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE TRANS-TRAUM/ 1,3-DIOXOLANE CYCLOHEXANE 1,3-DIOXOLANE CHOLESTA-6,22 1,9-DICHLORON	e NE, 15-CHLOR A[B]FURAN-2- 5, 1,1'-(2-ETHY 4,11'-(2-METH ATIC ACID 5, 4-PENTYL-5- 5, 1,1'-(2-PROP 5, 4-PENTYL-5- 2,24-TRIENE, 4 NONANE	0- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/ -PROPYL-2,2- PROPYL-2,2- 4,4-DIMETHYL-	DROXY-6-METH IEDIYL)BIS- ANEDIYL)BIS- BIS(TRIFLUORC ANEDIYL)BIS- BIS(TRIFLUORC	HYL-3,10-DIMETHY METHYL)-, CIS- METHYL)-, TRANS	LENE-	WA7 1.W. 142 164 136 122 128 122 150 122 194 96	TERHYACIN Formula C15H27Cl C15H27Cl C15H2004 C17H32 C16H30 C12H2004 C13H2002F6 C18H34 C13H2002F6 C29H46 C29H46 C9H18Cl2	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4 38274-68-9 55030-21-2 38274-69-0 900128-66-9 821-99-8
Hit 1 2 3 4 5 6 7 8 9 10 11	HO REV 750 743 721 718 715 701 700 694 691 691	0 for 519 515 490 488 470 518 476 413 479 445	O Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE TRANS-TRAUM/ 1,3-DIOXOLANE CYCLOHEXANE 1,3-DIOXOLANE CHOLESTA-6,22 1,9-DICHLORON 9-HEXADECENC	e NE, 15-CHLOR A[B]FURAN-2- 5, 1,1'-(2-ETHY ATIC ACID 5, 4-PENTYL-5- 5, 1,1'-(2-PROP 5, 4-PENTYL-5- 2,24-TRIENE, 4 NONANE DIC ACID, PHE	0- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/ -PROPYL-2,2- PROPYL-2,2- 4,4-DIMETHYL ENYLMETHYL	DROXY-6-METH IEDIYL)BIS- ANEDIYL)BIS- BIS(TRIFLUORC ANEDIYL)BIS- BIS(TRIFLUORC - ESTER, (Z)-	HYL-3,10-DIMETHY METHYL)-, CIS- METHYL)-, TRANS	LENE-	WA7 1.W. 164 122 128 122 128 122 129 122 194 96 144	TERHYACIN Formula C15H27CI C15H27CI C15H2004 C17H32 C16H30 C12H2004 C13H2002F6 C18H34 C13H2002F6 C29H46 C	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4 38274-68-9 55030-21-2 38274-69-0 900128-66-9 821-99-8 77509-01-4
Hit 1 2 3 4 5 6 7 8 9 10 11 12	HO REV 750 743 721 718 715 715 701 700 694 691 691 691 690	0 for 519 515 490 488 470 518 476 413 479 445 392	Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE TRANS-TRAUM/ 1,3-DIOXOLANE CYCLOHEXANE 1,3-DIOXOLANE CHOLESTA-6,22 1,9-DICHLORON 9-HEXADECENC STIGMASTERYL	e NE, 15-CHLOR A[B]FURAN-2- 5, 1,1'-(2-ETHY ATIC ACID 5, 4-PENTYL-5- 5, 1,1'-(2-PROP 5, 4-PENTYL-5- 2,24-TRIENE, 4 NONANE DIC ACID, PHE L TOSYLATE	0- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/ -PROPYL-2,2- PROPYL-2,2- 4,4-DIMETHYL ENYLMETHYL	DROXY-6-METH IEDIYL)BIS- ANEDIYL)BIS- BIS(TRIFLUORC ANEDIYL)BIS- BIS(TRIFLUORC - ESTER, (Z)-	HYL-3,10-DIMETHY METHYL)-, CIS- METHYL)-, TRANS	LENE-	WA7 1.W. 164 122 128 122 128 122 129 129 129 129 129 129 129 129 129	TERHYACIN Formula C15H27CI C15H27CI C15H2004 C17H32 C16H30 C12H2004 C13H2002F6 C18H34 C13H2002F6 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C3H3602 C36H5403S	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4 38274-68-9 55030-21-2 38274-69-0 900128-66-9 821-99-8 77509-01-4 53139-42-7
Hit 1 2 3 4 5 6 7 8 9 10 11 12 13	HO REV 750 743 721 718 715 715 701 700 694 691 691 691 690 686	0 for 519 515 490 488 470 518 476 413 479 445 392 368	Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE TRANS-TRAUM/ 1,3-DIOXOLANE CYCLOHEXANE 1,3-DIOXOLANE CHOLESTA-6,22 1,9-DICHLORON 9-HEXADECENC STIGMASTERYL 1,4-DIBROMO-2-	e NE, 15-CHLOR A[B]FURAN-2-(5, 1,1'-(2-ETHY ATIC ACID 5, 4-PENTYL-5- 5, 1,1'-(2-PROP 5, 4-PENTYL-5- 2,24-TRIENE, 4 NONANE DIC ACID, PHE L TOSYLATE -CYCLOHEXYI	0- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/ -PROPYL-2,2- PROPYL-2,2- PROPYL-2,2- TAJ -PROPY	DROXY-6-METH IEDIYL)BIS- ANEDIYL)BIS- BIS(TRIFLUORC ANEDIYL)BIS- BIS(TRIFLUORC - ESTER, (Z)-	(YL-3,10-DIMETHY METHYL)-, CIS- METHYL)-, TRANS	LENE-	WA7 1.W. 442 464 4264 4264 426 422 428 422 428 422 429 429 44 466 444 466 496	CIERHYACIN Formula C15H27CI C15H27CI C15H2004 C17H32 C16H30 C12H2004 C13H2002F6 C18H34 C13H2002F6 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C36H5403S C10H18Br2	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4 38274-68-9 55030-21-2 38274-69-0 900128-66-9 821-99-8 77509-01-4 53139-42-7 71052-99-8
Hit 1 2 3 4 5 6 7 8 9 10 11 12 13 14	HO REV 750 743 721 718 715 715 701 700 694 691 691 691 690 686 683	0 for 519 515 490 488 470 518 476 413 479 445 392 368 450	Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE TRANS-TRAUM/ 1,3-DIOXOLANE CYCLOHEXANE 1,3-DIOXOLANE CHOLESTA-6,22 1,9-DICHLORON 9-HEXADECENC STIGMASTERYL 1,4-DIBROMO-2- 1-NAPHTHALEN	e NE, 15-CHLOR A[B]FURAN-2- 5, 1,1'-(2-ETHY ATIC ACID 5, 4-PENTYL-5- 5, 1,1'-(2-PROP 5, 4-PENTYL-5- 2,24-TRIENE, 4 NONANE DIC ACID, PHE L TOSYLATE -CYCLOHEXYI IEPROPANOL	0- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/ -PROPYL-2,2-F PROPYL-2,2-F PROPYL-2,2-F A,4-DIMETHYL ENYLMETHYL ENYLMETHYL LBUTANE , ALPHA-ETH	DROXY-6-METH IEDIYL)BIS- ANEDIYL)BIS- BIS(TRIFLUORC ANEDIYL)BIS- BIS(TRIFLUORC - ESTER, (Z)- IYLDECAHYDRC	(YL-3,10-DIMETHY METHYL)-, CIS- METHYL)-, TRANS D-5-(HYDROXYMET	LENE-	WA7 1.W. 1242 1264 1222 128 1222 128 1222 1294 1222 194 196 144 1666 196 108	CERHYACIN Formula C15H27CI C15H27CI C15H2004 C17H32 C16H30 C12H2004 C13H2002F6 C18H34 C13H2002F6 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C36H5403S C10H18Br2 C20H3602	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4 38274-68-9 55030-21-2 38274-69-0 900128-66-9 821-99-8 77509-01-4 53139-42-7 71052-99-8 72401-52-6
Hit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	HO REV 750 743 721 718 715 715 701 700 694 691 691 691 691 691 691 691 691 693 686 683 683	0 for 519 515 490 488 470 518 476 413 479 445 392 368 450 448	Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE CYCLOHEXANE 1,3-DIOXOLANE CYCLOHEXANE 1,3-DIOXOLANE CHOLESTA-6,22 1,9-DICHLORON 9-HEXADECENC STIGMASTERYL 1,4-DIBROMO-2- 1-NAPHTHALEN CYCLOPENTANI	e NE, 15-CHLOR A[B]FURAN-2- 5, 1,1'-(2-ETHY 5, 1,1'-(2-METH ATIC ACID 5, 4-PENTYL-5- 5, 1,1'-(2-PROP 5, 4-PENTYL-5- 2,24-TRIENE, 4 NONANE DIC ACID, PHE L TOSYLATE -CYCLOHEXYI IEPROPANOL, IE, 1,1'-(3-(2-C'	0- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/ -PROPYL-2,2-F PROPYL-2,2-F A,4-DIMETHYL ENYLMETHYL ENYLMETHYL LBUTANE , ALPHA-ETH YCLOPENTYLI	DROXY-6-METH IEDIYL)BIS- ANEDIYL)BIS- BIS(TRIFLUORC ANEDIYL)BIS- BIS(TRIFLUORC - ESTER, (Z)- IYLDECAHYDR(ETHYL)-1.5-PEN	(YL-3,10-DIMETHY METHYL)-, CIS- METHYL)-, TRANS D-5-(HYDROXYMET	LENE-	WA7 1.W. 1242 1264 1222 128 1222 128 1222 1294 1222 1294 1222 1294 1222 1294 1222 1294 1222 1294 1222 1294 1222 1296 1222 1296 1222 1296 1222 1296 1222 1296 1222 1296 1222 1296 1222 1296 1222 1296 1222 1296 1222 1296 1296	TERHYACIN Formula C15H27CI C15H27CI C15H2004 C17H32 C16H30 C12H2004 C13H2002F6 C18H34 C13H2002F6 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C29H46 C36H5403S C10H18Br2 C20H3602 C22H40	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4 38274-68-9 55030-21-2 38274-69-0 900128-66-9 821-99-8 77509-01-4 53139-42-7 71052-99-8 72401-52-6 55255-85-1
Hit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	HO REV 750 743 721 718 715 701 700 694 691 691 691 690 686 683 683 683 672	0 for 519 515 490 488 470 518 476 413 479 445 392 368 450 448 458	Compound Name 4-PENTADECYN 3H-CYCLODECA CYCLOHEXANE CYCLOHEXANE CYCLOHEXANE CYCLOHEXANE CYCLOHEXANE CYCLOHEXANE CYCLOHEXANE CYCLOHEXANE CYCLOHEXANE CYCLOHEXANE CYCLOHEXANE STIGMASTERYL 1,4-DIBROMO-2- 1-NAPHTHALEN CYCLOPENTANI 3-HEXEN-1-OL	e NE, 15-CHLOR A[B]FURAN-2- ; 1,1'-(2-ETHY 5, 1,1'-(2-ETHY ATIC ACID 5, 4-PENTYL-5- 2,24-TRIENE, 4 YONANE DIC ACID, PHE L TOSYLATE -CYCLOHEXY IEPROPANOL, IE, 1,1'-[3-(2-C' 2,5-DIMETHYI	O- ONE, 4,9-DIHY L-1,3-PROPAN IYL-1,3-PROP/ -PROPYL-2,2-F PROPYL-2,2-F A,4-DIMETHYL ENYLMETHYL IBUTANE , ALPHA-ETH YCLOPENTYLI L-, ACETATE. (DROXY-6-METH IEDIYL)BIS- ANEDIYL)BIS- BIS(TRIFLUORC - BIS(TRIFLUORC - ESTER, (Z)- YLDECAHYDR(ETHYL)-1,5-PEM (Z)-	IYL-3,10-DIMETHY METHYL)-, CIS- METHYL)-, TRANS D-5-(HYDROXYMET ITANEDIYLJBIS-	LENE-	WA7 1.W. 122 128 122 128 122 128 122 129 122 129 122 129 122 129 122 129 122 129 122 129 129	TERHYACIN Formula C15H27CI C15H27CI C15H2004 C17H32 C16H30 C12H2004 C13H2002F6 C18H34 C13H2002F6 C29H46 C9H48CI2 C23H3602 C36H5403S C10H18Br2 C20H3602 C22H40 C10H1802	VTH-(20ES-011 CAS 56554-70-2 900310-90-7 54833-34-0 2883-08-1 6402-36-4 38274-68-9 55030-21-2 38274-69-0 900128-66-9 821-99-8 77509-01-4 53139-42-7 71052-99-8 72401-52-6 55255-85-1 900132-12-5

Figure 4.12 Mass spectrum (RT-28.089) of E. crassipes - MEX

Figure 4.13 Mass spectrum (RT-28.179) of E. crassipes - MEX

Figure 4.14 Mass spectrum (RT-28.694) of E. crassipes - MEX

Figure 4.15 Mass spectrum (RT-28.774) of E. crassipes - MEX

Figure 4.16 Mass spectrum (RT-28.934) of E. crassipes - MEX

Figure 4.17 Mass spectrum (RT-29.354) of E. crassipes - MEX

Table 4.4 Proposed Retension Time, Compound, Molecular weight and molecular formula of MEX of *E. crassipes*

S.No.	RT	Compound	Mw	Formula
1.	19.110	16-HEPTADECENAL	252	C ₁₇ H ₃₂ O
2.	27.283	BICYCLO[4.1.0]HEPTANE, 7- PENTYL 7-	166	C ₁₂ H ₂₂
3.	27.498	3,9,10-TRIBROMO-(+)- CAMPHOR	386	C ₁₀ H ₁₃ O Br ₃
4.	27.864	4-PENTADECENLY, 15- CHLORO	242	C ₁₅ H ₂₇ Cl
5.	28.089	3H-CYCLODECA[B]FURAN-2-ONE , 4,9-DIHYDROXY-6-METHYL-3,10-DIMETHYLENE	264	C ₁₅ H ₂₀ O ₄
6.	28.179	2-PROPENOIC ACID, OXYBIS (METHY-2-1-ETHANEDIYL) ESTER	240	C ₁₅ H ₂₈ O ₂
7.	28.694	CIS-9,10-DIMETHYLENE	284	C ₁₈ H ₃₆ O ₂
8.	28.774	1-HEXYL-2- NITROCYCLOHEXANE	213	C ₁₂ H ₂₃ O ₂ N
9.	28.934	PENTANOICACID,10-UNDECENYL ESTER	254	C ₁₆ H ₃₀ O ₂
10.	29.354	4-PENTADECENLY, 15- CHLORO	242	C ₁₅ H ₂₇ Cl

4.6 WOUND HEALING ASSAY:

From the obsevation of scratch wound assay, it is noted that the application of MEX of *E. crassipes* enhances the rate of wound healing. The assay showed that with the application of extract the cells take only 76 hours to get healed by 80.77% proving that the MEX of *E. crassipes* have wound healing property. The images of the were given below:

Figure 4.18 control

Figure 4.19 wounded cells

Figure 4.20 wound healing at 24 hr (07.69%)

Figure 4.21 Wound healing at 48 hr (42.31%)

Figure 4.22 Wound healing at76 hr (80.77%)

S.No.	Hours	Percentage wound
		healing
1.	0	0 %
2.	24	07.69 %
3.	48	42.31 %
4.	76	80.77 %

CHAPTER 5

SUMMARY & CONCLUSION

This project has its soul concern to focus on the properties that adds up value to E. crassipes for being medically used to treat wounds as well as to minimise the environmental pollution by using the abundant resouce of water hyacinth plant found in ponds and lakes. As the primary step, the leaves of water hyancith were collected. These leaves were shade-dried for 3 days and ground to powder using mortar and pestle. The 30g of powder was used to extract the phytochemicals present in the water hyacinth leaves where methanol is used as solvent. Then the MEX was stored in Conical flask with the mouth wrapped with aluminium foil. Meanwhile to prove the anti-bacterial property of E.crassipes the bacterial strains of P. aeruginosa, E. cloacae, E. coli, Enterococcus sp. were collected from the patients wound sample at billroth hospital, amanjikarai. The bacterial strains were plated and the MEX were introduced into the plates through well diffusion method. After 24 hours the plates were observed to measure the ZOI of MEX against the bacterial strains. The ZOI measured were 6mm, 10mm, 13mm and 15mm for P. aeruginosa, 0mm, 0mm, 3mm and 4mm for E. coli, 4mm, 6mm, 7mm and 9mm for E. cloacae and 4mm, 9mm, 10mm and 14mm for Enterococcus sp. Having positive result for anti-bacterial assay then the next criteria to test for the Antioxidant and antiinflammatory property of E. crassipes. The anti-oxidant activity of *E.crassipes* was determined using DPPH assay, where it was observed that 20, 40, 60, 80 and 100 (μ g/mL) could have inhibition to oxidation about 9.80, 19.65, 41.65, 64.48 and 81.04 (%) respectively. Thus it had a positive result for anti-oxidant test. Then, inorder to conduct the anti-inflammatory assay, two methods were considered namely Protein denaturation inhibition assay and Heat induced haemolysis method. Egg albumin was used as protein sample for protein denaturation inhibition assay and the methanolic extract was found to

have 24% of denaturation inhibition. For the second method (i.e) Heat induced hemolysis method, an erythrocyte suspension was prepared to induce hemolysis through heat. In this assay the MEX was found to possess 15.5% inhibition for hemolysis. So these assay ensured that the MEX of E. Crassipes have antioxidant and anti-inflammatory property. While the studies have been going on, we would also like to have a GC-MS analysis to find out what really were those componnents present in the MEX of *E. crassipes*. So, the powdered sample was sent to to Sophisticated Instrumentation facility, School of advanced sciences, Chemistry division, VIT university, Vellore for GC-MS analysis. As a final step to prove and to evaluate the wound healing ability of the extract, The Wound Scratch assay was conducted using 3T3 mice cells. The wound was created in the culture using P10 pipette tip and kept exposed to 50 µg/mL of samples for 24-72 hrs at 37°C in a humidified atmosphere of 5% CO₂.Scratch wound closure was analyzed under the inverted microscope (Magnus INVI, Noida) equipped with a digital CCD camera, by acquiring digital images at different time 0th (T0), 2nd (T1), 3rd (T2) and 4th (T3) days (static imaging) and found that the extract promoted 7.69%, 42.31% and 80.77% during its 24th, 48th and 76th hour of observation respectively. Through this study, we showed that the Water hyacinth (E. crassipes) have anti-bacterial, anti-oxidant and anti-inflammatory and wound healing Property. Also, using Water hyacinth in medicinal treatment for wound healing, we found a more effective way to exploit the Abundant resource of Water hyacinth and to minimise the pollution caused by it.

APPENDIX

NUTRIENT BROTH:

Composition	gm/1000ml		
Beef extract	-	1	
Yeast extract	-	2	
Peptone	-	5	
Sodium chloride	-	5	

REFERENCES

- 1. Alessandra Tisi, Riccardo Angelini and Alessandra Cona (2008) 'Wound healing in plants', Plant Signaling & Behavior 3:3, 204-206.
- Aneja KR, Srinvas B and Kaur M. (1993) 'Evaluation of Fusarium chlamydosporum as a biocontrol agent of water hyacinth (E. crassipes) (Mart.) Solms', Integrated Weed Management for Sustainable Agriculture, Proceedings of Indian Society of Weed Science International Symposium, Hisar, India, 18-20 November 1993, Vol. II, Hisar, Haryana, India, pp. 145-149.
- Ayda Hosseinkhani, Maryam Falahatzadeh, Elahe Raoofi, Mohammad M. Zarshenas(2016) 'An Evidence-Based Review on Wound Healing Herbal Remedies From Reports of Traditional Persian Medicine' Journal of evidence-based complementary and alternative medicine, Volume 22(2),pp: 334-343.
- 4. Badri prakash Nagori and Renu Solanki (2011) 'Role of Medicinal plants in wound Healing', Research Journal of Medicinal Plant 5(4): 392-405.
- 5. Center, T. D., Hill, M. P., Cordo, H., & Julien, M. H. (2002) 'Water hyacinth', Biological control of invasive plants in the Eastern United States, USDA Forest Service Publication FHTET.
- Dagno K., Lahlali R., Friel D., Bajji M., Jijakli H. (2007) 'Review: Problems of the water hyacinth, E. crassipes in the tropical and subtropical areas of the world, in particular its eradication using biological control method by means of plant pathogens', Biotechnol, Agron, Soc. Environ., 11(4), 299–311.
- Dagno, K., Lahlali, R., Diourte, M., & Haissam, J. (2012) 'Fungi occurring on water hyacinth, E. crassipes (Martius) Solms-Laubach in Niger River in Mali and their evaluation as Mycoherbicides', Journal of Aquatic Plant Management, 50, 25–32.
- De Groote H., Ajuonua O., Attignona S., Djessoub R., Neuenschwandera P. (2003) 'Economic impact of biological control of water hyacinth in Southern Benin', Ecological Economics, 45(1), 105–117.

- Dinesh Kumar (2018) 'In-silico anti-bacterial activity of active phytocompounds from the ethanolic leaves extract of E. crassipes (Mart) Solms. against selected target pathogen Pseudomonas fluorescens', ResearchGate.
- 10. Evans A. C. (1963) 'The grip of water hyacinth', New Scientist, 19, pp: 666–668.
- Ganesh N., P. Sharma (2018) 'In-Vivo determination of wound healing and antitumor properties of HPLC eluted fractions of water weeds(E. crassipes and Pistia stratiotes)', Research journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences vol. 4(2), pp: 355-367.
- 12. Gopal B. (1987) 'Water hyacinth', Oxford, UK, Elsevier.
- D. P. P. Gunathilake , K. K. D. S. Ranaweera and H. P. Vasantha Rupasinghe (2018) 'In Vitro Anti-Inflflammatory Properties of Selected Green Leafy Vegetables', vol. 6,107.
- Human Ali, N.Lata, Janak Ahi and N.Ganesh (2010) 'Evaluation of Woundhealing activity of E. crassipes : A novel approach', Drug Invention Today, 2(3), 212-214.
- 15. Ibrahim Tumen, Ipek Süntar, Hikmet Keleş, Esra Küpeli Akkol (2012) 'A Therapeutic Approach for Wound Healing by Using Essential Oils of Cupressus and Juniperus Species Growing in Turkey', Hindawi Publishing Corporation.
- 16. Jagathesan, Rajiv (2018) 'Biosynthesis and characterization of iron oxide nanoparticles using E. crassipes leaf extract and assessing their anti-bacterial activity', Biocatalysis and Agricultural Biotechnology, vol. 13, pp:90-94.
- 17. Jakir Hossain, Abira Khan and Mohammed Aftab Uddin (2018) 'Antimicrobial Efficacy and Phytochemical Analysis of Three Aquatic Plant Species in Bangladesh', Bangladesh Journal of Microbiology, Vol. 35(1), pp:7-11.
- 18. Jose Leon, Enrique Rojo, Jose Sanchez-Serrano(2001), 'Wound Signaling in plants', Journal of Experimental Botany, Volume 52(354), pp: 1-9.
- 19. John Gichuki, Reuben Omondi, Priscillar Boera, Tom Okorut, Ally Said Matano, Tsuma Jembe, and Ayub Ofulla (2012) 'Water Hyacinth E.

crassipes (Mart.) Solms-Laubach Dynamics and Succession in the Nyanza Gulf of Lake Victoria (East Africa): Implications for Water Quality and Biodiversity Conservation', The Scientifific World Journal.

- 20. Kalirajan A., J. Savarimuthu Michael, A.J.A. Ranjit Singh (2012) 'A Preliminery Screning of The Medicinal Plant *Desmodium gyrans* (Linn.F) DC for its Antimicrobial, Phytochemical and Wound Healing Properties', International Journal of Pharmaceutical Sciences and Research, vol. 3(6), pp: 1726-1730.
- 21. Kauraw LP and Bhan VM. (1994) 'Efficacy of Cassytha powder to water hyacinth and of marigold to Parthenium population', Weednews 1(2), pp: 3-6.
- 22. Khosravitabar F., P. Abrishamchi, A. R. Bahrami, M. M. Matin, H. Ejtehadi and M. Varasteh-Kojourian (2017) 'Enhanced Cutaneous Wound Healing by the Leaf Extract of Achillea eriophora D.C. Using the In Vitro Scratch Assay', Journal of Sciences, Islamic Republic of Iran 28(4): 305 - 312.
- 23. Kofi Annan, Peter J. Houghrton (2008) 'Anti-bacterial, anti-oxidant and fibroblast growth stimulation of aqueous extract of Ficus asperifolia Miq. and Gossypium arboreum L., wound-healing plants of Ghana', Journal of Ethnopharmacology, 119: 141-144.
- Kumar B., M. Vijayakumar, R. Govindarajan and P. Pushpangadan (2007) 'Ethnopharmacological approaches to wound Healing- Exploring Medicinal Plants of India, J. Ethnopharmacol., 114, pp: 103-113.
- 25. P.Lalitha, Shubashini k. Sripathi and P. jayanthi (2012) 'Acute Toxicity Study of Extract of E. crassipes (mart.) Solms', Asian Journal of Pharmaceutical and Clinical Research, vol. 5.
- 26. Lenora, J. Senthil Kumar, Murugesan, N. Senthil Kumar (2015) 'Anticancer activity of water hyacinth on human cervical cancer cell line', Octa journal of Environmental Research, Vol. 3(4), pp: 234-272.
- 27. SK Madhumithra, P Balashanmugam , K Mosachristas, A Tamil Selvi, R Subashini (2018) ' In Vitro Cytotoxicity of Biosynthesized Gold

Nanoparticale From Shells of *Pistacia vera L.*', Journal of App. Pharm., 10 (4), pp: 162-167.

- 28. Marcio Fronza, Berta Maria Heinzmann, Matthias Hamburger, Stefan Laufer, Irmgard Merfort (2009) 'Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts', Journal of Ethnopharmacology, Vol. 126(3), pp:463-467.
- 29. Okoli C.O., Akah P.A., Onuoha N.J., Okoye T.C., Nwoye A.C., Nworu C.S. Acanthus montanus (2008) 'An experimental evaluation of the antimicrobial, anti-inflflammatory and immunological properties of a traditional remedy for furuncles. BMC Complement. Altern. Med., vol. 8, 27.
- Patel, S. (2012) 'Threats, management and envisaged utilizations of aquatic weed E. crassipes: An overview', Reviews in Environmental Science and Biotechnology, 11(3), 249–259.
- 31. Prafulla Sabale, Bhargav Bhimani, Chirag Prajapati and Vidya Sabale (2012)'An overview of medicinal plants as wound healers', Journal of Applied Pharmaceutical Science, Vol. 2 (11), pp: 143-150.
- 32. Rahel, F., & Olden, J. (2008) 'Assessing the effects of climate change on aquatic invasive species', Conservation Biology, 22(3), 521–533.
- 33. Rajesh Singh Pawar, Fedelic Ashish Toppo(2012). 'Plants that heal wounds. A review', Semaintic Scholar, Volume 58(1), pp: 48-65.
- 34. Ray P, Sushil K and Pandey AK. (2008b) 'Survey and selection of potential pathogen for biological control of water hyacinth', Indian Journal of Weed Science, 40, pp: 75-78.
- 35. Ray Puja, Sushilkumar and Pandey AK. (2008c) 'Efficacy of pathogens of water hyacinth (E. crassipes), singly and in combination for its biological control, Journal of Biological Control, 22(1), pp: 173-177.
- 36. Rex Jeya Rajkumar, Muthukumar Nadar, Paulraj Mosae Selvakumar(2018), 'Plant-derived compounds for wound healing-A review' International Journal of Organic and Medicinal Chemistry' Volume 5(1).pp: 1-5.
- Robert, P.R., K.W. Black, J.T. Santamauro and G.P. Zaloga (1998) 'Dietary Peptides Improve Wound Healing Following Surgery, Nutrition, 14, pp: 266-269.

- Rupesh Thakur, Nitika Jain, Raghvendra Pathak and Sardul Singh Sandhu (2011) 'Practices in Wound Healing Studies of Plants', Hindawi Publishing Corporation.
- 39. K.Sahira Banu, Dr.L.Cathrine (2015) 'General Techniques Involved in Phytochemical Analysis', International Journal of Advanced Research in Chemical Science, vol. 2, pp: 25-32.
- 40. Sarveswaran R., Jayasuriya W. J. A. B. N , Suresh T.S. (2017)'In Vitro Assays to Investigate the Anti-inflammatory Activity of Herbal Extracts: A Review', World Journal of Pharmaceutical Research, Vol. 6,17: 131-141.
- 41. Shashank Kumar, Ramesh Kumar, Asstha Dwivedi, Abhay Pandey(2014) 'In Vitro Anti-oxidant, Anti-bacterial, and Cytotoxic Activity and In Vivo Effect of Syngonium podophyllum and E. crassipes Leaf Extracts on Isoniazid Induced Oxidative Stress and Hepatic Markers' Hindawi Publishing Corporation.
- 42. Shinde U.A., Phadke A.S., Nari A.M., Mungantiwar A.A., Dikshit V.J., Saraf M.N. (1999) 'Membrane stabilization activity - A possible mechanism of action for the anti-inflflammatory activity of Cedrusdeodora wood oil', Fitoterapia, 70, 251–257.
- 43. Somia M. Elagib (2020) ' Antiparasitic activity of E. crassipes leaves extract', Biocatalysis and Agricultural Biotechnology, vol. 24.
- 44. Strodtbeck F. (2001) 'Physiology of Wound Healing, Newborn Infant Nurs. Rev., 1, pp: 43-52.
- 45. Sushil Kumar (2015) 'History, progress and prospeccts of classical biological control in India', Indian Journal of Weed Science, 47(3): 306-320.
- Tyagi Tulika, Agarwal Mala (2015) 'Pharmaceutical potential of Aquatic plant Pistia statiotes (L.) and E. crassipes', Journal of Plant Sciences, 3(1-1): 10-18.
- 47. Van-Linh Nguyen, Cong-Tri Truong, Binh Cao Quan Nguyen, Thanh-Niem Van Vo, Trong-Thuc Dao, Van-Dan Nguyen, Dieu-Thuong Thi Trinh, Hieu Kim Huynh, Chi-Bao Bui (2017) 'Anti-inflammatory and wound healing

activities of calophyllolide isolated from Calophyllum inophyllum Linn', PLOS ONE.